季理真教授专题学术报告

2016-07-01 来源:数学科学研究中心

活动地点:CMS 201

活动类型:学术报告

主讲人:季理真教授

活动时间:2016-07-11 10:00:00--2016-07-11 11:00:00

活动内容:


季理真教授专题学术报告

 

报告题目:The maximal Stakake compactification of the moduli space of abelian differentials on Riemann surfaces 

 

报告人:季理真 教授(密西根大学数学系)

 

时间:2016年7月11日(周一)上午10:00

 

地点:数学中心201教室

 

Abstract: The moduli space M_g of compact Riemann surfaces of genus g is a classical object. A related moduli space of abelian differentials on compact Riemann surfaces of genus g, denoted by \Omega M_g.  It arises naturally in Teichmuller theory and dynamics of polygonal billiards and interval exchanges and shares a lot of similarity with the homogeneous space SL(n, Z)\SL(n, R) which can be identified with the moduli space of flat tori of dimension n and volume 1. Since \Omega M_g is also the moduli space of translation surfaces, a special class of singular flat metrics on surfaces, it shares similarity with  SL(n, Z)\SL(n, R). The noncompact  homogeneous space SL(n, Z)\SL(n, R) admits finitely many Stake compactifications which arise from Lie groups, symmetric spaces and automorphic forms. We will discuss similar compactifications of  \Omega M_g.