

Home Page

Title Page

←

Page 1 of 23

Go Back

Full Screen

Close

Quit

012.jpg

Shen Yibing

yibingshen@zju.edu.cn

?

Home Page

Title Page

Page 2 of 23

Go Back

Full Screen

Close

Contents

- **?** 1 Introduction
- **2** Hermitian Metrics
- 3 Holomorphic Curvature
- 4 Proof of the Main Theorem
- **§** 5 Complex Randers metrics
- Problems
- 7 Main References

Home Page

Title Page

Page **3** of **23**

Go Back

Full Screen

Close

• Professor S.S.Chern said that it is very sorry that the ancient Chinese can not discover the complex number.

2		
-		
3		
1		
	Home Page	
	Title Page	
	44	>>
ı	•	
		4 of 23
	Page	4 of 23
	Page	
	Page Go	4 of 23 Back
	Page Go	4 of 23
	Page Go Full :	4 of 23 Back Screen
	Page Go Full :	4 of 23 Back
	Page Go Full S	4 of 23 Back Screen

- Professor S.S.Chern said that it is very sorry that the ancient Chinese can not discover the complex number.
- Complex Finsler manifolds are complex manifolds with complex Finsler metrics, which are more general than Hermitian metrics.

3 Home Page Title Page Page 4 of 23 Go Back Full Screen Close

- Professor S.S.Chern said that it is very sorry that the ancient Chinese can not discover the complex number.
- Complex Finsler manifolds are complex manifolds with complex Finsler metrics, which are more general than Hermitian metrics.
- In [4] S.Kobayashi gave two good reasons for considering complex Finsler structures in a complex manifold. One is that every hyperbolic complex manifold M carries a natural complex Finsler metric in a broad sense. The second reason is as differential geometric tool in the study of complex vector bundles.

1		
2		
3		
4		
	Home Page	
	Title Page	
	44	>>
Į,	- 11	
	4	•
	Page 4 of 23	
	Go Back	
	Full Screen	
	Close	

- Professor S.S.Chern said that it is very sorry that the ancient Chinese can not discover the complex number.
- Complex Finsler manifolds are complex manifolds with complex Finsler metrics, which are more general than Hermitian metrics.
- In [4] S.Kobayashi gave two good reasons for considering complex Finsler structures in a complex manifold. One is that every hyperbolic complex manifold M carries a natural complex Finsler metric in a broad sense. The second reason is as differential geometric tool in the study of complex vector bundles.
- There are many very famous classical metrics on the Teichmüller and the moduli spaces, among which there are three complex Finsler metrics: Teichmüller metric; Caratheodory metric; and Kobayashi metric.

1		
2		
3		
4		
	Home Page	
	Title	Page
	44	>>
	- ◀	•
	Page 4 of 23	
	Go Back	
	Full Screen	
	Close	
	Quit	

- Professor S.S.Chern said that it is very sorry that the ancient Chinese can not discover the complex number.
- Complex Finsler manifolds are complex manifolds with complex Finsler metrics, which are more general than Hermitian metrics.
- In [4] S.Kobayashi gave two good reasons for considering complex Finsler structures in a complex manifold. One is that every hyperbolic complex manifold M carries a natural complex Finsler metric in a broad sense. The second reason is as differential geometric tool in the study of complex vector bundles.
- There are many very famous classical metrics on the Teichmüller and the moduli spaces, among which there are three complex Finsler metrics: Teichmüller metric; Caratheodory metric; and Kobayashi metric.
- Recently, J.-G. Cao and Pit-Mann Wong ([1]) studied Finsler geometry of projective vector bundle and proposed the following question: Suppose that M is a Kähler manifold and E is a holomorphic vector bundle over M. Is E Kähler? They gave some partial results and showed some equivalent conditions for E to be Kähler.

• Let E be a holomorphic vector bundle of rank r over a complex manifold M of complex dimension n with the natural projection π . We denote a point of E by (z, v), where z represents a point of E and E is a vector in the fibre $E_z = \pi^{-1}(z)$ of E over E over E be the zero section of E and set E over E be the zero section of E and set E over E be the zero section of E and set E over E be the zero section of E and set E over E be the zero section of E and set E over E but E over E be the zero section of E and set E over E but E but E but E is a vector in the fibre E in E is a vector in the fibre E in E is a vector in the fibre E in E in

3 Home Page Title Page Page 5 of 23 Go Back Full Screen Close Quit

- Let E be a holomorphic vector bundle of rank r over a complex manifold M of complex dimension n with the natural projection π . We denote a point of E by (z, v), where z represents a point of E and E is a vector in the fibre $E_z = \pi^{-1}(z)$ of E over E over E be the zero section of E and set E over E be the zero section of E and set E over E be the zero section of E and set E over E be the zero section of E and set E over E be the zero section of E and set E over E but E over E be the zero section of E and set E over E but E but E but E is a vector in the fibre E in E is a vector in the fibre E in E is a vector in the fibre E in E in
- **Definition.** A complex Finsler metric on E is a real function $G: E \to \mathbf{R}$ which satisfies the following conditions:
 - (1) $G(z, v) \ge 0$, where the equality holds if and only if v = 0;
 - (2) $G \in C^{\infty}(E^o)$, that is, G is smooth in E^o ;
 - (3) $G(z, \lambda v) = |\lambda|^2 G(z, v)$ for all $(z, v) \in E$, $\lambda \in \mathbb{C} \setminus \{0\}$.

3 Home Page Title Page Page 5 of 23 Go Back Full Screen Close Quit

- Let E be a holomorphic vector bundle of rank r over a complex manifold M of complex dimension n with the natural projection π . We denote a point of E by (z, v), where z represents a point of E and E is a vector in the fibre $E_z = \pi^{-1}(z)$ of E over E over E be the zero section of E and set E or E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and set E or E be the zero section of E and E be the zero section of E be the zero section of E and E be the zero section of E and E be the zero section of E and E be the zero section of E be the zero section of E and E be the zero section of E be the zero section of E and E be the zero section of E be the ze
- **Definition.** A complex Finsler metric on E is a real function $G: E \to \mathbf{R}$ which satisfies the following conditions:
 - (1) $G(z, v) \ge 0$, where the equality holds if and only if v = 0;
 - (2) $G \in C^{\infty}(E^o)$, that is, G is smooth in E^o ;
 - (3) $G(z, \lambda v) = |\lambda|^2 G(z, v)$ for all $(z, v) \in E$, $\lambda \in \mathbb{C} \setminus \{0\}$.
- Theorem(Shen-Du,[6]). Let (M,G) be a complex Finsler manifold of dimension n and TM its holomorphic tangent bundle. Then the Hermitian metric

$$h_{TM} = G_{i\bar{j}}(z,v)dz^i \otimes d\bar{z}^j + G_{i\bar{j}}(z,v)\delta v^i \otimes \delta \bar{v}^j$$

on TM is Kählerian if and only if (M,G) is a Kähler manifold with zero holomorphic sectional curvature, where $G_{i\bar{j}} = \frac{\partial^2 G}{\partial n^i \partial \bar{n}^j}, \ 1 \leq i, j, \dots \leq n.$

• Moreover, we shall consider complex Randers metrics.

2. Hermitian Metrics

• Let $(z, v) = (z^1, \dots, z^n, v^1, \dots, v^r)$ be a local coordinate system for E. A complex Finsler metric G on E is said to be strongly pseudo-convex if the complex Hessian

$$(G_{i\bar{j}}) = \left(\frac{\partial^2 G}{\partial v^i \partial \bar{v}^j}\right)$$

of G is positively definite on E^o . In particular, if $G(z, v) = h_{i\bar{j}}(z)v^i\bar{v}^j$ is a Hermitian metric on E, then G(z, v) defines a strongly pseudo-convex Finsler metric on E.

$$1 \le \alpha, \beta, \dots \le n;$$
 $1 \le i, j, k, \dots \le r.$

2

3

Home Page

Title Page

Page 6 of 23

Go Back

Full Screen

Close

2. Hermitian Metrics

• Let $(z, v) = (z^1, \dots, z^n, v^1, \dots, v^r)$ be a local coordinate system for E. A complex Finsler metric G on E is said to be strongly pseudo-convex if the complex Hessian

$$(G_{i\bar{j}}) = \left(\frac{\partial^2 G}{\partial v^i \partial \bar{v}^j}\right)$$

of G is positively definite on E^o . In particular, if $G(z, v) = h_{i\bar{j}}(z)v^i\bar{v}^j$ is a Hermitian metric on E, then G(z, v) defines a strongly pseudo-convex Finsler metric on E.

$$1 \le \alpha, \beta, \dots \le n;$$
 $1 \le i, j, k, \dots \le r.$

• Introduce the following notations:

$$G_{i} = \frac{\partial G}{\partial v^{i}}, \quad G_{\bar{j}} = \frac{\partial G}{\partial \bar{v}^{j}}, \quad G_{i\bar{j}} = \frac{\partial^{2} G}{\partial v^{i} \partial \bar{v}^{j}},$$

$$G_{,\alpha} = \frac{\partial G}{\partial z^{\alpha}}, \quad G_{,\bar{\beta}} = \frac{\partial G}{\partial \bar{z}^{\beta}}, \quad G_{i,\bar{\alpha}} = \frac{\partial^{2} G}{\partial v^{i} \partial \bar{z}^{\alpha}}, \quad G_{i\bar{j},\bar{\beta}} = \frac{\partial G_{i\bar{j}}}{\partial \bar{z}^{\beta}}, \quad etc.,$$

2

3

Home Page

Title Page

Page 6 of 23

Go Back

Full Screen

Close

2. Hermitian Metrics

• Let $(z, v) = (z^1, \dots, z^n, v^1, \dots, v^r)$ be a local coordinate system for E. A complex Finsler metric G on E is said to be strongly pseudo-convex if the complex Hessian

$$(G_{i\bar{j}}) = \left(\frac{\partial^2 G}{\partial v^i \partial \bar{v}^j}\right)$$

of G is positively definite on E^o . In particular, if $G(z, v) = h_{i\bar{j}}(z)v^i\bar{v}^j$ is a Hermitian metric on E, then G(z, v) defines a strongly pseudo-convex Finsler metric on E.

$$1 \le \alpha, \beta, \dots \le n;$$
 $1 \le i, j, k, \dots \le r.$

• Introduce the following notations:

$$G_{i} = \frac{\partial G}{\partial v^{i}}, \quad G_{\bar{j}} = \frac{\partial G}{\partial \bar{v}^{j}}, \quad G_{i\bar{j}} = \frac{\partial^{2} G}{\partial v^{i} \partial \bar{v}^{j}},$$

$$G_{,\alpha} = \frac{\partial G}{\partial z^{\alpha}}, \quad G_{,\bar{\beta}} = \frac{\partial G}{\partial \bar{z}^{\beta}}, \quad G_{i,\bar{\alpha}} = \frac{\partial^{2} G}{\partial v^{i} \partial \bar{z}^{\alpha}}, \quad G_{i\bar{j},\bar{\beta}} = \frac{\partial G_{i\bar{j}}}{\partial \bar{z}^{\beta}}, \quad etc.,$$

• In particular, we can take E = TM, the holomorphic tangent bundle of M, so that r = n.

2

3

Title Page

Home Page

Page 6 of 23

Go Back

Full Screen

Close

• Suppose that a strongly pseudoconvex complex Finsler metric G(z,v) is given on TM. The pair (M,G) is called a complex Finsler manifold. Let $\tilde{M} = TM \setminus \{o\}$ denote TM without the zero section. $\{\frac{\partial}{\partial z^i}, \frac{\partial}{\partial v^j}\}(1 \leq i, j \leq n)$ give a local frame field of the holomorphic tangent bundle $T\tilde{M}$ of \tilde{M} .

- Suppose that a strongly pseudoconvex complex Finsler metric G(z,v) is given on TM. The pair (M,G) is called a complex Finsler manifold. Let $\tilde{M} = TM \setminus \{o\}$ denote TM without the zero section. $\{\frac{\partial}{\partial z^i}, \frac{\partial}{\partial v^j}\}(1 \leq i, j \leq n)$ give a local frame field of the holomorphic tangent bundle $T\tilde{M}$ of \tilde{M} .
- Let $\tilde{\pi}: T\tilde{M} \to \tilde{M}$ denote the holomorphic tangent bundle of \tilde{M} . Then the differential $d\pi: T^{\mathbf{C}}\tilde{M} \to T^{\mathbf{C}}M$ of $\pi: \tilde{M} \to M$ defines the vertical bundle \mathcal{V} over \tilde{M} by

$$\mathcal{V} = \ker d\pi \cap T\tilde{M},$$

which yields a holomorphic vector bundle of rank n over \tilde{M} . A local frame field of \mathcal{V} is given by $\{\frac{\partial}{\partial v^j}\}(1 \leq j \leq n)$, and a natural section $\iota: \tilde{M} \to \mathcal{V}$, called the radial vertical field, is well-defined for $(z, v) \in \tilde{M}$ by

$$\iota(v) = \iota(v^i(\frac{\partial}{\partial z^i})_z) = v^i(\frac{\partial}{\partial v^i})_v.$$

Associated with G, we now define a Hermite metric on the vertical bundle \mathcal{V} by

$$< X, Y>_v = G_{i\bar{j}}(z, v) X^i \bar{Y}^j,$$

where $(z, v) \in \tilde{M}$ and $X, Y \in \mathcal{V}_v \cap \tilde{\pi}^{-1}(z, v)$.

3 Home Page Title Page Page 7 of 23 Go Back Full Screen

Close

• Let $D: \Gamma(\mathcal{V}) \to \Gamma(T^{*\mathbf{C}}\tilde{M} \otimes \mathcal{V})$ be the Hermitian connection of the Hermitian vector bundle $(\mathcal{V}, <, >)$, where $\Gamma(\cdot)$ denotes the space of smooth sections. Let ∇ denote the covariant differentiation defined by D, and define a bundle map $\Lambda: T\tilde{M} \to \mathcal{V}$ by $\Lambda(X) = \nabla_X \iota$. The horizontal bundle \mathcal{H} over \tilde{M} is then defined by $\mathcal{H} = \ker \Lambda$, which is the subbundle of $T\tilde{M}$ consisting of vectors with respect to which ι is parallel. Then it is verified that

$$T\tilde{M} = \mathcal{V} \oplus \mathcal{H}$$

and a natural local frame field $\{\frac{\delta}{\delta z^i}\}$, $(1 \leq i \leq n)$ of \mathcal{H} is given by

$$\frac{\delta}{\delta z^i} = \frac{\partial}{\partial z^i} - N_i^j \frac{\partial}{\partial v^j}, \qquad N_j^i = G^{i\bar{l}} G_{\bar{l},j} = G^{i\bar{l}} \frac{\partial^2 G}{\partial \bar{v}^l \partial z^j}.$$

Thus we get a local frame field $\{\frac{\delta}{\delta z^i}, \frac{\partial}{\partial v^i}\}$, $(1 \leq i \leq n)$ of $T\tilde{M}$. Let $\{dz^i, \delta v^i\}$ denote the dual frame field of $\{\frac{\delta}{\delta z^i}, \frac{\partial}{\partial v^i}\}$, where

$$\delta v^i = dv^i + N^i_j dz^j.$$

2

3

4

Home Page

Title Page

Page 8 of 23

Go Back

Full Screen

Close

• Associated with the decomposition $T\tilde{M} = \mathcal{V} \oplus \mathcal{H}$, we have the horizontal map $\Theta : \mathcal{V} \to \mathcal{H}$ given locally by $\Theta(\frac{\partial}{\partial v^i}) = \frac{\delta}{\delta z^i}$ for $1 \leq i \leq n$, and a natural section

$$\chi = \Theta \circ \iota : \tilde{M} \to \mathcal{H},$$

called the radial horizontal field, such that

$$\chi(v^i \frac{\partial}{\partial z^i}) = v^i \frac{\delta}{\delta z^i}.$$

2

3

4

Home Page

Title Page

Page **9** of **23**

Go Back

Full Screen

Close

• Associated with the decomposition $T\tilde{M} = \mathcal{V} \oplus \mathcal{H}$, we have the horizontal map $\Theta : \mathcal{V} \to \mathcal{H}$ given locally by $\Theta(\frac{\partial}{\partial v^i}) = \frac{\delta}{\delta z^i}$ for $1 \leq i \leq n$, and a natural section

$$\chi = \Theta \circ \iota : \tilde{M} \to \mathcal{H},$$

called the radial horizontal field, such that

$$\chi(v^i \frac{\partial}{\partial z^i}) = v^i \frac{\delta}{\delta z^i}.$$

• Using the horizontal map $\Theta: \mathcal{V} \to \mathcal{H}$, we can transfer the Hermitian metric <,> on \mathcal{V} to \mathcal{H} by setting

$$< X, Y >_{v} = < \Theta^{-1}(X), \Theta^{-1}(Y) >_{v},$$

where $(z, v) \in \tilde{M}, X, Y \in \mathcal{H}_v \cap \tilde{\pi}^{-1}(z, v)$. Then a Hermitian metric h_{TM} on \tilde{M} canonically associated with G is defined by requiring \mathcal{H} to be orthogonal to \mathcal{V} , so that $\Theta : \mathcal{V} \to \mathcal{H}$ and $\chi : \tilde{M} \to \mathcal{H}$ are isometric embeddings. h_{TM} is given in local coordinates by

$$h_{TM} = G_{i\bar{j}}(z, v)dz^i \otimes d\bar{z}^j + G_{i\bar{j}}(z, v)\delta v^i \otimes \delta \bar{v}^j.$$
 (2.1)

2

3

4

Home Page

Title Page

Page 9 of 23

Go Back

Full Screen

Close

3. Holomorphic Curvature

• Then the connection form $\omega = (\omega_j^i)$ of the Hermitian connection D of the Hermitian vector bundle (\tilde{M}, h_{TM}) is given by

$$\omega_j^i = G^{\bar{k}i} \partial G_{j\bar{k}} = \Gamma_{jk}^i dz^k + \gamma_{jk}^i dv^k, \tag{3.1}$$

where

$$\Gamma^i_{jk} = G^{\bar{l}i} \frac{\partial G_{j\bar{l}}}{\partial z^k}, \qquad \gamma^i_{jk} = G^{\bar{l}i} \frac{\partial G_{j\bar{l}}}{\partial v^k}.$$

2

4

Home Page

Title Page

Page 10 of 23

Go Back

Full Screen

Close

3. Holomorphic Curvature

• Then the connection form $\omega = (\omega_j^i)$ of the Hermitian connection D of the Hermitian vector bundle (\tilde{M}, h_{TM}) is given by

$$\omega_j^i = G^{\bar{k}i} \partial G_{j\bar{k}} = \Gamma_{jk}^i dz^k + \gamma_{jk}^i dv^k, \tag{3.1}$$

where

$$\Gamma^{i}_{jk} = G^{\bar{l}i} \frac{\partial G_{j\bar{l}}}{\partial z^{k}}, \qquad \gamma^{i}_{jk} = G^{\bar{l}i} \frac{\partial G_{j\bar{l}}}{\partial v^{k}}.$$

• The curvature form $\Omega = (\Omega_j^i)$ of its curvature $R = D \circ D$ is given by $\Omega = (\Omega_j^i) = (\bar{\partial}\omega_j^i)$, which can be written as

$$\Omega^i_j = \kappa^i_{jk\bar l} dz^k \wedge d\bar z^l + \mu^i_{jk\bar l} dz^k \wedge d\bar v^l + \sigma^i_{jk\bar l} dv^k \wedge d\bar z^l + \tau^i_{jk\bar l} dv^k \wedge d\bar v^l,$$

where

$$\begin{split} \kappa^i_{jk\bar{l}} &= -\frac{\partial \Gamma^i_{jk}}{\partial \bar{z}^l}, \qquad \mu^i_{jk\bar{l}} = -\frac{\partial \Gamma^i_{jk}}{\partial \bar{v}^l}, \\ \sigma^i_{jk\bar{l}} &= -\frac{\partial \gamma^i_{jk}}{\partial \bar{z}^l}, \qquad \tau^i_{jk\bar{l}} = -\frac{\partial \gamma^i_{jk}}{\partial \bar{v}^l}. \end{split}$$

2

3

Home Page

Title Page

Go Back

Full Screen

Close

• Setting $\kappa_{i\bar{j}k\bar{l}} = G_{h\bar{j}}\kappa^h_{ik\bar{l}}$ and $\tau_{i\bar{j}k\bar{l}}v^i = G_{h\bar{j}}\tau^h_{ik\bar{l}}$, we have

$$\kappa_{i\bar{j}k\bar{l}}v^{i}\bar{v}^{j} = (-G_{i\bar{j},\,k\bar{l}} + G^{h\bar{p}}G_{h\bar{j},\,\bar{l}}G_{\bar{p}i,\,k})v^{i}\bar{v}^{j}
= -G_{,\,k\bar{l}} + G^{h\bar{p}}G_{h,\,\bar{l}}G_{\bar{p},\,k},$$

$$\tau_{i\bar{j}k\bar{l}}v^{i} = \mu_{i\bar{j}k\bar{l}}v^{i} = \sigma_{i\bar{j}k\bar{l}}\bar{v}^{j} = 0.$$
(3.2)

2

3

Home Page

Title Page

Page 11 of 23

Go Back

Full Screen

Close

• Setting $\kappa_{i\bar{j}k\bar{l}} = G_{h\bar{j}}\kappa^h_{ik\bar{l}}$ and $\tau_{i\bar{j}k\bar{l}}v^i = G_{h\bar{j}}\tau^h_{ik\bar{l}}$, we have

$$\kappa_{i\bar{j}k\bar{l}}v^{i}\bar{v}^{j} = (-G_{i\bar{j},\,k\bar{l}} + G^{h\bar{p}}G_{h\bar{j},\,\bar{l}}G_{\bar{p}i,\,k})v^{i}\bar{v}^{j}
= -G_{,\,k\bar{l}} + G^{h\bar{p}}G_{h,\,\bar{l}}G_{\bar{p},\,k},$$

$$\tau_{i\bar{j}k\bar{l}}v^{i} = \mu_{i\bar{j}k\bar{l}}v^{i} = \sigma_{i\bar{j}k\bar{l}}\bar{v}^{j} = 0.$$
(3.2)

• Corresponding to the decomposition $TM = \mathcal{V} \oplus \mathcal{H}$, The differential operator d on functions is decomposed as $d = d_{\mathcal{H}} + d_{\mathcal{V}}$. We also decompose $d_{\mathcal{H}}$ and $d_{\mathcal{V}}$ into (1,0)-part and (0,1)-part as

$$d_{\mathcal{H}} = \partial_{\mathcal{H}} + \bar{\partial}_{\mathcal{H}}, \quad and \quad d_{\mathcal{V}} = \partial_{\mathcal{V}} + \bar{\partial}_{\mathcal{V}},$$
 (3.3)

respectively, where we put $\partial_{\mathcal{H}} f = \frac{\delta f}{\delta z^i} dz^i$, $\partial_{\mathcal{V}} f = \frac{\partial f}{\partial v^i} \delta v^i$ for a C^{∞} function f(z, v) on TM.

1 2

4

Home Page

Title Page

Page 11 of 23

Go Back

Full Screen

Close

• **Definition.** Let (M, G) be a complex Finsler manifold. The fundamental form associated with G is

$$\Phi = \sqrt{-1}G_{i\bar{j}}dz^i \wedge d\bar{z}^j$$

which is a real (1,1)-form on \tilde{M} . (M,G) is called a Finsler-Kähler manifold if $d_{\mathcal{H}}\Phi=0$.

It is equivalent to

$$\Gamma^i_{jk} = \Gamma^i_{kj}.$$

• **Definition.** Let (M, G) be a complex Finsler manifold. The fundamental form associated with G is

$$\Phi = \sqrt{-1}G_{i\bar{j}}dz^i \wedge d\bar{z}^j$$

which is a real (1,1)-form on \tilde{M} . (M,G) is called a Finsler-Kähler manifold if $d_{\mathcal{H}}\Phi=0$.

It is equivalent to

$$\Gamma^i_{jk} = \Gamma^i_{kj}.$$

• **Definition.** Let (M, G) be a complex Finsler manifold. The holomorphic curvature K(z, v) of G along v is given by

$$K(z,v) = \frac{2\psi_{i\bar{j}}v^i\bar{v}^j}{G^2(z,v)},\tag{3.4}$$

where

$$\psi_{i\bar{j}} = G_{k\bar{l}} N_i^k N_{\bar{j}}^{\bar{l}} - G_{,i\bar{j}}.$$

2

3

Home Page

Title Page

Page 12 of 23

Go Back

Full Screen

Close

• Lemma. For the non-linear connection N_j^i we have the following formulas:

$$(1) \quad \frac{\partial N_i^p}{\partial \bar{v}^j} G_p = 0,$$

(2)
$$\frac{\partial N_i^p}{\partial \bar{z}^j} G_p = -\psi_{i\bar{j}},$$

(3)
$$\frac{\partial N_i^p}{\partial \bar{v}^q} G_{p\bar{j}} = \frac{\partial N_i^p}{\partial \bar{v}^j} G_{p\bar{q}},$$

$$(4) \quad \begin{array}{l} \partial v^q \quad ^{pj} \quad \partial v^j \quad ^{TI} \\ -N_k^p \frac{\delta G_{p\bar{j}}}{\delta z^l} + \frac{\delta G_{\bar{j},k}}{\delta z^l} = -N_l^p \frac{\delta G_{p\bar{j}}}{\delta z^k} + \frac{\delta G_{\bar{j},l}}{\delta z^k}. \end{array}$$

2

1

Home Page

Title Page

Page 13 of 23

Go Back

Full Screen

Close

For the non-linear connection N_i^i we have the following formulas:

$$(1) \quad \frac{\partial N_i^p}{\partial \bar{v}^j} G_p = 0,$$

(1)
$$\frac{\partial N_i^p}{\partial \bar{v}^j} G_p = 0,$$
(2)
$$\frac{\partial N_i^p}{\partial \bar{z}^j} G_p = -\psi_{i\bar{j}},$$

(3)
$$\frac{\partial N_i^p}{\partial \bar{v}^q} G_{p\bar{j}} = \frac{\partial N_i^p}{\partial \bar{v}^j} G_{p\bar{q}},$$

$$(4) -N_k^p \frac{\delta G_{p\bar{j}}}{\delta z^l} + \frac{\delta G_{\bar{j},k}}{\delta z^l} = -N_l^p \frac{\delta G_{p\bar{j}}}{\delta z^k} + \frac{\delta G_{\bar{j},l}}{\delta z^k}.$$

• Proof. A straightforward calculation can prove the lemma.

Home Page

Title Page

Page 13 of 23

Go Back

Full Screen

Close

4. Proof of Main Theorem

• The sufficiency of the theorem follows directly from Corollary 2.3 of [1]. In the following, we prove the necessity of the theorem.

4. Proof of Main Theorem

- The sufficiency of the theorem follows directly from Corollary 2.3 of [1]. In the following, we prove the necessity of the theorem.
- Let ω be the fundamental 2-form of the Hermitian metric h_{TM} , that is, ω is defined by

$$\omega(X,Y) = h_{TM}(X,JY),$$

for $X, Y \in T^c(TM)$. In a local coordinate system for TM, ω can be expressed as

$$\omega = -\sqrt{-1}G_{i\bar{j}}(z,v)dz^i \wedge d\bar{z}^j - \sqrt{-1}G_{i\bar{j}}(z,v)\delta v^i \wedge \delta \bar{v}^j.$$

1 2 3

_

Home Page

Title Page

Page 14 of 23

Go Back

Full Screen

Close

4. Proof of Main Theorem

- The sufficiency of the theorem follows directly from Corollary 2.3 of [1]. In the following, we prove the necessity of the theorem.
- Let ω be the fundamental 2-form of the Hermitian metric h_{TM} , that is, ω is defined by

$$\omega(X,Y) = h_{TM}(X,JY),$$

for $X, Y \in T^c(TM)$. In a local coordinate system for TM, ω can be expressed as

$$\omega = -\sqrt{-1}G_{i\bar{j}}(z,v)dz^i \wedge d\bar{z}^j - \sqrt{-1}G_{i\bar{j}}(z,v)\delta v^i \wedge \delta \bar{v}^j.$$

• Taking exterior differentiation of ω , we have

$$d\omega = (-\sqrt{-1})\{dG_{i\bar{j}} \wedge dz^i \wedge d\bar{z}^j + dG_{i\bar{j}} \wedge \delta v^i \wedge \delta \bar{v}^j + G_{i\bar{j}}d(\delta v^i) \wedge \delta \bar{v}^j - G_{i\bar{j}}\delta v^i \wedge d(\delta \bar{v}^j)\}$$

$$:= (-\sqrt{-1})(I + II + III - \overline{III})$$

2

1

Home Page

Title Page

Page 14 of 23

Go Back

Full Screen

Close

• Calculating all of the terms one by one, we obtain

$$I = \frac{\delta G_{i\bar{j}}}{\delta z^k} dz^k \wedge dz^i \wedge d\bar{z}^j + \frac{\delta G_{i\bar{j}}}{\delta \bar{z}^k} d\bar{z}^k \wedge dz^i \wedge d\bar{z}^j + \frac{\partial G_{k\bar{l}}}{\partial v^j} dz^k \wedge d\bar{z}^l \wedge \delta v^j + \frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j} dz^k \wedge d\bar{z}^l \wedge \delta \bar{v}^j.$$

$$II = \frac{\delta G_{i\bar{j}}}{\delta z^k} dz^k \wedge \delta v^i \wedge \delta \bar{v}^j + \frac{\delta G_{i\bar{j}}}{\delta \bar{z}^k} d\bar{z}^k \wedge \delta v^i \wedge \delta \bar{v}^j.$$

$$III = N_k^p \frac{\delta G_{p\bar{j}}}{\delta \bar{z}^l} dz^k \wedge d\bar{z}^l \wedge \delta \bar{v}^j + N_k^p \frac{\partial G_{p\bar{j}}}{\partial v^i} dz^k \wedge \delta v^i \wedge \delta \bar{v}^j - \frac{\delta G_{\bar{j},k}}{\delta \bar{z}^l} dz^k \wedge d\bar{z}^l \wedge \delta \bar{v}^j - \frac{\partial G_{\bar{j},k}}{\partial v^i} dz^k \wedge \delta v^i \wedge \delta \bar{v}^j.$$

2
 3

Home Page

Title Page

Page 15 of 23

Go Back

Full Screen

Close

• Calculating all of the terms one by one, we obtain

$$I = \frac{\delta G_{i\bar{j}}}{\delta z^k} dz^k \wedge dz^i \wedge d\bar{z}^j + \frac{\delta G_{i\bar{j}}}{\delta \bar{z}^k} d\bar{z}^k \wedge dz^i \wedge d\bar{z}^j + \frac{\partial G_{k\bar{l}}}{\partial v^j} dz^k \wedge d\bar{z}^l \wedge \delta v^j + \frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j} dz^k \wedge d\bar{z}^l \wedge \delta \bar{v}^j.$$

$$II = \frac{\delta G_{i\bar{j}}}{\delta z^k} dz^k \wedge \delta v^i \wedge \delta \bar{v}^j + \frac{\delta G_{i\bar{j}}}{\delta \bar{z}^k} d\bar{z}^k \wedge \delta v^i \wedge \delta \bar{v}^j.$$

$$III = N_k^p \frac{\delta G_{p\bar{j}}}{\delta \bar{z}^l} dz^k \wedge d\bar{z}^l \wedge \delta \bar{v}^j + N_k^p \frac{\partial G_{p\bar{j}}}{\partial v^i} dz^k \wedge \delta v^i \wedge \delta \bar{v}^j - \frac{\delta G_{\bar{j},k}}{\delta \bar{z}^l} dz^k \wedge d\bar{z}^l \wedge \delta \bar{v}^j - \frac{\partial G_{\bar{j},k}}{\partial v^i} dz^k \wedge \delta v^i \wedge \delta \bar{v}^j.$$

• Therefore, the coefficient of $(-\sqrt{-1})dz^k \wedge \delta v^i \wedge \delta \bar{v}^j$ in $d\omega$ is

$$\frac{\delta G_{i\bar{j}}}{\delta z^k} + N_k^p \frac{\partial G_{p\bar{j}}}{\partial v^i} - \frac{\partial G_{\bar{j},k}}{\partial v^i} = 0.$$

• Correspondingly, the coefficient of $(-\sqrt{-1})d\bar{z}^k \wedge \delta v^i \wedge \delta \bar{v}^j$ is also 0.

1 2 3

Home Page

Title Page

Page 15 of 23

Go Back

Full Screen

Close

• We know that $\frac{\partial}{\partial \bar{z}^l} (\frac{\partial N_k^p}{\partial \bar{v}^j} G_p) = 0$, from which it follows that the coefficient of $(-\sqrt{-1})dz^k \wedge d\bar{z}^l \wedge \delta \bar{v}^j$ is

$$\frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j} + N_k^p \frac{\delta G_{p\bar{j}}}{\delta \bar{z}^l} - \frac{\delta G_{\bar{j},k}}{\delta \bar{z}^l} = \frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j} + \frac{\partial}{\partial \bar{v}^j} \psi_{k\bar{l}}.$$

• Hence, the coefficient of $(-\sqrt{-1})dz^k \wedge d\bar{z}^l \wedge \delta v^j$ is

$$\frac{\partial G_{k\bar{l}}}{\partial v^j} + \frac{\partial \psi_{k\bar{l}}}{\partial v^j}.$$

1 2 3

Ľ

4

Home Page

Title Page

Go Back

Full Screen

Close

• We know that $\frac{\partial}{\partial \bar{z}^l} (\frac{\partial N_k^p}{\partial \bar{v}^j} G_p) = 0$, from which it follows that the coefficient of $(-\sqrt{-1})dz^k \wedge d\bar{z}^l \wedge \delta \bar{v}^j$ is

$$\frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j} + N_k^p \frac{\delta G_{p\bar{j}}}{\delta \bar{z}^l} - \frac{\delta G_{\bar{j},k}}{\delta \bar{z}^l} = \frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j} + \frac{\partial}{\partial \bar{v}^j} \psi_{k\bar{l}}.$$

• Hence, the coefficient of $(-\sqrt{-1})dz^k \wedge d\bar{z}^l \wedge \delta v^j$ is

$$\frac{\partial G_{k\bar{l}}}{\partial v^j} + \frac{\partial \psi_{k\bar{l}}}{\partial v^j}.$$

• If h_{TM} is a Kähler metric, then we have $d\omega = 0$, so that

$$\frac{\delta G_{i\bar{j}}}{\delta z^k} dz^k \wedge dz^i \wedge d\bar{z}^j + \frac{\delta G_{i\bar{j}}}{\delta \bar{z}^k} d\bar{z}^k \wedge dz^i \wedge d\bar{z}^j = 0, \qquad (4.1)$$

$$\frac{\partial G_{k\bar{l}}}{\partial v^j} + \frac{\partial \psi_{k\bar{l}}}{\partial v^j} = 0, \quad \frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j} + \frac{\partial \psi_{k\bar{l}}}{\partial \bar{v}^j} = 0, \tag{4.2}$$

which implies that M is a Finsler-Kähler manifold.

2 3

Home Page

Title Page

Go Back

Full Screen

Close

• By the definition of $\psi_{k\bar{l}}$, one can check easily that $\psi_{k\bar{l}}$ have the same homogeneity as G, that is,

$$\psi_{k\bar{l}}(z,\lambda v) = \lambda \bar{\lambda} \psi_{k\bar{l}}(z,v), \quad \forall \lambda \in \mathbf{C}^*.$$

Therefore, we have

$$\frac{\partial \psi_{k\bar{l}}}{\partial v^j} v^j = \psi_{k\bar{l}},\tag{4.3}$$

from which we obtain

$$\frac{\partial G_{k\bar{l}}}{\partial v^j}v^j = 0, \quad \frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j}\bar{v}^j = 0. \tag{4.4}$$

Thus, we obtain

$$\psi_{k\bar{l}} = 0. \tag{4.5}$$

2
 3

4

Home Page

Title Page

Page 17 of 23

Go Back

Full Screen

Close

• By the definition of $\psi_{k\bar{l}}$, one can check easily that $\psi_{k\bar{l}}$ have the same homogeneity as G, that is,

$$\psi_{k\bar{l}}(z,\lambda v) = \lambda \bar{\lambda} \psi_{k\bar{l}}(z,v), \quad \forall \lambda \in \mathbf{C}^*.$$

Therefore, we have

$$\frac{\partial \psi_{k\bar{l}}}{\partial v^j} v^j = \psi_{k\bar{l}},\tag{4.3}$$

from which we obtain

$$\frac{\partial G_{k\bar{l}}}{\partial v^j}v^j = 0, \quad \frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j}\bar{v}^j = 0. \tag{4.4}$$

Thus, we obtain

$$\psi_{k\bar{l}} = 0. \tag{4.5}$$

• Substituting (5.5) into (5.2) yields that

$$\frac{\partial G_{k\bar{l}}}{\partial v^j} = 0, \quad \frac{\partial G_{k\bar{l}}}{\partial \bar{v}^j} = 0,$$

which implies that (M, G) is a Hermitian manifold. Then, by (5.1), we see that (M, G) is a Kähler manifold. From (3.4) and (5.5) we know the holomorphic curvature K of M is zero, and the proof of the main Theorem is completed.

1 2 3

Home Page

Title Page

Page 17 of 23

Go Back

Full Screen

Close

5. Complex Randers metrics

• Let M be a complex manifold of complex dimension n, and $\alpha = \sqrt{a_{i\bar{j}}(z)v^i\bar{v}^j}$ be a Hermitian metric on M. Suppose that $\beta = b_i(z)v^i$ is a holomorphic 1-form on M. Set

$$F = \alpha + \epsilon \sqrt{\beta \bar{\beta}} = \alpha + \epsilon |\beta|, \tag{5.1}$$

where

$$\epsilon = \begin{cases} 1, & \text{for } \beta \neq 0, \\ 0, & \text{for } \beta = 0. \end{cases}$$

• **Definition.** The metrics

$$G := F^2 = \alpha^2 + 2\epsilon\alpha|\beta| + \epsilon|\beta|^2 \tag{5.2}$$

are called complex Randers metrics.

3

Home Page

Title Page

Page 18 of 23

Go Back

Full Screen

Close

5. Complex Randers metrics

• Let M be a complex manifold of complex dimension n, and $\alpha = \sqrt{a_{i\bar{j}}(z)v^i\bar{v}^j}$ be a Hermitian metric on M. Suppose that $\beta = b_i(z)v^i$ is a holomorphic 1-form on M. Set

$$F = \alpha + \epsilon \sqrt{\beta \bar{\beta}} = \alpha + \epsilon |\beta|, \tag{5.1}$$

where

$$\epsilon = \begin{cases} 1, & \text{for } \beta \neq 0, \\ 0, & \text{for } \beta = 0. \end{cases}$$

• **Definition.** The metrics

$$G := F^2 = \alpha^2 + 2\epsilon\alpha|\beta| + \epsilon|\beta|^2 \tag{5.2}$$

are called complex Randers metrics.

• It is easy to see that

$$G_{i\bar{j}} = \frac{F}{\alpha} h_{i\bar{j}} + \frac{\epsilon F}{2|\beta|} b_i b_{\bar{j}} + \frac{1}{2G} G_i G_{\bar{j}}, \tag{5.3}$$

where

3

Home Page

Page 18 of 23

Go Back

Full Screen

Close

$$h_{i\bar{j}} := a_{i\bar{j}} - \frac{1}{2\alpha^2} \ell_i \ell_{\bar{j}},$$

$$\ell_i := \dot{\partial}_i \alpha^2 = 2\alpha \dot{\partial}_i \alpha = a_{i\bar{j}} \bar{v}^j, \quad \ell_{\bar{j}} := \dot{\partial}_{\bar{j}} \alpha^2.$$

2 3 4

Home Page

Title Page

Page 19 of 23

Go Back

Full Screen

Close

$$h_{i\bar{j}} := a_{i\bar{j}} - \frac{1}{2\alpha^2} \ell_i \ell_{\bar{j}},$$

$$\ell_i := \dot{\partial}_i \alpha^2 = 2\alpha \dot{\partial}_i \alpha = a_{i\bar{j}} \bar{v}^j, \quad \ell_{\bar{j}} := \dot{\partial}_{\bar{j}} \alpha^2.$$

$$G^{\bar{j}i} = \frac{\alpha}{F} a^{\bar{j}i} + \frac{|\beta|(\alpha||\beta||_{\alpha}^{2} + |\beta|)}{G\gamma} v^{i} \bar{v}^{j} - \frac{\alpha^{3}}{F\gamma} b^{i} \bar{b}^{j} - \frac{\alpha}{F\gamma} (\bar{\beta} v^{i} \bar{b}^{j} + \beta b^{i} \bar{v}^{j}), \tag{5.4}$$

$$\det(G_{i\bar{j}}) = \left(\frac{F}{\alpha}\right)^n \frac{\epsilon \gamma}{2\alpha |\beta|} \det(a_{i\bar{j}}), \tag{5.5}$$

where

$$\gamma := G + \alpha^2(||\beta||_\alpha^2 - 1).$$

2 3 4

1

Home Page

Title Page

Page 19 of 23

Go Back

Full Screen

Close

$$h_{i\bar{j}} := a_{i\bar{j}} - \frac{1}{2\alpha^2} \ell_i \ell_{\bar{j}},$$

$$\ell_i := \dot{\partial}_i \alpha^2 = 2\alpha \dot{\partial}_i \alpha = a_{i\bar{j}} \bar{v}^j, \quad \ell_{\bar{j}} := \dot{\partial}_{\bar{j}} \alpha^2.$$

$$G^{\bar{j}i} = \frac{\alpha}{F} a^{\bar{j}i} + \frac{|\beta|(\alpha||\beta||_{\alpha}^{2} + |\beta|)}{G\gamma} v^{i} \bar{v}^{j} - \frac{\alpha^{3}}{F\gamma} b^{i} \bar{b}^{j} - \frac{\alpha}{F\gamma} (\bar{\beta} v^{i} \bar{b}^{j} + \beta b^{i} \bar{v}^{j}), \tag{5.4}$$

$$\det(G_{i\bar{j}}) = \left(\frac{F}{\alpha}\right)^n \frac{\epsilon \gamma}{2\alpha |\beta|} \det(a_{i\bar{j}}), \tag{5.5}$$

where

$$\gamma := G + \alpha^2(||\beta||_{\alpha}^2 - 1).$$

• Hence, G is strongly pseudo-convex if

$$G > \alpha^2 (1 - ||\beta(v)||_{\alpha}^2).$$

2
 3

Home Page

Title Page

Page 19 of 23

Go Back

Full Screen

Close

• For the complex Randers metric, the coefficients of the Chern-Finsler connection are

$$N_j^i = {}^{\alpha}N_j^i + \frac{\eta^i}{\gamma} \left(\ell_{\bar{k}} \frac{\partial b^{\bar{k}}}{\partial z^j} - \frac{\beta^2}{2|\beta|} \frac{\partial b_{\bar{k}}}{\partial z^j} \bar{v}^k \right) + \frac{\beta}{2|\beta|} g^{\bar{k}i} \frac{\partial b_{\bar{k}}}{\partial z^j}, (5.6)$$

where

$$\eta^i := \bar{\beta} v^i + \alpha^2 b^i, \qquad {}^{\alpha} N^i_j := a^{\bar{k}i} \frac{\partial a_{l\bar{k}}}{\partial z^j} v^l,$$

$$g^{\bar{j}i} := 2\alpha a^{\bar{j}i} + \frac{2(\alpha||\beta||_{\alpha}^{2} + 2|\beta|)}{\gamma} v^{i}\bar{v}^{j} - \frac{2\alpha^{3}}{\gamma} b^{i}\bar{b}^{j} - \frac{2\alpha}{\gamma} (\bar{\beta}v^{i}\bar{b}^{j} + \beta b^{i}\bar{v}^{j}).$$

• From this we can calculus the holomorphic curvature of the complex Randers metric. It is a technical computation which involves a lot of long-winded calculus. So, we will not dwell too much on it.

2 3 4

1

Home Page

Title Page

Page 20 of 23

Go Back

Full Screen

Close

6. Problems

• Question 1. Construct complex Randers metrics with constant holomorphic curvature.

3

Home Page

Title Page

Page 21 of 23

Go Back

Full Screen

Close

6. Problems

- Question 1. Construct complex Randers metrics with constant holomorphic curvature.
- Question 2. Consider the relation between the Kobayashi metric and the complex Randers metric with constant negative holomorphic curvature.

2 3

Home Page

Title Page

Page 21 of 23

Go Back

Full Screen

Close

6. Problems

- Question 1. Construct complex Randers metrics with constant holomorphic curvature.
- Question 2. Consider the relation between the Kobayashi metric and the complex Randers metric with constant negative holomorphic curvature.
- Question 3. Consider complex projectively flat Randers metrics with constant holomorphic curvature.

2 3

Home Page

Title Page

Page 21 of 23

Go Back

Full Screen

Close

7. Main References

- [1] Cao,J.-K. and Wang,P.-M., Finsler geometry of projectivized vector bundles, J. Math. Kyoto Univ., 43(2003),383-424.
- [2] Abate,M. and Patrizio,G., Kahler Finsler manifolds of constant holomorphic curvature, Internat. J. Math., 8(1997),169–186.
- [3] Kobayashi,S., Complex Finsler vector bundles, Finsler geometry (Seattle, WA, 1995), 145–153, Contemp. Math., 196, AMS, 1996.
- [4] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, GTM 200, Springer, 2000.
- [5] Aldea, N. and Munteanu, G., On complex Finsler spaces with Randers metric, Preprint.
- [6] Shen, Y.B. and Du, W.P., A note on comlex Finsler manifolds, Chin. Ann. of Math., 27A(2006), 517-526

Home Page Title Page Page 22 of 23 Go Back Full Screen Close

