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1. Background
Yamabe Conjecture

Manifolds without boundary

Let (M, g) be an N -dimensional,smooth, compact Riemannian manifold
without boundary. For N ≥ 3, the Yamabe conjecture states that there
exist Riemannian metrics which are pointwise conformal to g and have a
constant scalar curvature.

Let Rg denote the scalar curvature of g and ∆g denote the Laplace-

Beltrami operator of g. For N ≥ 3, let g′ = u
4

N−2g for some positive function
u, we have

Rg′ = u−
N+2
N−2 (Rgu− 4(N − 1)

N − 2
∆gu),

The Yamabe conjecture is therefore equivalent to the solvability of

−∆gu +
N − 2

4(N − 1)
Rgu = R̄u

N+2
N−2 , u > 0, in M (1.1)

for R̄ = 1, 0, or -1.
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Manifold with boundary – an example

Consider a smooth metric g on B = {x ∈ RN : |x| < 1}, N ≥ 3.
Let ∆g, Rg, νg, hg denote, respectively the Laplace-Beltrami operator, the
scalar curvature of (B, g),the outward normal to ∂B = SN−1 with respect
to g and the mean curvature of (SN−1, g). Given two smooth functions R′

and h′, we will consider the existence of positive solutions u ∈ H1(B) of




−4N−1
N−2∆gu + Rgu = R′u

N+2
N−2 inB,

2
N−2∂νg

u + hgu = h′u
N

N−2 on ∂B.

(1.2)

It is well known that such a solution is C∞ provided g, R′ and h′ are. If

u > 0 is a smooth solution of (1.2) then g′ = u
4

N−2g is a metric,conformally
equivalent to g, such that R′ and h′ are, respectively, the scalar curvature
of (B, g′) and the mean curvature of (SN−1, g′).
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Suppose M = SN , g = g0, if we allow R̄ to be general positive function,
then (1.3) becomes

−∆g0
u +

N(N − 2)

4
u =

N − 2

4(N − 1)
R̄u

N+2
N−2 , u > 0, in SN (1.3)

Making the stereographic projection π = πN , and setting K0(x) = K(π−1x)),
we get the following

{
−∆u = K0(x)u2∗−1, x ∈ RN ,

u > 0 in RN ,
(1.4)

where 2∗ = 2N
N−2 , N ≥ 3.

There have been many works on (1.4).
For example, Scheon, Scheon and Yau, Chang and Yang, Bahri

and Coron,etc
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The main difficult is that suppose there exists a sequence of ap-
proximating solutions, how can we get a subsequence which con-
verges strongly in a suitable space?

Usually we use the variational method. Let H be a Hilbert space
and I ∈ C1(H,R). We can use many ways (constrained mini-
mization, mountain pass lemma, Galekin method, etc) to obtain
Palais-Smale sequence {uk}, that is {uk} satisfies

I(uk) → c, I ′(uk) → 0

The Palais-Smale sequence is the corresponding sequence of ap-
proximating solutions.

If we can always choose a strongly convergent subsequence from
any given Palais-Smale sequence, then I is said to satisfy Palais-
Smale condition. Unfortunately, for most problem with critical non-
linearity, the corresponding functional does not satisfy Palais-Smale
condition.
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2. Problem, Previous Results and Our Result

Let N ≥ 3, 2∗ = 2N
N−2, and Ω be an open bounded domain in RN .

We consider the following elliptic problem:{
−div(a(x)Du) = Q(x)|u|2∗−2u + λu x ∈ Ω,

u = 0 on ∂Ω,
(2.1)

where a, Q ∈ C4(Ω̄), a(x) ≥ a0 > 0, Q(x) ≥ Q0 > 0, and λ > 0
is a positive constant.

The functional corresponding to (2.1) is

I(u) =
1

2

∫

Ω

(
a(x)|Du|2−λu2

)
dx− 1

2∗

∫

Ω

Q(x)|u|2∗dx, u ∈ H1
0(Ω).

(2.2)
Since the embedding of H1

0(Ω) into L2∗(Ω) is not compact, the
functional I(u) does not satisfies the Palais-Smale condition( (PS)
condition for short). This loss of compactness creates a lot of dif-
ficulties when variational method is used to obtain the existence
result for (2.1).
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The case of constant coefficients

a(x) ≡ 1, Q(x) ≡ 1.

Let λ1 denote the first eigenvalue of −∆ in H1
0(Ω).

Pohozaev (1965): (2.1) has no nontrivial solution if N ≥ 4 and
λ < 0.

Brezis-Nirenberg (1983):
If N ≥ 4 and λ ∈ (0, λ1), then (2.1) has a positive solution.

Capozzi, Fortunato and Palmieri (1985), Ambrosetti and
Struwe(1986)

Existence of nontrivial solutions were obtained when N ≥ 4.

Cerami, Solimini and Struwe(1986)
The existence of solutions of changing sign was studied when

N ≥ 7.

Fortunato and Jannelli(1987)
For any real positive parameter λ and for all bounded domains Ω,

which have suitable symmetry properties, (2.1) has infinitely many
solutions when N ≥ 4. When N = 3 it is shown that the number
of solutions increases with λ.

Let S be the best Sobolev constant.

The fact that for c < 1
N S

N
2 , I(u) satisfies (PS)c condition

were established and used in all the mentioned papers.
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Recently, Devillanova and Solimini (2003) proved that (2.1)
has infinitely many solutions if N ≥ 7 and λ > 0.

Framework of Devillanova and Solimini
First consider the existence of infinitely many solutions of the

following perturbed problem:{
−∆u = |u|2∗−2−εu + λu x ∈ Ω,

u = 0 on ∂Ω,
(2.3)

where ε > 0 is a small constant.
By the result of Ambrosetti - Rabinowitz, for fixed ε, (2.3)

has solutions uε, k, k = 1, 2, · · · ,
The strong convergence of uε, k as ε → 0 was proved by show that
|uε, k| has a uniform bound.

The procedure of obtaining the uniform bound consists of two
steps.

Step 1: find a safe region, where solutions of (2.3) are uniformly
bounded.

The main ingredient used to achieve this goal is the mean value
theorem for the Laplacian operator.

Step 2: establish a local Pohozaev identity in a small ball, whose
boundary lies entirely in the safe region, to reach a contradiction.
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The case of non-constant coefficients

that is, either a(x), or Q(x) is not identically constant.

For such a case, it is even more difficult to obtain a sign-changing
solution for (2.1), because I(u) does not satisfy (PS)c condition for

any c larger than the smallest number min{ (a(x)S)
N
2

N(Q(x))
N−2

2
| x ∈ Ω},

where the (PS) condition fails. The aim of this talk is to show that
(2.1) has infinitely many solutions if N ≥ 7, a(x) and Q(x) satisfy
some degenerate conditions near their critical points.
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Consider the following perturbed problem:{
−div(a(x)Du) = Q(x)|u|2∗−2−εu + λu x ∈ Ω,

u = 0 on ∂Ω,
(2.4)

where ε > 0 is a small constant.
The functional corresponding to (2.4) becomes

Iε(u) =
1

2

∫

Ω

(
a(x)|Du|2−λu2

)
dx− 1

2∗ − ε

∫

Ω

Q(x)|u|2∗−εdx, u ∈ H1
0(Ω).

(2.5)
Now Iε(u) is an even functional and satisfies the (PS) condition.

So from Ambrosetti-Rabinowitz, (2.4) has infinitely many so-
lutions. More precisely, there are positive numbers cε, l, l = 1, 2, · · · ,
with cε, l → +∞ as l → +∞, and a solution uε, l for (2.4), satisfying

Iε(uε, l) = cε, l.

Moreover, cε, l → cl < +∞ as ε → 0.
Question:
For each fixed l, as ε → 0, does uε, l converges strongly in

H1
0(Ω) to ul?

If the answer is yes, then ul is a solution of (2.1) with I(ul) = cl.
If we can prove that under suitable assumptions on a and Q,

uε, l as ε → 0, then This will imply that (2.1) has infinitely many
solutions.
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Define

Σ(x) =
aN/2(x)

Q(N−2)/2(x)
. (2.6)

Let CΣ be the set of all the critical points of Σ(x). Let 〈x, y〉
denote the inner product of x, y ∈ RN .

(C1) There is a constant δ > 0, such that for any x ∈ Ω̄ with
d(x,CΣ) ≤ δ,

〈Da(x), DQ(x)〉 ≤ 0.

(C2) For each x0 ∈ CΣ, there is a number m(x0) > 2 and q(x0) >
2, such that for x near x0,

|Dja(x)| ≤ C|Da(x)|(m(x0)−j)/(m(x0)−1), j = 2, 3;

|DjQ(x)| ≤ C|DQ(x)|(q(x0)−j)/(q(x0)−1), j = 2, 3.

(C3) There is a small τ > 0, such that for any y ∈ Ω with
d(y, ∂Ω) < τ , t ∈ (0, τ ],

〈ỹ − x,Da(x)〉 ≥ 0, ∀ x ∈ Bt(y),

〈ỹ − x,DQ(x)〉 ≤ 0, ∀ x ∈ Bt(y),

where ỹ = y + 2tn, and n is the outward unit normal of ∂Ω
at ȳ, |ȳ − y| = d(y, ∂Ω).
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Remarks on the conditions (C2) and (C3).

Remark 2.1. If a(x) ≡ 1, then Σ and Q(x) has the same critical
points. Condition (C2) implies that any critical point of Q(x) must
be degenerate. On the other hand, (C3) implies that Q(x) must
be non-increasing near the boundary at the direction of the out-
ward normal of ∂Ω. Note that if Q ≡ 1, (C2) and (C3) hold. So
Theorem 2.6 is a generalization of the result of Devillanova and
Solimini.

Remark 2.2. If Q ≡ 1, then Σ and a(x) has the same critical
points. Condition (C2) implies that any critical point of a(x) must
be degenerate, while (C3) implies that a(x) must be non-decreasing
near the boundary at the direction of the outward normal of ∂Ω.

Remark 2.3. By (C3), it is easy to check that any critical point of
Σ must be a critical point for a(x), and Q(x).

Remark 2.4. If ∂a(x)
∂n > 0 and ∂Q(x)

∂n < 0 for any x ∈ ∂Ω, where n
is the outward unit normal of ∂Ω at x, then (C3) holds.

Examples:
Suppose ∀x0 ∈ CΣ, there are θ > 2, θ̂ > 2 and constants qx0, 1 >

0, qx0, 2, ax0, 1 > 0, ax0, 2 such that for x near x0,

Q(x) = qx0, 1 − qx0, 2|x− x0|θ + q(x), q(x) = o(|x− x0|θ),
a(x) = ax0, 1 + ax0, 2|x− x0|θ̂ + â(x), â(x) = o(|x− x0|θ̂)

with q(x) and â(x) satisfy certain conditions of degenerate at x0,
in particular q(x) ≡ 0, â(x) ≡ 0. Then C1, C2 are satisfied.
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The norm of H1
0(Ω)

‖u‖ = (

∫

Ω

|Du|2dx)
1
2 ;

The norm of Lp(Ω)(1 ≤ p < ∞)

‖u‖p = (

∫

Ω

|u|pdx)
1
p .

The main result is the following:

Theorem 2.5. Suppose that N ≥ 7 and (C1)–(C3) hold with

infx0∈S(m(x0), q(x0)) > 2(N−2)
N−4 , λ > 0. Then for any sequence

un, which is a solution of (2.4) with ε = εn → 0, satisfying
‖un‖ ≤ C for some constant independent of n, un converges
strongly in H1

0(Ω) as n → +∞.

A direct consequence of Theorem 2.5 is the following multiplicity
result.

Theorem 2.6. Suppose that N ≥ 7 and (C1)–(C3) hold with

infx0∈S(m(x0), q(x0)) > 2(N−2)
N−4 , λ > 0. Then (2.1) has infinitely

many solutions.
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Difference with previous work

It appears the techniques used in Devillanova and Solimini
can not be applied to study (2.1).

1. it seems that result similar to the mean value theorem for the
Laplacian operator is still unknown for elliptic operator in divergent
form.

2. under our assumptions on a and Q, we can not obtain a con-
tradiction by applying the local Pohozaev identity in a small ball
whose boundary lies entirely in the region where the solutions are
uniformly bounded.

To overcome these difficulties, in our paper, we will use the frozen
coefficients technique, together with the mean value theorem for el-
liptic operator of constant coefficient, to obtain the desired local L1

estimate for solutions of (2.4). And then we estimate the solutions
of (2.4) in a carefully defined safe region for problem (2.4), where a
local Pohozaev identity will be used to reach a contradiction. It is
worthwhile to point out that in the safe region we choose for (2.4),
the solutions are not uniformly bounded.
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Framework of proof
Suppose un is a solution of the perturbed problem with ε = εn and
‖un‖ ≤ C for C > 0 independent of n. Suppose un blow-up at
some point. Then we have xn and σn →∞ such that un behavior

like σ
N−2

2
n U(σn(x− xn)) near xn.

Let α > 1
2, Bn = Btnσ−α

n
(xn)

⋂
Ω. We have a local Phozaev

identity

λ

∫

Bn

u2
n +

( N

2∗ − εn
− N − 2

2

) ∫

Bn

Q(x)|un|2∗−εn

− 1

2

∫

Bn

〈Da(x), x− x0〉|Dun|2 +
1

2∗ − εn

∫

Bn

〈DQ(x), x− x0〉|un|2∗−εn

=

∫

∂Bn

(
a(x)〈Dun, x− x0〉 +

N − 2

2
a(x)un

)
Diunni

−
∫

∂Bn

(1

2
a(x)|Dun|2 − 1

2
λu2

n −
1

2∗ − εn
Q(x)|un|2−εn

)
〈n, x− x0〉,

which deduces from 2∗ − εn − N−2
2 > 0

λ

∫

Bn

|un|2 dx

≤
∫

∂Bn

(
a(x)〈Dun, x− x0〉 +

N − 2

2
a(x)un

)
Diunni

−
∫

∂Bn

(1

2
a(x)|Dun|2 − 1

2
λu2

n −
1

2∗ − εn
Q(x)|un|2−εn

)
〈n, x− x0〉.

We try to obtain a contradiction by estimating each term in the
above inequality.
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3. Some Integral Estimates

For any σ > 0 and y ∈ RN , we define

ρy,σ(u) = σ
N
2∗u

(
σ(· − y)

)
, u ∈ H1

0(Ω).

First, we need the following decomposition result for the solutions
of (2.4).

Proposition 3.1. Suppose N ≥ 3. Let un be a solution of
(2.4) with ε = εn → 0, satisfying ‖un‖ ≤ C for some constant
C. Then

(i) un can be decomposed as

un = u0 +

k∑
j=1

ρxn,j ,σn,j
(Uj) + ωn. (3.1)

where ωn → 0 in H1(Ω), u0 is a solution for (2.1). For
j = 1, · · · , k, xn,j ∈ Ω, σn,jd(xn,j, ∂Ω) → +∞, xn,j → xj ∈
Ω̄, as n →∞, and Uj is a solution of{

−a(xj)∆u = bjQ(xj)|u|2∗−2u, in RN ,

u ∈ D1,2(RN),
(3.2)

for some bj ∈ (0, 1].
(ii) For i, j = 1, · · · , k, if i 6= j, then, as n →∞,

σn,j

σn,i
+

σn,i

σn,j
+ σn,jσn,i|xn,i − xn,j|2 →∞. (3.3)
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To prove the strong convergence of un in H1(Ω), we just need to
show that the bubbles ρxn,j ,σn,j

(Uj) will not appear in the decom-
position of un.

Among all the bubbles ρxn,j ,σn,j
(Uj), we can choose a bubble, such

that this bubble has the slowest concentration rate. That is, the
corresponding σn,i is the lowest order infinity among all the σn,j

appearing in the bubbles. For simplicity, we denote σn the slowest
concentration rate and xn the corresponding concentration point.

Let wn(x) = |un(x)| in Ω; wn(x) = 0 in RN \ Ω. We have

Lemma 3.2. Let D be any bounded domain in RN . Then for
any φ ∈ H1(RN) with φ ≥ 0,∫

D

a(x)DwnDφdx−
∫

∂D

a(x)〈Dwn, n〉φ ≤ A

∫

D

(
w2∗−1

n +1
)
φdx,

(3.4)
where A > 0 is a large constant, n is the outward unit normal
of ∂D. In particular,∫

RN
a(x)DwnDφdx ≤ A

∫

RN

(
w2∗−1

n +1
)
φdx, ∀ φ ∈ C∞

0 (RN), φ ≥ 0.

(3.5)
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To analyze the asymptotic behaviors of the solutions of (2.4), we
need some integral estimates for un.

For any p2 < 2∗ < p1, α > 0 and σ > 0, we consider the following
relation: {

‖u1‖p1 ≤ α,

‖u2‖p2 ≤ ασ
N
2∗−N

p2 .
(3.6)

Define

‖u‖p1, p2, σ = inf {α > 0 : there are u1 and u2, such that
(3.6) holds and |u| ≤ u1 + u2} .

The main result of this section is the following proposition.

Proposition 3.3. Let wn be a weak solution of (3.5). For any
p2 < 2∗ < p1 < +∞, there is a constant C, depending on p1

and p2, such that
‖wn‖p1,p2,σn ≤ C.

Proof. By using the estimates in Appendix A, we can prove Proposi-
tion 3.3 in exactly the same way as in the paper of Devillanova-
Solimini.

¤
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4. Estimates on Safe Regions

Let Bt(y) be the open ball centered at y with radius t > 0 and
Denote B∗

t (y) = B√
a(y)t

(y).

Let α ∈
(

1
2,

N−4
N−2

)
be a constant, which is to be determined later.

Since the number of the bubbles of un is finite, we may always find
a constant C̄ > 0, independent of n, such that the region

A1
n =

(
B∗

(C̄+5)σ−α
n

(xn) \B∗
C̄σ−α

n
(xn)

)
∩ Ω,

does not contain any concentration point of un for any n. We call
this region a safe region for un.

Let
A2

n =
(
B∗

(C̄+4)σ−α
n

(xn) \B∗
(C̄+1)σ−α

n
(xn)

)
∩ Ω.

In this section, we will prove the following result.

Proposition 4.1. Let wn be a weak solution of (3.5). Then,
there is a constant C > 0, independent of n, such that

wn(x) ≤ Cσ
(N−2)(α−1

2)
n , ∀ x ∈ A2

n.

To prove Proposition 4.1, we need the following lemma.

Lemma 4.2. Suppose that wn satisfies (3.5). Then, there is a
constant C > 0, independent of n, such that

1

rN−1

∫

∂B∗r (xn)

wn dS ≤ Cσ
(N−2)(α−1

2)
n ,

for all r ∈ [C̄σ−α
n , (C̄ + 5)σ−α

n ].

Proof. From
∫

B1(xn) wndx ≤ C, we can find a rn ∈
[

1
2, 1

]
, such that

1

rN−1
n

∫

∂Brn(xn)

wndS ≤ C.
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We make use of the following formula:
For any C2 function v, we have

∫ r

rn

d

dt

( 1

tN−1

∫

Bt(xn)

vdx
)

dt =

∫ r

rn

1

ωNtN−1

∫

Bt(xn)

∆vdx dt,

where ωN is the volume of the unit ball in RN . As a result, there
are constants C1 > 0, such that

∫ r

rn

d

dt

( 1

tN−1

∫

B∗t (xn)

vdx
)

dt =

∫ r

rn

C1

ωNtN−1

∫

B∗t (xn)

a(xn)∆vdx dt.

(4.1)
Since wn does not belong to C2, we need to modify it.
Anyway we can obtain

1

rN−1

∫

∂B∗r (xn)

wn dS

=
1

rN−1
n

∫

∂B∗rn(xn)

wn dS +

∫ rn

r

C1

ωNtN−1

∫

∂B∗t (xn)

(−a(xn)Diwnni)dS dt,

(4.2)
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which, together with Lemma 3.2, gives

1

rN−1

∫

∂B∗r (xn)

wn dS

=
1

rN−1
n

∫

∂B∗rn(xn)

wn dS +

∫ rn

r

C1

ωNtN−1

∫

∂B∗t (xn)

(−a(x)Diwnni)dS dt

+

∫ rn

r

C1

ωNtN−1

∫

∂B∗t (xn)

(a(x)− a(xn))DiwnnidS dt

≤C + C

∫ rn

r

1

tN−1

∫

B∗t (xn)

(w2∗−1
n + 1)dx dt

+ C

∫ rn

r

1

tN−2

∫

∂B∗t (xn)

|Dwn|dS dt

=C + C

∫ rn

r

1

tN−1

∫

B∗t (xn)

(w2∗−1
n + 1)dx dt

+ C

∫ rn

r

1

tN−2

∫

∂B∗t (xn)

|Dun|dS dt.

(4.3)

By the Sobolev embedding theorem,

∫

∂B∗t (xn)

|Dun|dS ≤ C

∫

B∗t (xn)

|D2un| + C

t2

∫

B∗t (xn)

|un|. (4.4)
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Let θ̄ > 0 be a fixed small constant and let q = 1 + θ̄ > 1. By
the Lq estimate for the elliptic equation, we have∫

B∗t (xn)

|D2un| ≤ tN(1−1
q )
(∫

B∗t (xn)

|D2un|q
)1/q

≤CtN(1−1
q )
(∫

B∗2t(xn)

(|un|q + (|un|2∗−1 + 1)q
))1/q

≤CtN(1−1
q )
(∫

B∗2t(xn)

(|un|(2∗−1)q + 1
))1/q

.

(4.5)

Combining (4.3), (4.4) and (4.5), we are led to

1

rN−1

∫

∂B∗r (xn)

wn dS

≤C + C

∫ rn

r

1

tN−1

∫

B∗t (xn)

w2∗−1
n dx dt

+ C

∫ rn

r

tN(1−1/q)

tN−2

(∫

B∗2t(xn)

|un|(2∗−1)qdx
)1/q

dt

+ C

∫ rn

r

1

tN

∫

B∗2t(xn)

|un|dx dt.

(4.6)

We can use Proposition 3.3 to estimate each term in the right
hand side of (4.6) and finish our proof of Lemma 4.2.

¤
Proof of Proposition 4.1. It follows from Lemma 4.2 that for
any y ∈ A2

n, we have

1

σαN
n

∫

B∗
C̄σ−α

n (y)

|wn| ≤ Cσ
(N−2)(α−1

2)
n .
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Let
vn(x) = wn(C̄σ−α

n x + y), x ∈ Ωn,

where Ωn = {x : C̄σ−α
n x + y ∈ Ω}. Then vn satisfies ∀ η ∈

H1
loc(RN), η ≥ 0∫

RN
a(C̄σ−α

n x + y)DvnDη ≤ Cσ−2α
n

∫

RN

(|vn|2∗−2 + λ
)
vnη.

Since B∗
σ−α

n
(y), y ∈ A2

n, does not contains any concentration point

of un, we can deduce∫

B1(0)

|σ−2α
n

(|vn|2∗−2+λ
)|N2 dx ≤ C

∫

B
C̄σ−α

n
(y)

|un|2∗dx+Cσ−αN
n → 0

as n → +∞. Thus, by Moser iteration, we obtain

‖vn‖L∞(B1
2
(0)) ≤ C

(∫

B1(0)

|vn|dx + 1
)

= C
( 1

σαN
n

∫

B∗
C̄σ−αN

n
(y)

|wn|dx + 1
)

≤Cσ
(N−2)(α−1

2)
n .

¤
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Let
A3

n =
(
B∗

(C̄+3)σ−α
n

(xn) \B∗
(C̄+2)σ−α

n
(xn)

)
∩ Ω.

Proposition 4.3. We have∫

A3
n

|Dun|2dx ≤ C

∫

A2
n

(|un|2∗ + 1)dx + Cσ2α
n

∫

A2
n

∣∣un|2dx. (4.7)

In particular, ∫

A3
n

|Dun|2dx ≤ Cσ−(N−2)(1−α)
n . (4.8)

Corollary 4.4. There exists tn ∈ [C̄ + 2, C̄ + 3], such that∫

∂B∗
tnσ−α

n
(xn)

|Dun|2dS ≤ Cσ−(N−2)(1−α)+α
n . (4.9)
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5. Local Pohozaev Identities and Location of
Concentration Point

In this section, we will first find two identities by applying the
general Pucci and Serrin identity. We then use one of these two
identities to locate the concentration points. The other one will be
used to prove the main result in the next section.

Lemma 5.1. Suppose that uε is a solution of (2.4). Then for
any bounded domain B contained in Ω,

λ

∫

B

u2
ε +

( N

2∗ − ε
− N − 2

2

) ∫

B

Q(x)|uε|2∗−ε

− 1

2

∫

B

〈Da(x), x− x0〉|Duε|2 +
1

2∗ − ε

∫

B

〈DQ(x), x− x0〉|uε|2∗−ε

=

∫

∂B

(
a(x)〈Duε, x− x0〉 +

N − 2

2
a(x)uε

)
Diuεni

−
∫

∂B

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
〈n, x− x0〉

where n is the outward unit normal vector of ∂B.

Lemma 5.2. Suppose that uε is a solution of (2.4). Then for
any bounded domain B contained in Ω, k = 1, · · · , N ,

1

2

∫

B

Dka(x)|Duε|2 − 1

2∗ − ε

∫

B

DkQ(x)|uε|2∗−ε

=

∫

∂B

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
nk

−
∫

∂B

(
a(x)Dkuε +

N − 2

2
uεa(x)− N − 2

2
a(x)

)
Diuεni.

where n is the outward unit normal vector of ∂B.
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In the rest of this section and whole the next section, we will
always assume that uεn is a solution of (2.4) with ε = εn and xn is
the concentration point of uεn chosen as in section 2. To simplify
notation we will write εn and uεn as ε and uε respectively. Now, we
locate the limit position of the concentration points.

Lemma 5.3. Suppose that xn → x0. Then x0 is a critical point
of Σ(x).

Proof. Taking B = B∗
tnσ−α

n
(xn) in Lemma 5.1, then from Proposi-

tion 4.1 and Corollary 4.4 we obtain

1

2

∫

B

Dka(x)|Duε|2 − 1

2∗ − ε

∫

B

DkQ(x)|uε|2∗−ε

=O
(∫

∂B

(|Duε|2 + |uε|2−ε + 1
))

=O
(
σ−(N−2)+(N−1)α

n + σ−N+(N+1)α+o(1)
n + σ−(N−1)α

n

)

=O
(
σ−(N−2)+(N−1)α

n

)
.

(5.1)

On the other hand,

1

2

∫

B

Dka(x)|Duε|2 − 1

2∗ − ε

∫

B

DkQ(x)|uε|2∗−ε

=
1

2

∫

B

Dka(xn)|Duε|2 − 1

2∗ − ε

∫

B

DkQ(xn)|uε|2∗−ε

+ O
(
|D2a(xn)|σ−α

n + |D3a(xn)|σ−2α
n + σ−3α

n

)

+ O
(
|D2Q(xn)|σ−α

n + |D3Q(xn)|σ−2α
n + σ−3α

n

)
.

(5.2)
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Moreover,

∫

B

Dka(xn)|Duε|2 =
Dka(xn)

a(xn)

∫

B

a(xn)|Duε|2

=
Dka(xn)

a(x)

∫

B

a(xn)|Duε|2 + o(1)

=
Dka(xn)

a(x)

(∫

B

(
Q(x)|uε|2∗−ε + λuε

)
+

∫

∂B

a(x)Diuεni

)
+ o(1)

=
Q(xn)Dka(xn)

a(x)

∫

B

|uε|2∗−ε + o(1).

(5.3)

Combining (5.1), (5.2) and (5.3), we are led to

(1

2

Q(xn)Dka(xn)

a(x)
− 1

2∗ − ε
DkQ(xn)

) ∫

B

|uε|2∗−ε = o(1). (5.4)

Letting n → +∞, we obtain

Q(x0)Dka(x0)− N − 2

N
a(x0)DkQ(x0) = 0.

So, the result follows. ¤

Let γ = min
(m(x0)−2

m(x0)−1,
q(x0)−2
q(x0)−1

)
.

Proposition 5.4. Suppose that xn → x0 ∈ Ω. Suppose that
(C1) and (C2) hold. Then

|Da(xn)| + |DQ(xn)| = O
(
σ−(N−2)+(N−1)α

n + σ
− α

1−γ
n + σ−3α

n

)
.
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Proof. Combining (5.1) and (5.2), we obtain

1

2
Dka(xn)

∫

B

|Duε|2 − 1

2∗ − ε
DkQ(xn)

∫

B

|uε|2∗−ε

=O
(
σ−(N−2)+(N−1)α

n

)
+ O

(
|D2a(xn)|σ−α

n + |D3a(xn)|σ−2α
n + σ−3α

n

)

+ O
(
|D2Q(xn)|σ−α

n + |D3Q(xn)|σ−2α
n + σ−3α

n

)
.

(5.5)

It follows from (C1) that

|Da(xn)| + |DQ(xn)|
=O

(
σ−(N−2)+(N−1)α

n

)
+ O

(
|D2a(xn)|σ−α

n + |D3a(xn)|σ−2α
n + σ−3α

n

)

+ O
(
|D2Q(xn)|σ−α

n + |D3Q(xn)|σ−2α
n + σ−3α

n

)
.

(5.6)

Let γ1 = m(x0)−2
m(x0)−1, and γ2 = q(x0)−2

q(x0)−1. By (C2), (5.6) becomes

|Da(xn)| + |DQ(xn)|
=O

(
σ−(N−2)+(N−1)α

n

)
+ O

(
|Da(xn)|γ1σ−α

n + |Da(xn)|2γ1−1σ−2α
n + σ−3α

n

)

+ O
(
|DQ(xn)|γ2σ−α

n + |DQ(xn)|2γ2−1σ−2α
n + σ−3α

n

)
,

from which, we obtain

|Da(xn)| + |DQ(xn)|
=O

(
σ−(N−2)+(N−1)α

n + σ−α/(1−γ1)
n + σ−α/(1−γ2)

n + σ−3α
n

)

=O
(
σ−(N−2)+(N−1)α

n + σ−α/(1−γ)
n + σ−3α

n

)
.

¤
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6. Proof of the Main Result

In this section, we will prove Theorem 2.5.

Proof of Theorem 2.5. We have two different cases: (i) d(xn, ∂Ω) ≤
τ ; (ii) d(xn, ∂Ω) ≥ τ , where τ > 0 is the constant in (C3).

Let Bn = Btnσ−α
n

(xn)
⋂

Ω. By Lemma 5.1

λ

∫

Bn

u2
ε +

( N

2∗ − ε
− N − 2

2

) ∫

Bn

Q(x)|uε|2∗−ε

− 1

2

∫

Bn

〈Da(x), x− x0〉|Duε|2 +
1

2∗ − ε

∫

Bn

〈DQ(x), x− x0〉|uε|2∗−ε

=

∫

∂Bn

(
a(x)〈Duε, x− x0〉 +

N − 2

2
a(x)uε

)
Diuεni

−
∫

∂Bn

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
〈n, x− x0〉,

(6.1)

where ν is the outward normal to ∂Bn. The point x0 in (6.1) is
chosen as follows. In case (i), we take x0 = xn + 2tnσ

−α
n ν, where ν

is the outward unit normal of ∂Ω at x̄n |x̄n − xn| = d(xn, ∂Ω). In
case (ii), we take a point x0 = xn.

We first consider case (i).
Since 2∗ − ε < 2∗, the second term in the left hand side of (6.1)

is non-negative. By the choice of x0 and (C3), the last two terms in
the left hand side of (6.1) are non-negative as well. We thus obtain
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from (6.1) that

λ

∫

Bn

|un|2 dx

≤
∫

∂Bn

(
a(x)〈Duε, x− x0〉 +

N − 2

2
a(x)uε

)
Diuεni

−
∫

∂Bn

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
〈n, x− x0〉.

(6.2)

Now we decompose ∂Bn into

∂Bn = ∂iBn ∪ ∂eBn,

where ∂iBn = ∂Bn ∩ Ω and ∂eBn = ∂Bn ∩ ∂Ω.
Noting un = 0 on ∂Ω, we find

∫

∂eBn

(
a(x)〈Duε, x− x0〉 +

N − 2

2
a(x)uε

)
Diuεni

−
∫

∂eBn

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
〈n, x− x0〉

=
1

2

∫

∂eBn

a(x)|Dun|2〈n, x− x0〉 ≤ 0.

(6.3)
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So, we can rewrite (6.2) as

λ

∫

Bn

|un|2 dx

≤
∫

∂iBn

(
a(x)〈Duε, x− x0〉 +

N − 2

2
a(x)uε

)
Diuεni

−
∫

∂iBn

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
〈n, x− x0〉.

(6.4)

Now we consider case (ii).
By Proposition 5.4 and (C2), we obtain

∣∣∣
∫

Bn

〈Da(x), x− x0〉|Duε|2
∣∣∣ +

∣∣∣
∫

Bn

〈DQ(x), x− x0〉|uε|2∗−ε
∣∣∣

=O
(
|Da(xn)|σ−α

n + |D2a(xn)|σ−2α
n + |D3a(xn)|σ−3α

n + σ−4α
n

)

+ O
(
|DQ(xn)|σ−α

n + |D2Q(xn)|σ−2α
n + |D3Q(xn)|σ−3α

n + σ−4α
n

)

=O
(
σ
−2−γ

1−γα
n + σ−(N−2)(1−α)

n + σ−4α
n

)
.

(6.5)
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As a result, we can rewrite (6.2) as

λ

∫

Bn

|un|2 dx

≤
∫

∂iBn

(
a(x)〈Duε, x− x0〉 +

N − 2

2
a(x)uε

)
Diuεni

−
∫

∂iBn

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
〈n, x− x0〉

+ O
(
σ
−2−γ

1−γα
n + σ−(N−2)(1−α)

n + σ−4α
n

)
.

(6.6)

So, we have proved that in both cases, we always have

λ

∫

Bn

|un|2 dx

≤
∫

∂iBn

(
a(x)〈Duε, x− x0〉 +

N − 2

2
a(x)uε

)
Diuεni

−
∫

∂iBn

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
〈n, x− x0〉

+ O
(
σ
−2−γ

1−γα
n + σ−(N−2)(1−α)

n + σ−4α
n

)
.

(6.7)
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Using Corollary 4.4, noting that |x− x0| ≤ Cσ−α
n for x ∈ ∂iBn,

we see∫

∂iBn

(
a(x)〈Duε, x− x0〉 +

N − 2

2
a(x)uε

)
Diuεni

−
∫

∂iBn

(1

2
a(x)|Duε|2 − 1

2
λu2

ε −
1

2∗ − ε
Q(x)|uε|2−ε

)
〈n, x− x0〉

≤Cσ−α
n

∫

∂iBn

(|un|2∗−ε + u2
n + |Dun|2

)
dσ + C

∫

∂iBn

|Dun||un|dσ,

≤O
(
σ−N(1−α)+o(1)

n + σ−(N−2)+(N−4)α
n + σ−(N−2)(1−α)

n

)

=O
(
σ−(N−2)(1−α)

n

)
,

(6.8)

which, together with (6.7), implies
∫

Bn

|un|2 dx ≤ +O
(
σ
−2−γ

1−γα
n + σ−(N−2)(1−α)

n + σ−4α
n

)
. (6.9)

Since ∫

Bn

|un|2 dx ≥ c′σ−2
n ,

for some c′ > 0, we obtain from (6.9),

σ−2
n ≤ C

(
σ
−2−γ

1−γα
n + σ−(N−2)(1−α)

n + σ−4α
n

)
. (6.10)

Choose α = N−4
N−2 − θ, where θ > 0 is a small constant. Then

α > 1
2, since N ≥ 7. So, we have

4α > 2, (N − 2)(1− α) > 2.
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Moreover, from

γ ≥ min
x0∈S

(
min

(m(x0)− 2

m(x0)− 1
,
q(x0)− 2

q(x0)− 1

))
,

and

min
x0∈S

(
min(m(x0), q(x0))

)
>

2(N − 2)

N − 4
,

we deduce

γ >
4

N
.

So,
2− γ

1− γ
α > 2.

Thus, (6.10) is a contradiction. So, we have proved Theorem 2.5.
¤

Proof of Theorem 2.6. As pointed out in the introduction, by
the result of Ambrosetti and Rabinowitz [1], for any given positive
integer k and ε > 0 small, (2.4) has a solution uk, ε such that
Iε(uk, ε) = ck, ε and ck, ε → +∞ as k → +∞ independent of ε
small. From Theorem 2.5 we can choose subsequence {uk, εn} such
that uk, εn → uk strongly in H1

0(Ω) for some uk and ck, εn → ck. uk

is a solution of (2.1) and I0(uk) = ck. Since ck goes to ∞ we get
infinitely many solutions.

¤
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