# ISOMETRIC EMBEDDING OF POSITIVE DISKS $\mathbb{R}^3$

# SCHOOL OF MATHEMATICAL SCIENCES FUDAN UNIVERSITY HONG JIAXING

Given a smooth Riemannian manifolds  $(M^n,g)$  can we find a map

$$\phi: M^n \mapsto R^q$$
 such that  $\phi^* h = g$ 

where h is the standard metric in  $\mathbb{R}^q$ 

This is a classical problem. A famous fundamental result is due to Nash.

- ullet Weyl problem  $:(S^2,g)$  with K(g)>0, always admits an analytic isometric embedding in  $R^3$  by Weyl-Lewy if  $g\in C^\omega$  and a smooth one by Nirenberg-pogorelov if  $g\in C^\infty$
- •For  $K(g) \ge 0$ , the results on existence are due to Guan-Li and also to Zuily-Hong independently.

By a positive disk we mean the closed unit disk  $\bar{D}$  equipped with a positive curvature metric g, denoted by  $(\bar{D},g)$ 

Heinze, Jour of Anal. Math, (1966)

Pogorelov, Extrinsic Geometry of convex surf. (1973)

A very important counter example is due to Gromov and Rokhlin

•There is an analytic positive disk not admitting any  $C^2$  isometric immersion in  $\mathbb{R}^3$ .

To my knowledge, it always admits a smooth isometric embedding provide that

$$k_g \geq$$
 0 ( pogorelov )or  $\int K < 4\pi$ 

Recently the study in boundary value problems for isometric embedding has attracted much attention of mathematicians

there are two kinds of (BVP).

- Dirichlet Problem(Pogorelov problem);
- •Neumann problem.

#### **Neumann Problem**

Given  $(\bar{D},g)$  and a function  $h \in C^{\infty}(\partial D, R^1)$ 

$$\vec{r}: \bar{D} \mapsto R^3$$

such that

$$d^2\vec{r} = g$$
, and  $H(\vec{r}) = h$  on  $\partial D$ 

A necessary condition

$$h \ge \sqrt{K}$$
 on  $\partial D$ 

Assume:

 $A_0$ : for the given  $(\bar{D},g)$  there is a smooth isometric immersion  $\vec{r}_0$  in  $R^3$ 

Theorem 1(Hong, Asian J. of Math., 2001) Let  $A_0$  be satisfied for the given  $(\bar{D},g)$  and let  $h > \sqrt{K}$  on  $\partial D$ . Then for  $\forall n \in 0,1,2,...$  and for arbitrary n+1 points  $p_0 \in \partial D, p_1, p_2,..., p_n \in D$ , (BVP) always admits two and only two solutions  $\vec{r} \in C^{\infty}$  satisfying

$$Index(\vec{r}) = n$$

$$H(p_k) = H_0(p_k), k = 1, 2, ...n$$

and at  $p_0$  the principal direction parallel to  $\partial D$  provided that

$$\frac{h}{\sqrt{K}} - 1 > 4 \max \left[ \frac{H_0}{\sqrt{K}} - 1 \right] \text{ on } \partial D$$

where  $H_0$  is the mean curvature of  $\vec{r}_0$   $(\bar{D},g)$ 

#### Always existence

If  $(\bar{D},g)$  is of constant curvature and  $\sqrt{K} < h \in C^{\infty}(\partial D)$ , then for each nonnegative integer n and Then for  $\forall n \in 0,1,2,...$  and for arbitrary n+1 points  $p_0 \in \partial D, p_1,p_2,...,p_n \in D$ , (BVP) always admits two and only two solutions satisfying

$$Index(\vec{r}) = n$$

 $p_k, k=1,2,...n \mbox{ are umbilic points}$  and at  $p_0$  the principal direction parallel to  $\partial D$ 

#### **Nonexitence**

For some  $G(r) \in C^{\infty}([0,1])$ ,

$$g = dr^2 + G^2(r)d\theta^2$$

$$G(0) = 0, G_r(0) = 1, G > 0$$

and moreover, $G_r(1) > -1$ .

Then  $(\bar{D},g)$  has such a smooth isom. embe.

$$\vec{r}_0$$
:  $x = G(r)\cos\theta$ ,  $y = G(r)\sin\theta$ ,

$$z = -\int_r^1 \sqrt{1 - G_r^2} dr$$

Denote its mean curvature by  $H_0=H_0(r)$ . If  $H_0(1)>\sqrt{K(1)}$ , then for arbitrary  $h\in C^\infty(\partial D)$  satisfying

$$\sqrt{K(1)} \le h < H_0(1) \implies$$

(NP) has no any  $C^2$  solution.

# Dircichlet problem(Pogorelov Problem)

Given a smooth complete surface  $\Sigma$  in  $R^3$  and  $(\bar{D},g)$ , to find a map  $\vec{r}:\bar{D}\longrightarrow$  into  $R^3$  such that

$$d^2\vec{r} = g$$
, and

$$\vec{r}(\partial D) \subset \mathbf{\Sigma}$$
 on  $\partial D$ 

 $\Sigma$  is the plane z=0

**DP** : To find an isometric embedding  $\vec{r}=(x,y,z)$  of the given positive disk  $(\bar{D},g)$ , such that  $z(\partial D)=0$ 

$$det(\nabla_{ij}z) = K \det(g_{ij})(1 - |\nabla z|^2) \text{ in } D$$
 with

$$z=$$
 0 on  $\partial D$  and  $|\nabla z|<$  1 on  $ar{D}$ 

**Theorem**(Pogorelov) (DP) always admits a solution  $\vec{r} \in C^{\infty}(D) \cap C^{0.1}(\bar{D})$  provided that the geodesic curvature of  $\partial D$  with respect to the metric g is nonnegative.

• Under what cond,  $\exists$  a solu in  $C^{\infty}(\bar{D})$ ?

**Theorem 2** (Hong, Chin.Ann of Math., 1999) If  $k_g > 0$  on  $\partial D$ , (DP) always admits a unique solution in  $C^{\infty}(\bar{D})$  if one of the following assumptions is satisfied (1) K > 0 on  $\bar{D}$ , (2) K > 0 in D and  $K = 0 \neq |dK|$  on  $\partial D$ .

#### **Necessary condition:**

$$k^2 = k_g^2 + k_n^2 \text{ on } \partial D$$
$$\int |k_g| < \int k = 2\pi$$

## Proposition(Hong, ICCM 1998)

There is a smooth positive disk not admitting any  ${\cal C}^2$  solution to the above boundary value problem

**Remark** too many changes of the sign of  $k_g$  might make the problem unsolvable!

Case  $a:k_g>0$  and Case  $b:k_g<0$ 

• Does  $(\bar{D},g)$  in case b satisfying necessary condition always admit a global smooth solution ?

The situation is very complicated!Indeed,

 (Hong Proceeding of ICCM ) There is a convex surface which is a smooth isometric embedding of a positive disk in case b satisfying (NC) but not infinitesimally rigid If  $(\bar{D},g)$  is in Case b and if there is a  $C^2$  solution  $\vec{r}$  to (DP), its Gauss map is injective and hence,

$$\int K \le 4\pi$$

### Theorem 3 (Li, Han, Hong)

(1) Any smooth  $(\bar{D},g)$  in Case b satisfying

$$\int K < 4\pi$$

always admits a solution in  $\in C^{\infty}(D)$ . If (2)Any smooth  $(\bar{D},g)$  satisfying

$$\int K = 4\pi, K > 0 \text{ in } D,$$

$$K = 0 \neq dK$$
, on  $\partial D$ 

admits a solution in  $C^{\infty}(\bar{D})$  if and only if its geodesic curvature  $k_g$  is the curvature of a planar convex curve and moreover, solution is unique.

#### **Remark** Aleksandrov condition

#### Torus like surface:

Given a smooth closed surface M in  $\mathbb{R}^3$ .

$$M^{\pm} = \{ p \in M | K(p) > 0 (< 0) \}$$
 and 
$$M^{0} = \{ p \in M | K(p) = 0 \}$$

Suppose that

$$\int_{M^+} K = 4\pi, K > 0 \text{ in } D,$$
 
$$K = 0 \neq dK, \text{ on } \partial D$$

We call such surface Torus like surface first studied by

**Theorem**(Aleksandrof) Torus like surface is global rigidity and moreover,  $M^0$  must be composed of some planar convex curves,.,each component of  $M^0 \subset \Pi$  for a plane  $\Pi$  which is tangent plane along this component