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Active Contours in Image Segmentation

Segmentation is to Partition an image into disjoint, connected
components that are homogeneous w.r.t. intensity, texture or
certain probabilistic measures.

Active contour method is evolving contours towards
boundaries of interest by designed forces (e.g. edge, region
information or prior knowledge).

Active contour models have a consistent mathematical
description, their solutions satisfy certain minimum principles.
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Edge and Region Based Active Contours

Edge based:
Rely on edge information (high magnitude of image gradient)
Limitation - sensitive to noise, artifacts, may leak through
gaps on boundary

Region based: Make use of information on regional statistics
from image intensities.
Limitation - high noise level, intensity inhomogeneity, complex
intensity distribution

Combination of edge based and region based
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Edge Based Active Contour

Geodesic Active Contour (Caselles, Kimmel, Sapiro, 1997)

min
C(p)

∫ 1

0
g(|∇Gσ ∗ I |(C (p))|C ′(p)|dp

g(s) =
1

1 + ks2
, Gσ(x) =

1

σn
e−|x |2/4σ2
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Region Based Active Contours

Mumford-Shah model in segmentation
piecewise smooth model / cartoon model

Likelihood maximization approaches

Using parametric statistics
Using non-parametric statistics
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Section 2

Mumford-Shah (MS) Model
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Mumford-Shah (MS) Model

MS model for simultaneous smoothing and segmentation:

MS piecewise smooth model (two phases):

min
C(p),u(x)

∫

Ω\C
|∇u(x)|2dx+α

∫

Ω
(I (x)−u(x))2dx+β

∫ 1

0
|C ′(p)|dp.

(1)

MS Cartoon model (pw constant):

min
C(p),m1,m2

∑

i

∫

Ωi

(I − mi )
2dx + β

∫ 1

0
|C ′(p)|dp. (2)

Ω1: region inside C , Ω2: region outside C , and Ω = ∪2
i=1Ωi .

Mumford and Shah ’89, L. Ambrosio et.al. ’97, Tsai et.al.’01, T. Chan

et. al. ’02 and A. Yezzi et.al.’02.
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Section 3

Active Contour Using Parametric Statistics
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Likelihood Maximization With Parametric Probability
Density Function (pdf)

Consider I (x) at each x ∈ Ωi (i = 1, 2) as an independent
random variable with a parametric pdf p(I (x)|θi (x),Ωi ),

joint pdf of I in Ωi is
∏

x∈Ωi
p(I (x)|θi (x),Ωi ).

Likelihood function:

L(θi (x)′s,Ω′
i s) = Π2

i=1(
∏

x∈Ωi

p(I (x)|θi (x),Ωi ).

Maximizing likelihood estimate (MLE):

min
C ,θi (x)′s

−lnL(θi(x)′s,Ω′
i s) + β|C |

=

2∑

i=1

∫

Ωi

ln p(I (x)|θi (x),Ωi ) + β|C |.
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MLE with Gaussian pdf

Gaussian pdf θi(x) = (ui(x), σi (x)

p(I (x)|θi (x),Ωi ) =
1

(
√

2πσi (x))
e
−

|I (x)−ui (x)|2

2σ
2
i
(x) .

MLE approach

min
C ,ui (x),σi (x)

∑

i=1

∫

Ωi

{ 1

2σ2
i (x)

|I (x)−ui (x)|2 +lnσi(x)}dx +β|C |.

Segmentation of homogeneous regions: ui (x) = ui , σi (x) = σi

(Zhu. et. al.’96 and Rousson et. al.’02):

min
C ,u′

i
s,σ′

i
s

2∑

i=1

∫

Ωi

1

2σ2
i

|I (x)−ui |2dx + |Ωi | lnσi +β

∫ 1

0
|C ′(p)|dp.

(3)
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Connections And Drawbacks of Previous Models

Connections:

If σi ’s (or σi(x)’s) in Gaussian model are fixed, it reduce to
cartoon (or ps. smooth) MS model.
More references: S.Jehan-besson et al. 01, N.Paragios et al
02, P.Martin et al 04.

Drawbacks:

Parametric model and MS cartoon model are not good for
images with higher level noise or multi-modal intensity
distributions.

Pw. smooth MS Model smooths image by min
∫
|∇u|2, which

is not adaptive for edge preserving.
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Section 4

Active Contour Using Non-Parametric

Statistics
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Nonparametric Density Estimation

Kernel method for nonparametric pdf estimation:

Estimate pdf f (X ) of RV X from data {x1, x2, ..., xn}:

f̂ (X = x) =
1

n

n∑

i=1

K (x − xi),

K : window function: smooth, positive, rapidly decreasing to
zero outside the window, whose integral is equal to one.

Estimate pdf f (x) = p(I (x)|x ∈ B) of RV I (x)

f̂ (x) =
1

|B |

∫

B

K (I (x) − I (y))dy .

Parzen Window density function:

K (Z ) =
1

(
√

2πσ)m
e
− Z2

2σ
2
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Some Related Work

J.Kim et. al.’05
Segmentation by maximization of the mutual information
between the region labels and image intensities, where the pdf
is estimated using Parzen window.

X.Huang et. al.’ 04
Segmentation by minimizing the energy consisting the shape
data term from edge map image, and intensity data term from
likelihood function of interior nonparametric statistics
estimated by using parzen window.

G.Aubert et. al. 03
Segmentation of regions in video sequence by matching
histograms of the current frame with the previous one, where
the histograms (pdf) are estimated using Parzen window.

Work in this line: T.Brox et. al. 03 W.Abd-Almageed et.
al.’03, A.Hermosillo et. al. 04.
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Section 5

Active Contour Using Non-Parametric

Local Statistics

(recent joint work with W.Guo)
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Basic Idea of Our Model

Estimate pdf locally in a neighborhood whose size depends on
image gradient to preserve and enhance boundaries of features.

Consider I (x) at each x ∈ Ωi

⋂
B(x , r(x)) as random

variables with pdf fi (x) (Ω1:inside C ,Ω2:outside C ).

Use data {I (y), y ∈ Ωi

⋂
B(x , r(x))} rather than

{I (y), y ∈ Ωi} to estimate fi (x).

Estimation of pdf:

f̂i(x) =
1

|B(x , r(x))
⋂

Ωi |

∫

B(x ,r(x))
⋂

Ωi

K (Ii (x) − I (y))dy ,

K (z) =

{
3/4(1 − z2), |x | < 1

0, |x | ≥ 1
(4)
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Radial r(x) Depends On Image Gradient

r(x) =

{
M, |∇Ĩ (x)| ≤ s

N, |∇Ĩ (x)| > s
(5)

or more general

r(x) =
a

1 + b|∇Ĩ (x)|2
, for some a > 0, b > 0.

Ĩ : a smoothed version of initial image I .
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Proposed model

Find C , I1(x) and I2(x) by minimizing

−
∑

i

∫

Ωi

ln

(
1

|B i
x |

∫

B i
x

K (Ii (x) − I (y))dy

)
dx + β

∫ 1

0
|C ′(p)|dp

(6)

Level set form: Find φ(x) and Ii (x) by minimizing

−
∫

Ω
H(φ(x))ln

1

|Bx |

∫

Ω
1Bx

H(φ(y))K (Ii (x) − I (y))dydx

−
∫

Ω
(1 − H(φ(x)))ln

1

|Bx |

∫

Ω
1Bx

(1 − H(φ(y)))K (Ii (x) − I (y))dydx

+β

∫

Ω
|∇H(φ(x))|dx . (7)

C = {x ∈ Ω|φ(x) = 0}, inside C φ(x) > 0, H(x):Heaviside
function, Bx = B(x , r(x)), B i

x = B(x , r(x))
⋂

Ωi .
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Features OF The Proposed Model

Region based active contour using nonparametric local
statistics for simultaneous segmentation and adaptive
smoothing.

u(x) =
∑

i 1Ωi
ui(x) reduces the oscillation in I (x).

ui (x)the weighted average of I (x) within the ball B(x , r(x))
inside Ω.
Weighting is determined by the kernel function inside Ωi .
smoothing does not cross boundary C .

Ball size r(x) depends on image gradient, so that the
smoothing is adaptive and feature preserving.
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Existence of Minimizer

min
χA∈BV (Ω)

E (χA) = β

∫

Ω
|DχA|

−
∫

Ω
χA(x)log

(
1

|Bx |

∫

Bx

χA(y)K (u1(x) − I (y))dy

)
dx

−
∫

Ω
(1 − χA(x))log

1

|Bx |

(∫

B(x
(1 − χA(y))K (u1(x) − I (y))dy

)
dx

(8)

where Bx = B(x , r(x)),

u1(x) =

∫
Bx

χA(y)I (y)dy
∫
Bx

χA(y)dy
, x ∈ A

u2(x) =

∫
Bx

(1 − χA(y))I (y)dy∫
Bx

(1 − χA(y))dy
, x ∈ Ω \ A
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Space of Functions With Bounded Variation (BV)

Definition of BV (Ω): The space of functions u ∈ L1(Ω)
having bounded variation:

|Du|(Ω) = sup{
∫

Ω
udivφ|φ ∈ C 1

0 (Ω,Rn), |φ| ≤ 1} < ∞

Norm in BV (Ω):

||u||BV (Ω) = ||f ||L1(Ω) + |Du|(Ω).

Compactness theorem in BV

Assume Ω is open, bounded with Lipschitz boundary, if
{un}n≥1 ∈ BV (Ω) is bounded, then ∃ a subsequence {unj

}
and a function u ∈ BV (Ω), s.t. uj → u strongly in L1(Ω).

Lower Semi-Continuity in L1

Let u, {uj} ⊂ BV (Ω) and uj → u in L1(Ω), then

|Du|(Ω) ≤ lim inf j→∞|Dunj
|(Ω).
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Existence Theorem and Sketch of the Proof

Theorem:

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary,
and I (x) ∈ L2. Then model (8) has a minimizer χA ∈ BV (Ω).

Sketch of the Proof

Energy is bounded below by zero.

There is a minimizing sequence {χAn
} s.t.

limE (χAn
) = lim infχA∈BV (Ω) E (χA)

χAn
is a bounded sequence in BV (Ω)
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Sketch of the Proof (cont.)

{χAn
} sub-converges to u ∈ BV (Ω) strongly in L1(Ω), and

a.e. in Ω.

u takes value 0 or 1 only, u = χA for some A ⊂ Ω.

Dominant convergence theorem gives

uinj
→ ui strongly in L2(Ω), and a.e. in Ω, i = 1, 2.

−
∫

Ω
χAnj

(x)log

(
1

|Bx |

∫

Bx

χAnj
(y)K (u1nj

(x) − I (y))dy

)
dx

→ −
∫

Ω
χA(x)log

(
1

|Bx |

∫

Bx

χA(y)K (u1(x) − I (y))dy

)
dx .

The l.s.c. of BV in L1 yields

E (χA(x)) ≤ lim inf E (χAnj
) = infχA∈BV (Ω)E (χA).
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Numerical Implementation

Level Set Method(S. Osher and J. Sethian, T. Chan et. al.
etc.)
Allows for cusps, corners, and automatic topological changes.
Discretization is on fixed regular grid.

Additive Operator Splitting(X. Tai, J. Weickert et. al. etc.)
Solve

un+1 − un

∆t
= λ

n∑

l=1

Alu
n+1 + F n, or

un+1 = (I − ∆tλ
3∑

l=1

Al)
−1(un + ∆tF n).

AOS scheme: replace the inverse of the sum by the sum of
the inverse:

un+1 =
1

3

3∑

l=1

(I − 3∆tλAl)
−1(un + ∆tF n).
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Qualitative Synthetic Results (Gaussian σ = 0.05)

First col.: given image; Sec.: segmentation; Third: smoothing.
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Qualitative Synthetic Results (speckle)

First col.: given image; Second: segmentation; Third: smoothing.
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Comparison Between MS, Parametric/Gaussian, Local
Nonparametric (With Gaussian σ = 0.01)

Y. Chen Adaptive Smoothing and Segmentation



Comparison of 3 Models (With Gaussian σ = 0.05)
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Movie Demo

loading movie
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PlaneGauss005.avi
Media File (video/avi)



Quantitative Comparison In Segmentation Accuracy

SA= number of pixels having same segmentation result with
ground truth/total pixel number
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Proposed, mean: .9901, variance:1.88e−6

Model  (2), mean: .9446, variance:7.37e−6

Model  (3), mean: .9879, variance:1.37e−6
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Qualitative Real Data Results

1st col.: noisy image; 2nd: segmentation; 3rd: denoised image.
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Compare Choices of r(x) (Gaussian Noise)

1st col: adoptive r(x)=2 or 4, 2nd: r = 2, 3rd: r = 4.
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Compare Choices of r(x) (Speckle Noise)

1st col.: given images, 2nd and 3rd: segmentation and smoothing
with adaptive radius (M/N), and r(x) depending on image
gradient, respectively.
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