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♠ Hyperbolic conservation laws

ut + f(u)x = 0, u ∈ Rn. (1)

All eigenvalues of ∇f(u) are real.

Three elementary hyperbolic waves:

• Shock wave

• Rarefaction wave

• Contact discontinuity

http://www.amt.ac.cn/member/huangfeimin/index.html
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The typical hyperbolic system is Euler equations.

vt − ux = 0, (2)
ut + px = 0, (3)

(e+
u2

2
)t + (pu)x = 0, (4)

v: specific volume,
u: velocity,
θ: temperature,
p: pressure,
e: internal energy.
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Polytropic gas case:

p = Rθ/v, (5)

e =
R

γ − 1
θ + const.. (6)

R > 0: the gas constant
γ > 1: the adiabatic exponent.

The Euler system includes all three elementary hy-
perbolic waves: Shock wave, rarefaction wave, contact
discontinuity.
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♠ Viscous conservation laws

ut + f(u)x = (B(u)ux)x, u ∈ Rn. (7)

All eigenvalues of ∇f(u) are real andB(u) ≥ 0.

A typical artificial viscosity system is

ut + f(u)x = uxx, u ∈ Rn. (8)
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The typical physical model is the Compressible N-S
equations

vt − ux = 0, (9)

ut + p(v, θ)x = µ(
ux

v
)x, (10)

(e+
u2

2
)t + (pu)x = (κ

θx

v
+ µ

uux

v
)x, (11)

v: specific volume,
u: velocity,
θ: temperature,
p: pressure,
e: internal energy,
ν > 0: viscosity constant,
κ > 0: heat conductivity.
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♠ Stability of the hyperbolic waves

The basic waves and their linear combinations, called
Riemann solutions, govern both local and large time asymp-
totic behavior of general solutions to the inviscid hyper-
bolic system (1). Since the inviscid system (1) is an ide-
alization when the dissipative effects are neglected, thus
it is of great importance to study the large time asymp-
totic behavior of solutions to the corresponding viscous
systems, such as (7), toward the viscous versions of these
basic waves.

http://www.amt.ac.cn/member/huangfeimin/index.html
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• Shock and rarefaction wave:

Since 1985 initiated by Goodman and Matsumura-
Nishihara, deeper understanding has been achieved on
the asymptotic stability toward nonlinear waves, viscous
shock profiles and viscous rarefaction waves, which have
been shown to be nonlinearly stable for quite general per-
turbation for general viscous hyperbolic system, and new
phenomena have been discovered and new techniques,
such as weighted characteristic energy methods and uni-
form approximate Green’s functions, have been devel-
oped based on the intrinsic properties of the underlying
nonlinear waves, see

Goodman, Kawashima, Liu, Matsumura, Nishihara,
Szepessy, Xin, Zumbrun, · · · ,

http://www.amt.ac.cn/member/huangfeimin/index.html
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♣ Contact discontinuity:

• Artificial viscosity:

[Xin, 1994] and [Liu,Xin, Asian J. Math., 1997].

In fact, the studies on the stability of contact dis-
continuity began with [Xin, 1994]. In [Liu,Xin, Asian J.
Math., 1997], a general hyperbolic system of a uniform
artificial viscosity is investigated, i.e.,

ut + f(u)x = uxx, (12)
with a structure condition. The compressible Euler equa-
tions with uniformly viscosity naturally satisfies the struc-
ture condition.

http://www.amt.ac.cn/member/huangfeimin/index.html
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It is shown that although the contact discontinuity
to the inviscid hyperbolic system is not an asymptotic at-
tractor for the viscous system, yet a viscous wave, which
approximates the contact discontinuity on any finite time
interval, is asymptotically nonlinear stable for small generic
perturbations and the detail asymptotic behavior can be
determined a priorily by initial mass distribution. The
pointwise asymptotic behavior toward viscous contact wave
by approximate fundamental solutions was also obtained.
This also leads to the nonlinear stability of the viscous
contact wave in Lp-norms for all p ≥ 1.

However, the theory in [Liu,Xin,1997] and [Xin,1994]
does not apply to the compressible Navier-Stokes system
since its viscosity matrix is only semi-positive definite.

http://www.amt.ac.cn/member/huangfeimin/index.html
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• Physical system:

[Huang-Matumura-Shi, Osaka J. Math.,2004] and
[Huang-Zhao, Rend. Sem.Mat.Univ.Padova, 2003]: free
boundary (N-S system)

[Huang-Matsumura-Xin, Arch.Rat.Mech.Anal., 2005]:
Cauchy problem with zero mass condition (N-S system).

[Huang-Yang, J. Diff. Equa., 2006]: Cauchy prob-
lem with zero mass condition (Boltzmann equation).

http://www.amt.ac.cn/member/huangfeimin/index.html
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Question: How about the stability of contact discontinu-
ity for N-S system and Boltzmann equation with general
perturbation? It is a long standing open problem.

Recently Zhouping Xin, Tong Yang and myself solved this
open problem, i.e., we successfully obtained the nonlin-
ear stability of contact wave of the compressible Navier-
Stokes system and the Boltamann equation for the gen-
eral initial perturbations. The decay rate is also obtained.

http://www.amt.ac.cn/member/huangfeimin/index.html
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Today’s talk is based on the work of [Huang-Xin-Yang].

♠ Main difficulties:

1. The contact discontinuities are associated with
linear degenerate fields and are less stable compared with
the nonlinear waves for the inviscid Euler system. Thus
the stabilizing effects around a contact discontinuity for
Navier-Stokes equations come mainly from the viscosity
and heat conductivity. In another word, unlike the shock
and rarefaction wave, the space derivative of the viscous
contact wave changes sign, while the definite sign plays
the leading role for the stability analysis of shock and rar-
efaction wave.

http://www.amt.ac.cn/member/huangfeimin/index.html
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2. A general perturbation of a contact wave may in-
troduce waves in the nonlinear sound wave families, and
interactions of these waves with the linear contact wave
are some of the major difficulties to overcome.

3. The viscosity matrix is only semi-positive definite.

http://www.amt.ac.cn/member/huangfeimin/index.html


Home Page

Title Page

JJ II

J I

Page 15 of 50

Go Back

Full Screen

Close

Quit

Consider the compressible N-S equations

vt − ux = 0, (13)

ut + p(v, θ)x = µ(
ux

v
)x, (14)

(e+
u2

2
)t + (pu)x = (κ

θx

v
+ µ

uux

v
)x. (15)

Here we consider the polytropic gas case, i.e., p = Rθ/v,
e = R

γ−1
θ + const..

The initial data (v0, u0, θ0) satisfies p− = Rθ−
v−

=

p+ = Rθ+

v+
and

(v0, u0, θ0) → (v+, 0, θ+), as x → +∞. (16)

http://www.amt.ac.cn/member/huangfeimin/index.html
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• Contact discontinuity for Euler equations.

Consider the Euler equations with the Riemann ini-
tial data

vt − ux = 0, (17)
ut + p(v, θ)x = 0, (18)

(e+
u2

2
)t + (pu)x = 0, (19)

(v, u, θ)(x, 0) = (v−, 0, θ−), x < 0, (20)
(v, u, θ)(x, 0) = (v+, 0, θ+), x > 0. (21)

If

p− =
Rθ−

v−
= p+ =

Rθ+

v+

(22)

http://www.amt.ac.cn/member/huangfeimin/index.html
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holds, then there is a contact discontinuity
(V̄ , Ū , Θ̄) = (v−, 0, θ−), x < 0, (23)
(V̄ , Ū , Θ̄) = (v+, 0, θ+), x > 0. (24)

• Viscous contact wave:

Let (v̄, ū, θ̄)(x, t) be the viscous contact wave. we
expect

p̄(v̄, θ̄) =
Rθ̄

v̄
≈ p+, ū << 1, as t → ∞. (25)

Note that the third equation of N-S system can be reduced
to

R

γ − 1
θt + p(v, θ)ux = (κ

θx

v
)x + µ

u2
x

v
. (26)

http://www.amt.ac.cn/member/huangfeimin/index.html
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We expect that the leading part is
R

γ − 1
θt + p+ux = (κ

θx

v
)x. (27)

By the conservation of mass
vt − ux = 0, (28)

we obtain a nonlinear diffusion equation

Θt = a(
Θx

Θ
)x, a =

κp+(γ − 1)

γR2
> 0. (29)

It is easy to check that there exists a unique self-similar
solution Θ(ξ), ξ = x√

1+t
with the condition Θ(−∞, t) =

θ−,Θ(+∞, t) = θ+. This profile Θ(ξ) is a monotone
function, increasing if θ+ > θ− and decreasing if θ+ <
θ−.

http://www.amt.ac.cn/member/huangfeimin/index.html
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After Θ(x, t) = Θ(ξ) is obtained, we define

v̄ =
R

p+

Θ(x, t), (30)

ū =
Ra

p+Θ
Θx, (31)

θ̄ = Θ −
γ − 1

2R
ū2. (32)

It is easy to see (v̄, ū, θ̄) satisfies

‖(v̄ − V̄ , ū− Ū , θ̄ − Θ̄)‖Lp = [O(κ)(1 + t)]
1
2p, p ≥ 1

(33)

which means the nonlinear wave (v̄, ū, θ̄) approximates
the contact discontinuity (V̄ , Ū , Θ̄) in Lp norm, p ≥ 1
on any finite time interval as κ tends to zero.

http://www.amt.ac.cn/member/huangfeimin/index.html
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The viscous contact wave (v̄, ū, θ̄) satisfies

v̄t − ūx = 0, (34)

ūt + p̄x = µ(
ūx

v̄
)x +R1x, (35)

(ē+
ū2

2
)t + (p̄ū)x = κ(

θ̄x

v̄
)x + (

µ

v̄
ūūx)x +R2x,

(36)

where

R1 = O(δ)(1 + t)−1e− θ±x2

4a(1+t), (37)

R2 = O(δ)(1 + t)−3
2e− θ±x2

4a(1+t). (38)

Here δ = |θ+ − θ−| is the strength of the contact discon-
tinuity.

http://www.amt.ac.cn/member/huangfeimin/index.html
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Let

m(x, t) = (v, u, θ +
γ − 1

2R
u2)t, (39)

m̄(x, t) = (v̄, ū, θ̄ +
γ − 1

2R
ū2)t, (40)

Since the integral
∫ ∞

−∞m(x, 0)−m̄(x, 0)dx is not zero,
we have to introduce additional diffusion wave to carry
the excessive mass in the nonlinear sound families. Let
A(v, u, θ) be the Jacobi matrix of the flux (−u, p, γ−1

R
pu)t.

The first eigenvalue of A(v−, 0, θ−) is λ−
1 = −

√
γp−
v−

and the corresponding right eigenvector is

r−
1 = (−1, λ−

1 ,
γ − 1

R
p−)t. (41)

Similarly, the third eigenvalue and right eigenvector of

http://www.amt.ac.cn/member/huangfeimin/index.html
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A(v+, 0, θ+) are λ+
3 =

√
γp+

v+
and

r+
3 = (−1, λ+

3 ,
γ − 1

R
p+)t. (42)

The vectors r−
1 , r2 = (v+ −v−, 0, θ+ −θ−)t and r+

3 are
linearly independent inR3. Assume that∫

m(x, 0) − m̄(x, 0)dx = θ̄1r
−
1 + θ̄2r2 + θ̄3r

+
3

(43)

with some constants θ̄i, i = 1, 2, 3. We define the ansatz
m̃(x, t) as follows:

m̃(x, t) = m̄(x+ θ̄2, t) + θ̄1θ1r
−
1 + θ̄3θ3r

+
3 , (44)

http://www.amt.ac.cn/member/huangfeimin/index.html
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where

θ1(x, t) =
1√

4π(1 + t)
e−(x−λ−

1 (1+t))2

4(1+t) , (45)

θ3(x, t) =
1√

4π(1 + t)
e−(x−λ+

3 (1+t))2

4(1+t) , (46)

satisfying

θ1t + λ−
1 θ1x = θ1xx, (47)

θ3t + λ+
3 θ3x = θ3xx, (48)

and
∫ ∞

−∞ θi(x, t)dx = 1 for i = 1, 3 and all t ≥ 0. We
have ∫ ∞

−∞
m(x, 0) − m̃(x, 0)dx = 0 (49)

http://www.amt.ac.cn/member/huangfeimin/index.html
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Without loss generality, we assume that θ̄2 = 0. By a
straightforward computation, the ansatz m̃ satisfies

ṽt − ũx = R̃1x, (50)

ũt + p̃x = µ(
ũx

ṽ
)x + R̃2x, (51)

(ẽ+
ũ2

2
)t + (p̃ũ)x = κ(

θ̃x

ṽ
)x + (

µ

ṽ
ũũx)x + R̃3x,

(52)

where m̃ = (ṽ, ũ, θ̃) and for i = 1, 2, 3,

|R̃i| = O(δ + θ̄2
1 + θ̄2

3)
1

1 + t
(e− cx2

1+t (53)

+e−c(x−λ−
1 (1+t))2

1+t + e−c(x−λ+
3 (1+t))2

1+t ). (54)

http://www.amt.ac.cn/member/huangfeimin/index.html
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Remark: The decay rate of error terms R̃i (53) is not
enough for the usual energy estimate. People also meet
the same problem in the study of viscous shock wave. So
Szepessy and Xin in 1993 introduced coupled diffusion
waves to improve the decay rate of error terms like R̃i for
general artificial viscous system. However our results be-
low will show that the decay rate of error terms R̃i in (53)
is suitable for our new method for the stability of viscous
contact wave. That is the energy method can be applied to
capture the coupling of the viscous contact wave with the
diffusion waves created by the perturbation in the other
two characteristic families so that a priori estimate can
be closed with a convergence rate on the solution to the
wave profile time asymptotically.

http://www.amt.ac.cn/member/huangfeimin/index.html
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Let

φ(x, t) = v − ṽ, ψ(x, t) = u− ũ, ζ(x, t) = θ − θ̃.
(55)

Set

Φ(x, t) =

∫ x

−∞
φdy,Ψ(x, t) =

∫ x

−∞
ψdy, (56)

W̄ (x, t) =

∫ x

−∞
(e+

|u|2

2
− ẽ−

|ũ|2

2
)dy. (57)

The quantities (Φ,Ψ, W̄ ) are well defined in some Sobolev
space because (Φ,Ψ, W̄ )(±∞, 0) = 0.

http://www.amt.ac.cn/member/huangfeimin/index.html
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Theorem 1. Let (ṽ, ũ, θ̃)(x, t) be the ansatz above and
δ = |θ+ − θ−|. Then there exist some positive con-
stants δ0 and ε, such that if δ ≤ δ0 and the initial data
(v0, u0, θ0) satisfies

‖(Φ,Ψ, W̄ )‖L2 + ‖m− m̄‖H1 ≤ ε, (58)

then the compressible Navier-Stokes system admits a unique
global solution (v, u, θ) satisfying

(Φ,Ψ, W̄ ) ∈ C(0,+∞;H2), (59)
φ ∈ L2(0,+∞;H1), (60)

(ψ, ζ) ∈ L2(0,+∞;H2). (61)

Furthermore, the perturbation (Φ,Ψ, W̄ ) and (φ, ψ, ζ)

http://www.amt.ac.cn/member/huangfeimin/index.html
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have the following decay rate,

‖(v − ṽ, u− ũ, θ − θ̃‖L∞ ≤ C(ε+ δ
1
2
0)(1 + t)−1

4.
(62)

Remark 1: Theorem 1 shows not only that the viscous
contact wave (v̄, ū, θ̄) is nonlinear stable in super-norm
with generic initial perturbations, but also a uniform rate
of convergence (62), is obtained. This is somewhat sur-
prising given that the convergence rate to either the vis-
cous shock wave or viscous rarefaction wave has not been
achieved yet for the compressible Navier-Stokes system.
Moreover, the rate of decay in (62) may not be optimal.
Motivated by the pointwise behavior toward viscous con-
tact waves for solutions to the Euler system with uniform
viscosity [Liu,Xin,1997], one would conjecture that its de-

http://www.amt.ac.cn/member/huangfeimin/index.html
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cay rate in (62) should be improved to (1 + t)−1
2 .

http://www.amt.ac.cn/member/huangfeimin/index.html
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♠ Energy method.

A priori assumptions:
N(T ) = sup

0≤t≤T
{‖(Φ,Ψ, W̄ )‖2

L∞ + ‖(φ, ψ, ζ)‖2
H1} ≤ ε2

0,

(63)
where ε0 is positive small constant depending on the ini-
tial data and the strength of the contact wave.

Key observations: By some complicated estimates,
finally we obtain

E1t +K1 ≤ Cδ(1 + t)−1E1 + Cδ(1 + t)−1
2, (64)

were
E1 ≈ ‖(Φ,Ψ, W̄ )‖2

H2, (65)

http://www.amt.ac.cn/member/huangfeimin/index.html
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K1 ≈ ‖Φx‖2
H1 + ‖(Ψx, W̄x)‖2

H2. (66)

Cδ(1 + t)−1E1 and Cδ(1 + t)−1
2 come from the terms∫

ūx(Ψ
2+W̄ 2)dx and R̃i, i = 1, 2, 3 respectively. Thus

we have

E1 +

∫ t

0

K1dt ≤ C(δ + ε2)(1 + t)
1
2 (67)

or

‖(Φ,Ψ, W̄ )‖2
L2 ≤ C(δ + ε2)(1 + t)

1
2 (68)

which seems not good. However, when considering the
derivative estimate, we have

E2t +K2 ≤ Cδ(1 + t)−1K1 + Cδ(1 + t)−3
2, (69)

E2 ≈ ‖(Φx,Ψx, W̄x)‖2
H1, (70)

http://www.amt.ac.cn/member/huangfeimin/index.html
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K2 ≈ ‖Φxx‖2
L2 + ‖(Ψxx, W̄xx)‖2

H1. (71)

We obtain

E2 ≤ C(δ + ε2)(1 + t)−1
2, (72)

‖(Φx,Ψx, W̄x)‖2
H1 ≤ C(δ + ε2)(1 + t)−1

2. (73)

Due to Sobolev inequality, (68) and (73) imply that

‖(Φ,Ψ, W̄ )‖L∞ ≤ C(δ
1
2 + ε) (74)

which verifies the a priori assumption (63). From (73), we
obtain the decay rate (62).

http://www.amt.ac.cn/member/huangfeimin/index.html
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Remark 2: Because this approach allows that theL2 norm
of (Φ,Ψ, W̄ ) grows with the rate (1 + t)

1
2 , it is not nec-

essary to require the accurate ansatz.

http://www.amt.ac.cn/member/huangfeimin/index.html
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♣ Boltzmann equation:

ft + ξ1fx = Q(f, f), (75)

f(x, t, ξ): distributional density of particles.
ξ: particle velocity.
Q: collision operator.

Q(f, g) =
1

2

∫
R3

∫
S2

+

(
f(ξ′)g(ξ′

∗) + f(ξ′
∗)g(ξ

′)

(76)

−f(ξ)g(ξ∗) − f(ξ∗)g(ξ)
)
B(|ξ − ξ∗|, θ) dξ∗dΩ,

(77)

with θ being the angle between the relative velocity and
the unit vector Ω. Here S2

+ = {Ω ∈ S2 : (ξ − ξ∗) ·
Ω ≥ 0}. The conservation of momentum and energy

http://www.amt.ac.cn/member/huangfeimin/index.html


Home Page

Title Page

JJ II

J I

Page 35 of 50

Go Back

Full Screen

Close

Quit

gives the following relation between velocities before and
after collision:

ξ′ = ξ − [(ξ − ξ∗) · Ω] Ω, (78)
ξ′

∗ = ξ∗ + [(ξ − ξ∗) · Ω] Ω. (79)

Hard sphere:

B(|ξ − ξ∗|, θ) = |(ξ − ξ∗,Ω)|, (80)

B(|ξ − ξ∗|, θ) = |ξ − ξ∗|
n−5
n−1b(θ), (81)

b(θ) ∈ L1([0, π]), n > 5, (82)

Macro-Micro decomposition (Liu-Yang-Yu, 2004), (Liu-
Yu, 2004):

f(x, t, ξ) = M(x, t, ξ) +G(x, t, ξ), (83)

http://www.amt.ac.cn/member/huangfeimin/index.html
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where the local MaxwellianM andG represent the fluid
and non-fluid components in the solution respectively.

M ≡
ρ√

(2πRθ3
exp

(
−

|ξ − u|2

2Rθ

)
. (84)

The macroscopic space is spanned by the following five
pairwise orthogonal functions

χ0(ξ) ≡
1

√
ρ
M, (85)

χi(ξ) ≡
ξi − ui√
Rθρ

M for i = 1, 2, 3, (86)

χ4(ξ) ≡
1

√
6ρ

(
|ξ − u|2

Rθ
− 3)M, (87)

< χi, χj >= δij, i, j = 0, 1, 2, 3, 4. (88)

http://www.amt.ac.cn/member/huangfeimin/index.html


Home Page

Title Page

JJ II

J I

Page 37 of 50

Go Back

Full Screen

Close

Quit

Macroscopic projection P0:

P0h ≡
4∑
j=0

< h, χj > χj. (89)

where the inner product is defined by< f, g >=
∫
fg
M
dξ.

Microscopic projection P1:

P1h ≡ h− P0h. (90)

Under this decomposition, the Boltzmann equation can
be rewritten as

ρt + (ρu1)x = 0, (91)

(ρu1)t + (ρu2
1 + p)x =

4

3
(µ(θ)u1x)x −

∫
ξ2
1Θxdξ,

(92)
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(ρui)t + (ρu1ui)x = (µ(θ)uix)x −
∫
ξ1ξiΘxdξ, i = 2, 3,

(93)(
ρ(e+

|u|2

2
)
)
t
+ (ρu1(e+

|u|2

2
) + pu1)x = (λ(θ)θx)x

(94)

+
4

3
(µ(θ)u1u1x)x +

3∑
i=2

(µ(θ)uiuix)x −
∫

1

2
ξ1|ξ|2Θxdξ,

(95)

together with the equation for the non-fluid component
G:

Gt + P1(ξ1Mx) + P1(ξ1Gx) = LMG+Q(G,G).
(96)
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Thus
G = L−1

M (P1(ξ1Mx)) + Θ

with

Θ = L−1
M (Gt + P1(ξ1Gx) −Q(G,G)). (97)

Here LM is the linearized operator of the collision oper-
ator with respect to the local MaxwellianM :

LMh = Q(M,h) +Q(h,M).

Lagrangian coordinates:

x ⇒
∫ x

0

ρ(y, t)dy, t ⇒ t. (98)

Boltzmann equation

vt − u1x = 0, (99)
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u1t + px =
4

3
(
µ(θ)

v
u1x)x −

∫
ξ2
1Θ1xdξ, (100)

uit = (
µ(θ)

v
uix)x −

∫
ξ1ξiΘ1xdξ, i = 2, 3 (101)(

e+
|u|2

2

)
t
+ (pu1)x = (

λ(θ)

v
θx)x +

4

3
(
µ(θ)

v
u1u1x)x

(102)

+
3∑
i=2

(
µ(θ)

v
uiuix)x −

∫
1

2
ξ1|ξ|2Θ1xdξ, (103)

Gt −
u1

v
Gx +

1

v
P1(ξ1Mx) +

1

v
P1(ξ1Gx) (104)

= LMG+Q(G,G), (105)
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with
G = L−1

M (
1

v
P1(ξ1Mx)) + Θ1,

Θ1 = L−1
M (Gt −

u1

v
Gx +

1

v
P1(ξ1Gx) −Q(G,G)).
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Viscous contact wave:

Analogous to N-S system, we construct the ansatz for the
wave profile of the Boltzmann equation as follows. First,
let Θ( x√

1+t
) be the unique self-similarity solution of the

following nonlinear diffusion equation

Θt = (a(Θ)Θx)x,Θ(−∞, t) = θ−,Θ(+∞, t) = θ+,
(106)

where the function a(s) = 9p+λ(s)
10s

> 0. We then define

v̄ =
2

3p+

Θ, ū1 =
2a(Θ)

3p+

Θx, ūi = 0, i = 2, 3, (107)

θ̄ = Θ −
1

2
|ū|2. (108)
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Letm = (v, u1, θ+ 1
2
|u|2) and m̄ = (v̄, ū1, θ̄+ 1

2
|ū|2).

Since
∫ ∞

−∞(m(x, 0)−m̄(x, 0))dx is usually not zero, we
have to introduce two diffusion waves in the sound wave
families like N-S system. Let A− and A+ be the Jacobi
matrices of the flux (−u1, p, pu1)

t at (v−, 0, θ−) and
(v+, 0, θ+) respectively. It is easy to check that λ−

1 =

−
√

5p−
3v−

is the first eigenvalue ofA− with r−
1 = (−1, λ−

1 , p−)t

being the corresponding eigenvector. And λ+
3 =

√
5p+

3v+

and r+
3 = (−1, λ+

3 , p+)t are those of the third family of
A+. Since r−

1 , (v+−v−, 0, θ+−θ−)t and r+
3 are linearly

independent inR3, we have∫ ∞

−∞
(m(x, 0) − m̄(x, 0))dx = θ̄1r

−
1 (109)
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+θ̄2(v+ − v−, 0, θ+ − θ−)t + θ̄3r
+
3 (110)

with unique constants θ̄i, i = 1, 2, 3.The ansatz m̃(x, t)
form is defined as

m̃(x, t) = m̄(x+ θ̄2, t) + θ̄1θ1r
−
1 + θ̄3θ3r

+
3 , (111)

where

θ1(x, t) =
1√

4π(1 + t)
e−(x−λ−

1 (1+t))2

4(1+t) , (112)

θ3(x, t) =
1√

4π(1 + t)
e−(x−λ+

3 (1+t))2

4(1+t) , (113)

Thus we have
∫ ∞

−∞(m(x, 0) − m̃(x, 0))dx = 0. Notice
that

∫ ∞
−∞ ui(x, 0)dxmay not be zero either for i = 2, 3.
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For this, we define

ūi(x, t) = θ̄i+2

1√
4π(1 + t)

e− x2
4(1+t), i = 2, 3, (114)

where θ̄i+2 =
∫ ∞

−∞ ui(x, 0)dx. It is obvious that∫ ∞

−∞
(ui(x, 0) − ũi(x, 0))dx = 0, i = 2, 3. (115)

Finally, our ansatz is defined as
ṽ(x, t) = v̄(x+ θ̄2, t) − θ̄1θ1 − θ̄3θ3, (116)
ũ1(x, t) = ū1(x+ θ̄2, t) + λ−

1 θ̄1θ1 + λ+
3 θ̄3θ3, (117)

ũi =
θ̄i+2√

4π(1 + t)
e− x2

4(1+t), i = 2, 3, (118)

θ̃(x, t) = θ̄(x+ θ̄2, t) +
1

2
|ū|2(x+ θ̄2, t) (119)
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+ p+(θ̄1θ1 + θ̄3θ3) −
1

2
|ũ|2. (120)

Here (ṽ, ũ, θ̃) satisfies

m̃(x, t) = (ṽ, ũ1, θ̃ +
1

2
|ũ|2)t(x, t). (121)

Without loss of generality, we also assume that θ̄2 = 0.
It is straightforward to show that

ṽt − ũx = R̃1x, (122)

ũ1t + p̃x =
4

3
(µ(θ̃)

ũ1x

ṽ
)x + R̃2x, (123)

ũit = (
µ(θ̃)ũix

ṽ
)x + (R̃i+1)x, i = 2, 3, (124)
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(
ẽ+

|ũ|2

2

)
t
+ (p̃ũ1)x = (λ(θ̃)

θ̃x

ṽ
)x +

4

3
(
µ(θ̃)

ṽ
ũ1ũ1x)x

(125)

+ (
3∑
i=2

µ(θ̃)

ṽ
ũiũix)x + R̃5x, (126)

R̃i = O(δ +
5∑
i=1

|θ̄i|)
1

1 + t
(e− cx2

1+t (127)

+e−c(x−λ−
1 (1+t))2

1+t + e−c(x−λ+
3 (1+t))2

1+t ) (128)

holds with some positive constant c > 0. Denote the
perturbation around the ansatz (ṽ, ũ, θ̃) by

φ(x, t) = v−ṽ, ψ(x, t) = u−ũ, ζ(x, t) = θ−θ̃.
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Then set

Φ(x, t) =

∫ x

−∞
φ(y, t)dy,Ψ(x, t) =

∫ x

−∞
ψ(y, t)dy,

(129)

W̄ (x, t) =

∫ x

−∞
(e+

|u|2

2
− ẽ−

|ũ|2

2
)(y, t)dy,

(130)

so that the quantities Φ,Ψ ad W̄ can be well defined in
some Sobolev space.

Theorem 2. Let (ṽ, ũ, θ̃)(x, t) be the ansatz defined above
with δ = |θ+ − θ−|. Then there exist small positive
constants δ0, ε and global Maxwellian M∗ = M[ρ∗,u∗,θ∗],
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such that if δ ≤ δ0 and the initial data satisfies

{‖(Φ,Ψ, W̄ )‖H2
x
+

∑
|α|=2

‖∂αf‖L2
x(L

2
ξ(

1√
M∗

)) (131)

+
∑

0≤|α|≤1

‖∂αG‖L2
x(L

2
ξ(

1√
M∗

))}|t=0 ≤ ε, (132)

then the Boltzmann equation admits a unique global so-
lution f(x, t, ξ) satisfying

‖f(x, t, ξ) −M[v̄,ū,θ̄]‖L∞
x (L2

ξ(
1√
M∗

)) ≤ C(ε+ δ
1
2
0)(1 + t)−1

4.

(133)

Here f(ξ) ∈ L2
ξ(

1√
M∗

) means that f(ξ)√
M∗

∈ L2
ξ(R

3).
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