Generalized Ricci flow: Local existence and uniqueness

Chunlei He

(Joint work with Sen Hu, Dexing Kong and Kefeng Liu)

Hangzhou, 2006
Outline

♦ Introduction
♦ Main results
♦ Method of proof
♦ Evolution of curvatures
1. Introduction

- In 1982, R. Hamilton introduced the Ricci flow
 \[
 \frac{\partial g_{ij}}{\partial t} = -2R_{ij}
 \]
 to construct canonical metrics for some manifolds.

- Hamilton, Yau, Perelman and other mathematicians developed many tools and techniques to study the Ricci flow.

- Recently, based on Perelman’s breakthrough, Cao and Zhu offered a complete proof of Poincare’s conjecture and Thurston’s geometrization conjecture.
In Perelman’s work, a key step is to introduce a functional

\[W(g, f) = \int_{M^3} d^3x \sqrt{g} e^{-f} (R + |\nabla f|^2). \]

The corresponding gradient flow:

\[
\begin{align*}
\dot{g}_{ij} &= -2(R_{ij} + \nabla_i \nabla_j f), \\
\dot{f} &= -(R + \Delta f).
\end{align*}
\]

In this way, we express the Ricci flow as a gradient flow.
Dynamics of a gradient flow is much easier to handle.

- The functional generating the flow is monotone along the orbit of the flow automatically.

- If the flow exists for all time, then it shall flow to a critical point which lead to the existence of a canonical metric.

- If the flow does not exist for all time, the generating functional helps very much in the analysis of singularities.
For a three-manifold M^3, J.Gegenberg et al. present a action:

$$S = \int_M d^3 x \sqrt{g} e^{-f} (\chi + R + |\nabla f|^2) - \frac{\epsilon H}{2} e^{-f} H \wedge *H$$

$$- \epsilon F e^{-f} F \wedge *F + \frac{e}{2} A \wedge F.$$

$$F = dA, \ H = dB.$$

- J. Gegenberg and G. Kunstatter, Using 3D stringy gravity to understand the Thurston conjecture, 2003.
The corresponding gradient flow:

\[
\begin{align*}
\frac{\partial g_{ij}}{\partial t} &= -2[R_{ij} + 2\nabla_i \nabla_j \phi - \frac{\epsilon_H}{4} H_{ikl} H_{jl} - \epsilon_F F_i^k F_j^k], \\
\frac{\partial B_{ij}}{\partial t} &= \epsilon_H e^{2\phi} \nabla_k (e^{-2\phi} H_k^{ij}), \\
\frac{\partial A_i}{\partial t} &= -\epsilon_F e^{2\phi} \nabla_k (e^{-2\phi} F_i^k) + \frac{e}{2} e^{2\phi} \eta_{ik} F_{kl}, \\
\frac{\partial \phi}{\partial t} &= -\chi + R(g) + 4 \nabla^2 \phi - 4 |\nabla \phi|^2 - \frac{\epsilon_H}{12} H^2 - \frac{\epsilon_F}{2} F^2.
\end{align*}
\]

(1)
J. Gegenberg et al. found that Thurston’s eight geometries appear as critical points of the above functional.

Under the condition $e = 0$, they show that there are no other critical points.

Basically critical points of the above functional are eight geometries of Thurston.
We consider a flow for a similar functional for a four-dimension manifold:

\[S = \int_M d^4x \sqrt{g} e^{-f} (\chi + R + |\nabla f|^2) - \frac{\epsilon H}{2} e^{-f} H \wedge *H - \epsilon_F e^{-f} F \wedge *F + \frac{e}{2} F \wedge F. \]

The generalization to four-manifolds is probably more interesting. It may offer a systematic way to study four-manifolds.
The corresponding gradient flow:

\[
\begin{align*}
\frac{\partial g_{ij}}{\partial t} &= -2[R_{ij} + 2\nabla_i \nabla_j \phi - \frac{\epsilon_H}{4} H_{ikl} H_{j}^{kl} - \epsilon_F F_{ik} F_{jk}], \\
\frac{\partial B_{ij}}{\partial t} &= \epsilon_H e^{2\phi} \nabla_k (e^{-2\phi} H_{ij}^k), \\
\frac{\partial A_i}{\partial t} &= -\epsilon_F e^{2\phi} \nabla_k (e^{-2\phi} F_{ik}^k) + e e^{2\phi} \eta_i^{kjl} \nabla_k (F_{jl}), \\
\frac{\partial \phi}{\partial t} &= -\chi + R(g) + 4 \nabla^2 \phi - 4 |\nabla \phi|^2 - \frac{\epsilon_H}{12} H^2 - \frac{\epsilon_F}{2} F^2.
\end{align*}
\]
♠ We prove that the system of PDEs (2) are strictly and uniformly parabolic in some sense.

♠ Based on this, we show that the generalized Ricci flow defined on a n-dimensional compact Riemannian manifold admits a unique short-time smooth solution.

♠ Moreover, we also derive the evolution equations for the curvatures, which play an important role in our future study.
2. Main results

Christoffel symbols

\[\Gamma^k_{ij} = \frac{1}{2} g^{kl} \left\{ \frac{\partial g_{jl}}{\partial x^i} + \frac{\partial g_{il}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^l} \right\}, \]

The Riemannian curvature tensors

\[R^k_{ijl} = \frac{\partial \Gamma^k_{jl}}{\partial x^i} - \frac{\partial \Gamma^k_{il}}{\partial x^j} + \Gamma^k_{ip} \Gamma^p_{jl} - \Gamma^k_{jp} \Gamma^p_{il}, \quad R_{ijkl} = g_{kp} R^p_{ijkl} \]

The Ricci tensor

\[R_{ik} = g^{jl} R_{ijkl} \]

The scalar curvature

\[R = g^{ij} R_{ij} \]
For each field we shall consider the gauge equivalent classes of fields.

- Two metrics g_1, g_2 are in the same equivalent class if and only if they are differ by a diffeomorphism, i.e., there exists a diffeomorphism $f : M \rightarrow M$ such that $g_2 = f^*g_1$.

- Two gauge fields A_1 and A_2 are equivalent if and only if there exists a function α on M such that $A_2 = A_1 + d\alpha$.

- Two B-fields B_1 and B_2 are equivalent if and only if there exists an one-form β on M such that $B_2 = B_1 + d\beta$.
Theorem 1: (Local existences and uniqueness) Let \((M, g_{ij}(x))\) be a three-dimensional compact Riemannian manifold. Then there exists a constant \(T > 0\) such that the system (1) of the evolution equations has a unique smooth solution on \(M \times [0, T)\) for every initial fields.

Theorem 2: (Local existences and uniqueness) Let \((M, g_{ij}(x))\) be a four-dimensional compact Riemannian manifold. Then there exists a constant \(T > 0\) such that the system (2) of the evolution equations has a unique smooth solution on \(M \times [0, T)\) for every initial fields.
3. Method of proof

Lemma 1. For each gauge equivalent class of a gauge field A, there exists an A' such that $d(\ast A') = 0$.

The lemma can be proved by the Hodge decomposition.

Proof. For each one-form A, by the Hodge decomposition, there exists an one-form A_0, a function α and a two-form β such that

$$A = A_0 + d\alpha + d^\ast \beta,$$

$$dA_0 = 0, d^\ast A_0 = 0.$$

Let $A' = A - d\alpha$. A' is in the same gauge equivalent class of A. Since $d(\ast A_0) = 0, d(\ast d^\ast \beta) = 0$, then we have $d(\ast A') = 0$. \square
Lemma 2. The differential operator of the right hand of (2) with respect to the gauge equivalent class of a gauge field \mathbf{A} is uniformly elliptic.

Proof. Let $\mathbf{A} = A_i dx^i$ be a gauge field. From Lemma 3.1 we can choose an \mathbf{A}' in the gauge equivalent class of \mathbf{A} such that $d(\ast \mathbf{A}') = 0$. Then $dd^* \mathbf{A}' = 0$. We still denote \mathbf{A}' as \mathbf{A}.
\[
\frac{\partial A_i}{\partial t} = -\epsilon_F e^{2\phi} \nabla_k (e^{-2\phi} F^k_i) + e e^{2\phi} \eta^{kjl} \nabla_k (F_{jl}) \\
= -\epsilon_F \nabla_k (g^{kl} F_{il}) - \epsilon_F e^{2\phi} F^k_i \nabla_k (e^{-2\phi}) + e e^{2\phi} \eta^{kjl} \nabla_k \left(\frac{\partial A_l}{\partial x^j} - \frac{\partial A_j}{\partial x^l} \right) \\
= \epsilon_F (d^* F)_i + 2\epsilon_F F^k_i \frac{\partial \phi}{\partial x^k} + 2e e^{2\phi} \eta^{kjl} \frac{\partial^2 A_l}{\partial x^k \partial x^j} \\
= \epsilon_F (d^* dA)_i + \epsilon_F (dd^* A)_i + 2\epsilon_F F^k_i \frac{\partial \phi}{\partial x^k} \\
= \epsilon_F \Delta A_i + 2\epsilon_F F^k_i \frac{\partial \phi}{\partial x^k}.
\]

The right hand side is clearly elliptic at point \(x\). If we apply a diffeomorphism to the metric it won’t change the positivity property of the second order operator of the right hand side. \(\Box\)
Lemma 3. For each gauge equivalent class of a B-field B, i.e., a two-form B on M, there exists a B' such that $d(\ast B') = 0$.

Proof. Again we use the Hodge decomposition. For a two-form B, there exist a one-form α, a two-form B_0 and a three-form β such that

$$B = B_0 + d\alpha + d^*\beta,$$

$$dB_0 = 0, d^*B_0 = 0.$$

Let $B' = B - d\alpha$. B' is in the same gauge equivalent class of B, then we have $d(\ast B') = 0$. □
Lemma 4. The differential operator of the right hand side of (2) with respect to the gauge equivalent class of a B-field B is uniformly elliptic.

Proof. Let us consider the equation for B-field. Without loss of generality, we assume $d(\ast B) = 0$. Then $dd^*B = 0$. We have
\[
\frac{\partial B_{ij}}{\partial t} = \epsilon_H e^{2\phi} \nabla_k (e^{-2\phi} H^k_{ij})
\]
\[
= \epsilon_H \nabla_k (H_{lij} g^{kl}) + \epsilon_H e^{2\phi} H^k_{ij} \nabla_k (e^{-2\phi})
\]
\[
= -\epsilon_H (d^* dB)_{ij} - \epsilon_H (dd^* B)_{ij} - 2\epsilon_H H^k_{ij} \frac{\partial \phi}{\partial x^k}
\]
\[
= -\epsilon_H \Delta B_{ij} - 2\epsilon_H H^k_{ij} \frac{\partial \phi}{\partial x^k}
\]

The right hand side is clearly elliptic at the point \(x \). If we apply a diffeomorphism to the metric it does not change the positivity property of the second order operator of the right hand side. \(\square \)
Suppose \((\hat{g}_{ij}(x, t), \hat{\phi}(x, t))\) is a solution of the equations (2), and \(\varphi_t : M \rightarrow M\) is a family of diffeomorphisms of \(M\). Let

\[
g_{ij}(x, t) = \varphi_t^* \hat{g}_{ij}(x, t), \quad \phi(x, t) = \varphi_t^* \hat{\phi}(x, t),
\]

where \(\varphi_t^*\) is the pull-back operator of \(\varphi_t\). We now want to find the evolution equations for the metric \(g_{ij}(x, t)\) and \(\phi(x, t)\).

Denote

\[
y(x, t) = \varphi_t(x) = \{y^1(x, t), y^2(x, t), \ldots, y^n(x, t)\}
\]

in local coordinates.
If we define \(y(x, t) = \varphi_t(x) \) by the equations

\[
\begin{align*}
\frac{\partial y^\alpha}{\partial t} &= \frac{\partial y^\alpha}{\partial x^k} (2 \nabla_j \phi g^{kj} + g^{jl} (\Gamma^k_{jl} - \tilde{\Gamma}^k_{jl})), \\
y^\alpha(x, 0) &= x^\alpha
\end{align*}
\]

and \(V_i = g_{ik} g^{jl} (\Gamma^k_{jl} - \tilde{\Gamma}^k_{jl}) \), then we have

\[
\begin{align*}
\frac{\partial g_{ij}(x, t)}{\partial t} &= g^{kl} \frac{\partial^2 g_{ij}}{\partial x^k \partial x^l} + \frac{\epsilon_H}{2} H_{ikl} H^k_{jl} + 2 \epsilon_F F^k_i F_{jk}, \\
\frac{\partial \phi}{\partial t} &= -\frac{1}{2} g^{ij} g_{kl} \frac{\partial^2 \phi}{\partial x^k \partial x^l} + 2 g^{kl} \frac{\partial^2 \phi}{\partial x^k \partial x^l} \\
&\quad - 2 g^{kl} \frac{\partial \phi}{\partial x^k} \frac{\partial \phi}{\partial x^l} - g^{jl} \tilde{\Gamma}^k_{jl} \frac{\partial \phi}{\partial x^k} - \chi - \frac{\epsilon_H}{12} H^2 - \frac{\epsilon_F}{2} F^2.
\end{align*}
\]

(6)
Let

\[u_1 = g_{11}, u_2 = g_{12}, u_3 = g_{13}, u_4 = g_{14}, u_5 = g_{22}, u_6 = g_{23}, \]
\[u_7 = g_{24}, u_8 = g_{33}, u_9 = g_{34}, u_{10} = g_{44}, u_{11} = \phi. \]

The above equations can be rewritten as the following form

\[
\frac{\partial u_i}{\partial t} = \sum_{jkl} a_{ikjl} \frac{\partial^2 u_j}{\partial x^k \partial x^l} + (\text{lower order terms}).
\]

So for arbitrary \(\xi \in \mathbb{R}^{4 \times 11}, \) it is easily verified that the eigenvalues of the above quadratic forms \(\sum_{ijkl} a_{ikjl} \xi_i \xi_j \) read

\[
\frac{3}{2} \pm \frac{\sqrt{2}}{2}, 1, 1, 1, 1, 1, 1, 1, 1, 1.
\]

It means that the uniformly parabolic condition of the system (6) holds.
Lemma The differential operator of the right hand side of (6) with respect to the metric g and the dilaton ϕ is uniformly elliptic.

Summarizing the above discussions and by virtue of the standard theory of partial differential equations, we can obtain the existence and uniqueness of solution.
4. Evolution of curvatures

Theorem 1 Under the gradient flow (2), the curvature tensor satisfies the evolution equation

\[
\frac{\partial}{\partial t} R_{ijkl} = \Delta R_{ijkl} + 2(B_{ijkl} - B_{ijlk} - B_{iljk} + B_{ikjl})
\]

\[
- g^{pq} (R_{pqkl} R_{ql} + R_{ipkl} R_{qj} + R_{ijpl} R_{qk} + R_{ijkp} R_{ql})
\]

\[
- 2g^{pq} (R_{pqkl} \nabla_q \nabla_i \phi + R_{ipkl} \nabla_q \nabla_j \phi + R_{ijpl} \nabla_q \nabla_k \phi + R_{ijkp} \nabla_q \nabla_l \phi)
\]

\[
- 2g^{pq} \nabla_q \phi \nabla_p R_{ijkl}
\]

\[
+ \epsilon H \left[\nabla_i \nabla_l (H_{kpq} H_j^{pq}) - \nabla_i \nabla_k (H_{jpq} H_l^{pq}) \right]
\]

\[
- \nabla_j \nabla_l (H_{kpq} H_i^{pq}) + \nabla_j \nabla_k (H_{ipq} H_l^{pq})
\]

\[
+ \epsilon H \frac{1}{4} g^{mn} (H_{kpq} H_m^{pq} R_{ijnl} + H_{mpq} H_l^{pq} R_{ijkn})
\]

\[
+ \epsilon F \left[\nabla_i \nabla_l (F_k^p F_{jp}) - \nabla_i \nabla_k (F_j^p F_{lp}) - \nabla_j \nabla_l (F_k^p F_{ip}) + \nabla_j \nabla_k (F_i^p F_{lp}) \right]
\]

\[
+ \epsilon F g^{mn} (F_k^p F_m^p R_{ijnl} + F_m^p F_l^p R_{ijkn}),
\]

where \(B_{ijkl} = g^{pr} g^{qs} R_{pijq} R_{rksl} \) and \(\Delta \) is the Laplacian with respect to the evolving metric.
Theorem 2 The Ricci curvature satisfies the following evolution equation

$$\frac{\partial}{\partial t} R_{ik} = \triangle R_{ik} + 2g^{pr} g^{qs} R_{pikq} R_{rs} - 2g^{pq} R_{pi} R_{qk}$$

$$- 2g^{pq} (R_{pk} \nabla_q \nabla_i \phi + R_{ip} \nabla_q \nabla_k \phi) - 2g^{pq} \nabla_q \phi \nabla_p R_{ik}$$

$$+ \frac{\epsilon_H}{4} g^{jl} [\nabla_i \nabla_l (H_{kpq} H^j_{pq}) - \nabla_i \nabla_k (H_{jpq} H^l_{pq})]$$

$$- \nabla_j \nabla_l (H_{kpq} H^i_{pq}) + \nabla_j \nabla_k (H_{ipq} H^l_{pq})$$

$$+ \frac{\epsilon_H}{4} g^{mn} (H_{kpq} H^p_{m} R_{in} - g^{jl} H_{mpq} H^l_{pq} R_{ijnk})$$

$$+ \epsilon_F g^{jl} [\nabla_i \nabla_l (F^p_{k} F^j_{lp}) - \nabla_i \nabla_k (F^p_{j} F^l_{lp})]$$

$$- \nabla_j \nabla_l (F^p_{k} F^i_{lp}) + \nabla_j \nabla_k (F^p_{i} F^l_{lp})]$$

$$+ \epsilon_F g^{mn} (F^p_{k} F^p_{mp} R_{in} - g^{jl} F^p_{m} F^l_{lp} R_{ijnk}).$$
Theorem 3 The scalar curvature satisfies the following evolution equation

$$\frac{\partial}{\partial t} R = \Delta R + 2|Ric|^2 - 2g^{pq}\nabla_q \phi \nabla_p R$$

$$+ \frac{\epsilon_H}{2} g^{jl} g^{ik} \left[\nabla_i \nabla_l (H_{kpq} H_{j}^{pq}) - \nabla_i \nabla_k (H_{jpq} H_{l}^{pq}) \right]$$

$$+ 2\epsilon_F g^{jl} g^{ik} \left[\nabla_i \nabla_l (F_{kp}^p F_{jp}) - \nabla_i \nabla_k (F_{jp}^p F_{lp}) \right]$$

$$- g^{ip} R_{ik} \left(\frac{\epsilon_H}{2} H_{pmn} H^{kmn} + 2\epsilon_F F_{pm} F^{km} \right).$$
Thank you!