On the First Non-zero Stekloff Eigenvalues

Qiaoling Wang
Departamento de Matemática
Universidade de Brasília, Brasília-DF, Brazil

Abstract

Let (M, \langle , \rangle) be an $n(\geq 2)$-dimensional compact Riemannian manifold with boundary and non-negative Ricci curvature. Consider the following two Stekloff eigenvalue problems

\[
\Delta u = 0 \text{ in } M, \quad \frac{\partial u}{\partial \nu} = pu \quad \text{on } \partial M;
\]
\[
\Delta^2 u = 0 \text{ in } M, \quad u = \Delta u - q\frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial M;
\]

where Δ is the Laplacian operator on M and ν denotes the outward unit normal on ∂M. The first non-zero eigenvalues of the above problems will be denoted by p_1 and q_1, respectively. We prove that if the principle curvatures of the second fundamental form of ∂M are bounded below by a positive constant c, then

\[
p_1 \leq \frac{\sqrt{\lambda_1}}{(n-1)c} \left(\sqrt{\lambda_1} + \sqrt{\lambda_1 - (n-1)c^2} \right)
\]

with equality holding if and only if Ω is isometric to an n-dimensional Euclidean ball of radius $\frac{1}{c}$, here λ_1 denotes the first non-zero eigenvalue of the Laplacian of ∂M. We also show that if the mean curvature of ∂M is bounded below by a positive constant c then $q_1 \geq nc$ with equality holding if and only if M is isometric to an n-dimensional Euclidean ball of radius $\frac{1}{c}$ (joint work with Changyu Xia).