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Lecture 1

The beginning of K-theory : Grothendieck, Atiyah and Hirzebruch

In order to formalize his work on the Riemann-Roch theorem (in the spirit of Hirzebruch),
Grothendieck introduced a new contravariant functor [BS] defined on the category of non
singular algebraic varieties X. He named this functor K(X), the “K-theory” of X. It seems the
terminology “K” came out from the German word “Klassen”, since K(X) may be thought of
as a group of “classes” of vector bundles on X. Grothendieck could not use the terminology
C(X) since his thesis (in functional analysis) made an heavy use of the ring C(X) of continuous
functions on the space X.

In order to define K(X), one considers first the free abelian group L(X) generated by the
isomorphism classes [E] of vector bundles E on X. The group K(X) is then the quotient of L(X)
by the subgroup generated by the following relations 

[E’] + [E”] = [E] 

when we have an exact sequence of vector bundles

0  zzc E’  zzc E  zzc E”  zzc 0

Exercise : compute K(X) when X is a Riemann surface in complex Algebraic Geometry.

This group K(X) has nice algebraic properties, very much related to the usual ones in
cohomology. As a matter of fact, the theory of characteristic classes, e.g. the Chern character
denoted by Ch - which we shall review later on - might be thought of as defining a functor from
K(X) to suitable cohomology theories. For instance, if f : X zzc Y is a morphism of
projective varieties, we have a “Gysin map”  f*

K
 : K(X)  zzc K(Y) which is related to the

usual Gysin map  f*
H
 in rational cohomology by the following formula

Ch( f*
K

(x)) =  f
*
H(Ch(x).Todd(f))

where x is an arbitrary element of K(X) and Todd(f) is the “Todd class” (see the third lecture
for more details) of the normal bundle of f, as introduced by Hirzebruch [AH2]. More precisely,
the Chern character Ch is a natural transformation from K(X) to the even Betti cohomology
groups Hev(X ; Q) (which depend only on the topology of X) and Todd(f) is well defined in
terms of Chern classes of the tangent bundles associated to X and Y. If x [ K(X), Ch(x) is the
sum of homogeneous elements Ch0(x), Ch1(x), ..., where Chn(x) [ H2n(X ; Q). 

The formula above shows that Todd(f) is the defect of commutativity of the following diagram
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K(X)      
 zzc 

f*
K

   K(Y)

                                                        Ch d            Ch d

                                                        Hev(X; Q)  zzc  
f*
H

Hev(Y ; Q)

As a matter of fact, the group K(X) is hard to compute in general : it is just a nice functor used
for a better understanding of characteristic classes. This “Algebraic K-theory” was investigated
more deeply by other mathematicians like Bass, Milnor, Quillen... at the end of the 60’s and will
be studied in detail during the lectures 4 and 5.

Just after the invention of K(X), Atiyah and Hirzebruch considered a topological analog named
Ktop(X) - now for an arbitrary compact space X - by considering topological vector bundles1

instead of algebraic vector bundles. The main difference between the two definitions lies in the
fact that an exact sequence of topological vector bundles

0  zzc E’  zzc E  zzc E”  zzc 0

always splits. Therefore, Ktop(X) is just the symmetrized group of the semi-group of
isomorphism classes [E] of vector bundles, with the addition given by the rule [E] + [F] = 
[E⊕  F], where E ⊕  F is the “Whitney sum” of the vector bundles  E and F. It is clearly a
contravariant functor of X. Moreover, every vector bundle is a direct summand in a trivial vector
bundle (i.e. of the type X x Cn, with an easily guessed vector bundle structure). This fact
enables us to compute Ktop(X) in purely homotopical terms. More precisely, let us define
  
∼
Ktop(X), the reduced K-theory of X, as the cokernel of the obvious map Z  ≈ Ktop(Point)
zzc Ktop(X) induced by the projection X zzc Point. Then   

∼
K(X) may be identified with

the group of stable isomorphism classes of vector bundles : two vector bundles E and E’ are
stably isomorphic if E ⊕  T – E’ ⊕  T’ for suitable trivial bundles T and T’. It follows that
Ktop(X) is isomorphic to the set of homotopy classes of maps from X to Z x BU, where BU is
the “infinite Grassmannian” , i.e. the direct limit of the Grasmannians Gn(Cm) with obvious
inclusions between them.
.
Here is another important difference between the two groups : Ktop(X) is much easier to
compute that its algebraic counterpart K(X). For instance,  Ktop(X)* Q is isomorphic to Hev(X
; Q), where Hev(X ; Q) denotes the rational even Cech cohomology groups of X via the
topological Chern character. There is in fact an obvious factorization of the algebraic Chern

1 complex vector bundles, in order to fix the ideas. 

3



character

K(X) zzc Ktop(X) zzc Hev(X ; Q)

Therefore, if X is a finite CW complex, we find that Ktop(X) is isomorphic to G ⊕ Zd, where d
is the dimension of the vector space Hev(X ; Q) and G is a finite group.

Exercise : compute Ktop(X) when X is a sphere Sn with n ≤ 4.

A famous theorem of Bott which we shall see in the next lecture is the following :   
∼
Ktop(Sn) is

isomorphic to Z if n is even and = 0 if n is odd. We shall see at the end how the Chern character
enables us to construct a non trivial stable bundle over Sn when n is even. The idea of the proof
of the isomorphism Ktop(X) * Q ≈ Hev(X ; Q)  is to notice that   

∼
Ktop(X) * Q  and  

∼
Hev(X;Q)

are half-exact functors2 and that the Chern character induces an isomorphism when X is a
sphere. It is now a general statement that in such a situation the two half-exact functors are
indeed isomorphic (for the details see for instance the Cartan-Schwartz seminar 1963/64,
exposé 16).

In order to make the Chern character Ktop(X) zzc H2n(X ; Q) more explicit, let us describe it
when X is a C∞-manifold of finite dimension and let us imbed Q  in C  via the group
homomorphism λ  € (2iπ)n λ. The vector space H2n(X ; C) is then isomorphic to the de Rham
cohomology of differential forms of degree n. On the other hand, it is not difficult to show that
the classification of topological bundles on X is equivalent to the classification of C∞ -bundles.
Moreover, any C∞-bundle E is a direct summand in a trivial bundle as in the topological
situation : this means there is a C∞-map p : X zc  Mn(C) such that for x in X, the fiber Ex is
the image of p(x), with p(x)2 = p(x).
Now, as popularized a few years ago in the framework of cyclic homology and non
commutative de Rham homology, the Chern character of E, denoted by Ch

n
E), is the

cohomology class of the trace of the following product of matrices with entries differential
forms 

Ch
n
(E) =  

n! (2iπ)
n

1

 
Tr(p.dp.....dp)

(2n factors dp). It is a nice exercise to show that we are dealing with a closed differential form
and that its cohomology class is just a function of the class of E in Ktop(X). This is the
“modern” version of the Chern character which we shall see in lecture 7.

2 According to Dold, a homotopy (contravariant) functor F is called half-exact if we have an exact sequence F(X/Y)

zc F(X)  zc F(Y) each time we have a closed subspace Y of the compact space X.
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In order to check the non triviality of the Chern character as defined above, we choose the
example of the Hopf bundle over the sphere X = S2 which we write as the set of point (x, y, z)
such that x2 + y2 + z2 = 1. We then put p = (1 + J)/2 , where J is the involution of the trivial
bundle X x C2 defined over the point (x, y, z) by the following matrix

 

 


z     x+iy
x-iy     -z

 



TheThe Hopf bundle is then the image of the projection operator p. The explicit computation of
Ch1(E) gives the canonical volume form on the sphere S2. Therefore the Chern character (as a
cohomology class) is non trivial in general.

As it was pointed out by Hirzebruch, the Chern character can be caracterized by the following
axioms (on the category of differentiable manifolds for instance)

1) Naturality : if f : X zc Y is a C∞-map and if E is a vector bundle over Y, then Chr(f*(E)) =
f*(Chr(E)).
2) Additivity : Chr(E ⊕ F) = Chr(E) + Chr(F)
3) Normalisation : if L is the canonical line bundle over Pn(C) (which restricts to the Hopf
bundle over the sphere S2 = P1(C)), one has

 Chr(L) =  xr/r!
where x is the unique element of H2(Pn(C)) which restricts to the volume form of S2.

More generally, using the Chern character and Clifford algebras, we are going to show that Ch
n

is non trivial when X is the sphere S2n (cf. [K2], chapter 1) by choosing an explicit vector
bundle on S2n (as a matter of fact the generator of   

∼
K(S2n) – Z). More precisely, let E be a

complex vector space of finite dimension and let e1,..., e2n+1 be automorphisms of E such that
(ei)

2 = 1
eαeβ = -eβeα  for α ≠ β
e1...e2n+1 = in

An example of such a data is given by the exterior algebra ΛCn = ΛC  
∧
⊗  ...  

∧
⊗  ΛC (n factors),

where  the couple (e2r-1, e2r) is acting on the rth-factor ΛC = C2 via the (2 x 2) matrix defined
above. The last automorphism e2n+1 is of course determined by the equation e1...e2n+1 = in. It
can be shown, using the theory of Clifford modules, that any such E is in fact isomorphic to a
direct sum of copies of this example.

Let now X be the sphere S2n = {(x1, ..., x2n+1}  |  ∑ (xi)
2 = 1} and let V be the vector bundle
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which is the image of the projection operator p = (1 + J)/2 on the trivial bundle X x E, where

 J = x1 e1 + ... + x2n+1 e2n+1

Modulo an exact form, we have 

n ! (2i π)n Chn(V) = 2-2n-1 Tr(J.(dJ)2n)

with (dJ)2n = (dx1 e1 + ... dx2n+1 e2n+1)
2n

Since the entries (dxα eα) commute which each other, we may write the previous expression as
the following sum

(2n) !  ∑α  (dx1 e1) ... {dxα eα} ...( dx2n+1 e2n+1)

where the symbol {dxα eα } means that we omit dxα eα. If we expand it, we find

-in (2n) !  ∑α (-1)α dx1 ...{dxα} ... dx2n+1 eα 

Therefore, 

Trace [J.(dJ)2n ] = -in (2n) !  ∑ α (-1)α xα dx1 ...{dxα} ... dx2n+1

modulo an exact form. Since the expression   ∑α  (-1)α  xα dx1 ...{dxα } ... dx2n+1  is the
volume form of S2n, which we denote by Vol(S2n), we find finally that

Chn(V) =               
2

2n+1
 n! (2π)

n

(2n)!

    
Vol(S2n).dim(E)

In our example E = ΛCn above, we have dim(E) = 2n. Therefore, the integral of Chn(V) on the
sphere S2n is equal to 1 which implies that Chn(V) ≠ 0 in the cohomology of S2n (and is in fact
a generator of the integral class).

Let us come back now to the general theory K(X) of Grothendieck where, for simplicity, we
assume X to be a complex projective variety. We may view X as a subvariety of the complex
projective space Pn(C) for a certain n. As it is well known, Pn(C) may be written as the quotient
of the group GLn+1(C) by the subgroup consisting of matrices of the type 
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 



a        b
0        c

 



where a is an (n x n) matrix, c is a (1 x 1) matrix and finally b is an (n x 1) matrix.

Over Pn(C), there is an affine variety P = Proj1(Cn+1) consisting of projection operators p in
M n+1(C) such that Tr(p) = 1, which may also be written as the homogeneous space
GLn+1(C)/H, where H is the subgroup GLn(C) x GL1(C). Note that P is indeed an affine
variety in Mn+1(C) = C(n+1)(n+1) since it is defined by the following equations

  ∑
j

 pijpjk = pik  and   ∑
j  

pjj  = 1

Let now X’ be the pull-back variety defined by the cartesian square

X’ zzc GLn+1(C)/GLn(C) x GL1(C) = P
                           d                   d
                                            X         zzc        Pn(C)

[the second vertical map associates to a projection operator p its image Im(p)]

Then X’ is called a “torsor” over X (there is a vector bundle acting simply transitively on the
fibers) and Grothendieck proved that K(X) ≈ K(X’). But now X’ is an affine variety as a closed
subvariety of P and Serre has shown that the category of algebraic vector bundles over X’ is
equivalent to the category p(A) of finitely generated projective modules over the ring A of
coordinates of X’. For example, if X = Pn(C) itself, A is the algebra generated by the

elements pij  1 ≤ i, j ≤ n+1, subject to the relations   ∑
j

pij .pjk = pik and   ∑
j

 pjj  = 1. There is a

topological analogy which we shall see in the next lecture, but already this point of view gives
rise to several questions :

1) What will be the analog of the Chern character if we work with A-modules instead of vector
bundles ? As we shall see in Lecture 7, this opens a wide range of applications belonging to the
new domain of “noncommutative geometry”, linked with homology and cohomology theories
for rings.

2) Since the target of the Chern character is even cohomology, this suggests that there might be
“derived functors” Kn(A), n [ Z, for which K0(A) is just the first group. However, we shall see
later on that this question is much more complex that it looks at first glance. For instance, the
topology of A (if any) plays an important role : this is not seen of course in the definition of
K(A).
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Finally, K-theory has nice cohomology operations coming from exterior powers of bundles or
modules (more geometric in nature than their cohomology counterparts which are the Steenrod
operations). These operations gave spectacular applications of K-theory in the 60’s. For
instance, J.-F. Adams was able to compute the maximum number of independent vector fields
on the sphere Sn using these methods. Other applications were found in global analysis and in
the theory of C*-algebras. We shall review all these applications in lectures 2 and 3. 

At this point in history we have two theories, quite different in nature, coming from Algebraic
Geometry and Algebraic Topology. We shall analyse the topological theory first in the spirit of
noncommutative geometry. However, we shall see during this historical sketch that the algebraic
and topological methods are in fact deeply linked together.
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Lecture 2

K-theory of Banach algebras. Bott Periodicity theorems

Let E be a complex vector bundle over a compact space X et let A be the Banach algebra C(X) of
continuous functions f : X zzc C (with the Sup norm). If M = Γ(X, E) denotes the vector
space of continuous sections s : X zzc E of the vector bundle E, M is clearly a right A-
module if we define s.f to be the continuous section x € s(x)f(x).

As a matter of fact, since X is compact, we may find another vector bundle E’ such that the
Whitney sum E ⊕ E’ is trivial, say X x Cn. Therefore, if we denote M’ = Γ(X, E’), we have
M ⊕  M’  – An as A-modules, which means that M is a finitely generated projective A-module.
The theorem of Serre and Swan [K1] says precisely that the correspondance E  € M induces a
functor from the category e(X) of vector bundles over X to the category p(A) of finitely
generated A-modules, which is in fact an equivalence of categories. In particular, isomorphism
classes of vector bundles correspond bijectively to isomorphism classes of modules.

These considerations lead to the following definition of the K-theory of a ring with unit A : we
just mimic the definition of Ktop(X) by replacing vector bundles by (projective finitely
generated) A-modules. We call this group K(A) by abuse of notation. It is clearly a covariant
functor of the ring A (by extension of scalars). We have of course Ktop(X) – K(A) , when A =
C(X).
As it was done in usual cohomology theory, one would like to “derive” this functor K(A) and
try to define Kn(A), n [ Z, with some nice formal properties and of course K0(A) = K(A). This
task is in fact more difficult than it looks for general rings A, as we shall see in Lectures 4 and
5.

On the other hand, if we avoid too much generality by working in the category of (complex)
Banach algebras, there is essentially one way to do it (at least for n [ N).

Firstly, we extend the definition of K(A) to non necessarily unital algebras A by adding a unit to
A. For this purpose, we consider the vector space C ⊕  A provided with the “twisted”
multiplication  defined by

(λ, a).(λ’, a’) = (λ.λ’, λ.a’ + a.λ’ + a.a’)

It now has a unit = (1, 0). We call this new algebra  
∼
A. There is an obvious augmentation 

 
∼
A zc C 

and we define K(A) as the kernel of the induced map K( 
∼
A) zzc K(C) = Z . It is easy to see

that if A already has a unit, we recover the previous definition of K(A).
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Exercise : Let k be the ideal of compact operators in a Hilbert space H. Prove that K(k) –
K(C) – Z.

Secondly, for n [ N, we define Kn(A) as K(An), where An = A(Rn) is the Banach algebra of
continuous functions f = f(x) from Rn to A which vanish when x goes to ∞.

Exercise : show that K1(A) – injlim π0(GLn(A)) – π0(GL(A)), where GL(A) is the direct limit
of the GLn(A) with respect to the obvious inclusions GLn(A) , GLn+1(A).

Exercise : let A = C(X), where X is compact. Let X+ be the one point compactification of X (X
with one point added outside) and let Y = Sn(X+) , the nth suspension of X+. Show that Ktop(Y)
is isomorphic to Kn(A) ⊕  Z (hint : notice that C(Y) is isomorphic to   

∼
C(X x Rn). In particular

Ktop(Sn) is isomorphic to Kn(C) ⊕  Z.

The following theorem is not too difficult to prove. It can be extracted easily from [K1] 

THEOREM.  The functors Kn(A), n [ N, are characterized by the following properties

1) Exactness : for any exact sequence of Banach algebras (where A” has the quotient norm
and A’  the induced norm)

0 zzc A’ zzc A zzc A” zzc 0

we have an exact sequence of K-groups

Kn+1(A) zzc Kn+1(A”) zzc Kn(A’) zzc Kn(A) zzc Kn(A”)

2) Homotopy : Kn(A(I)) – Kn(A), where A(I) is the ring of continuous functions on the unit
interval I with values in A.

3) Normalization : K0(A) is just the K-group K(A) defined above.

Another type of K-groups which will be quite useful later on, although more technical, is the
relative K-group associated to a functor. If φ : p(A) zzc p(A”) is an additive functor (with
some extra topological conditions), one can also define groups Kn(φ) which fit into exact
sequences

Kn+1(A) zzc Kn+1(A”) zzc Kn(φ) zzc Kn(A) zzc Kn(A”)

For instance, if φ is asssociated to an epimorphism of Banach algebras A  zzc A” as above,
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Kn(φ) may be identified with Kn(A’). Another case of interest is when A (resp. A”) is the ring
of continuous functions on a compact space X (resp. a closed subspace X”). Then, the group
Kn(φ) is also written Kn(X, X”) or K-n(X, X”).

The functors K*(A) have some other nice properties like the following :  a continuous bilinear
pairing of Banach algebras

A x C zzc B

induces a “cup-product”

Ki(A) * Kj(C) zzc Ki+j(B)

In particular, if C = C, the field of complex numbers and if A = B, we have a pairing

Ki(A) * Kj(C) zzc Ki+j(A)

Exercise : compute this pairing when A = C with i and j ≤ 2.

We can now state Bott periodicity theorem in the setting of Banach algebras.

THEOREM.  The group K2(C) is isomorphic to Z and the cup-product with a generator u2
induces an isomorphism β : Kn(A)  zzc Kn+2(A) for any Banach algebra A.

This theorem has a spectacular application in a pure homotopy setting : let GL(A) be the infinite
linear group which is the direct limit of the GLr(A) with respect to the obvious inclusions. Then
an analysis of the group K(A(Rn)) shows that it is isomorphic to the homotopy group 
πn-1(GL(A)). More precisely, if A = C for instance, the group K(A(Rn)) is linked with the
classification of stable complex vector bundles over the sphere Sn which are determined by
homotopy classes of “gluing functions” f : Sn-1 zzc  GL(A). For a general Banach algebra
A, one just has to consider bundles over the sphere whose fibers are Ar instead of Cr. The
previous theorem then has the following corollary :

COROLLARY . Let A be any complex Banach algebra. Then we have isomorphisms

πi(GL(A))   ≈ πi+2(GL(A)) ≈  K1

top
(A) if i is even 

πi(GL(A))   ≈ πi+2(GL(A)) ≈ K(A) if i is odd ; in particular, we have 
π1(GL(A)) ≈ K(A)

As a matter of fact, the last isomorphism (inspired by Atiyah and Hirzebruch) is the basis of the
proof of the theorem. The idea is to show that any loop in GL(A) can be deformed into a loop
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of the type

 θ  €  p z + 1 - p

where p is an idempotent matrix and z = eiθ . Such an idempotent matrix p is of course
associated to a projective module. A more conceptual proof will be sketched at the end of this
lecture.

Remark. If A = C, the groups πi(GLr(C)) = πi(U(r)) stabilize and are equal to  Ki+1

top
(C) if 

r > i/2.

Exercise. Prove the following facts :

1) Ktop(Sn) is isomorphic to Z if n is odd and to Z ⊕ Z if n is even.
2) πi(GLr(C)) ≈ πi(U(r)) ≈ Z if i is odd and i > r/2 and = 0 if i is even and i > r/2
3) Ktop(X) ⊕ Ktop(X)  – Ktop(X x S0) – Ktop(X x S2) – Ktop(X x S2n) for any compact space
X.

In the previous considerations, we were working with modules over complex Banach algebras
and their topological counterparts which are complex vector bundles. We could as well consider
real Banach algebras and real vector bundles. Most considerations are valid in the real case, with
the notable exception of the last theorem : in this case, we have an eight-periodicity and not a
two-periodicity. More precisely :

THEOREM.  The group K8(R) is isomorphic to Z  and the cup-product with a generator
induces an isomorphism between the groups Kn(A) and Kn+8(A) for any real  Banach
algebra A.

For instance, the groups Kn(R) are equal to Z, Z/2, Z/2, 0, Z, 0, 0, 0 respectively for n = 0, 1, ..,
7 mod. 8.

The original proof of this theorem used Morse theory [Bott]. Other elementary proofs (whom
we mentioned already) were found by Atiyah and Hirzebruch , Wood and the author, the last
one in the framework of Banach algebras and Banach categories. See  [At], [K1] and [Wo] for
references.

As a matter of fact, Bott proved other theorems in the real case using loop spaces of
homogeneous spaces. He gave the following impressive list of homotopy equivalences :
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Ω(Z x BGL(R))  ≈ GL(R)
Ω(GL(R)) ≈  GL(R)/GL(C)

 Ω(GL(R)/GL(C))  ≈ GL(C)/GL(H)
Ω(GL(C)/GL(H))  ≈ Z x BGL(H)
Ω(Z x BGL(H)) ≈ GL(H)
Ω(GL(H)) ≈ GL(H)/GL(C)
Ω(GL(H)/GL(C)) ≈ GL(C)/GL(R)
Ω(GL(C)/GL(R)) ≈ Z x BGL(R)

One way to understand these eight homotopy equivalences is to use Clifford algebras as it was
pointed out for the first time by Atiyah, Bott and Shapiro. As a matter of fact, if we denote by Cn
the Clifford algebra of Rn provided with the quadratic form (x1)2 + ... + (xn)2, there is a kind of
“periodicity” of the Cn : we have graded algebra isomorphisms

Cn+8 ≈ M16(Cn)

On the other hand, the complexified Clifford algebras have a 2-periodicity

Cn+2 * C ≈ M2(Cn) * C

These remarks gave rise to an elementary proof of the previous 8 homotopy equivalences and
the fact that π7(GL(A)) ≈ K0(A) [K1] [Wo]. As a matter of fact, a uniform way to state these
homotopy equivalences is to write (up to connected components)

  GL(Cn)/GL(Cn-1) ≈ Ω[GL(Cn+1)/GL(Cn)]  

A second way to interpret Bott periodicity is to use Hermitian K-theory where one studies
finitely generated projective modules provided with non degenerate Hermitian forms. This
theory is associated to other classical Lie groups like the orthogonal group or the symplectic
group. We shall investigate this theory in the sixth lecture and extend it to a discrete context
(which is not possible with the Clifford algebra interpretation).

Before going back to classical Algebraic Topology, it might be interesting to give a conceptual
proof of Bott periodicity (at least in the complex case).

Let us assume we have defined Kn(A), not only for n [ N, as we did before, but also for n [ Z.
Let us assume also that  the pairing

Ki(A) * Kj(C) zzc Ki+j(B)

roughly described above, extends to all values of i and j in Z  and has some obvious
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“associative” properties. Finally, let us suppose the existence of a “negative” Bott element u-2
in K-2(C) such that the cup-product with u2 gives the unit element 1 in K0(C) – Z.
With these hypotheses, we may define an inverse 

β’ : Kn+2(A) zzc Kn(A)

of the Bott map
β : Kn(A)  zzc Kn+2(A)

It is defined by the cup-product with u-2. It is clear that the compositions of β with β’ both
ways are the identity.
The price to pay for this proof is of course the construction of this “negative” K-theory Kn(A)
for n < 0. This may be done, using the notion of “suspension” of a ring which is in some sense
dual to the notion of the suspension of a space. More precisely, we define the “cone” CA of a
ring A to be the set of all infinite matrices M = (aij ), i, j [ N, such that each row and each
column only contains a finite number of non zero elements in A. This is clearly a ring for the
usual rule of matrix multiplication. We make CA into a Banach algebra by completing it with
respect to the following norm

 ||M|| = Supj Σi   
 

 |aij| 

Finally we define  
∼
A, the “stabilization” of A as the closure of the set of finite matrices3 in

CA. It is a closed 2-sided ideal in CA and the suspension of A - denoted by SA - is the quotient
ring CA/ 

∼
A.

DEFINITION/THEOREM . Let A be a Banach algebra. Let us define the groups K-n(A) to
be K(SnA), where SnA is the nth-suspension of A. Then BGL(SA) is a “delooping” of
K0(A) x BGL(A), i.e. we have a homotopy equivalence

Ω(BGL(SA)) = K0(A) x BGL(A)

Accordingly, to any exact sequence of Banach algebras as above

0 zzc A’ zzc A zzc A” zzc 0

we can associate an exact sequence of K-groups

Kn+1(A) zzc Kn+1(A”) zzc Kn(A’) zzc Kn(A) zzc Kn(A”)

for n [ Z.

3 A matrix in CA is called finite if all its elements are 0, except a finite number.
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For a better understanding of SA, it is interesting to notice that the ring of Laurent series 
A<t, t-1> is a good approximation of the suspension. Any element of A<t, t-1> is a series

S =  ∑
n∈ Z

 an tn

such that     ∑
n∈ Z

   ||an||  < + ∞ . We may define a ring homomorphism

A<t, t-1>   zzc SA

It associates to the series above the class of the following infinite matrix

 

 



a0     a1     a2    . .....
a-1    a0      a1  . ....
a-2     a-1     a0  . .......................

 



For instance, in order to construct the element u-2 mentionned above, it is enough to construct a
projective module over the Banach algebra C <t, u, t-1, u-1>, i.e. a non trivial complex vector
bundle on the torus S1 x S1, as we can see easily, using the theory of Fourier series.

Let us come back now to usual Algebraic Topology and define  
∼
Kn(X), n [ Z , for a compact

space with base point * as K-n(A) where A is the Banach algebra of continuous functions on X
which vanish on the base point. The (contravariant) functors X €   

∼
Kn(X) define a (reduced)

cohomology theory for compact spaces. One may also define a relative K-theory by putting
Kn(X, Y) =  

∼
Kn(X/Y) which is also isomorphic to the group K-n(φ) defined p.2, where the

functor φ is associated to the surjection of rings

θ : C(X) zzc C(Y)

To sum up, one therefore has an exact sequence

Kn-1(X) zzc Kn-1(Y) zzc Kn(X, Y) zzc Kn(X) zzc Kn(Y)

and an excision isomorphism

Kn(X, Y) – Kn(X/Y, *)

Finally, it is easy to show that K0(X, ∅ ) – Ktop(X), the original K-theory of Grothendieck-
Atiyah-Hirzebruch. 
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What we have defined above is a “cohomology theory” satisfying all the Eilenberg-Steenrod
axioms, except the dimension axiom. This is just an example of what mathematicians called an
“extraordinary” cohomology theory in the 60’s (other famous examples are coming from
cobordism). As we shall see in the next lecture, this theory has many interesting topological
applications.

There are many variants of topological K-theory which were considered in the 60’s. One of
appealing interest is equivariant K-theory KG(X) where G is a compact Lie group acting on X
which was introduced by Atiyah and Segal. It is defined as the K-theory of G-equivariant vector
bundles on X. The analog of Bott periodicity in this context is the “Thom isomorphism” : one
considers a complex G-vector bundle V on X and we would like to compute the equivariant K-
theory of V (viewed as a locally compact space), i.e.  

∼
KG(V+) , where V+ is the one-point

compactification of V. If we denote this group simply by KG(V), we have a Thom isomorphism
(due to Atiyah)

KG(X)  zzc KG(V)

More generally, if V is a real vector bundle, we can define on V a positive definite metric
invariant under the action of G and consider the associated Clifford bundle C(V) ; the group G
also acts naturally on C(V). We denote by  eG

V
(X) the category of real vector bundles where G

and C(V) act simultaneously ; these two actions are linked together by the formula

g*(a.e) = (g*a).(g*e)

where the symbol *  (resp. .) denotes the action of G (resp. of C(V)). For instance, if G is finite,

it is easy to show that  eG

V
(X) is equivalent to the category of finitely generated projective

modules over the crossed product algebra G ©  
∼
C(V), where  

∼
C(V) is the algebra of continuous

sections of the bundle C(V). On the other hand, if “1” denotes the trivial bundle of rank one
(with trivial action of G), we have a “restriction” functor

ϕ :  eG

V⊕ 1
(X)  zzc  eG

V
(X)

A generalization of the theorem of Atiyah quoted above is the following : the relative group
K(ϕ) is isomorphic to the equivariant K-theory of the Thom space, i.e. KG(V), with the
notations above.

We should notice that the last statement is true in both real and complex K-theory and implies
Bott periodicity for the K-theory of vector bundles !
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It is also worth mentioning that Atiyah’s theorem and its generalization are not easy to prove

even if X is reduced to a point. A key ingredient in the proof is an index map which Atiyah

constructed with suitable elliptic operators.

There is another generalization of topological K-theory which was considered by Donovan and
the author at the beginning of the 70’s and which became “fashionable” recently : this is the

“K-theory with twisted coefficients” Kα(X) defined for α [ H3(X ; Z) (we limit ourselves to
the complex case). The simplest way to define it is to notice that the usual complex K-theory is
also the K-theory of the Banach algebra of continuous functions 

f : X  zzc k

where k is the ideal of compact operators in a Hilbert space H (we just enlarge C to k, which
is quite usual in functional analysis). This is also the algebra of sections of the trivial bundle

E = X x k

                                           d

                                                                       X

viewed as a bundle of algebras. The idea is now to “twist” this algebra by an automorphism of
the bundle. More precisely, using the fact that Aut(H) is contractile by Kuiper’s theorem, we
have the following principal bundles with contractible total spaces (where P(H) = Aut(H)/C*).

BC*  zzc B(Aut(H)) zzc B(P(H))

                                                K(Z, 2) zzc BC zzc BC*

This shows BP(H) is the Eilenberg-Mac Lane space K(Z, 3). In other words, any element α of

H3(X ; Z) is associated to a principal bundle with fiber P(H) which may be defined by transition
functions gji  over an open cover (Ui) of X. We can use this P(H) bundle to twist the previous

algebra bundle E in the following way : the twisted  algebra bundle  
∼
E is obtained by gluing Ui x

k with Uj x k over (Ui h Uj) x k : we identify (xi, ki) with (xj, kj) whenever x = xi = xj [ Ui

h Uj and kj =  gji (x) ki (gji (x))-1.

The space of sections of  
∼
E is a Banach algebra whose K-theory is precisely the twisted K-

theory of X we wanted to define.
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Exercise. Let V be an oriented real vector bundle of even rank with second Stiefel-Whitney

class w2 [ H2(X ; Z /2) and α  the Bockstein of w2 in H3(X ; Z). Show that Kα(X) is then
isomorphic to the K-theory of the Thom space of V.

Let us mention finally that in the classical case of untwisted K-theory  K*

top
(X), there is a

spectral sequence due to Atiyah and Hirzebruch whose E2 term is Hp(X ;  Kq
top

(*)), where * is a

point. This spectral sequence converges to  Kq-p
top

(X). There is a generalization of this spectral
sequence in the case of K-theory with twisted coefficients which will appear in a forthcoming

paper by Atiyah and Segal.
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Lecture 3

Some applications of topological K-theory
The Atiyah-Singer index theorem

There are many applications of topological K-theory, most of them due to Atiyah and Adams.
More recent applications in the K-theory of Banach algebras are also given.

1) Riemann-Roch theorems for differentiable manifolds [AH2][K1]. 

As it was explained in the first lecture, Grothendieck’s original aim was to generalize the
Hirzebruch-Riemann-Roch theorem in the context of projective algebraic smooth varieties. Soon
after the discovery of topological K-theory, Atiyah and Hirzebruch achieved the same result in
the category of differentiable manifolds.

The simplest case is the following : let us consider two C∞-manifolds X and Y, with an almost
complex structure given on the tangent bundles, together with a smooth proper map 

f : X zzc Y

Since X and Y are oriented, there is a Gysin map in cohomology

H*(X) zzc H*(Y)

which increases the degrees by the number dim(Y) - dim(X). On the other hand, as briefly stated
in the first lecture, any complex vector bundle V has a “Todd class” Todd(V) which can be
formally defined as follows. We express the “total Chern class” 

c(V) = 1 + c1(V) + c2(V) + ... + cn(V) + ... 

as a formal product    ∏ (1 + xi) , so that the ci(V) are the elementary symmetric functions of

the xj. Then we consider the formal product   ∏ xi/ (1 - e-xi) which can be written as 

Todd(V) = 1 + Todd1(V) + Todd2(V) + ... Toddn(V) + ...

For instance4, one has the following formulas (with ci = ci(V), and Ti = Toddi(V))

4 Note that this definition of Todd(V) can be extended to elements x of K
top

(X) : if x = V - W, we put

formally Todd(x) = Todd(V)/Todd(W).
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T1 = 1/2 c1

T2 = 1/12(c2 + (c1)2)
T3 = 1/24 c2c1

T4 = 1/720 [-c4 + c3c1 + 3(c2)2 + 4 c2(c1)2 - (c1)4 ]
.............

Using (complex) Bott periodicity and the Thom isomorphism in K-theory, one may also define
a Gysin map in K-theory

  f
*
K
 : K

top(X) zzc Ktop(Y)

The Atiyah-Hirzebruch theorem may be then stated as follows : for any element x in Ktop(X),
we have the formula

Ch( f*
K
(x)).Todd(TY) =  f

*
H(ch(x).Todd(TX))

If Y is reduced to a point,  f
*
H
 is given by integration over the compact manifold X and we find

that for any element x in the K-theory of X, ch(x).Todd(TX)  is always an integral class in
degree 2n = dim(X) (a priori it is only a rational class). For instance, Toddn(TX) is an integral
class when X is a manifold of dimension 2n with an almost complex structure.
There are many interesting generalizations of this formula (all due to Atiyah and Hirzebruch)

when Tf (the tangent bundle of f “along the fibers”) is provided with a cspinorial structure.

There is an analog of the Todd class, called the  
∧
A-genus which can be expressed in terms of the

Pontrjagin classes of TX.  Here is the type of formula we get :

Ch( f*
K
(x)) =  f

*
H(ch(x). 

∧
A(Tf))

This relation implies other integrality theorems in terms of the Pontrjagin classes of the tangent
bundles involved. Here is a typical example : if X is a manifold of dimension 8 which is

spinorial, the value of 7(p1)2 - 4 p2 is divisible by 11720. Here p1 and p2 are the first two
Pontjagin classes of TX (see [K1] for more examples and details].

2. The Atiyah-Singer index theorem

There is an extensive literature about this famous theorem and the basic references are the series
of papers by the authors themselves [AS1][AS2]. Therefore, we limit ourselves to the general

ideas underlying this theorem. Let X be a compact oriented manifold, E and F two C∞-vector

bundles on X and D : Γ(X , E)  zzc Γ(X , F) an elliptic differential operator. Then Ker(D)
and Coker(D) are finite dimensional vector spaces and one would like to compute the index of
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D.

Index(D) = dim(KerD) - dim(CokerD)

in purely topological terms.

Since the operator D is elliptic, its symbol may be viewed as a morphism of vector bundles

σ : π*(E) zzc π*(F) ,

where π is the projection of the cotangent bundle T*X over X, which is an isomorphism outside
the zero section of T*X. If B(X) (resp. S(X)) denotes the ball bundle (resp. the sphere bundle)
of T*(X) with respect to a metric, the symbol gives rise to an element, called [σ], of the relative

group K0(B(X), S(X)). Let us denote C(σ) the image of [σ] under the composition of the Chern

character : K0(B(X), S(X)) zzc Hev(B(X), S(X)) and the Thom isomorphism

Hev(B(X), S(X)) zzc H*(X). The product of C(σ) by the Todd class of the complexified
bundle T’(X) of TX is a cohomology class  C(σ).Todd(T’(X)) which we can evaluate on the
fundamental class [X] of the manifold. This evaluation is written classically as
C(σ).Todd(T’(X))[X]. The Atiyah-Singer index theorem can be stated as follows :

Index(D) = C(σ).Todd(T’(X))[X]

In particular, C(σ).Todd(T’(X))[X] is an integer5. On the other hand, various classical elliptic
differential operators enable us to recover classical previous results : the Riemann-Roch theorem
in the differentiable category and the signature theorem of Hirzebruch among many others
[AS1][AS2]. We may also notice that the integrality theorems are a consequence of the index
theorem. However, as it was shown in [AH2] (see also [K1]), these theorems are topological in
nature and do not require the pseudo-differential operators needed in the proof of the index
theorem.

3) The Hopf invariant one problem

Before attacking this topological problem, we recall the operations λk of Grothendieck, defined
by the exterior powers of bundles. As Adams has pointed out, there exist more convenient

operations, called ψk,  which are ring endomorphisms of K(X) (and also Ktop(X)). Moreover,

we have the remarkable relation ψkψl = ψlψk. In order to define this operation ψk, we notice the
universal formula expressing the “fundamental” symmetric functions 

Sk =   ∑ (xi)
k

5 As a matter of fact, one has to be careful with signs, according to the chosen conventions.
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in terms of the elementary symmetric functions 

σk =   ∑
i1<..< ik

  xi1
...xik

For instance, S1 = σ1, S2 = (σ1)2 - 2 σ2, S3 = (σ1)3 - 3 σ1σ2 + 3 σ3 , etc.
In general Sk = Qk(σ1, ..., σk) , where the Qk are the so-called Newton polynomials. Then, for

any element x of K(X) or Ktop(X), we define ψk(x) as the expression Qk(λ1(x), ..., λk(x)).

The Hopf invariant one problem in Algebraic Topology is linked with another problem of more

appealing interest : for which values of n can the sphere Sn-1 be provided with an H-space
structure ? It is not difficult to show (using Künneth theorem in rational cohomology for

instance) that this is not possible if n is odd > 1. On the other hand, S0, S1, S3, S7 are easily

seen to have a structure of H-spaces, in fact topological groups, except for S7. It is a remarkable
theorem of Adams that these spheres are the only ones with an H-space structure. The K-theory
proof (due to Adams and Atiyah) is as follows (see [K1] for more details). Starting with the

given product Sn-1 x Sn-1  zzc Sn-1, with n even, and following Hopf, we construct a map f :

S2n-1 zzc Sn to which we associate the “Puppe sequence”

S2n-1 zzc Sn zzc Cf zzc S2n zzc Sn+1

More precisely, Cf, the cone of f, is a CW-complex with 2 cells of dimensions n and 2n
respectively : we attach a 2n-cell to Sn using the map f. Now the reduced K-theory of Cf is
easily computed : it is a free group with 2 generators u and v and we have u2 = hv for a certain
scalar h which is precisely ¶ 1 (for a general map f, h = h(f) is called the Hopf invariant of f).

We now follow the pattern given by Atiyah and Adams to show that h(f) cannot be odd in
general (except if n = 2, 4 or 8). From the general properties of the Adams operations ψk, we
have ψk(v) = k2rv and ψk(u) = kru + σ(k)v, where n = 2r and σ(k) [ Z. On the other hand, since
ψ2 = (λ1)2 - 2 λ2, we have ψ2(u) = u2 mod. 2 = h(f)v mod.2. Hence σ(2) must be odd, since
h(f) is odd by hypothesis. On the other hand, from the relation ψkψl = ψlψk, we deduce (for l ≠
1)

kr(kr - 1)σ(l) =  lr(lr - 1) σ(k)

If we choose l = 2 and k odd, we see that 2r should divide kr - 1 for all odd integers k, a property
of r which is only true if r = 1, 2 or 4 (an easy exercise left to the reader).
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4) The vector field problem on the sphere.

Let M be a compact connected oriented manifold. Here is a classical result due to Hopf : there
exists a non zero tangent vector field on M if and only if χ(M) - the Euler Poincaré
characteristic of M - vanishes. A much harder problem is to find the maximum number of
linearly independent tangent vector fields on M, even if M is the sphere St-1. The Gram-Schmidt
orthonormalization procedure may be used to replace any field of (n-1)- linearly independent
tangent vectors by a field of n-1 tangent vectors of norm one which are orthogonal to each other.
Therefore, if On,t denotes the Stiefel manifold O(t)/O(t-n), the existence of a field of (n-1)
linearly independent tangent vectors on St-1 is equivalent to the existence of a continuous
section σ : O1,t = St-1 zzc On,t  of the natural projection 

On,t  zzc O1,t

Note that each element a of On,t defines a linear map ϕa : R
n zzc Rt which is injective and

depends continuously on a. 

Let us introduce now the (real) Hopf bundle ζ on RPn-1 = Sn-1/Z2 as the quotient of 
Sn-1  x Rt by the equivalence relation (x, λ) ≈ (-x, -λ). In the same way, the Whitney sum of t
copies of ζ (denoted by t ζ) is the quotient of Sn-1  x Rt  by the identification 

(x, λ1, ..., λt) ≈ (-x, -λ1, ..., -λt)

If we write S(t ζ) (resp. S(t ε)) for the sphere bundle of t ζ (resp. t ε), the existence of σ shows
the existence of a commutative diagram

 S(t ε) zzc 
θ

 S(tς) 

                                         p    t 
                                                                     X =  RPn-1

Here θ is induced by the map (x, v) €  (x, ϕσ(v)(x)) from Sn-1 x St-1 into itself, where ϕa is the
linear map Rn zzc Rt defined above. Moreover, θ induces a homotopy equivalence on each
fiber. 

We are now in the general situation of two vector bundles V and W (here t ε and t  ζ) such that
the associated sphere bundles S(V) and S(W) have the same fiber homotopy type. The same
property is true if we compactify the fibers instead of considering the spheres. Therefore, the
map θ (extended to the vector bundles by radial extension) has the property that for each point x
in X we have the commutative diagram
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KR(W)  zzc 
θ KR(V)

                                      d             d 

                                                         KR(Wx)    zzc 
θx KR(Vx)

where KR means real K-theory. As it was shown by Adams, this condition implies the existence
of an element y of  

∼
KR(X) such that for each k we have the relation

ρk(V) = ρk(W)  
1 + y

ψk(1 + y)

under the condition that V and W are spinorial bundles of rank ≠ 0 mod. 8.

Here ρk(V) is the characteristic class in K-theory6 introduced by Bott : it is defined as the
image of 1 under the composition of the following maps

KR(X)  zzc 
ϕ

KR(V)    zzc 
ψk

KR(V)   zzc 
ϕ-1

KR(X)

where ϕ is the Thom isomorphism in KR-theory. These remarks, together with the computation
of the order of the group  

∼
KR(RPn-1) are the key ingredients for the solution in two steps of our

original problem.

PROPOSITION. Let an be the order of the group  
∼
KR(RPn-1), that is an = 2f, where f is

the number of integers i such that 0 < i < n and i = 0, 1, 2 or 4 mod. 8. If St-1 admits n-1
linearly independent tangent vector fields, then t is a multiple of an.

From this proposition and the theory of Clifford algebras over the real numbers, we deduce the
following fundamental theorem of Adams

THEOREM.  Let us write each integer t in the form t = (2α - 1).2β where β = γ + 4δ, with
0 ≤ γ ≤ 3. Then the maximum number of linearly independent tangent vector fields on the
sphere St-1 is σ(t) = 2γ + 8δ − 1.

6 Note that this class is constructed in complete analogy with the Stiefel-Whitney classes in cohomology

mod. 2 : one just has to replace the Adams operations by the Steenrod squares.
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5) Applications to C*-algebras.

Here is a theorem due to Connes : if A =  Cr
* (G) is the reduced C*-algebra of a free group on n

generators, then the only idempotents of A are 0 and 1. The proof is too technical to give the
details here (see [R] p. 358-361) ; K-theory comes into the picture since one has to consider in
the proof extensions of C*algebras of the type

0 zzc k zzc D zzc A zzc 0

where k is the ideal of compact operators in a Hilbert space. A splitting of this extension
induces a homomorphism K(A) zzc K(k) – Z which Connes identifies with the usual
positive normalized trace on A.

Another beautiful application in Connes’s book [C1] is a description of the Penrose tiling in
terms of inductive limits of finite dimensional algebras (so-called AF-algebras). Such an
inductive limit A (or rather its closure in the algebra of bounded operators in a Hilbert space)
has of course a Grothendieck group K(A). Moreover,  K(A) is an ordered group (an element of
K(A) is called  ≥ 0 if it comes from a genuine projective module). In the case of the Penrose
tiling, one has K(A) – Z2 , the positive cone being given by the set of all (m, n) such that
n( 1 + 5)/2 + m ≥ 0. As a matter of fact, all AF-algebras A are classified by their ordered
Grothendieck group K(A). 

In order to get more applications of the theory to C*-algebras, a considerable generalization was
made by  Kasparov [Kas], in relation to the Atiyah-Singer theorem. In Kasparov’s theory, one
associates to two C*algebras A and B a new group called KK(A, B) with remarkable formal
properties. According to Higson [H] for instance, this new theory KK(A, B) - at least for
separable C*-algebras, not necessarily unitary - is characterized by the following properties

1. Homotopy invariance : the group is unchanged (functorially) if we replace A or B by the ring of
continuous function on [0, 1] with values in A or B.

2) The group is C*-stable with respect to the second variable, i.e. we have the functorial
isomorphism

 KK(A, B) ≈ KK(A, k * B), 

where k is the C*-algebra of compact operators in a Hilbert space.

3. If

0 zzc J zzc e zzc B zzc 0 
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is a split exact sequence of C*-algebras, we have KK(A, e) ≈  KK(A, J) ⊕ KK(A, B). 

4. A  “composition” (called Kasparov product)

KK(A, B) x KK(B, C) zzc KK(A, C) 

may be defined. 

Therefore, the correspondence (A, B) €  KK(A, B) defines a functor from the category of C*-
algebras couples (A, B) to the the category of abelian groups, which is an extended definition of the
usual K-theory in the following sense. We have KK(C, A) ≈ K(A) and every morphism f : A

zzc B gives rise to an element of KK(A, B). By Kasparov’s product, this induces a morphism
from K(A) = KK(C, A) to KK(C, B) = K(B) which is the usual one : to every A-module M we

associate the B-module f
*
(M) = B *

A
 M.

A concrete definition of KK(A, B) and of the Kasparov product has been given by Cuntz [Cu]. He
describes KK(A, B) as the set of homotopy classes of * -homomorphisms 

qA zzc k * B

Here qA is the ideal in the free product A * A  generated by the elements of  type x*1 - 1*x. One
can prove that this definition is equivalent to the first one of Kasparov and also to the definition of
Connes-Skandalis ([C1] p. 428-436). 

The relation with the Atiyah-Singer theorem is the following. Let B = C be the field of complex
numbers and let A be the algebra of continuous functions on a compact manifold of even
dimension. Then, an elliptic operator D on X defines a “Fredholm module” on A [At2] which gives

rise to an element of KK(A, C). The image of 1 [ K(A) by the associated morphism

 K(A) zzc K(C) = Z 

is the index of the operator D.

An open problem is to define a group KK(A, B) for general algebras A and B and to find the
relation with Algebraic K-theory on one side (lecture 5) and cyclic homology on the other side
(lecture 7).
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Lecture 4

Algebraic K-theory of Bass and Milnor
Applications

After the success of topological K-theory, the algebraists felt challenged to “derive” the K0
group for ANY ring A, as it was done for Banach algebras and, hopefully, prove some kind of
“Bott periodicity” for these hypothetic Kn(A).
The first problem was of course to define the K1 group in a purely algebraic context. Remember
that for a Banach algebra A,  K1

top
(A) 

(called before K1(A)) was defined either as K(A(R)) or
π0(GL(A)) = injlimn π0(GLn(A)). The first definition does not make any sense a priori for an
abstract ring A. However, Bass managed to give a meaning to the second definition thanks to the
notion of an elementary matrix. Such a matrix - called  eij

λ
 
-
 
has all entries = 0, except for the

diagonal entries = 1 and the entry at the spot (i, j), i ≠ j, which is equal to the scalar λ. These
matrices satisfy the following identities

 eij
λ
  
 eij
µ
 
 =    eij

λ+µ

[ eij
λ
 
 ,   ejk

µ
] =  eik

λµ
   if i ≠ k

[ eij
λ
 
 ,  ekl

µ
 ] = 1  if j ≠ k and i ≠ l

We call E(A) the subgroup generated by these elementary matrices. One has to think of the
elements of E(A) as those “homotopic to the identity matrix”. 

THEOREM/DEFINITION.  The subgroup G’ = E(A) is equal to the commutator subgroup
[G, G] of G = GL(A). Moreover it is perfect, i.e. [G’, G’] = G’. We define K1(A) as the
quotient group G/G’, in other words the group G made abelian.

This theorem is quite easy to prove, using the relations above between elementary matrices. One
of the key point is to show that a commutator ghg-1h-1 is a product of elementary matrices if we
stabilize 3 times the size of the matrix, say n. Indeed, let us write Diag(u, v, w) for a matrix of
size 3n with u, v and w as n-diagonal blocks. Then we have Diag(ghg-1h-1, 1, 1) = [u, v], where u
= Diag(g, 1, g-1) and v = Diag(h, h-1, 1). On the other hand, a matrix of  type

  

 

 



g   0

0   g-1

 


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may be written as the product 

   
   

 



0     1
-1    0

 

      

 


0     -g-1

g      0

 



We notice also that the matrix

 

 


0     -g-1

g      0

 

  

may be written as the product of  3 matrices, each of them being a product of elementary
matrices, i.e.

 

 


1     -g-1

0      1

 


   

 



1     0
g     1

 


  

 


1    -g-1

0     1

 



Caution : if A is a Banach algebra, this group K1(A) does not coincide with its topological
analog. For instance, if A is the field of complex numbers C, we have K1(C) – C*, whereas the
topological analog π0(GL(C)) is equal to 0. 

THEOREM.  Let us consider a cartesian square of rings with units

A  zzc A1
                                       d         dφ1
                                                                 A2  zzc 

φ2
 A’

with φ1 or φ2  surjective. Then we have a “Mayer-Vietoris exact sequence” of K-groups 

K1(A) zc K1(A1) ⊕ K1(A2) zc K1(A’) zc K(A) zc K(A1) ⊕ K(A2) zzc K(A’)

This theorem implies “excision” for the K0-group ; in other words, if I is an ideal in a ring A,
the K-group of the functor7 p(A)  zc p(A/I) only depends on the ideal I, i.e. is isomorphic
to Ker(K( 

∼
I)  zc K(Z)), where  

∼
I denotes the Z-algebra I with a unit added.

7 Here we should be here more precise about the definition of the Grothendieck group of an additive functor 

ϕ : c zc c ‘. It is the quotient of the free group generated by isomorphism classes of triples (E, F, α),

where E and F are objects of c and  α : ϕ(E) zc ϕ(F) is an isomorphism, by the following relations

(E, F, α) + (E’, F’, α’) = (E ⊕ E’, F ⊕ F’, α ⊕ α ’)
(E, F, α) + (F, G, β) = (E, G, β.α).

8 See also M. Karoubi : Homologie de groupes discrets associés à des algèbres d’opérateurs. Journal of
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In the case of a group ring A = Z[G], the group K1 has applications in differential topology as it
was shown in the 60’s. A striking one is the s-cobordism theorem ([R] p. 86) : if M is a
compact connected manifold of dimension n ≥ 5, any h-cobordism built on M is homeomorphic
(rel. M) to a product M x [0, 1]. There is just one algebraic condition for this : Wh(G) =
K1(A)/±G should be trivial. A spectacular application is the famous theorem of Smale which
solves the Poincaré conjecture in dimension ≥ 5 : any manifold of dimension n ≥ 5
homotopically equivalent to the sphere Sn is indeed homeomorphic to Sn.

A more algebraic application is the famous “congruence subgroup problem” : if R is a
commutative ring and SL(R) the subgroup of GL(R) consisting of matrices of determinant 1, is
every normal subgroup of SL(R) a congruence subgroup, i.e. the kernel of a group
homomorphism SL(R)  zzc SL(R/I) for a certain ideal I ? An analysis of a “relative” K1
group shows this is the case for instance if R = Z. In general one should have SK1(A, I) = 0 for
all ideals I ([R] p. 106).

Let us mention here an important result with many applications, due to Bass, Milnor and Serre :
if A is the ring of integers in a number field F, then K1(A) –  A* by the determinant map. In
other words, the map K1(A) zzc K1(F) –  F* is injective.

One question we may ask is whether K1(A) is the K0-group of another ring ; this is inspired by
Topology where we saw that K-1(X) is essentially K0 of the suspension of X. There is indeed a
dual notion of the suspension of a space which is the “loop ring” ΩA of A : it is the subring
A[x], consisting of polynomials P(x) such that P(0) = P(1) = 0. Under certain conditions (for
instance if A is regular noetherian), one can show that K1(A) – K0(ΩA). This is the point of
departure of the so-called “Karoubi-Villamayor” K-theory which will be sketched in the next
lecture.

Exercise : Let Ω+(A) be the A-algebra ΩA with a unit added. Show that Ω+(A) may be
identified with the coordinate ring of the following cubic 

Ω+(A) –  A[u, v]/(u - v)3 - uv.

Exercise (Milnor). Let A be the Banach algebra of continuous functions on a compact space X
with complex values. Then show that K1(A) – A* ⊕  π0(SL(A))

Remark. In contrast with the situation of the K0-group, the definition of K1(I) when I is a ring
without unit is unclear. For instance, if we define K1(I) as Ker[K1(I+) zzc K1(k)] if I is a k-
algebra, this definition depends strongly on the choice of k

For certain special rings I however, there is a “good” definition of  A, for instance the ideal k

of compact operators in a Hilbert space, or the ring of continuous functions from a compact
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space X to k.

The next step in Algebraic K-theory was done by Milnor who gave an algebraic definition of
K2(A). He first introduced the (infinite) Steinberg group ST(A)  which is generated by elements
 xij

λ
 , i ≠ j, subject to the “universal” relations between elementary matrices, i.e.

 xij
λ
  xij

µ
  =  xij

λ+µ

[ xij
λ
 ,  xjk

µ
] =  xik

λµ  if i ≠ k

[ xij
λ
 ,  xkl

µ
 ] = 1 if j ≠ k and i ≠ l

Note : for convenience, we shall sometimes write these symbols as xij (λ).

There is an obvious epimorphism

ST(A) zzc E(A)
As we said before, the group E(A) is perfect (i.e. is equal to its own commutator subgroup
[E(A), E(A)] ) and Milnor proved that the exact sequence

1 zzc K2(A) zzc ST(A) zzc E(A) zzc 0

is in fact the universal central extension of the perfect group E(A). In particular, K2(A) is abelian
and may be identified with H2(E(A) ; Z ), the second homology group of E(A) with Z
coefficients. Analogously, one may remark that K1(A) is the homology group H1(GL(A) ; Z).

An important part of the structure of K2 is defined by Milnor’s cup-product

K1(A) x K1(A) zzc K2(A)

when A is commutative. In particular, if u and v [ A* , K1(A), the Steinberg symbol {u, v} is
the cup-product of u and v in K2(A). It satisfies the following relations

(a) {u, 1 - u} = 1 if u and 1 - u belong to A*
(b) {u, -u} = 1 if u [ A*

[if A is a field, the second relation follows from the first].
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THEOREM (Matsumoto).  Let F be a (commutative) field. The Steinberg symbol identifies
K2(F) with the quotient of  F* *Z F* by the subgroup generated by the relations 
u * (1 - u) for u ≠ 0, 1.

This theorem is the starting point for applications of K2 in Algebra and Number Theory, in
relation with the Brauer group and Galois cohomology. Let  

 
F be the separable closure of F, G

the Galois group of this extension and µn the multiplicative group consisting of roots of unity in 
F. Then, the exact sequence

0 zc µn zc 
 
F*zc 

 
F* zc 0

induces an isomorphism H1(G ; µn) – F*/F*n , since H1(G ; 
 
F*) = 0. By a classical argument,

the composition

s : F* x F* zc F*/F*n x F*/F*n 
–

 H1(G ; µn) x H1(G ; µn) zc H2(G ; (µn)*2)

where the last map is the cup-product in Galois cohomology, is a Steinberg symbol 
(i.e. s(u, 1-u) = 0 if u ≠ 0, 1). Therefore, s induces a homomorphism from K2(F)/nK2(F) to 
H2(G ; (µn)*2). The following classical theorem ([Sr] p. 149) is one of the nicest in the
subject :

THEOREM (Merkurjev-Suslin).  The homomorphism

K2(F)/nK2(F)   zc H2(G ; (µn)*2)

defined above is an isomorphism.

As a concrete application let us consider the Brauer group of F, Br(F), generated
(multiplicatively) by central simple algebras A with the relation A   ~   B iff Mn(A) – Ms(B) for
some numbers n et s. It is well known that Br(F) is canonically isomorphic to the Galois
cohomology group H2(G, 

 
F*).

COROLLARY.  Let us assume µn , F. Then H2(G ; (µn)*2) – H2(G ; µn) – Br(F)n, the
n-torsion of the Brauer group. Therefore, we have an isomorphism

K2(F)/nK2(F)   zc Br(F)n

A striking example is the case when n = 2 and F is of characteristic ≠ 2. Then, the central simple
algebra associated to the symbol {a, b} is the quaternion algebra generated by the symbols i and
j with the relations i2 = a, j2 = b and ij = -ji. This corollary implies that any element of the 2-
torsion in Br(F) is stably isomorphic to a product of quaternion algebras, an open problem
before Merkurjev and Suslin proved their theorem.
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As another example, let us consider the case when A is a Banach algebra. As we have seen in a
previous lecture, there is a topologically defined  K2

top
(A) which is simply the fundamental group

π1(GL(A)). In order to see the relation with the Algebraic group K2(A), we can send a generator
 xij

λ
  of the Steinberg group to the path t  €  xij

λ t
 . The relations 

 xij
λ
  xij

µ
  =  xij

λ+µ
  

[ xij
λ
 ,  xkl

µ
 ] = 1 if j ≠ k and i ≠ l

still hold if we replace λ and µ by λt and µt. Now if we compute the commutator [ xij
λ t,  xjk

µt
] for

i ≠ k, we find the path  xik
λµt2 which is homotopic (end points fixed) to the path  xij

λµt
. This shows

that the previous correspondence induces a well defined homomorphism :

ϕ : ST(A) zzc E(GL(A))/r

Here EX denotes in general the path space of X, i.e. the set of continuous paths f : [0, 1] zzc
X such that f(0) = I, the unit matrix, and r the equivalence relation defined by homotopy with
end point fixed. Since K2(A) is the kernel of the homomorphism ST(A) zzc GL(A), we see
immediately that ϕ(x) is a loop in GL(A) if x [ K2(A) and that ϕ induces a well defined
homomorphism 

ϕ : K2(A) zzc π1(GL(A)) =  K2

top
(A)

In general, ϕ is neither an injection nor a surjection. As a typical example, if we choose A to be
the field of complex numbers C, we see that ϕ is reduced to 0 since its image is contained in
π1(SL(C)) = 0. Therefore, the kernel of ϕ is the full group K2(C), which is known to be an
uncountable group.

There are however Banach algebras A such that ϕ is an isomorphism. A typical example is the
algebra k of compact operators in Hilbert space or, more generally, the algebra of continuous
functions X zzc k, where X is a compact space. A technical problem appears here since
these algebras have no unit. However, as it was proved in [SW]8, these algebras satisfy
excision and we may choose to add a unit the way we want, as for the group K0. For these
algebras, Bott periodicity holds : K2(A) – K0(A), which is quite exceptional in Algebraic K-
theory.

8 See also M. Karoubi : Homologie de groupes discrets associés à des algèbres d’opérateurs. Journal of

Operator Theory, 15, p. 109-161 (1986)
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The previous considerations suggest to replace Topological homotopy by Algebraic homotopy
for the definition of the group π1(GL(A)) (A being now a discrete ring). An “algebraic loop” is
just an element σ of GL(A[t]) such that σ(0) = σ(1). Two algebraic loops σ0 and σ1 are called
homotopic if there is an element Σ of GL(A[t, u]) such that 

Σ(t, 0) = σ0(t), Σ(t, 1) = σ1(t)
Σ(0, u) = Σ(1, u) = 1

This is an equivalence relation because GL(A) is a group and we define the algebraic
fundamental group  π1

alg
(GL(A)) as the group of homotopy classes of algebraic loops (like in

Topology). As before, we have an homomorphism

K2(A) zzc  π1
alg

(GL(A))

which is an isomorphism if A is a regular Noetherian ring. This gives an alternative definition of
K2, closer to Topology for this type of rings.

From another viewpoint, we also have a cup-product in Topological K-theory (for commutative
Banach algebras)

 K1

top
(A) x  K1

top
(A) zzc  K2

top
(A)

The obvious diagram

K1(A) x K1(A) zzc K2(A)

                                      d                d

                                                    K1

top
(A) x  K1

top
(A) zzc  K2

top
(A)

is then commutative. As a typical example, it is easy to show that K1(Z ) = Z /2 and the
composition K1(Z) zzc K1(R)  zzc  K1

top
(R) is injective. It follows that the cup-product

of the generator of K1(Z) by itself is a non trivial element of K2(Z), because the same is true for
the topological K-theory of R. As a matter of fact, as it was proved in Milnor’s book, we have
K2(Z) = Z/2.

There are many other examples where we can compute the group K2(A). For finite fields Fq for
instance, Milnor showed that K2(Fq) = 0. Another fundamental example is the case of a number
field F and its ring of integers A. We then have a “localization” exact sequence :

K2(A) zzc K2(F) zzc  ⊕
p    

K1(A/p) zzc K1(A) zzc K1(F)

where p runs over all the prime ideals of A. As a matter of fact, by a famous result of Bass,
Milnor and Serre quoted in the previous lecture, the map K1(A) zc K1(F) – F* is injective
and we therefore have a well defined surjective map K2(F) zzc  ⊕

p

K1(A/p) –  ⊕
p

(A/p)*.
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Each component
K2(F)  zzc (A/p)*

is called the tame symbol and may be defined explicitly, using the p-adic valuation.

Finally, there is a “fundamental theorem” due to Bass, Heller and Swan which enables us to
compute the Algebraic K-theory Ki (for i = 1 and 2) of the ring of Laurent polynomials A[t, t-1]
in terms of of the groups Ki-1 of A. More precisely, we have an exact sequence

0 zzc Ki(A) zzc Ki(A[t]) ⊕ Ki(A[t -1]) zzc Ki(A[t, t-1]) zzc Ki-1(A)  zzc 0

If A is a regular Noetherian ring there is a “homotopy invariance” (first proved by
Grothendieck) i.e. Ki(A) – Ki(A[t]) for i = 0, 1, 2. Therefore, the previous exact sequences
reduce to the isomorphisms 

Ki(A[t, t-1]) – Ki(A) ⊕ Ki-1(A)

in this case. We shall come back to this matter for the definition of the negative K-groups in the
next lecture.

As for the functor K1 there is an application of K2 in differential topology which is due to
Hatcher and Wagoner. This application is related to pseudo-isotopy classes of diffeomorphisms
on manifolds. As it is well known, isotopy classes of diffeomorphisms of the sphere Sn for
instance parametrize the set of differentiable structures on Sn+1 for n ≥ 5. However, it is difficult
to tell in practice when two diffeomorphisms h0 and h1 of a manifold M are isotopic. There is a
weaker notion of “pseudo-isotopy” which is a diffeomorphism of a cyclinder 
M x [0, 1], whose restrictions to M x {0} and M x {1} give h0 and h1 respectively. Let us call
p(M) the space of pseudo-isotopies of M, i.e. diffeomorphisms of M x [0, 1] which restrict to
the identity on M x {0}.

Before stating the result about this space p(M), we need a preliminary definition : in the
Steinberg group St(A) of a group algebra A = Z[G], we define wij (u) = xij (u).xji (-u

-1).xij (u)
and WG the subgroup of St(A) generated by the wij(u). Finally, we define 

Wh2(G) = K2(A)/K2(A) ∩ WG.

THEOREM (Hatcher-Wagoner) ([R] p. 242). Let M be a smooth compact connected
manifold without boundary of dimension n ≥ 5 and with fundamental group G. Then there is
a surjection  π0(p(M)) zzc Wh2(G).

In some cases, the kernel has been computed and identified with a group related to Wh1(G).
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Lecture 5

Higher Algebraic K-theory
Some computations

After the definition of K
1
(A) and K2(A) by Bass and Milnor, the problem was open at the

beginning of the 70’s of a “good” definition of Kn(A) for n ≥ 3. It is widely accepted now that
this definition was proposed by Quillen at the International Congress of Mathematicians in Nice
(1970). However, other definitions were proposed at the same time and are in fact isomorphic to
Quillen’s definition in favourable cases. We shall discuss briefly one of them at the end of the
lecture.

Let us point out first that there is no “axiomatic” definition of these groups Kn in the spirit of
what has been done for Banach algebras for instance (lecture 2, p. 2). More precisely, Swan has
pointed out the following disturbing fact : we cannot have a Mayer-Vietoris exact sequence
associated to a cartesian square of rings with units

A  zzc A1
                                       d         dφ1
                                                                 A2  zzc 

φ2
 A’

with φ1 and φ2 surjective. In other words, we cannot have a functorially defined exact sequence

Kn+1(A) cKn+1(A1) ⊕ Kn+1(A2) c Kn+1(A’) c Kn(A) c Kn(A1) ⊕ Kn(A2) c Kn(A’)

with K0 isomorphic to the Grothendieck group.

This means that instead of waiting for a “good” axiomatic definition of Kn(A), Quillen’s
proposal is justified by the nice theorems and applications proved with it (the Merkurjev-Suslin
theorem in the previous lecture is for instance a good example of an application ; it could not be
proved without Quillen’s theory).

The definition of Kn(A) uses the machinery of Algebraic Topology, as we have seen in
Berrick’s series of lectures : more precisely, we have Kn(A) = πn(BGL(A)+), for n > 0, where
BGL(A)+ is a space obtained from the classifying space of the infinite general linear group
GL(A) by adding cells of dimension 2 and 3. For a change, we shall adopt a more geometric
viewpoint, using the concept of “virtual” flat A-bundles. 

Firstly, we define a flat A-bundle on a space X as a covering P zzc X such that each fiber is a
f.g.p. (= finitely generated projective) A-module. Note that if A = C, we recover the usual notion
of flat complex vector bundle. 

A virtual  flat A-bundle on the space X (assumed to be a finite CW-complex) is given by
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1) an acyclic map Y zzc X (i.e. a map inducing an isomorphism in homology with
local coefficients or, equivalently, such that the homotopy fiber is an acyclic space).

2) a flat A-bundle E on Y

Two virtual A-bundles E and E’ on Y and Y’ respectively are called equivalent if we can find a
commutative diagram (up to homotopy)

Y zzc X
d   e   a

                                                                  Z  ←   Y’

with an acyclic map Z  zzc X, together with a flat A-bundle F on Z such that the pull-back of
F through the map Y zc Z (resp. Y’ zc  X) is isomorphic to E (resp. E’). Two virtual flat A-
bundles (for instance E and E’ with the same notations) may be added by taking the homotopy
fiber product  T of Y and Y’ over X and adding γ*(E) and γ’*(E’), where γ and γ’ are the
obvious projections of T on Y and Y’. This addition is compatible with the equivalence relation.

DEFINITION/THEOREM.  Let us call KA(X) the Grothendieck group of equivalence
classes of virtual flat A-bundles on X. Then, as a functor of the finite CW-complex X,
KA(X) is representable and we have the following isomorphism

KA(X) – [X, K0(A) x BGL(A)+]

In particular, KA(Sn) – K0(A) ⊕ Kn(A), where the Kn(A) are Quillen K-groups.

Remarks. This theorem should be related to the same type of result in topological K-theory
(for complex vector bundles) : Ktop(Sn) – Z ⊕   Kn

top
(C). Note also that this definition includes

both K0 and Kn for n > 0.

As in topological K-theory, one can define tensor products of virtual flat A-bundles and
construct this way a bilinear pairing

KA(X) x KB(Z) zzc KA *B(X x Z)

In particular, if A is commutative K* (A) becomes a graded ring and one sees in more
geometrical terms Milnor’s cup-product

K1(A) x K1(A) zzc K2(A)

The λk and  ψk operations also go through to the ring KA(X) (if A is commutative).
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The first K-groups were calculated by Quillen of course. If A is a finite field with q elements,
Quillen proved that

K2n(Fq) = 0 for n > 0
K2n+1(Fq) – Z/qn-1 

On the other hand, as we have seen in Berrick’s lectures, K*(A) * Q is the primitive part of the
homology of GL(A) (with rational coefficients). If A is the ring of integers in a number field,
Quillen has shown on one side that Ki(A) is a finitely generated abelian group ; Borel has
computed on the other side the cohomology of SL(A) with complex coefficients. Comparing
these results one find the following isomorphisms with i > 0 (mod. finite abelian groups)

K2i(A) = 0
K4i+1(A) = Zr1 + r2

K4i-1(A) = Zr2

where r1 and r2 are determined by the isomorphism

A *Z R – Rr1 x Cr2

Following Grothendieck and Bass, Quillen has succeeded in generalizing to higher K-groups
some theorems proved for K0 and K1. Let us mention a few of them.

THEOREM (homotopy invariance). Let A be a regular Noetherian ring. Then Kn(A[t])
– Kn(A). Therefore, we  also have Kn(A[t1, ..., tr]) – Kn(A).

Note that if A is a field, it was an old question of Serre whether a f.g.p. module over 
A[t1, ..., tr] is free. This question was answered in the affirmative by Quillen and Suslin in the
70’s.

THEOREM (“fundamental” theorem) . Let A[t, t-1]) be the ring of Laurent polynomial
with coefficients in A. Then we have the exact sequence

0 zc Kn(A) zc Kn(A[t]) ⊕  Kn(A[t -1]) zc Kn(A[t, t-1]) zc Kn-1(A) zc 0

THEOREM  (one form of the “dévissage” and localization theorems). Let A be a regular
Noetherian ring and f a non zero divisor such that A/f is regular Noetherian. Then we have
an exact sequence

Kn+1(A) zc Kn+1(Af) zc Kn(A/f) zc Kn(A) zc Kn(Af)

where Af is the ring A localised at f (i.e. making f invertible).
Another variant of this theorem is the following : let A be a Dedekind ring and F its field of
fractions. Then we have an exact sequence
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Kn+1(A) zc Kn+1(F) zc   ⊕
p

 Kn(A/p) zc Kn(A) zc Kn(F)

where p runs through the set of all prime ideals in A.

Remarks. All these theorems may be paraphrased with a parameter space X instead of the
sphere Sn by introducing a suitable fibration. For instance, the homotopy invariance may be
restated as

KA[t] (X) – KA(X)
 
for any regular Noetherian ring A. We should also notice that Quillen was able to prove his
theorems by using another construction in Algebraic K-theory, called the “Q-construction”.
This has been detailed in Berrick’s lectures (see also [FW]).

Having stated all these theorems, one may ask what the definition of Kn(A) for n < 0  should be,
so that the previous theorems can be extended to all values of n [ Z. This definition is due
independently to Bass and the author of these notes. Since we are going to use the second
definition in Hermitian K-theory, let us choose the latter. The key ingredient is the use of
“infinite” matrices. More precisely, let us define the “cone” of A, called CA, as the set of
infinite matrices such that in each row and each column we have a finite number of non zero
elements chosen among a finite number of elements of A. Clearly CA is a ring by matrix
multiplication, containing the finite matrices (i.e. whose entries are 0, except for a finite number)
as a 2-sided ideal. We define the suspension SA of A as the quotient ring. This definition may
be iterated and Sn(A)  will denote the nth suspension of A.

DEFINITION/THEOREM.  The group K-n(A) is by definition K(SnA) . All the theorems
stated before  are true for the functors Kn , n [ Z . Note however that Kn(A) = 0 for n < 0
if A is regular Noetherian.

A theorem which is missing in the picture is “Bott periodicity”. Of course, it does not work in
general : for finite fields for instance, we are far from getting the same answer for Kn and Kn+α.
Ηowever, we can get a partial answer for other types of K-groups which we shall introduce now.
As a matter of fact, since we know that Algebraic K-theory is represented by a spectrum K(A)
defined through the BGL(SnA)+, there is a well known procedure in Algebraic Topology taking
this spectrum mod. n for any integer n. A more concrete way to do it is to take the Puppe
sequence associated to a map of degree n between spheres

Sr zzc Sr zzc M(n,r) = X zzc Sr+1 zzc Sr+1

Therefore, X (so-called Moore space) is a space with 2 cells of dimension r and r+1
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respectively, the second cell being attached to the first by a map of degree r. If n = 2 and r = 1
for instance, X is just the real projective space of dimension 2.

We now define K-theory with coefficients in Z/n, denoted by Kr+1(A ; Z/n), as the quotient
group KA(X)/K0(A). From the Puppe sequence, we get an exact sequence

Kr+1(A) zzc Kr+1(A) zzc Kr+1(A ; Z/n) zzc Kr(A) zzc Kr(A)

where the arrows between the groups Ki(A) are the multiplication by n.

Here is a fundamental theorem of Suslin which is the true analog of Bott periodicity.

THEOREM.  Let F be an algebraically closed field and let n be a number prime to the
characteristic of F. Then there is a canonical isomorphism of graded rings K2r(F ; Z /n)
–(µn)*r  and K2r+1(F ; Z/n) = 0.

A sketch of the proof of this theorem may be found (among other things) in [FW], lecture 8.

With this theorem in mind, one may naturally ask  if there is a way to compute K*(F ; Z/n) for
an arbitrary field (not necessarily algebraically closed). If F is the field of real numbers, and if
we work in topological K-theory instead, we know that it is not an easy task since we get an 8-
periodicity which looks mysterious compared to the 2-periodicity before. All these types of
question are in fact related to the so-called homotopy fixed point set relative to a group action.
Roughly speaking, we know9 that K(F) is the fixed point set of K(

 
F), where 

 
F denotes the

separable closure of F, with respect to the action of the Galois group G. We have a fundamental
map

φ : K(F) = K(
 
F)G  zzc K(

 
F)hG 

where K(
 
F)hG is the “homotopy fixed point set” of K(

 
F), ie the set of equivariant maps EG

zc K(
 
F) where EG is the “universal” principal G bundle over BG. One version of the

Lichtenbaum-Quillen conjecture is that φ induces an isomorphism on homotopy groups πi for i
> n-cohomological dimension of G = dn. This implies the existence of a spectral sequence

 Er
p,q

 = Hp(G; µ
n
*q) ⇒ K

2q-p
(F ; Z/n) 

if the characteristic of the field does not divide n and if 2q - p > dn. For instance, dn = 1 if n is
odd and if F is a number field : then the spectral sequence degenerates and we get a direct link
between Algebraic K-theory and Galois cohomology, quite interesting in Number Theory. By
the recent work of Voevodsky, the conjecture is true for n = 2. We shall hear more about this in

9 We now denote by K(F) the classifiying space of Algebraic K-theory mod. n : its homotopy groups are the

K-groups with coefficients in Z/n.
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Morel’s lectures. 

We should notice that the topological analog of this conjecture is true : one should replace the
classifying space of Algebraic K-theory by the classifying space of (complex) topological K-
theory where Z/2 acts by complex conjugation. Then the fixed point set (i.e. the classifying
space of real topological K-theory) has the homotopy type of the homotopy fixed point set.

Although the definition of the Kn(A) is getting relatively old now, they are quite difficult to
compute, even for such simple rings as the ring of integers Z (although we know these groups
rationally since the work of Borel on the rational cohomology of arithmetic groups). Thanks to
the remarkable work of Voevodsky followed by Bökstedt, Rognes and Weibel, we can now
compute the 2 primary torsion of Kn(Z) through the following homotopy cartesian square
(where Z’ = Z[1/2])

BGL(Z’)+
# zzc BGL(R)#

                                   d                   d             
                                                    BGL(F3)+#  zzc BGL(C)#

where the symbol # means 2-adic completion and where BGL(R) and BGL(C) are the classifying
spaces of the topological groups GL(R) and GL(C) respectively. From this homotopy cartesian
square, Rognes and Weibel found the following results (mod. a finite odd torsion group and with n
> 0 for the first 2 groups and n ≥ 0 for the others)

K8n(Z) = 0
K8n+1(Z) = Z ⊕ Z/2
K8n+2(Z) = Z/2
K8n+3(Z) = Z/16
K8n+4(Z) = 0
K8n+5(Z) = Z
K8n+6(Z) = 0

K8n+7(Z) = Z/2r where 2r is the 2 primary component of the number 4n+4.

One should also mention (in reverse historical order) that Milnor gave another definition of the
groups Kn(F), n > 2, for a field F. This definition does not agree with Quillen’s definition in general

and we should denote it by   Kn
M

(F) : it is the quotient of the tensor product F**Z ... *Z F* (n
factors) by the subgroup generated by the tensors x1* ... * xn such that xi+1 = 1 - xi for a certain i.

By the usual cup-product in Algebraic K-theory, there is an obvious map

 Kn
M

(F) zzc Kn(F)
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which is an isomorphism if n = 1 or 2 according to Matsumoto’s theorem. The next interesting case
is when n = 3. Then we have the following nice theorem of Suslin :

THEOREM.  The map    K3
M

(F) zzc K3(F) is injective and the quotient K3(F)ind fits into an
exact sequence

0  zzc µ zzc K3(F)ind  zzc B(F)  zzc 0

In this sequence, B(F) is the “Bloch group” i.e. the group which fits into the exact sequence

0  zzc B(F)  zzc P(F)  zzc 
r

Λ2(F*)  zzc K2(F)  zzc 0

Here P(F) is the quotient of the free group generated by elements [x] in F* by the “cross-ratio
relations” : 

[x] - [y] + [   x
y]  - [  

1 - y-1
1 - x-1

 ] + [  
1 - y
1 - x] = 0

and r([x] = x ∧ (1 - x). Moreover, µ is a torsion group which is deduced from the group µF of roots
of unity in F. If, following [FW], we write µF(2) as Tor(µF, µF), µ is the group µF(2) if the
characteristic is 2 and the non trivial extension of Z/2 by µF(2) otherwise.

It is a wide open problem to describe the other Kn-groups of a field in such a nice algebraic way...

One of the most striking applications of Algebraic K-theory to Differential Topology is due to
the hard work of Waldhausen which we have not touched in this report. For instance, in the
lecture 4 we introduced the space p(M) of pseudo-isotopies of M, i.e. diffeomorphisms θ of
M x [0, 1] which restrict to the identity on M x {0}. If M has a boundary, we ask moreover that
θ is the identity on ∂M x [0, 1].

THEOREM.  Let M be the ball Bn of dimension n. Then, we have an isomorphism

πi(p(M)) *Z Q – Ki+2(Z) *Z Q

for 0 ≤ i ≤ n/6 - 7. Therefore, mod. torsion elements, and within this range of degrees, we
have πi(p(M)) = Z for i = 4i - 1  and πi(p(M)) = 0 for i ≠ 4i - 1.

The same type of results applies to the group of diffeomorphisms of Bn mod. its boundary. We
get πi(Diff(B n, ∂) *Z Q = Ki+2(Z) *Z Q for the same range 0 ≤ i ≤ n/6 - 7 and n odd if i = 4k
- 1.
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For Banach algebras A, there are now two competing theories : topological K-theory on one
side which we denoted by  Kn

top
(A) previously and Algebraic K-theory Kn(A). There is a

homomorphism

φn :  Kn(A)  zzc  Kn
top

(A)

If A is the field of complex numbers and if we take K-theory with finite coefficients, we know
by Suslin’s theorem that this map is an isomorphism. Other Banach algebras of interest in
functional analysis are the so-called “stable” C*-algebras ; this means that A * k is
isomorphic to A (for a suitable notion of tensor product), where k is the ring of compact
operators in Hilbert space. A surprising result proved by the author of these notes at the end of
the 80’s is that φn is an isomorphism for n ≤ 2 (n may be negative). The question arose then
whether φn is also an isomorphism for n > 2. This question was answered positively by Suslin
and Wodzicki [SW]. In fact, they proved excision for this kind of rings A (without unit) :
Kn(A) does not depend of the ambiant ring where the ideal A lives. The idea of the proof
(assuming excision) is quite simple and is based on cup-products with Bott elements as it was
explained in the second lecture.

Let us conclude this lecture by trying to answer a frustration the algebraists might feel at this
point. Is there a way to define Kn(A) which avoids the machinery of Algebraic Topology ? For
regular noetherian rings, this definition was indeed proposed by Villamayor and myself [KV]
and is based on polynomial homotopies (much related to the A1-homotopy in Morel’s lectures).
The definition is the following. Let us consider the ring

A
n
 = A [x

0
, x

1
, ..., x

n
]/(x

0
 + x

1
 + ... + x

n
 - 1)

and the subgroup10 Gn of GL(An) consisting of matrices which are equal to the unit matrix if
one of the variables xi = 0 (for i < n). We define a homomorphism d

n
 : G

n
 zzc G

n-1
 by

setting x
n
 = 0 (if n < 0, G

n
 = {1} by convention). Then Ker dn/Im dn+1 is naturally isomorphic

to Kn(A) for n > 0. 

Exercise : check this for n = 1.

We can put these last considerations in a more sophisticated framework by considering An , n [
N, as a simplicial ring and constructing its classifying space BGL(A*) as it is usual in simplicial
topology (A is now an arbitrary ring). If we view A as a “constant” simplicial ring, we have a
map

θ : BGL(A) zzc BGL(A*)

10 We should notice that G*  is a simplicial group. In modern language, we just say that K
n+1

(A) is the n-

homotopy group of this simplicial group.
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Now ΒGL(A*) is a connected space whose fundamental group is easily seen to be GL(A)/U(A)
where U(A) is the group generated by unipotent matrices. Since we have the inclusions

[GL(A), GL(A)] = E(A)  , U(A) , GL(A)

the quotient GL(A)/U(A) is an abelian group and therefore θ leads to a map

BGL(A)+ zzc BGL(A*)

If we follow [FW] by putting KVn(A) = πn(BGL(A*)), we therefore have a homomorphism

γ : Kn(A) zzc KVn(A)

Now the groups KVn(A) are just the groups described above by polynomial homotopies and
another way of stating the previous result (due essentially to Quillen) is the following fact : γ is
an isomorphism if A is a regular Noetherian ring.
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Lecture 6

Hermitian K-theory

As we know, usual K-theory is deeply linked with the general linear group and there is no a
priori reason why we should not consider the other classical groups on an equal footing. As we
shall see, it is not only desirable, but this setting appears to be very suitable for a generalization
of Bott periodicity and the computation of the homology of classical groups in terms of
classical Witt groups.

The starting point is a ring with antiinvolution a €  
 
a together with an element ε of the center of

A such that ε 
 
ε  = 1. In most examples, ε = ¶ 1. For the sake of simplicity, we also assume the

existence of an element λ of the center of A such that λ +   λ = 1 (if 2 is invertible in A, we
might choose λ = 1/2). We refer to the book of A. Bak (Annals of Math Studies) for a more
refined notion of hermitian forms using so called “form-parameters” (when there is no λ
satisfying this condition).

If M is a right f.g.p. module over A, we define its dual M* as the group of Z-linear maps f : M

zc A such that f(m.a) =   a.f(m) for m [ M and a [ A. It is again a right f.g.p. A-module if we

put (f.b)(m) = f(m).b for b [ A. An ε-hermitian form on M is roughly speaking a A-linear map

M zc M* satisfying some conditions of ε-symmetry. More precisely, it is given by a Z-
bilinear map

φ : M x M zc A 

such that 
φ(ma, m’b) =   a φ(m, m’)b

φ(m’, m) = ε   φ(m,  m' )

with obvious notations. Such a φ is called an ε-hermitian form and (M, φ) is an ε-hermitian
module. The correspondence

  ∼φ : m’ €  [m   €  φ(m ,m’) ] 

does define a morphism from M to M* and we say that φ is non-degenerate if  ∼φ  is an
isomorphism.

Fundamental example (the hyperbolic module). Let N be a f.g.p. module and M =
N ⊕ N*. Then a non degenerate ε-hermitian form on M is given by the formula

φ((x, f), (x’, f’)) =   f(x' )  + ε f’(x)

We denote this module by H(N). If N = An, we may identify N with its dual via the map y € fy

defined by fy(x) =   x y . The hermitian form on An ⊕ An may then be written as
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φ((x, y), (x’, y’)) = 
 
y x’ + ε   x y’

There is an obvious definition of the direct sum of ε-hermitian modules and of an isomorphism
between two hermitian modules. We write εL(A) for the Grothendieck group constructed with

such modules11.

Exercise : compute εL(A) for A = R, C or H and all possible antiinvolutions and ε.

Exercise : if (M, φ) is an ε-hermitian module, prove that (M, φ) ⊕ (M, -φ) is isomorphic to
H(M)) (one has to use the existence of the λ above).

Exercise : let A be the ring of continuous functions on a compact space with complex values. If
A is provided with the trivial involution and if we take ε = 1, prove that εL(A)  is isomorphic to
the real topological K-theory of X.

Here the analog of the general linear group is the ε-orthogonal group which is the group of

automorphisms of H(An). We denote this group by εO2n(A) : it can be described concretely by
matrices in n-blocks

M =   
 



a     b
c      d

 



such that M*M = MM* = I where 

M* =        
 



τ
d      εtb

εt
c       ta

 



Example : if A = the field of real numbers R, 1O2n(A) is the classical group O(n, n) which has
the homotopy type of O(n) x O(n). By contrast, -1O2n(A) is the classical group Sp(2n, R)
which has the homotopy type of the unitary group U(n).

The infinite orthogonal group 

εO(A) = lim εO2n(A)

has the same formal property as the infinite general linear group. In particular, its commutator
subgroup is perfect. Therefore, we can perform the + construction (or, more geometrically,
consider virtual flat A-bundles with ε-hermitian forms as in lecture 5).
DEFINITION.  The higher Hermitian K-theory of a ring A (for n > 0) is defined as

11 We use here the letter L which is quite convenient, but the reader should not be confused with the definition

of the surgery groups, also denoted by the letter L.
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εLn(A) = πn(BεO(A)+)

Example. Let F be a field of characteristic different from 2 provided with the trivial involution.
Then L1(F) = 0 if ε = -1 and L1(F) = Z/2 x F*/F*2 if ε = +1

Notation. We write 
k(A) = K(A) x BGL(A)+ 

for the classifiying space of Algebraic K-theory and 

εl(A) = εL(Α) x BεO(A)+

for the classifying space of Hermitian K-theory

There are two interesting functors between Hermitian K-theory and Algebraic K-theory. One is
the forgetful functor from modules with hermitian forms to modules (with no forms) and the
other one from modules to modules with forms, sending N to H(N), the hyperbolic module
associated to N. These functors induce two maps

F : εl(A) zzc k(A)       and     H : k(A) zzc εl(A)

We define εv(A) as the homotopy fiber of F and εu(A) as the homotopy fiber of H. We
define this way two “relative” theories :

εVn(A) = πn(εv(A)) and  εUn(A) = πn(εu(A))

THEOREM (the fundamental theorem of Hermitian K-theory).  There is a natural
homotopy equivalence between εv(A) and the loop space of - εu(A). In  particular, 

εVn(A) – - εUn+1(A)

Moreover, if we work within  the framework of Banach algebras, the same statement is valid
for the topological analogs (i.e. replacing BGL(A)+ by BGL(A)top and BεO(A)+ by
BεO(A)top).

In order to get a feeling for this theorem (and believe in its validity...), it is worthwhile to work
out the classical topological examples A = R, C or H , with various involutions (and ε = ¶1).
Note in general that the connected component of εv(A) (resp. εu(A)) is the connected
component of the homogeneous space GL(A)/εO(A) (resp. −εO(A)/GL(A)). If for instance A =
R, ε = -1, we get the spaces GL(R)/-1O(R)   (which has the homotopy type of O/U) and

1O(R)/GL(R) (which has the homotopy type of O, the infinite orthogonal group). Therefore,
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the previous theorem implies that O/U has the homotopy type of the loop space ΩO, one of the
eight homotopy equivalences of Bott (see the end of lecture 2, where O has the homotopy type
of GL(R) and U the homotopy type of GL(C)). It is a pleasant exercise to recover the other
seven homotopy equivalences by dealing with other classical groups. Since the list of classical
groups is finite, it is “reasonable” to expect some periodicity...

There are two remarkable involutions12 on the H-spaces k(A) and εl(A) and it is better to
describe them in the context of classical groups. On GL(A), one takes the contragredient

M € 
t M-1

On εO(A) the involution is more delicate. The idea is to take the functor which associates to any
hermitian module (M, φ) the “opposite” module (M, -φ). On the level of groups, this means
that we have to identify the hyperbolic module H(An) = An ⊕  An with its opposite via the map
(a, b) €  (a, -b). Therefore, in terms of the orthogonal group, this involution sends the matrix 

M =   
 



a     b
c      d

 

  

  

to the matrix

 
 

 


1     0

0    -1

 

  

  
 



a     b
c      d

 

   

 


1     0

0    -1

 

 =

=     
 



a      -b
-c       d

 



Therefore, if we localize the spaces k(A) and εl(A) away from 2, we obtain spaces k(A)’ and

εl(A)’, together with splittings according to these involutions

k(A)’ ≈ k(A)’ + x k(A)’ -  and εl(A)’ ≈ εl(A)’ + x εl(A)’ -

According to this decompositon, the hyperbolic functor and the forgetful functor are both
represented by the matrix

 



1       0
0       0

 



12 One has to be careful about the precise definition of these spaces when a group is acting. For instance, the

decomposition k(A) = K(A) x BGL(A)
+

 is NOT canonical. A correct definition (among others) consists in

taking Ω(BGL(SA)
+

).
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If follows from this decomposition that, after localisation which we denote by a ‘, the space

εv(A)’ has the homotopy type of εl(A)’ - x Ωk(A)’ - , whereas the space -εu(A)’ has the
homotopy type of k(A)’ -  x Ω−εl(A)’ -. Therefore, the fundamental theorem of Hermitian K-
theory is equivalent to saying that εl(A)’ -  has the homotopy type of Ω2

- εl(A)’ -. 
The preceding considerations give us an idea of how to prove the fundamental theorem in
Hermitian K-theory after localisation (a more delicate proof, taking into account the 2-torsion is
presented in [K4]).Define the Witt groups εWn(A) as Coker (Kn(A)  zzc  εLn(A)). Then
the fundamental theorem amounts to saying that 

εWn(A) – - εWn+2(A) mod. 2 torsion

since these Witt groups are essentially the homotopy groups of the space εl(A)’ -. In order to
prove such a statement, one may follow the pattern used to prove complex Bott periodicity in the
second lecture. The base ring which plays the role of C here is the ring Z[x] with the involution
x € 1 - x. Then the scheme is the following

1) Construct non connected deloopings of Hermitian K-theory with a good notion of cup-
product. More precisely if we have a pairing of rings with involution

A x B  zzc C

we should have a pairing between the representing spaces of Hermitian K-theory, taking into
account the sign of symmetry :

εl(A)  x ηl(B) zzc εηl(C)

This is done as in usual K-theory, using the suspension of a ring. One can proceed in the same
way for Banach algebras by completing the cone and the suspension.

2) It is a well known theorem that 1W(Z[x]) –  Z – 1W(R). The key point is now to construct
elements u [ -1W2(Z[x]) and v [ -1W-2(Z[x]) such that their cup-product is 4 times a generator
of  1W(Z[x]). The construction of u and v is done very explicitly in [K4]. To check that their
cup-product is non trivial, one has to send Z [x] into R, the image of x being 1/2 and use
topological K-theory of Banach algebras. This is a nice point where Algebraic and Topological
K-theory are interacting.

3) Using u and v, we define morphisms
  

εWn(A) zzc - εWn+2(A)  and - εWn+2(A) zzc εWn(A)

50



such that the composition is 4 times the identity. This essentially concludes the proof.

Let me quote a theorem which is not published yet, but will appear soon. 

THEOREM.  There exist u’ [ -1W2(Z) and v’ [ -1W-2(Z) such that their cup-product is an
element of 1W(Z) whose image in 1W(R) – Z is 32 times the canonical generator. Now let
A be ANY ring with involution (we no longer assume the existence of λ such that λ +   λ = 1).
Then, using u’ and v’, we define as before two morphisms between εWn(A) and 

- εWn+2(A) such that their composite is 32 times the identity. In particular, 

εWn(A)*  Z[1/2] – - εWn+2(A) * Z[1/2]

for any ring A.

The fundamental theorem and the slight generalization above have nice applications for the
computation of the homology of the general ε-orthogonal group. The philosophy is that this
homology splits into two parts, one coming from the general linear group which is unknown in
general and the other coming from more accessible invariants which are ¶εWn(A) for n = 0 and
1 only (since we have periodicity). As a typical example, let us consider the homology of the
symplectic group Sp(Z) = lim Sp2n(Z) and the orthogonal group 1O(Z) = lim 1O2n(Z) .

THEOREM.  Let Z’  = Z [1/2]. Then for the homology with coefficients in Z’ , we have the
following decomposition of the homology of H*(BSp(Z)) :

H*(BSp(Z))  –  Z’ [x2, x6, ...]   * M*

where M0 = Z’  and Mi  a finite group for i > 0.

The theorem follows from the decomposition of BSp(Z)+ after localisation

BSp(Z)+  ≈ -1l(Z)’+ x -1l(Z)’ -

where πi(-1l(Z)’ -) = Z’ for i ≠ 2 mod. 4 and 0 otherwise
and πi(-1l(Z)’+) is the symmetric part of Ki(Z) after localisation which is 0 mod. torsion since
the regulator map sends symmetric elements to 0.

THEOREM.  Let Z’  = Z [1/2]. Then for the homology with coefficients in Z’ , we have the
following decomposition of the homology of H*(1O(Z)) :

H*(1O(Z))  –  Z’ [x4, x8, ...]   * M*

where M0 = Z’  and Mi  is a finite group for i > 0.
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For both groups, it is important to notice that the elements x4i+2 in the symplectic case are
determined by embedding Sp(Z) in the topological group Sp(R) which has the homotopy type
of the infinite (topological) unitary group. In the same way, the elements x4i in the orthogonal
case are determined by embedding 1O(Z ) in the topological group 1O(R) which has the
homotopy type of the product of two copies of the classical (topological) infinite orthogonal
group. The situation there is in sharp contrast with what happens for the general linear group :
by Chern-Weil theory, we know that the homomorphism 

Kn(R) zzc  Kn
top

(R)

has a finite cokernel. This is not true for the homomorphism

1Ln(R) zzc 1 Ln
top

(R)   (resp. -1Ln(R) zzc -1 Ln
top

(R)

for n ≠ 0 mod. 4 (resp. n ≠ 2 mod. 4).

Let us now turn to some computations, starting with finite fields.It has been proved by Quillen
that BGL(Fq)+ is the homotopy fiber of the map ψq - 1, where 

ψq  : BGL(C)   zzc BGL(C) 

is the map induced by the Adams operation. In the same way, for q odd, it has been proved by
Friedlander that B1O(Fq) [resp.B-1O(Fq)]  is the homotopy fiber of the map ψq - 1, where

ψq  : B1O(C)   zzc B1O(C)  [resp. ψq  : B-1O(C)   zzc B-1O(C)]

Note that 1O(C) has the homotopy type of the usual infinite orthogonal group O = injlim O(n)
and -1O(C) has the homotopy type of Sp = injlim Sp(n). This leads to the following
computations of 1Li(Fq) for i > 0 and i mod. 8

i (mod. 8)      1Li(Fq)                     -1Li(Fq)

i = 0              Z/2                                 0

i = 1        Z/2  ⊕   Z/2                           0

i = 2             Z/2                                  0

i = 3        Z/(q(i+1)/2 - 1)                Z/(q(i+1)/2 - 1)

i = 4              0                                     0
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                           1Li(Fq)                     -1Li(Fq)

i = 5                         0                       Z/2 ⊕ Z/2

i = 6                         0                            Z/2

i = 7                Z/(q(i+1)/2 - 1)          Z/(q(i+1)/2 - 1)

Friedlander has also noticed that the Witt groups 1Wi(Fq) and -1Wi(Fq) are periodic of period 8
with respect to i. More precisely, we have 1Wi(Fq) – -1Wi+4(Fq) and these are isomorphic to the
following list, starting for i ≠ 0 mod. 8

Z/2 , Z/2, 0, 0, 0, 0, Z/2, Z/2

Another case of interest is when our basic ring is Z’ = Z[1/2]. Some computations have been
done recently by  A.J. Berrick and the author. They will be published shortly. Here are the
results for i > 0 and mod. an odd torsion finite group

i (mod. 8)                1Li(Z ’)                             -1Li(Z ’)

i = 0                       Z ⊕ Z/2                                  0                                 

i = 1                 Z/2 ⊕ Z/2 ⊕  Z/2                           0

i = 2                     Z/2 ⊕ Z/2                                 Z                    

i = 3                       Z/8                                      Z/16 

i = 4                         Z                                        Z/2

i = 5                         0                                        Z/2

i = 6                         0                                        Z

i = 7                       Z/2t+1                                Z/2t+1 

where 2t is the 2-primary component of i + 1.
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Lecture 7

Cyclic homology and K-theory

Let me say a few historical words on the subject before explaining more recent achievements.
Cyclic homology (and cohomology) grew from at least 3 sources :

1) In his attempt to understand the Atiyah-Singer index theorem in noncommutative geometry,
Connes was forced to find the analog of the de Rham complex for suitable dense subalgebras of
C*-algebras (typical examples are the Schatten ideals introduced in Higson’s lectures). Connes
explained his ideas in the K-theory seminar in Paris in 1981 and with more details in his course
at the College de France in the following years. He called his groups “cyclic homology” and
denoted them by HC* (A). These groups are very much related to Hochschild homology
HH*(A), introduced 50 years ago. As a matter of fact, there is a well defined homomorphism

B : HC*(A) zzc HH*+1(A)

which plays a central role in the theory.

2) From a quite different perspective, Tsygan was trying to compute the Lie algebra homology
of infinite matrices over a ring A of characteristic 0. He proved that this homology is primitively
generated (as a Hopf algebra) by precisely the cyclic homology groups of A, introduced by
Connes independently. This result was proved also by Quillen and Loday in 1983, using
invariant theory.

3) Finally, from my work in K-theory during the late 70’s, I was looking for a kind of Chern
character for general rings. The target was then a new homology theory of rings called

“noncommutative de Rham homology” (see [K2] § 1] and denoted by  H*
dR

(A), but the relaton
with cyclic homology was unclear at the first glance. However, as it was realized in 1983 by

Connes and myself, this theory  H*
dR

(A) happens to be just the kernel of the map B : HC*(A)

zzc HH*+1(A) mentioned above. From this clarified viewpoint, HC*(A) is looking very
much as Deligne cohomology in a noncommutative context.

__________________

The purpose of this lecture is to bridge the gap between K-theory and cyclic homology, via
various types of “Chern characters”. In order not to overlap with the lectures of Berrick and
Higson, we shall take here the viewpoint of functional analysis and deal essentially with
Algebraic and Topological K-theory of Fréchet algebras (which are more general than Banach
algebras), comparing them with the corresponding cyclic homology groups.
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More precisely, let A be a unitary, but not necessarily commutative Fréchet algebra. As we have
seen in previous lectures, we can define Algebraic and Topological K-theory denoted

respectively by K
n
(A) and  Kn

top
(A). For n > 0, we have K

n
(A) =  πn(BGL(A)+) ; here BGL(A)+

denotes the + construction of Quillen applied to the classifying space BGL(A)δ, with GL(A)δ =

GL(A), viewed as a discrete group. On the other hand,  Kn
top

(A) is defined as the homotopy

group πn(BGL(A)), where BGL(A) denotes the classifying space of the topological group
GL(A) (at least if A is a Banach algebra ; the general case needs simplicial methods). The

obvious map BGL(A)+ zzc BGL(A) induces a natural homomorphism 

Kn(A) zzc  Kn
top

(A)

We shall use cyclic homology as a tool to construct an intermediary K-theory, called the

“multiplicative K-theory of A” and denoted by kn(A), which is more accessible than
Algebraic K-theory. The previous homomorphism  can be factored as

Kn(A) zzc kn(A)  zzc  Kn
top

(A)

The homomorphism Kn(A) zzc kn(A) contains various interesting invariants of the

Algebraic K-theory of the Fréchet algebra A. For instance kn(A) – C* when A = C and n odd.

The map Kn(C) zzc C*  is essentially the regulator map. We also have a k2(C∞(S1)) – C*

and the map K2(C∞(S1)) zzc C*  gives rise to the well-known Kac-Moody extension of

SL(C∞(S1)) by C* .

In order to put all this information together, we shall construct a commutative diagram with 16
entries (when n ≥ 1) and exact horizontal sequences :

            Kn
rel

(A)   zzc  K
n
(A)  zzc  Kn

top
(A)  zzc  Kn-1

rel
(A)

                       d                d              m               d

                                 HC
n-1

(A)  zzck
n
(A) zzc  Kn

top
(A)  zzc  HC

n-2
(A)

                       m                 d             d               m 

                                 HC
n-1

(A) zzc  HCn
--(A) zc  HCn

per
(A)  zzc HC

n-2
(A)

                       m                 d             d               m 
                                 HC

n-1
(A) zzc HHn(A) zc HCn(A)  zzc   HC

n-2
(A)

Most of the work describing this diagram is included in a paper by Connes and myself [CK]
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and in a paper of Weibel13. In the first row, the group  Kn
rel

(A) is defined as the nth homotopy

group of the homotopy fiber of the map BGL(A)+  zzc BGL(A). Therefore, the first exact
sequence is tautological. The other terms and arrows of this diagram will be detailed now, at the
same time we shall explain what the Chern character should be in this context.

_______________

Cyclic homology has already been defined in previous lectures. Therefore, we shall innovate

slightly by taking cyclic homology of Fréchet algebras14 instead, since it is our viewpoint here.

If *π denotes the completed tensor product of Grothendieck, we define a double complex by
the following formulas

 Cp,q(A) = A *π A*π ... *πA (q+1 times) 

for p [ Z and q [ N. The first differential b : Cp,q(A) zzc Cp,q-1(A) is the usual Hochschild
boundary

b(a
0
, ..., a

q
) =   ∑

i=0

q-1

  
(-1)i (a

0
, ..., a

i
a
i+1

, ..., a
q
) + (-1)q(a

q
a
0
, a

1
, ..., a

q-1
)

The second differential  ∂ : Cp,q(A) zzc Cp-1,q(A) is defined by 1 - t if p is even and -N if p

is odd. Here the operators t and N : Cp,q(A) zzc  Cp,q(A) are defined by 

 t(a
0
, ..., a

q
) = (-1)q (a

q
, a

0
,  ..., a

q-1
)   

N = 1 + t + ... + tq 
We therefore get the following picture :

                   d            d           d           d           d
vzz C-2,2 vzz C-1,2 vzz C0,2 vzz C1,2  vzz C1,2 vzz 

                   d            d           d           d           d
vzz C-2,1 vzz C-1,1 vzz C0,1 vzz C1,1  vzz C1,1 vzz 

                   d            d           d           d           d
vzz C-2,0 vzz C-1,0 vzz C0,0 vzz C1,0  vzz C1,0 vzz 

The “total” complex of this diagram is defined by a product formula :

 Cn
per

(A) =   ∏
p+q= n 

C
p,q

(A)

We denote by  HC*
per

(A) the (periodic cyclic) homology of this complex. The restriction of this
double complex to the first quadrant defines a complex whose homology HC* (A) is by
definition the cyclic homology of the Fréchet algebra A (taking the topology into account ). The
restriction to the second quadrant (denoted   C*

--(A)) of the double complex gives the definition

13 C. Weibel. Nil K-theory maps to cyclic homology. Trans. AMS 303 (1987), 541-558.
14 For instance, a Banach algebra or the algebra of C∞ functions on a manifold.
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of the negative cyclic homology  HC*
--(A). 

We have an exact sequence (see [L1] p. 160 for instance) :

0  zzc  ò
r  

1 HC
n+2r+1

(A) zzc  HCn
per

(A) zzc   ò
r  

HC
n+2r

(A) zzc 0

Here the projective limits of order 0 or 1 are computed using the periodicity operator S of
Connes [C1]. We should notice that the homology spaces obtained this way are not Hausdorff
in general.

For technical reasons which will appear later on, we shall truncate the complexes En =  Cn
per

 
or

 Cn
--  by 0 if n < 0 and Ker(E

0 
 zzc E-1

) if n = 0, the other En staying unchanged. For n ≥ 0,

the groups  HCn
per

 and  HCn
--
 are still the same as before. Finally, we notice the following diagram

with two exact sequences

HC
n-1

(A) zzc  HCn
--
(A) zzc  HCn

per
(A) zzc HC

n-2
(A) 

                  m                d               d                m                
                         HC

n-1
(A) zzc HH

n
(A) zzc HC

n
(A)  zzc  HC

n-2
(A)  

Another way to introduce cyclic homology is to consider the double complex (B, b) of Connes
(cf. [L1] p. 56 for instance). It can be written over 3 quadrants in the following way  :

                                                            D2  vzz  D1  vzz 
B    D0

                          d          d              db
                                          D2vzz   D1 vzz   D0

                          d          d
           D2 vzz  D1 vzz  D0

where we put in general Dq = Cp,q = A
*π

q+1
 . If we truncate as before, we can restrict it to the

two first quadrants. We denote by B (resp. b) the horizontal arrows (resp. the vertical ones).
The bidegrees are obvious (the D0 of the second line has bidegree (0, 0)).

We may normalise this double complex by replacing Dq
 by Ωq = Ωq(A) = A *π 

 
A *π ...*π

 
A

(q copies of 
 
A = A/C.1). The bicomplex
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                                                            Ω2  vzz  Ω1  vzz 
B  Ω0

                          d          d               db
                                         Ω2vzz   Ω1 vzz   Ω0

                          d          d
           Ω2 vzz  Ω1 vzz  Ω0

also enables us to compute cyclic homology and its variants ( HC*

per
,  HC*

--,...).

Finally, there is a last variant of cyclic homology, called non commutative de Rham homology,
mentionned at the beginning, which we shall define now. The direct sum of the Ωn(A) above is a

differential graded algebra : we write formally an element of A *π 
 
A *π ...*π

 
A as a linear

combination (infinite since we are dealing with the topological case) of expressions  of the type

a0 da1... dan 

and we multiply them formally using the Leibniz rule : for instance, (x.dy).(z.dt) = x.d(yz).dt -
xy.dz.dt. The differential is defined simply by d(a0 da1... dan) = 1.da0 da1... dan. Let us now

consider the algebra  
∼
A obtained by adding a unit to A and the quotient 

 
Ω

*
( 
∼
A) of Ω* ( 

∼
A) by the

C-module generated by commutators λω - ωλ, λ [  
∼
A, and their differentials. This C-module is

easily seen to be the quotient of the algebra 
 
Ω

*
( 
∼
A) by the module generated by graded

commutators.

THEOREM ([C1][K2]).  We have a natural isomorphism

  Hn
dR

(
∼
A) – Ker[ B : HCn(A)  zzc HHn+1(A)  ]

From the classical proof of the Poincaré lemma in de Rham cohomology, we deduce that  Hn
dR

 is

a homotopy invariant. More precisely, we have   Hn
dR

(
∼
A) –  Hn

dR
( 
∼
A  * C ∞ (R )). As a

consequence, we deduce from the previous theorem that Ker B is also a homotopy invariant
which in turn implies the following theorem :

THEOREM.  Let Ar be the algebra of C∞ functions on the canonical simplex15 ∆
r
 with

values in A, interpreted as the completed tensor product C∞(∆
r
) *π A. Then, the obvious

map A zzc A
r
  induces an isomorphism  HCn

per
(A) ≈  HCn

per
(A

r
 ).

15 We may avoid “angle problems” by defining ∆
r 

as the affine space of points with coordinates (t
0
, t

1
, ..., t

r
)

in R
r+1

 such that t
0
 + t

1
 + ... + t

r
 = 1 (we do not assume that the ti are ≥ 0. The face and degeneracy operators

enable us to define a simplicial ring from the C∞(∆
r
). If X is a manifold and A a Banach algebra, it is a well

known fact that C∞(X) *π A may be identified with the algebra of C∞  functions on X with values in A.
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In order to go further, we need a “differential form” version of the Dold-Kan correspondance.

If we denote by c the category of chain complexes (positively graded and assumed to be C-

vector spaces, which is our framework) and by g the category of simplicial C-vector spaces,
they are equivalent. In particular, we can associate to a chain complex (Cn) a space such that its
homotopy groups are the homology groups of the chain complex. There are many choices of

spaces16 which are equivalent up to homotopy. The one which is most suitable for our purpose

is the following. Let Ω*(∆r) be the DGA of usual C∞ differential forms on the r-simplex. We
associate now to (Cn) a double simplicial complex defined on the second quadrant  by

Dp,q(∆r) = Ω-p(∆r)
 
*C Cq

The two differentials (which decrease the degrees p and q by 1) are induced by the differential

on Ω-* and on C*. To this double complex we associate the simplicial complex defined by

Cn(∆r) =  ⊕
p+q=n 

Dp,q(∆r) =  ⊕
q≥n 

Ωq-n(∆r)*Z Cq

where n [ Z. There is a remarkable simplicial subgroup of C0(∆*) : it consists of closed chains

of total degree 0 : it is a subgroup of the direct sum Ωq(∆*) *C Cq . The face and degeneracy

operators are induced by those on Ωq(∆*). We call it DK(C*).

THEOREM.  The functor DK : C*   € DK(C*)  from c  to g is inverse up to homotopy to

the well-known category equivalence F : g zzc c . We shall  simply write  |C*|  f o r

DK(C*)  and we call it the “simplicial realization” of the chain complex C*.

Let X*  be a simplicial abelian group and let C*  = F(X* ) be the associated chain complex.
According to the previous theorem, there should be an explicit homotopy equivalence 

φ : X* zzc  |C*|
This may be applied to the particular case when X*  is the C-vector space with basis the
simplicial set BG or EG, when G is a discrete group. To be more precise, let C* = C*(EG) be
the “homogeneous” Eilenberg-Mac Lane chain complex defining the homology of BG =
G\EG. Then we define a simplicial map

Φ : BG zzc  |C*|

by the following formula for g = (g0, g1, ..., gr) of degree r in BG =  G\EG

16 M. Karoubi. Formes différentielles et théorème de Dold-Kan. Journal of Algebra 198, p. 618-626 (1997).
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        Φ(g) =
 
 ∑
i

 xi ⊗  gi +   ∑
(i, j)

 xi dxj ⊗  {gi,  gj}  + 
  

 ∑
(i,j,k)

 xi dxj ∧ dxk * {gi, gj, gk} + ...

where{gi, gj}, {g i, gj, gk}, etc... are the corresponding classes in C*(BG). Here xi dxj, 
xi dxj ∧ dxk, etc... are the usual differential forms on the standard r-simplex ∆r with the xi as
barycentric coordinates. It is easy to check that φ is the expected map.

__________________

With these definitions, let us now describe the Chern character in Algebraic K-theory. For this

purpose we consider the double complex  
∼
C

**
(G) defined in [K2] and C

**
(G) = G∆ 

∼
C

**
(G) the

quotient complex by the left action of G. The definition of this double complex follows the
same pattern as C** (A), using the obvious cyclic module associated to the bar construction of

EG. The doubles indices in C
p,q

(G) or  
∼
C

p,q
(G) are in the same range as before : p [ Z, q [ N.

In the same way, we put

 Cn
per

(G) =   ∏
p+q=n

 C
p,q

(G) for n > 0 and   C0

per
(G) = Ker [  ∏

p+q=0
 C

p,q
(G) zc   ∏

p+q=-1
 C

p,q
(G) ],

and analogous definitions for  Cn
--(G) if n ≥ 0. In particular, we define HC*(G)  as the homology

of the total complex associated to the previous double complex restricted to the first quadrant.
With the method described in [K2], it is easy to show, using classical homological algebra (see
[K2] or the book of Weibel) that 

HCn(G) = Hn(G) ⊕ Hn-2(G) ⊕  ...  

 HCn
- (G) =    ∏

k≥0
 Hn+2k(G)

 HCn
per

(G) =  ∏
k

 Hn+2k(G)

According to the previous considerations, we therefore have well defined maps of simplicial
complexes

BG zzc  |C*(G)|zzc   |C*
- (G)| 

 In particular, if G = GL(A), we get a morphism   |C*
- (G)| zzc    |C*

- (
∼
A)| . If we apply the +

construction, we obtain a well defined map up to homotopy BGL(A)+ zzc    |C*
- (

∼
A)| zzc

 |C*
- (A)| and therefore a homomorphism 

Kn(A) zzc   HCn
--(A) 
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defined by Hood and Jones17, generalizing the results obtained in [K2], with the same method.

In order to define the same type of invariants in topological K-theory, we just apply the same
ideas, but with G = GL(A) replaced by the simplicial group G*  = GL(A* ). We write the
composition

BG* zzc  |C*(G*)| zzc   |C*
- (G*)|  zzc   |C*

- (A*)| zzc  
 

 C*

per
(A*)

 



Now comes the crucial fact : since periodic cyclic homology is homotopy invariant, the space

 
 

 C*

per
(A*)

 

   is homotopically equivalent to the space  

 

 C*

per
(A)

 

  and finally we get the Chern

character in topological K-theory defined as a map

BGL(A)  zzc  
 

 C*

per
(A)

 



By taking homotopy groups, one finally gets a homomorphism

 Kn
top

(A) zzc  HCn
per

(A)

THEOREM-DEFINITION. Let G* be the simplicial group GL(A*) and let k(A) be the
homotopy fiber of the map

BG
*
  zzc  

 

 C*

per
(A)

 

  zzc  

 

 C*

per
(A)

 

 q |C*

--(A)|

For n > 0, the multiplicative K-theory groups  k
n
(A) are then defined as the homotopy

groups of the space k(A). We have an exact sequence

 Kn+1

top
(A) zzc HC

n-1
(A) zzc k

n
(A) zzc  Kn

top
(A) zzc HC

n-2
(A)

Il is easy to see that the composite map BGL(A)δ  zc BGL(A* )  zc  
 

 C*

per
(A*)

 

  ≈

 
 

 C*

per
(A)

 

   can be factored through  |C*

--(A)|. We deduce from this observation a canonical map

from BGL(A)δ to k(A).In the same way, if we denote by g the homotopy fiber of the map

17 C. HOOD and J.D.S. JONES. Some algebraic properties of cyclic homology groups. K-theory 1 (1987),

361-384.
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BGL(A) zzc BGL(A
*
)

we have a canonical map from g to 
 |C*-1(A)|. Thanks to the + construction, we can write the

following diagram of homotopy fibrations (with f = g+) :

  ΩBGL(A*)  zzc   f  zzc  BGL(A)+  zzc  BGL(A*)

                   d                 d               d                 d

                 ΩBGL(A*) 
 
zc Ω |C*-2(A)| zc  k(A)    zzc   BGL(A*)

Applying the πn functor, we find part of the commutative diagram at the beginning

   Kn
rel

(A)   zzc  K
n
(A)  zzc  Kn

top
(A)  zzc  Kn-1

rel
(A)

                   d                d               m                d

                            HC
n-1

(A) zzc k
n
(A) zzc   Kn

top
(A)   zc  HC

n-2
(A)

The commutativity of the diagram

  HC
n-1

(A)  zzck
n
(A) zzc  Kn

top
(A)  zzc  HC

n-2
(A)

                    m                d              d               m 

                            HC
n-1

(A) zzc  HCn
--(A) zc  HCn

per
(A)  zzc HC

n-2
(A)

is a consequence of the homotopy fibrations :

k
n
(A)      zzc BGL(A*)    zzc  

 

 C*

per
(A)

 

 q |C*

--(A)|
                   d                 d                      d

                  |C*
--(A)|   zzc  

 

 C*

per
(A)

 

    zzc   

 

 C*

per
(A)

 

 q |C*

--(A)|

Finally, the commutativity of the diagram

   HC
n-1

(A) zzc  HCn
--(A) zc  HCn

per
(A)  zzc HC

n-2
(A)

                    m                 d              d               m 
                            HC

n-1
(A) zzc HHn(A) zc HCn(A)  zzc  HC

n-2
(A)

follows from the classical definitions (cf. [L], p. 158 for instance).
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