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Introduction

Curvature Flows

Curvature Flows

(Huisken 84’) Mean Curvature Flow

d

dt
F (·, t) = −H(·, t)ν(·, t),

F (·, 0) = F0(·),

(Ben Chow 85’) Flow by the nth root of the Gauss Curvature

(Ben Chow 87’) Flow by the square root of the scalar
curvature

(Andrews 94’) considered a general class of such evolution
equations
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Introduction

Curvature Flows

Speed has other positive degrees are more difficult,

(Tso and Chow 85’) Kα contract to point.

(Andrews 00’) Kα contract to point, homothetic for
α ∈ (1/(n + 2), 1/n]

(Andrews 96’)convex, contract to a point, ellipsoids as unique
limite.

(Urbas 98’)noncompact solutions evolve by homothetically
expanding or translating.
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Introduction

Curvature Flows

In the case of curves in the plane, curve-shortening flow,

(Gage and Hamilton 86’) convex curves contract to round
points

(Grayson 87’) compact embedded curve eventually becomes
convex

(Gage 93’) anisotropic analogues of CSF in the convex case

(Chou and Zhu 98’) extend to complete embedded curve
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Introduction

Curvature Flows

Mean Curvature Flow

Closed initial hypersurfaces, solution exists on a [0,T ), If
T < ∞, the curvature becomes unbounded as t → T .

Singular behavior as t → T , Consider Rescaled limit

(type I) If sup (T − t) |A|2 is uniformly bounded , we have
selfsimilar, homothetically shrinking solution of the flow which
is completely classified in the case of positive mean curvature
(Huisken 90’).

(type II) If sup (T − t) |A|2 is unbounded , we have ”eternal
solution” . In the convex case, only translating soliton
(Hamilton 95’).

(Huisken and Sinestrari 99’) studied singularities in the mean
convex case.
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Hk -Flow

Hk-Flow

Mn compact manifold without boundary,
F (·, t) : Mn × [0,T ) → Rn+1. F0 convex. F (·, t) solution to the
initial value problem

dF

dt
(·, t) = −Hk(·, t)ν(·, t),

F (·, 0) = F0(·)

where H is the mean curvature and ν (·, t) is the outer unit normal
at F (·, t), k > 0.

This problem has been considered Andrews (94’), Huisken and
Polden(96’), and Schulze (05’) ... Schulze called it as Hk-flow.
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Introduction

Hk -Flow

Schulze proved following Theorem :

Theorem

F0 a smooth immersion, H(F0) > 0. There exists unique, smooth
solution on finite time interval [0,T ).

In the case that,
i) F0 strictly convex for 0 < k < 1,
ii) F0 weakly convex for k ≥ 1,

then F (·, t) are strictly convex for all t > 0
and contract to a point as t → T
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Introduction

Hk -Flow

Our result

Theorem

F0 a smooth immersion, strictly convex for 0 < k < 1, weakly
convex for k ≥ 1. After rescaling:

F̃ (x , τ) = (F (x , t)− F (x ,T )) [(k + 1) (T − t)]−
1

k+1 ,

where τ = − 1
(k+1) log

(
T−t
T

)
∈ [0,+∞)

the limiting hypersurface F̃∞, satisfies

H̃
k+1

2 +
∣∣∣F̃ ∣∣∣ k−1

2 〈F̃ ,−→n 〉 = 0

where −→n inner normal vector and H̃ mean curvature of F̃∞.
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Hk -Flow for Convex Hypersurfaces

Evolution Equations

Evolution Equations

Lemma

i) ∂
∂t gij = −2Hkhij

ii) ∂
∂t ν = kHk−1∇H

iii) ∂
∂t hij = kHk−1∆hij + k(k − 1)Hk−2∇iH∇jH − (k + 1)Hkhjlg

lmhmi

+kHk−1|A|2hij

iv) ∂
∂t h

i
j = kHk−1∆hi

j + k(k − 1)Hk−2∇iH∇jH − (k − 1) Hkhi
lh

l
j

+kHk−1 |A|2 hi
j

v) ∂
∂t H = kHk−1∆H + k(k − 1)Hk−2|∇H|2 + |A|2Hk

vi) ∂
∂t < F , ν >= kHk−1∆ < F , ν > −(k + 1)Hk + kHk−1|A|2 < F , ν > .

vii) ∂
∂t |A|

2 = kHk−1∆|A|2 + 2k(k − 1)Hk−2hlm∇iH∇jHg ilg jm

−2kHk−1|∇A|2 − 2(k − 1)HkC + 2kHk−1|A|4
where C = trA3.
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Hk -Flow for Convex Hypersurfaces

Some Lemmas

By the strong maximum principle and the evolution equation of H ,
we know the H > 0 on Mn × [0,T ).
Schulze have proved

Lemma

F0 be strictly convex and k > 0.
Then Mt are strictly convex for all t ∈ (0,T ).
and κmin(t) is monotonically increasing.

For k ≥ 1, weakly convex hypersurfaces,

Lemma

F0 weakly convex with H(F0) ≥ δ > 0, and k > 1.
Then Mt is strictly convex for all t ∈ (0,T ).
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Rescaling the Singularity

Blow up rate

Blow up rate

As we know, the curvature become unbounded when t tend to the
T, here we give a lower bound for the blow up rate of the
curvature.

Proposition

If the solution F (·, t)of the flow(1.1) is convex and converges to a
point when t → T and T < +∞, then there exists a constant
C (k, n) such that

max
F (·,t)

|A|2 ≥ C (k, n)

(T − t)2/(k+1)
. (3.1)
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Classify and Rescale

Classify and Rescale

We call a point P ∈ Rn+1 to be a singularity if there is x ∈ Mn

such that
(i) F (x , t) → P as t → T , and
(ii) |A (x , t)| becomes unbounded as t tends to T .

We call the flow is of Type I, if there is a constant C0 such that

max
F (·,t)

|A|2 ≤ C0

(T − t)2/(k+1)
(3.2)

for all t ∈ [0,T ). Otherwise it is called to be of Type II.
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Classify and Rescale

Here we concentrate on the case of Type I. In this case we rescale
the flow by setting

F̃ (x , τ) = (F (x , t)− F (x ,T )) [(k + 1) (T − t)]−
1

k+1 ,

where τ = − 1
(k+1) log

(
T−t
T

)
∈ [0,+∞).

Then we can get

g̃ij = [(k + 1) (T − t)]−
2

k+1 gij ,

h̃ij = [(k + 1) (T − t)]−
1

k+1 hij ,

H̃ = [(k + 1) (T − t)]
1

k+1 H,∣∣∣Ã∣∣∣2
eg

= [(k + 1) (T − t)]
2

k+1 |A|2g .

and
∂t

∂τ
= [(k + 1) (T − t)].
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Rescaling the Singularity

Classify and Rescale

Substitute the above relations into the original equation we obtain
the equation for the rescaled Hk -flow.

∂F̃ (x , τ)

∂τ
= F̃ (x , τ)− H̃k(·, τ)ν̃(·, τ) (3.4)

In much the same way, we can get the corresponding evolution
equation for Hk -Flow.
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Rescaling the Singularity

Gradient Estimate

Gradient Estimate

In this section, we will show all higher derivatives of the second
fundamental form Ã are bounded. We discuss Hk -flow at first. We
have

Proposition

F0 (Mn) strictly convex. If the norm of the second fundamental
form of the solution F (·, t) is uniformly bounded on Mn × [0,T ],
that is

|A|2 (x , t) ≤ C0 for (x , t) ∈ Mn × [0,T ],

then |∇A|2 is bounded also.



On the Asymptotic Behavior for Singularities of the Powers of Mean Curvature Flow

Rescaling the Singularity

Gradient Estimate

Proof.
We consider the function

G (x , t) =
(
1 + 1

2 |∇B|2
)

eφ(|B|2)

where φ is some smooth function to be defined later.

By consider the derivative of G at the maximum point,
we have,

|∇B|2 ≤ C

for some constant C depending only on n, k

Notice that ∇lh
i
j = −hi

p

(
∇lb

p
q

)
hq
j , we have

|∇A|2 ≤ |A|4 |∇B|2 ≤ C
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Rescaling the Singularity

Gradient Estimate

Next we consider the rescaled flow. In the case of Type I, we
have

Proposition

For each m ≥ 0, there exists a constant C (m) depending only on
m, n,C0, k and the initial hypersurface such that∣∣∣∇̃mÃ

∣∣∣2 ≤ C (m)

on Mn × [1,+∞).

Corollary

For each sequence τj → +∞, there is a subsequence τjk such that

F̃ (·, τjk )converge smoothly to an immersed nonempty limiting

hypersurface F̃∞.
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Monotonicity Formula

Monotonicity Formula

Theorem

F̃ (x , τ) solution of rescaled Hk -flow, then

d

dτ

∫
eF (x ,τ)

ρ̃d µ̃τ ≤ −
∫
eF (x ,τ)

ρ̃|F̃ |k−1|〈F̃ ,−→n 〉+ σH̃|2d µ̃τ

where ρ̃
(
F̃

)
= exp

(
− 1

k+1

∣∣∣F̃ ∣∣∣k+1
)

, and σ = H̃
k−1

2 /
∣∣∣F̃ ∣∣∣ k−1

2
. Here

−→n is the inner normal vector of the rescaled surface, and H̃ > 0.
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Monotonicity Formula

Thus from the previous Corollary we know that every limit
hypersurfaces F̃∞ satisfying the equation

〈
−→
F̃ ,−→n 〉+ σH̃ = 0

i.e.

H̃
k+1

2 +

∣∣∣∣−→F̃ ∣∣∣∣ k−1
2

〈
−→
F̃ ,−→n 〉 = 0 (5.1)

Therefore we have

Theorem

Each limiting hypersurface F̃∞ as obtained in Corollary 4.1 satisfies
the equation (5.1) .
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Some Remarks

Remark

Mean curvature flow, we can deduce an elliptic equation from
the above equation of the limiting hypersurface. By maximum
principle, only sphere.

however, the same approach seem doesn’t work for the
Hk -flow.

The paper of K-S Chou and X-J Wang suggest that there may
be infinitely many solutions.
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Type II singulalities

In this section we will discuss the Type II singularities. We will
prove the following

Theorem

Assume F0 : Mn → Rn+1 (n ≥ 2) is compact and convex (as in
Theorem S). Then the flow will not develop type II singularity.

First by standard method of blowup argument,we dilate the
solution F t ∈ [0,T ) into Fi such that

max
Mn

Hi (·, τ) ≤ 1 + ε
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Proposition

Assume F0 : Mn → Rn+1 (n ≥ 2) is compact and convex (as in
Theorem S), and type II .
Then a sequence of the rescaled flow Fi converges smoothly on
every compact set to F∞ defined for all τ ∈ (−∞,+∞). Moreover,
0 < H∞ ≤ 1 everywhere and is equal to 1 at least at one point.

Next we need to classify all such solutions.
we need a result of Jie Wang,

Proposition

Any strictly convex solution F (·, t), t ∈ (−∞,+∞) , to the
Hk -flow for k > 0, where the mean curvature assume its maximum
value at a point in space-time must be a strictly convex translating
soliton.
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Now let us consider a translating soliton F (·, t) translates in the
direction of a constant vector en+1. We can write

en+1 = V − Hkν

where V is the tangential part of en+1. From this we get

〈en+1, ν〉 = −Hk .

Since we have shown that F (·, t) is convex for each t, then
〈en+1, ν〉 < 0 . Then the image of the Gauss map of F (·, t) ,
ν (F (·, t)) , is located in a semi-sphere. Noncompact, contradict to
the fact that F (·, t) is compact.
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Type II singulalities

Thanks!
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