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1. Introduction

e In 1982, R. Hamilton introduced the Ricci flow

8gi;
Hd _ —2R;;
ot

to construct canonical metrics for some manifolds.

e Hamilton, Yau, Perelman and other mathematicians devel-
oped many tools and techniques to study the Ricci flow.

e Recently, based on Perelman’s breakthrough, Cao and
Zhu offered a complete proof of Poincare’s conjecture and
Thurston’s geometrization conjecture.
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In Perelman’s work, a key step is to introduce a functional

W)= | dayge ! (R+|VIP).
The corresponding gradient flow:
gij = —2(Rij + ViV, f),

f=—(R+ AF).
In this way, we express the Ricci flow as a gradient flow.
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Dynamics of a gradient flow is much easier to handle.

e The functional generating the flow is monotone
along the orbit of the flow automatically.

e If the flow exists for all time, then it shall flow to a
critical point which lead to the existence of a canonical
metric.

o If the flow does not exist for all time, the generating
functional helps very much in the analysis of singulari-
ties.

=i
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For a three-manifold M3, J.Gegenberg et al. present a
action:

S — / doy/ge ! (x + R+ |VF) = LeH A +H
M

_ eFe_fF/\*F—l—gA/\F.
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The corresponding gradient flow:

7\

( 3gij
ot
BBij
ot
0A;
ot
0

€H
= —2[R;; +2V,;V,¢ — ZHilejkl — GFFiijk]’

= ene®*Vi(e > H".),

(&
= —epe®?Vi (e F;*) + Eequnilekl’

€EH E€Er
= — R ANP—4|Vo|? —H? — —F2.
r X + R(g) + @ | Vo | T >

(1)
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J.Gegenberg et al. found that Thurston’s eight geome-
tries appear as critical points of the above functional.

Under the condition e = 0, they show that there are no o Page
other critical points. Title Page

44 | 42 |
Basically critical points of the above functional are eight R

i Page 8 of 28
geometries of Thurston. E—

Full Screen

Close

i

Quit

.


http://www.scut.edu.cn

We consider a flow for a similar functional for a four-
dimension manifold:

S = / d'a/Ge ! (x + R+ |VFI) — Tre T H A <H
M Home Page
Title Page

L[]

The generalization to four-manifolds is probably more in- <
teresting. It may offer a systematic way to study four- p——

manifolds. Go Back
Full Screen

Close

i

e
—ere TF AxF + 5F/\F.

.

Quit


http://www.scut.edu.cn

The corresponding gradient flow:

7\

( 3gij
ot
BBz-j
ot
0A;
ot
0

€H
= —2[R;; +2V,;V,¢ — ZHilejkl — GFFiijk]’

= ene®*Vi(e > H".),

= —epe® V(e 2?F,*) + e €290,V (Fy),

€EH E€Er
= — R ANP—4|Vo|? —H? — —F2.
r X + R(g) + @ | Vo | T >

(2)
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& We prove that the system of PDEs (2) are strictly and
uniformly parabolic in some sence.

& Based on this, we show that the generalized Ricci
flow defined on a n-dimensional compact Riemannian
manifold admits a unique short-time smooth solution.

& Moreover, we also derive the evolution equations for
the curvatures, which play an important role in our future
study.
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2. Main results

Christoffel symbols

1 091 O0gu  0gij
Fk —_ kl { .7' - J}
ii =29 \Gwi | 0w 0zl ]’

The Riemannian curvature tensors

ark  ark
k k _
fjl = &Bji — szj + 0505 — T30 Riju = grpR;,

The Ricci tensor
1)
R = g7 Riju
The scalar curvature

R = g R;;
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For each field we shall consider the gauge equivalent
classes of fields.

e Two metrics g, g, are in the same equivalent class if
and only if they are differ by a diffeomorphism, i.e., there
exists a diffeomorphism f : M — M such that g, =
Fg1.

e Two gauge fields A; and A, are equivalent if and
only if there exists a function a« on M such that A, =
A + do.

e Two B-fields B; and B, are equivalent if and only if
there exists an one-form 3 on M such that B, = B;+dg.
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Theorem 1:(Local existences and uniqueness) Let
(M, g;j(z)) be a three-dimensional compact Riemannian
manifold. Then there exists a constant 7' > 0 such that
the system (1) of the evolution equations has a unique
smooth solution on M x [0, T') for every initial fields.

Theorem 2:(Local existences and uniqueness) Let
(M, g;j(z)) be a four-dimensional compact Riemannian
manifold. Then there exists a constant 7' > 0 such that
the system (2) of the evolution equations has a unique
smooth solution on M X [0, T') for every initial fields.
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3. Method of proof

Lemma 1. For each gauge equivalent class of a gauge
field A, there exists an A" such that d(xA’) = 0.

The lemma can be proved by the Hodge decomposition.

Proof. For each one-form A, by the Hodge decomposi-
tion, there exists an one-form A,, a function a and a two-
form 3 such that

A= Ay + do + d*B,

dAy = 0,d* Ay = 0.

Let A = A — da. A’ is in the same gauge equivalent
class of A. Since d(xAy) = 0, d(xd*3) = 0, then we
have d(xA’) = 0. O
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Lemma 2. The differential operator of the right hand of
(2) with respect to the gauge equivalent class of a gauge
field A is uniformly elliptic.

Proof. Let A = A;dx’ be a gauge field. From Lemma 3.1
we can choose an A’ in the gauge equivalent class of A
such that d(xA’) = 0. Then dd*A" = 0. We still denote
A'as A.
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0A;
ot

= —epe?®V,(e 2 F%) + e €290,V (Fy)

= —er V(9" Fy) — epe®?F* V(e ??)
DA, aAj)
oxi Oz

+e 62¢niklek(

l 82Al
OxkoxI

o

* Oxk
. k 96
= GFAA1—|—2€FF1- " .

The right hand side is clearly elliptic at point =. If we
apply a diffeomorphism to the metric it won’t change the
positivity property of the second order operator of the
right hand side. O

o .
= ep(d*F); + 2€FF.’“—¢ + 2e e2¢'n-k3
v Oxk ¢
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Lemma 3. For each gauge equivalent class of a B-field
B, i.e., a two-form B on M, there exists a B’ such that
d(xB’) = 0.

Proof. Again we use the Hodge decomposition. For a
two-form B, there exist a one-form «, a two-form B, and
a three-form 3 such that

B:B0—|—da—|—d*6,

dBy = 0,d* By = 0.

Let B = B — da. B’ is in the same gauge equivalent
class of B, then we have d(+*B’) = 0. O
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Lemma 4. The differential operator of the right hand side
of (2) with respect to the gauge equivalent class of a B-
field B is uniformly elliptic.

Proof. Let us consider the equation for B-field. Without
loss of generality, we assume d(xB) = 0. Then dd*B =
0. We have
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OB,
8tj = ege®*Vi(e >’ HY))
= eHVk(le'jgkl) + €H62¢H’zjvk(e_2¢)
0
= —ey(d*dB);; — eg(dd*B);; — 2eg H 'ﬁja—jc
0¢
— [ — k —
= —EHABW ZGHHijawk:

The right hand side is clearly elliptic at the point . If we
apply a diffeomorphism to the metric it does not change
the positivity property of the second order operator of
the right hand side. O
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Suppose (§i;(x, t), ¢(z, t)) is a solution of the equations
(2), and ¢; : M — M is a family of diffeomorphisms of
M. Let

gz’j(mat) = Qorgij(wat)a ¢(w7t) = 90:¢Z(wat)a

where o7 is the pull-back operator of ;. We now want to
find the evolution equations for the metric g;;(x,t) and

d(x,t).

Denote

y(z,t) = pi(x) = {yl(wat)vyz(wvt)a e,y (z,t) )

in local coordinates.

Home Page

i

Title Page
L[]
I

Page 21 of 28

Go Back

Full Screen

Close

Quit

.


http://www.scut.edu.cn

If we define y(x,t) = ¢:(x) by the equations

oy* 0Oy“ : : ~
Y= 2V (29,694 + (T — T),

ya(m’ O) =z

and V; = gqg’ (T, — I'%), then we have

gl

)
dgij(z,t) . 0°9ij €H Ll "
a9 Gkap L Hij H ;™ + 2ep F;" Fyy,

2 . 2

] 9% _ _lgz‘jgklM 4 2gklﬂ
ot 2 oxkox! oxkox!

9 w 00 09 _ ik ¢ oy Hpa  SF o

\ oxk Ox! Yk 12 2

1896
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Let
U3 = gi1s U2 = gi12, U3 = gi13, U4 = gJ14, U5 = g225 Ug — g23,
U7 = g24, U = g33, W9 = g34, W10 = Ja4,U11 = @ .

The above equations can be rewritten as the following
form

8uz

= g @kﬂ kB .+ + (lower order terms).

So for arbitrary ¢ € R*¥!1 it is easily verified that the
eigenvalues of the above quadratic forms }_, .., a.;i€; &}

read 3
3 2
517, 1, 1,1, 1,1, 1,1, 1, 1.

It means that the uniformly parabolic condition of the
system (6) holds.
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Lemma The differential operator of the right hand side
of (6) with respect to the metric g and the dilaton ¢ is
uniformly elliptic.

Summarizing the above discussions and by virtue of the
standard theory of partial differential equations, we can
obtain the existence and uniqueness of solution .
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4. Evolution of curvatures

Theorem 1 Under the gradient flow (2), the curvature ten-
sor satisfies the evolution equation

o
—Rijii = ARiji + 2(Bijri — Bijik — Bijk + Bikjt)
ot

— gPY(RpjriRqi + RipiRqj + RijpiRgr + RijrpRaqr)

— 297U (RpjkiVqVit + RipriVqVjd + RijpiVqVid + RijipVq Vi)
—2gPIV 4oV Rijr

+ %I[Vz’Vl(Hkqujm) — V;Vi(Hjpg HP?)

— V;iVi(HipgHP?) + V;Vi(Hipg H )]

T %gmn(HkquTEqRijnl + Hmqulquijkn)

+ €r[ViVi(F  Fjp) — ViVi(F;PFp) — V;Vi(E Fip) + V;Vi(F;PFip)]

+ erg"" (F P FropRijni + F,EFipRijkn),

where B;;. = gP g’ R, Rr1se and A is the Laplacian
with respect to the evolving metric.
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Theorem 2 The Ricci curvature satisfies the following /=
evolution equation

3 — A pbr ,qs pq

aRik = AR + 29" g Ryiqr R,s — 26" R, Ry,

— 2gPY (R V (Vi + RV (Vid) — 2gPIV ¢V, R
€ .
+ ZHg”l[Vz—Vl(Hkququ) — Vi Vi(Hjp H,PY)

Home Page
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€ex .. _ « | » |
+ 9" (HipgH y Rin — ¢ "Hiipg H," Rijin) <
+ erg” [ViVi(E Fjp) — ViVi(F Fyp) e ctataa |
Go Back
— ViVi(FPFyp) + V;Vi(F,"Fy)] ol Sereen
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Theorem 3 The scalar curvature satisfies the following
evolution equation

o
aR = AR+ 2|Ricl]® — 2¢"'V ,0V,R
€ i
+ ?gﬂg k[vivl(Hkququ) - Vin(ijqupq)]
+ 2epg”' g™ [ViVI(F,[ Fjp) — ViVi(F, Fy)]

—4g pRik (THpmnHk + 2€FFmek ) .
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Thank you !
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