郑方阳教授专题学术报告
报告题目:厄米流形的两种曲率间的关系
报告人:郑方阳 教授
时间: 2014年7月24日(周四)下午3:00
地点: 数学中心201教室
摘要: 流形上有两个标准联络:厄米(或称陈)联络, 以及黎曼(或称 Levi-Civita)联络。 前者为流形上唯一一个保持度量和复结构的联络,
后者为唯一一个保持度量又无绕的(即对称的)联络。对非凯勒度量而言, 这两个联络的曲率很不一样。 在这个报告中我们将探讨这两个
联络的曲率之间的相互关系, 以及其对度量(或联络)的影响。
Abstract: Given a Hermitian metric on a complex manifold, there are two canonical connections associated to it: the Hermitian (aka Chern)
connection, which is the unique connection that is compatible with the metric and the complex structure; and the Riemannian (aka Levi-Civita)
connection, which is the unique connection that is compatible with the metric and is torsion free. The curvature tensors of these
two connections behave rather differently in general, when the metric is non-Kahler. In this talk we will examine the questions of to what extent
will the behavior of the two curvature tensors affect the behavior of the connections or the metric.
欢迎广大师生参加。