On Projectively Flat Finsler Metrics

Yaoyong Yu
Department of Mathematics, Zhejiang University
yuyaoyong@126.com

December 21, 2006

Finsler metrics

Let M be a manifold. A function F = F(x, y) on TM is called a Finsler Metric on M if it has the following properties:

- (a)F(x, y) is a C^{∞} on TM_0 ;
- (b)F(x,y) is a Minkowski norm on T_xM for any $x\in M$.

$$(\alpha, \beta)$$
-metrics

Finsler metrics under our consideration are special (α, β) -metric, it is expressed in the following form

$$F = \alpha \phi(s), \qquad s = \frac{\beta}{\alpha}$$

where $\alpha = \sqrt{a_{ij}y^iy^j}$ is a Riemannian metric and $\beta = b_iy^i$ is a 1-form. $\phi = \phi(s)$ is a C^{∞} positive function on an open interval $(-b_0, b_0)$ satisfying

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, |s| \le b \le b_0.$$

It is known that F is a Finsler metric if and only if $\|\beta_x\|_{\alpha} < b_0$ for any $x \in M$. Let G^i and G^i_{α} denote the spray coefficients of F and α , respectively, give by

$$G^{i} = \frac{g^{il}}{4} \{ [F^{2}]_{x^{k}y^{l}} y^{k} - [F^{2}]_{x^{l}} \},$$

$$G_{\alpha}^{i} = \frac{a^{il}}{4} \{ [\alpha^{2}]_{x^{k}y^{l}} y^{k} - [\alpha^{2}]_{x^{l}} \}.$$

where $(g_{ij}) := (\frac{1}{2}[F^2]_{\gamma^i \gamma^j})$ and $(a^{ij}) := (a_{ij})^{-1}$.

we have the following

Lemma 1(Chern and Shen) The geodesic coefficients G^i are related to G^i_{α} by

$$G^{i} = G_{\alpha}^{i} + \alpha Q s_{0}^{i} + J\{-2Q\alpha s_{0} + r_{00}\} \frac{y^{i}}{\alpha} + H\{-2Q\alpha s_{0} + r_{00}\}\{b^{i} - s\frac{y^{i}}{\alpha}\}$$

where

$$Q := \frac{\phi'}{\phi - s\phi'}$$

$$J := \frac{\phi'(\phi - s\phi')}{2\phi((\phi - S\phi') + (b^2 - s^2)\phi'')}$$

$$H := \frac{\phi''}{2((\phi - S\phi') + (b^2 - s^2)\phi'')}$$

where $s = \frac{\beta}{\alpha}$, and $b := \|\beta_x\|_{\alpha}$.

$$s_{ij} = rac{1}{2}(b_{i|j} - b_{j|i}), \qquad r_{ij} = rac{1}{2}(b_{i|j} + b_{j|i})$$
 $s_j^i = a^{ik}s_{kj}, \qquad s_0^i = s_j^i y^i, \qquad s_0 = b_i s_0^i, \qquad r_0 = r_{ij} y^i y^j.$

Projectively flat

The Hilbert's Fourth Problem is to characterize the (not-necessarily-reversible) distance functions on an open subset in R^n such that straight lines are shortest paths. Distance functions induced by a Finsler metrics are regarded as smooth ones. Thus the Hilbert's Fourth Problem in the smooth case is to characterize Finsler metrics on an open subset in R^n whose geodesics are straight lines. Finsler metrics on an open domain in R^n with this property are said to be projectively flat.

G.Hamel first found a simple system of PDE's to characterize projectively flat Finsler metrics on an open subset in R^n . That is, a Finsler metric F = F(x, y) on an open subset in R^n is projectively flat if and only if it satisfies the following partial differential equations

$$F_{x^k y^i} y^k = F_{x^i}$$

It is an important problem in Finsler geometry to study and characterize projectively flat Finsler metrics on an open domain in \mathbb{R}^n . This problem is very difficult for general Finsler metrics.

A natural problem is to study and characterize all (α,β) -metrics which are projectively flat. In general, this is very complicated. The fist step for us is to study some special (α,β) -metrics. we have following

Lemma 2(Shen and Yildirim) An (α, β) -metric $F = \alpha \phi(s)$, where $s = \frac{\beta}{\alpha}$, is projectively flat on an open subset $U \subset R^n$ if and only if

$$(a_{ml}\alpha^2 - y_m y_l)G_{\alpha}^m + \alpha^3 Q s_{l0} + H\alpha(-2\alpha Q s_0 + r_{00})(b_l\alpha - s y_l) = 0$$

where $y_m = a_{mi} y^i$

A Randers metric $F=\alpha+\beta$ is locally projectively flat if and only if α is locally projectively flat and β is closed.

Z. Shen and G. Civi Yildirim have proved that $F=\frac{(\alpha+\beta)^2}{\alpha}$ is projectively flat if and only if

$$b_{i|j} = \tau \{ (1+2b^2)a_{ij} - 3b_ib_j \},$$

$$G_{\alpha}^i = \theta y^i - \tau \alpha^2 b^i,$$

where $b = \sqrt{a_{ij}(x)b^{j}(x)b^{j}(x)}$, $\tau = \tau(x)$ is a scalar function and $\theta = t_{i}(x)y^{i}$ is a 1-form.

P. Sennarath and G. Thornley have given an equation in local coordinates that characterizes projectively flat Finsler metrics in the form $F=\frac{\alpha^2+\beta^2}{\alpha}$.

These are some special forms of (α, β) -metric.

Exponential Finsler Metric

we consider a special (α, β) -metric in the following form:

$$F = \alpha \exp(\frac{\beta}{\alpha}) + \epsilon \beta$$

where $\alpha=\sqrt{a_{ij}y^iy^j}$ is a Riemannian metric and $\beta=b_iy^i$ is a 1-form on M, ϵ is a constant. Let $b_0>0$ be the largest number such that

$$1 - s + b^2 - s^2 > 0$$
, $|s| \le b < b_0$.

where b_0 depends on ϵ such that $\phi(s) = exp(s) + \epsilon s > 0$.

Lemma 3 If $F = \alpha \exp(\frac{\beta}{\alpha}) + \epsilon \beta$ is a Finsler metric, then $b_0 \leq 1$.

By Lemma1, we get

$$Q = \frac{\alpha(1 + \epsilon \exp(-\frac{\beta}{\alpha}))}{\alpha - \beta},$$

$$J = \frac{(\exp(\frac{\beta}{\alpha}) + \epsilon)(\alpha - \beta)\alpha^{2}}{2(\exp(\frac{\beta}{\alpha})\alpha + \epsilon\beta))((1 + b^{2})\alpha^{2} - \beta\alpha - \beta^{2})},$$

$$H = \frac{\alpha^{2}}{2((1 + b^{2}\alpha^{2}) - \alpha\beta - \beta^{2})},$$

remark $1 + \epsilon \exp(-\frac{\beta}{\alpha}) \neq 0$. If $1 + \epsilon \exp(-\frac{\beta}{\alpha}) = 0$, then $\phi(s) = \exp(s) + \epsilon s$ is a constant, thus F is a Riemannian metric.

Lemma 4 If $(a_{ml}\alpha^2 - y_m y_l)G_{\alpha}^m = 0$, then α is locally projectively flat.

Result 1

Theorem 1 Let $F = \alpha \exp(\frac{\beta}{\alpha}) + \epsilon \beta$ be a Finsler metric on a manifold M. F is locally projectively flat if and only if the following conditions holds

- (a) β is parallel with respect to α ,
- (b) α is locally projectively flat. That is, α is of constant curvature.

Proof. If F is projective flat, by lemma 2, we have

$$2(\alpha - \beta)((1 + b^2)\alpha^2 - \alpha\beta - \beta^2)(a_{ml}\alpha^2 - y_m y_l)G_{\alpha}^m$$

$$+2\alpha^4(1 + \epsilon \exp(-\frac{\beta}{\alpha}))((1 + b^2)\alpha^2 - \alpha\beta - \beta^2)s_{l0}$$

$$+\alpha^3(-2\alpha^2(1 + \epsilon \exp(-\frac{\beta}{\alpha}))s_0 + (\alpha - \beta)r_{oo})(b_l\alpha - sy_l) = 0.$$
 (1)

Case 1: Assume that $\epsilon \neq 0$. Contract (1) with b' yields

$$2((1+b^{2})\alpha^{2} - \alpha\beta - \beta^{2})(b_{I}\alpha^{2} - y_{m}\beta)G_{\alpha}^{m} + \alpha^{2}(b^{2}\alpha^{2} - \beta^{2})r_{oo} + 2\alpha^{5}(1 + \epsilon \exp(-\frac{\beta}{\alpha}))s_{0} = 0.$$
 (2)

replace y to -y, we get

$$2((1+b^2)\alpha^2 + \alpha\beta - \beta^2)(b_l\alpha^2 - y_m\beta)G_\alpha^m + \alpha^2(b^2\alpha^2 - \beta^2)r_{oo} - 2\alpha^5(1 + \epsilon \exp(\frac{\beta}{\alpha}))s_0 = 0.$$
 (3)

(2)-(3), we get

$$2\beta(b_{I}\alpha^{2} - y_{m}\beta)G_{\alpha}^{m} = \alpha^{4}s_{0}(2 + \epsilon \exp(\frac{\beta}{\alpha}) + \epsilon \exp(-\frac{\beta}{\alpha}))$$
 (4)

Use Taylor expansion of $\exp(\frac{\beta}{\alpha})$, we can find that the left of (4) is a integral expression in y and the right of (4) is a fractional expression in y, we get

$$s_0 = 0, \quad (b_l \alpha^2 - y_m \beta) G_\alpha^m = 0.$$
 (5)

Substituting (5) back into (3), we get $r_{00} = 0$. Thus (1) became

$$(\alpha - \beta)(a_{ml}\alpha^2 - y_m y_l)G_\alpha^m + \alpha^4(1 + \epsilon \exp(-\frac{\beta}{\alpha}))s_{l0} = 0.$$
 (6)

With the same discussion, we get

$$(a_{ml}\alpha^2 - y_m y_l)G_{\alpha}^m = 0, \quad s_{l0} = 0.$$

By lemma 4, α is locally projective flat.

By $s_{l0}=0$ and $r_{00}=0$, we get $b_{i|j}=0$, thus β is parallel with respect $\alpha.$

Case 2: $\epsilon = 0$, we get

$$2((1+b^{2})\alpha^{3}(a_{ml}\alpha^{2}-y_{m}y_{l})G_{\alpha}^{m}+\alpha^{3}r_{00}(b_{l}\alpha^{2}-\beta y_{l})$$

$$-2\alpha^{5}\beta s_{l0}-(2\alpha^{4}s_{0}+\alpha^{2}\beta r_{oo})(b_{l}\alpha^{2}-\beta y_{l})$$

$$+(-2(2+b^{2})\alpha^{2}\beta+2\beta^{3})(a_{ml}\alpha^{2}-y_{m}y_{l})G_{\alpha}^{m}$$

$$+(2(1+b^{2})\alpha^{6}-2\alpha^{4}\beta^{2})s_{l0}=0.$$
(7)

Because α^{even} is a polynomial in y^i , then the coefficients of α and the coefficients of α^2 must be zero. We obtain

$$2((1+b^{2})\alpha^{3}(a_{ml}\alpha^{2}-y_{m}y_{l})G_{\alpha}^{m}+\alpha^{3}r_{00}(b_{l}\alpha^{2}-\beta y_{l})$$

$$=2\alpha^{5}\beta s_{l0}$$

$$2(-(2+b^{2})\alpha^{2}\beta+\beta^{3})(a_{ml}\alpha^{2}-y_{m}y_{l})G_{\alpha}^{m}$$

$$+2((1+b^{2})\alpha^{6}-\alpha^{4}\beta^{2})s_{l0}$$

$$=(2\alpha^{4}s_{0}+\alpha^{2}\beta r_{oo})(b_{l}\alpha^{2}-\beta y_{l}).$$
(9)

With the same discussion, we get

$$\beta(b_m\alpha^2 - y_m\beta)G_\alpha^m = \alpha^4 s_0. \tag{10}$$

Note that the polynomial α^4 is not divisible by β , Thus $(b_m\alpha^2 - y_m\beta)G_\alpha^m$ is divisible by α^4 . Therefore, there is a scalar function $\tau = \tau(x)$ such that

$$(b_m \alpha^2 - y_m \beta) G_\alpha^m = \tau(x) \alpha^4 \tag{11}$$

$$s_0 = \tau(x)\beta. \tag{12}$$

Contracting (8) with b^{l} yields

$$2((1+b^2)\alpha^2\beta(b_m\alpha^2 - y_m\beta)G_{\alpha}^m + \alpha^2\beta r_{00}(b^2\alpha^2 - \beta^2) = 2\alpha^4\beta^2 s_0$$
 (13)

Substituting (11) and (12) back into (13), we get

$$r_{00}(b^2\alpha^2 - \beta^2) = 2\alpha^2(\beta^2 - (1+b^2)\alpha^2)\tau(x). \tag{14}$$

Note that the polynomial $b^2\alpha^2-\beta^2$ is not divisible by α^2 , then r_{00} is divisible by α^2 .therefore, there is a scalar function $\lambda=\lambda(x)$ such that

$$r_{00} = \lambda \alpha^2, \tag{15}$$

$$\lambda(b^2\alpha^2 - \beta^2) = 2(\beta^2 - (1+b^2)\alpha^2)\tau(x). \tag{16}$$

Because the polynomial $b^2\alpha^2 - \beta^2$ is not divisible by $\beta^2 - (1 + b^2)\alpha^2$, then

$$\lambda = 0, \quad \tau(x) = 0 \tag{17}$$

thus we get $r_{00} = 0$, $s_0 = 0$.

By (8) and (9), we get

$$(-2(2+b^2)\alpha^2\beta + 2\beta^3)(a_{ml}\alpha^2 - y_m y_l)G_{\alpha}^m + (2(1+b^2)\alpha^6 - 2\alpha^4\beta^2)s_{l0} = 0,$$

$$2((1+b^2)\alpha^2\beta(a_{ml}\alpha^2 - y_m y_l)G_{\alpha}^m - 2\alpha^4\beta^2 s_{l0} = 0.$$

Because

$$\begin{vmatrix} -2(2+b^2)\alpha^2\beta + 2\beta^3 & 2(1+b^2)\alpha^6 - 2\alpha^4\beta^2 \\ 2((1+b^2)\alpha^2\beta & -2\alpha^4\beta^2 \end{vmatrix} \neq 0$$

We get

$$(a_{ml}\alpha^2 - y_m y_l)G_{\alpha}^m = 0, \quad s_{l0} = 0.$$

By lemma 4, α is locally projective flat. By $s_{l0}=0$ and $r_{00}=0$, we get $b_{i|j}=0$, thus β is parallel with respect α .

We say a Finsler metric on an open domain in \mathbb{R}^n is *trivial*, if it satisfies the conclusion of theorem 1. Thus the above theorem tells us that in the class of exponential Finsler metrics, there is no non-trivial projectively flat metrics.

A theorem due to Douglas states that a Finsler metric F is projectively flat if and only if two special curvature tensors are zero. The first is the Douglas tensor. The second is the projective Weyl tensor for $n \geq 3$, and the Berwald-Weyl tensor for n = 2. It is known that the projective Weyl tensor vanishes if and only if the flag curvature of F have no dependence on the transverse edges (but can possibly depend on the position x and the flagpole y). If the Douglas tensor of F vanishes, we call F a Douglas metric.

S. Bácsó and M. Matsumoto proved that a Randers metric $F=\alpha+\beta$ is a Douglas metric if and only if β is a closed 1-form.

M. Matsumoto obtained that for $n=dimM\geq 3$, $F=\frac{\alpha^2+\beta^2}{\alpha}$ is a Douglas metric if and only if

$$b_{i|j} = \tau((1+2b^2)a_{ij}-3b_ib_j)$$

where $\tau = \tau(x)$ is a scalar function.

Definition Let

$$D_{jkl}^{i} := \frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}} \left(G^{i} - \frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i} \right)$$
 (18)

It is easy to verify that $D:=D^i_{jkl}dx^j\otimes\partial_i\otimes dx^k\otimes dx^l$ is a well-defined tensor on TM_0 . We say D the Douglas tensor.

It is know that the Douglas tensor is a projective invariant, namely, if two Finsler metrics F and \overline{F} are projectively equivalent,

$$G^{i} = \overline{G}^{i} + Py^{i}, \tag{19}$$

where P = P(x, y) is positively y-homogeneous of degree one, then the Douglas tensor of F is same as that of \overline{F} .

Theorem 2 Let $F = \alpha \exp(\frac{\beta}{\alpha}) + \epsilon \beta$ be a Finsler metric on a manifold M. Then the Douglas tensor of F vanishes if and only if β is parallel with respect to α .

Arctangent Finsler Metric

we consider a special (α, β) -metric in the following form:

$$F = \alpha + \epsilon \beta + \beta \arctan \frac{\beta}{\alpha}$$

where $\alpha = \sqrt{a_{ij}y^iy^j}$ is a Riemannian metric and $\beta = b_iy^i$ is a 1-form on M, ϵ is a constant. Let $b_0 > 0$ be the largest number such that

$$\frac{1-s^2+2b^2}{(1+s^2)^2}>0, \quad |s|\leq b< b_0.$$

where b_0 depends on ϵ such that $\phi(s)=1+\epsilon s+s$ arctan s>0. By Lemma1, we get

$$\begin{array}{lcl} Q & = & \displaystyle \frac{(\epsilon + \arctan\frac{\beta}{\alpha})(\alpha^2 + \beta^2) + \alpha\beta}{\alpha^2}, \\ \\ J & = & \displaystyle \frac{\alpha[(\epsilon + \arctan\frac{\beta}{\alpha})(\alpha^2 + \beta^2) + \alpha\beta]}{2[(1 + 2b^2)\alpha^2 - \beta^2][\alpha + (\epsilon + \arctan\frac{\beta}{\alpha})\beta]}, \\ \\ H & = & \displaystyle \frac{\alpha^2}{(1 + 2b^2)\alpha^2 - \beta^2}, \end{array}$$

Result 2

Theorem 3 Let $F = \alpha + \epsilon \beta + \beta \arctan \frac{\beta}{\alpha}$ be a Finsler metric on a manifold M. F is locally projectively flat if and only if the following conditions holds

(a)
$$b_{i|j} = \tau[(1+2b^2)a_{ij} - b_ib_j],$$

(b)
$$G_{\alpha}^{i} = \theta y^{i} - \tau \alpha^{2} b^{i}$$
,

where $\tau = \tau(x)$ and $\theta = a_i(x)y^i$. In this case,

$$G^{i} = (\theta + \tau \chi \alpha) y^{i},$$

where

$$\chi = \frac{\epsilon + \arctan s}{2[1 + (\epsilon + \arctan s)s]}, \qquad s = \frac{\beta}{\alpha}.$$

We say a Finsler metric on an open domain in \mathbb{R}^n is *trivial*, if it satisfies the conclusion of theorem 3.

Theorem 4 Suppose that $F = \alpha + \epsilon \beta + \beta \arctan \frac{\beta}{\alpha}$ is projectively flat with constant flag curvature $K = \lambda$, then $\lambda = 0$.

Theorem 5 Let $F=\alpha+\epsilon\beta+\beta$ arctan $\frac{\beta}{\alpha}$ is projectively flat with zero flag curvature, then α is flat metric and β is parallel. In this case, F is locally Minkowshian.

Solutions

Theorem 6 Let $F = \alpha + \epsilon \beta + \beta \arctan \frac{\beta}{\alpha}$ be a Finsler metric, where ϵ is a constant. Let $\rho := \rho(h)$ and h := h(x) be as follows:

$$\begin{split} \rho &= -\ln(4C_2^2(\mu h^2 - 2\theta h - C_3)), \\ h &= \frac{1}{\sqrt{1 + \mu|x|^2}} \{C_1 + < a, x > + \frac{\theta|x|^2}{1 + \sqrt{1 + \mu|x|^2}} \}, \end{split}$$

where C_1 , $C_2 > 0$, C_3 , μ and θ are constants, and $a \in \mathbb{R}^n$ is a constant vector. Define

$$\alpha := e^{\rho} \bar{\alpha}, \quad \beta := C_2 e^{\frac{3}{2}\rho} h_0,$$

where

$$\bar{\alpha} := \frac{\sqrt{|y|^2 + \mu(|x|^2|y|^2 - \langle x, y \rangle^2)}}{1 + \mu|x|^2} \qquad h_0 = h_{x^i} y^i.$$

Then $F = \alpha + \epsilon \beta + \beta \arctan \frac{\beta}{\alpha}$ is projectively flat.

Thank you very much!