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Lecture 1
The beginning of K-theory : Grothendieck, Atiyah and Hirzebruch

In order to formalize his work on the Riemann-Roch theorem (in the spirit of Hirzebruch),
Grothendieck introduced a new contravariant functor [BS] defined on the category of non
singular algebraic varieties X. He named this functor K(X), the “K-theory” of X. It seems the
terminology “K” came out from the German word “Klassen”, since K(X) may be thought of
as a group of “classes” of vector bundles on X. Grothendieck could not use the terminology
C(X) since his thesis (in functional analysis) made an heavy use of the ring C(X) of continuous
functions on the space X.

In order to define K(X), one considers first the free abelian group L(X) generated by the
isomorphism classes [E] of vector bundles E on X. The group K(X) is then the quotient of L(X)
by the subgroup generated by the following relations

[ET+[E"] = [E]

when we have an exact sequence of vector bundles

0 E’ E E” 0

Exercise: compute K(X) when X is a Riemann surface in complex Algebraic Geometry.

This group K(X) has nice algebraic properties, very much related to the usual ones in
cohomology. As a matter of fact, the theory of characteristic classes, e.g. the Chern character
denoted by Ch - which we shall review later on - might be thought of as defining a functor from
K(X) to suitable cohomology theories. For instance, if f =%— Y is a morphism of
projective varieties, we have a “Gysin de”: K(X) —— K(Y) which is related to the

usual Gysin maﬂ.’),';| in rational conomology by the following formula

Ch(f (x)) = f(Ch(x). Todd (D)

where x is an arbitrary element of K(X) and Todd(f) is the “Todd class” (see the third lecture
for more details) of the normal bundle of f, as introduced by Hirzebruch [AH2]. More precisely,
the Chern character Ch is a natural transformation from K(X) to the even Betti cohomology
groups HY(X ; Q) (which depend only on the topology of X) and Todd(f) is well defined in
terms of Chern classes of the tangent bundles associated to X and=YK(X), Ch(x) is the

sum of homogeneous elementg@h Chy(x), ..., where CH(x) = H2”(X ; Q).

The formula above shows that Todd(f) is the defect of commutativity of the following diagram
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KX) — s K(Y)

ch Ch|

H

f .
& Q—— H™Y; Q)

As a matter of fact, the group K(X) is hard to compute in general : it is just a nice functor used
for a better understanding of characteristic classes. This “Algebraic K-theory” was investigated
more deeply by other mathematicians like Bass, Milnor, Quillen... at the end of the 60’s and will
be studied in detail during the lectures 4 and 5.

Just after the invention of K(X), Atiyah and Hirzebruch considered a topological analog named
KtOp(X) - now for an arbitrary compact space X - by considetapplogical vector bundlés
instead oflgebraic vector bundles. The main difference between the two definitions lies in the
fact that an exact sequence of topological vector bundles

0 E’ E E” 0

always splits. Therefore, tR‘O(X) is just the symmetrized group of the semi-group of
isomorphism classes [E] of vector bundles, with the addition given by the rule [E] + [F] =

[EO F], where EOJ F is the “Whitney sum” of the vector bundles E and F. It is clearly a
contravariant functor of X. Moreover, every vector bundle is a direct summand in a trivial vector
bundle (i.e. of the type X £", with an easily guessed vector bundle structure). This fact
enables us to computet%(X) in purely homotopical terms. More precisely, let us define
K'°P(x), the reduced K-theory of X, as the cokernel of the obvious nag°P(Point)

— KtOp(X) induced by the projection X—— Point. Then IE(X) may be identified with

the group ofstable isomorphism classes of vector bundles : two vector bundles E and E’ are
stably isomorphic if E1 T = E’ OO T’ for suitable trivial bundles T and T'. It follows that
Kt°p(X) is isomorphic to the set of homotopy classes of maps from2Xxt®&U, where BU is

the “infinite Grassmannian” , i.e. the direct limit of the Grasmannia€'® with obvious
inclusions between them.

Here is another important difference between the two grouﬁgp(X%j is much easier to
compute that its algebraic counterpart K(X). For instanég.'?(x)@ Q is isomorphic to Iglv(X

: Q), where HY(X ; Q) denotes the rational even Cech cohomology groups of X via the
topological Chern character. There is in fact an obvious factorization of the algebraic Chern

1 complex vector bundles, in order to fix the ideas.



character
K(X) —— K'PX) —— H®(X; Q)

Therefore, if X is a finite CW complex, we find thatPRX) Is isomorphic to GJ Zd, where d
is the dimension of the vector spac%v(B( ; Q) and G is a finite group.

Exercise: compute K2P(X) when X is a sphere”Swith n< 4.

A famous theorem of Bott which we shall see in the next lecture is the follovﬁﬁ‘ﬁ)csn) is
isomorphic taZ if n is even and = 0 if n is odd. We shall see at the end how the Chern character
enables us to construct a non trivial stable bundle dvah®n n is even. The idea of the proof

of the isomorphism BP(X) @ Q = H®Y(X ; Q) is to notice tha'°P(X) @ Q andH®Y(X;Q)

are half-exact functofsand that the Chern character induces an isomorphism when X is a
sphere. It is now a general statement that in such a situation the two half-exact functors are
indeed isomorphic (for the details see for instance the Cartan-Schwartz seminar 1963/64,
exposeé 16).

In order to make the Chern characté?p&() — H2n(X ; Q) more explicit, let us describe it
when X is a &-manifold of finite dimension and let us imb& in C via the group
homomorphism\ - (2iT[)”)\. The vector space%L](X ; C) is then isomorphic to the de Rham
cohomology of differential forms of degree n. On the other hand, it is not difficult to show that
the classification of topological bundles on X is equivalent to the classificatiold diuhdles.
Moreover, any @-bundle E is a direct summand in a trivial bundle as in the topological
situation : this means there is &@nap p : X— M\ (C) such that for x in X, the fiber,&s

the image of p(x), with p(R)= p(x).

Now, as popularized a few years ago in the framework of cyclic homology and non
commutative de Rham homology, the Chern character of E, denoted I&),G# the
cohomology class of the trace of the following product of matrices with entries differential
forms

Chn(E) :m Tr(pdp ..... dp)

(2n factors dp). Itis a nice exercise to show that we are dealing with a closed differential form
and that its cohomology class is just a function of the class of I':toﬁ()«). This is the
“modern” version of the Chern character which we shall see in lecture 7.

2 According to Dold, a homotopy (contravariant) functor F is called half-exact if we have an exact sdeR@ide
— F(X) — F(Y) each time we have a closed subspace Y of the compact space X.



In order to check the non triviality of the Chern character as defined above, we choose the
example of the Hopf bundle over the sphere X wBich we write as the set of point (X, y, z)
such that & + y2 + 7 = 1. We then put p = (1 + J)/2 , where J is the involution of the trivial
bundle X xC? defined over the point (x, y, z) by the following matrix

x+iyE
ox-y -7

The Hopf bundle is then the image of the projection operator p. The explicit computation of
Ch(E) gives the canonical volume form on the sph@re‘l’ﬁerefore the Chern character (as a
cohomology class) is non trivial in general.

As it was pointed out by Hirzebruch, the Chern character can be caracterized by the following
axioms (on the category of differentiable manifolds for instance)

1) Naturality : if f : X— Y is a C°-map and if E is a vector bundle over Y, then(€(E)) =
t(Chy(E)).
2) Additivity : Ch(E O F) = Ch(E) + Ch(F)
3) Normalisation : if L is the canonical line bundle ovg(® (which restricts to the Hopf
bundle over the spher@ S Py(C)), one has

Chy(L) = X'/r!
where X is the unique element o:f(Fln(C)) which restricts to the volume form of.S

More generally, using the Chern character and Clifford algebras, we are going to show that Ch
is non trivial when X is the spher@'é(cf. [K2], chapter 1) by choosing an explicit vector
bundle on §" (as a matter of fact the generatorl%(SZ”) = Z). More precisely, let E be a
complex vector space of finite dimension and {et.ee,+1be automorphisms of E such that

(&)’ =1

eyep = -g3€y fora #

€1 &ni1= 1"

An example of such a data is given by the exterior algeBfa= AC 5 H NAC (n factors),

where the couple g4, &,) is acting on the"-factor AC = C? via the (2 x 2) matrix defined
above. The last automorphismyg; is of course determined by the equatign.@,1=1". It

can be shown, using the theory of Clifford modules, that any such E is in fact isomorphic to a
direct sum of copies of this example.

Let now X be the spherez%z {(X1s s Yon+1 | Z (xi)2 = 1} and let V be the vector bundle
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which is the image of the projection operator p = (1 + J)/2 on the trivial bundle X x E, where

J=Xx e+ ..+ %n10n+1

Modulo an exact form, we have
n!@in" chyv) = 22" 113"

with (dJ)zn = (Xm € + ... d)Qn+1 eZn+1)2n

Since the entries (¢gxe,) commute which each other, we may write the previous expression as
the following sum

(2n) !y, (dxg e ... {dxq &} ... dXan+1€on42)

where the symbol {dx &, } means that we omit ¢dxe,. If we expand it, we find

AT @)Y L) dxg - {dXg) - dXonea B

Therefore,

Trace [J.(d5"] = -i" (2n) ! >, (-1)% X dXq ...{dXg} ... AXopeq

modulo an exact form. Since the expressgn (-1)" xg dxq ...{dXg} ... AXopep iS the
volume form of § which we denote by VoI(S), we find finally that

V= e

2n+1 nl (21_[)

In our example E AC" above, we have dim(E) £ 2Therefore, the integral of GtV) on the
sphere &is equal to 1 which implies that ({V) # 0 in the cohomology of 8 (and is in fact

a generator of the integral class).

Vol(S*").dim(E)

Let us come back now to the general theory K(X) of Grothendieck where, for simplicity, we
assume X to be @omplex projective variety. We may view X as a subvariety of the complex
projective spaceeC) for a certain n. As it is well known &) may be written as the quotient

of the group Gk+1(C) by the subgroup consisting of matrices of the type



b ¢

where ais an (n x n) matrix, c is a (1 x 1) matrix and finally b is an (n x 1) matrix.
Over B|(C), there is an affine variety P = P{(fp”+l) consisting of projection operators p in
Mp+1(C) such that Tr(p) = 1, which may also be written as the homogeneous space
GLp+1(C)/H, where H is the subgroup G(C) x GL4(C). Note that P is indeed an affine
variety in My,1(C) = CM D Dgince it is defined by the following equations

Z PijPjk = Pk and Z pj =1
j i
Let now X’ be the pull-back variety defined by the cartesian square

X' —— GLy+1(C)/GL(C) X GLy(C) = P
l

X —— RO
[the second vertical map associates to a projection operator p its image Im(p)]

Then X' is called a “torsor” over X (there is a vector bundle acting simply transitively on the
fibers) and Grothendieck proved that K&KK(X’). But now X' is an affine variety as a closed
subvariety of P and Serre has shown that the category of algebraic vector bundles over X' is
equivalent to the categoity(A) of finitely generated projective modules over the ring A of
coordinates of X'. For example, if X ,(€) itself, A is the algebra generated by the

elements p1<i, j<n+1, subject to the relationgpij.pjk = pk and Z pj = 1. Thereis a
j ]

topological analogy which we shall see in the next lecture, but already this point of view gives
rise to several questions :

1) What will be the analog of the Chern character if we work with A-modules instead of vector
bundles ? As we shall see in Lecture 7, this opens a wide range of applications belonging to the
new domain of “noncommutative geometry”, linked with homology and cohomology theories
for rings.

2) Since the target of the Chern characteven cohomology, this suggests that there might be
“derived functors” K(A), n= Z, for which Ky(A) is just the first group. However, we shall see
later on that this question is much more complex that it looks at first glance. For instance, the
topology of A (if any) plays an important role : this is not seen of course in the definition of
K(A).



Finally, K-theory has nice cohomology operations coming from exterior powers of bundles or
modules (more geometric in nature than their conomology counterparts which are the Steenrod
operations). These operations gave spectacular applications of K-theory in the 60’s. For
instance, J.-F. Adams was able to compute the maximum number of independent vector fields
on the sphere"using these methods. Other applications were found in global analysis and in
the theory of C*-algebras. We shall review all these applications in lectures 2 and 3.

At this point in history we have two theories, quite different in nature, coming from Algebraic
Geometry and Algebraic Topology. We shall analyse the topological theory first in the spirit of
noncommutative geometry. However, we shall see during this historical sketch that the algebraic
and topological methods are in fact deeply linked together.






Lecture 2

K-theory of Banach algebras. Bott Periodicity theorems

Let E be a complex vector bundle over a compact space X et let A be the Banach algebra C(X) of
continuous functions f : X—— C (with the Sup norm). If M F (X, E) denotes the vector
space of continuous sections s +Xx— E of the vector bundle E, M is clearly a right A-
module if we define s.f to be the continuous sectigns{x)f(x).

As a matter of fact, since X is compact, we may find another vector bundle E’ such that the
Whitney sum EJ E’ is trivial, say X xC". Therefore, if we denote M’ E(X, E’), we have

M O M’ = A" as A-modules, which means that M is a finitely generated projective A-module.
The theorem of Serre and Swan [K1] says precisely that the correspondanbeiiduces a
functor from the categor (X) of vector bundles over X to the categd®fA) of finitely
generated A-modules, which is in fact an equivalence of categories. In particular, isomorphism
classes of vector bundles correspond bijectively to isomorphism classes of modules.

These considerations lead to the following definition of the K-theory of a ring with unit A : we
just mimic the definition of I‘@p(X) by replacing vector bundles by (projective finitely
generated) A-modules. We call this group K(A) by abuse of notation. It is clecolyaaiant
functor of the ring A (by extension of scalars). We have of coutn%p@k) = K(A) , when A =

C(X).

As it was done in usual cohomology theory, one would like to “derive” this functor K(A) and
try to define Ky(A), n = Z, with some nice formal properties and of courgéNK= K(A). This

task is in fact more difficult than it looks for general rings A, as we shall see in Lectures 4 and
5.

On the other hand, if we avoid too much generality by working in the category of (complex)
Banach algebras, there is essentially one way to do it (at least fdj.n

Firstly, we extend the definition of K(A) to non necessarily unital algebras A by adding a unit to
A. For this purpose, we consider the vector sp@de A provided with the “twisted”
multiplication defined by

A, @), a)=AAN, Aa +aN +a.a)
It now has a unit = (1, 0). We call this new alge%ra’here IS an obvious augmentation

A—C

and we define K(A) as the kernel of the induced ma%) K—— K(C)=Z. Itis easy to see
that if A already has a unit, we recover the previous definition of K(A).
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Exercise: Let ¥, be the ideal of compact operators in a Hilbert space H. Prove that &(
K(C) = Z.

Secondly, for re N, we define K(A) as K(A,), where A, = A(R") is the Banach algebra of
continuous functions f = f(x) frorR" to A which vanish when x goes ¢a

Exercise: show that K(A) = injlim TH(GL(A)) = TH(GL(A)), where GL(A) is the direct limit
of the GL,(A) with respect to the obvious inclusions &) < GLp+1(A).

Exercise: let A = C(X), where X is compact. LetYoe the one point compactification of X (X
with one point added outside) and let Y'1(>S+) , the A suspension of X Show that I@D(Y)

is isomorphic to K(A) O Z (hint : notice that C(Y) is isomorphic t&(x x R™. In particular
K'P(S" is isomorphic to K(C) O Z.

The following theorem is not too difficult to prove. It can be extracted easily from [K1]

THEOREM. The functorK,(A), n = N, are characterized by the following properties

1) Exactness for any exact sequence of Banach algebras (whérkas the quotient norm
andA’ the induced norm)

0 A A A” 0

we have an exact sequenc&efroups

Kn+1(A) = Kpya(A) —— Kp(A) —— Ky(A) —— K(A")
2) Homotopy: K(A(l)) £ K,(A), whereA(l) is the ring of continuous functions on the unit
interval | with values irA.
3) Normalization: Ky(A) is just theK-groupK(A) defined above
Another type of K-groups which will be quite useful later on, although more technical, is the
relative K-group associated to a functorplf i#(A) —— (A”) is an additive functor (with
some extra topological conditions), one can also define groyfig Mvhich fit into exact
sequences

Knea(A) — Kpia(A) —— Kp(@ —— Kp(A) —— Ky(AY)

For instance, ifp is asssociated to an epimorphism of Banach algebrasA> A” as above,
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Kn(® may be identified with K(A’). Another case of interest is when A (resp. A”) is the ring
of continuous functions on a compact space X (resp. a closed subspace X”). Then, the group
Kn(@)is also written K(X, X”) or K™(X, X”).

The functors K(A) have some other nice properties like the following : a continuous bilinear
pairing of Banach algebras

AxC—— B
induces a “cup-product”
Ki(A) & Kj(C)—— Kij4(B)
In particular, if C =C, the field of complex numbers and if A = B, we have a pairing

Ki(A) @ Kj(C)— Kij4j(A)

Exercise: compute this pairing when AG with i and j< 2.
We can now state Bott periodicity theorem in the setting of Banach algebras.

THEOREM. The groupK,(C) is isomorphic t&Z and the cup-product with a generatog
induces an isomorphisf: K,(A) —— Kj;+o(A) for any Banach algebra.

This theorem has a spectacular application in a pure homotopy setting : let GL(A) be the infinite
linear group which is the direct limit of the GR) with respect to the obvious inclusions. Then

an analysis of the group K(A{} shows that it is isomorphic to the homotopy group

Th.1(GL(A)). More precisely, if A =C for instance, the group K(RM) is linked with the
classification ofstable complex vector bundles over the sph8re/t8ch are determined by
homotopy classes of “gluing functions” 16— GL(A). For a general Banach algebra

A, one just has to consider bundles over the sphere whose fiber$ iastead ofC'. The
previous theorem then has the following corollary :

COROLLARY . LetA be any complex Banach algebra. Then we have isomorphisms

TH(GL(A)) = Te,o(GL(A)) = K‘fp(A) if i is even
T5(GL(A)) =T5:0(GL(A)) = K(A) ifi is odd ; in particular, we have
T (GL(A)) = K(A)

As a matter of fact, the last isomorphism (inspired by Atiyah and Hirzebruch) is the basis of the
proof of the theorem. The idea is to show that any loop in GL(A) can be deformed into a loop
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of the type

O pz+t1l-p
where p is an idempotent matrix and z'2 esuch an idempotent matrix p is of course
associated to a projective module. A more conceptual proof will be sketched at the end of this
lecture.

Remark. If A = C, the groupsy(GLy(C)) = T§(U(r)) stabilize and are equal tq K(C) if
r>if2.

Exercise.Prove the following facts :

1) KPP(S") is isomorphic t& if n is odd and t& O Z if n is even.

2)TE(GL(C)) =m(U(r))=Zifiisodd andi>r/2and =0ifiis even andi>r/2

3) K'%P(x) 0 KP(x) = KPP(X x S9) = KP(X x S9) = KP(X x S2") for any compact space
X.

In the previous considerations, we were working with modulesamraplex Banach algebras

and their topological counterparts which are complex vector bundles. We could as well consider
real Banach algebras and real vector bundles. Most considerations are valid in the real case, with
the notable exception of the last theorem : in this case, we have an eight-periodicity and not a
two-periodicity. More precisely :

THEOREM. The groupKg(R) is isomorphic t&Z and the cup-product with a generator
induces an isomorphism between the grokpéA) and K, +g(A) for anyreal Banach
algebraA.

For instance, the groups,(R) are equal t&, Z/2,7Z/2, 0,Z, 0, O, O respectively forn =0, 1, ..,
7 mod. 8.

The original proof of this theorem used Morse theory [Bott]. Other elementary proofs (whom
we mentioned already) were found by Atiyah and Hirzebruch , Wood and the author, the last
one in the framework of Banach algebras and Banach categories. See [At], [K1] and [Wo0] for
references.

As a matter of fact, Bott proved other theorems in the real case using loop spaces of
homogeneous spaces. He gave the following impressive list of homotopy equivalences :
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Q(Z x BGL(R)) = GL(R)
Q(GL(R)) = GL(R)/GL(C)
Q(GL(R)/GL(C)) = GL(C)/GL(H)
Q(GL(C)/GL(H)) =Z x BGL(H)
Q(Z x BGL(H)) = GL(H)
Q(GL(H)) = GL(H)/GL(C)
Q(GL(H)/GL(C)) = GL(C)/GL(R)
Q(GL(C)/GL(R)) = Z x BGL(R)

One way to understand these eight homotopy equivalences is to use Clifford algebras as it was
pointed out for the first time by Atiyah, Bott and Shapiro. As a matter of fact, if we denotg by C
the Clifford algebra oR" provided with the quadratic formj()g +...+ (xq)z, there is a kind of
“periodicity” of the G, : we have graded algebra isomorphisms

Cn+s= M16(Cp)
On the other hand, the complexified Clifford algebras have a 2-periodicity
Cn+2® C= M2(Cn) @ C

These remarks gave rise to an elementary proof of the previous 8 homotopy equivalences and
the fact thatt;(GL(A)) = Kg(A) [K1] [Wo]. As a matter of fact, a uniform way to state these
homotopy equivalences is to write (up to connected components)

GL(C/GL(Cp.p) = QIGL(Cps)/GL(C)]

A second way to interpret Bott periodicity is to use Hermitian K-theory where one studies
finitely generated projective modules provided with non degenerate Hermitian forms. This
theory is associated to other classical Lie groups like the orthogonal group or the symplectic
group. We shall investigate this theory in the sixth lecture and extend it to a discrete context
(which is not possible with the Clifford algebra interpretation).

Before going back to classical Algebraic Topology, it might be interesting to give a conceptual
proof of Bott periodicity (at least in the complex case).

Let us assume we have defineg{A&), not only for ne N, as we did before, but also forrz.
Let us assume also that the pairing

Ki(A) @ Kj(C)— Kj4(B)

roughly described above, extends to all values of i andZ iand has some obvious
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“associative” properties. Finally, let us suppose the existence of a “negative” Bott eleynent u
in K_5(C) such that the cup-product with gives the unit element 1 ingtC) = Z.
With these hypotheses, we may define an inverse

B KpsoA) —— Kx(A)

of the Bott map
B: Kna(A) —— KpiA)

It is defined by the cup-product withoult is clear that the compositions fwith B’ both

ways are the identity.

The price to pay for this proof is of course the construction of this “negative” K-thgoy K

for n < 0. This may be done, using the notion of “suspension” of a ring which is in some sense
dual to the notion of the suspension of a space. More precisely, we define the “cone” CA of a
ring A to be the set of all infinite matrices M 5;Jai, j = N, such that each row and each
column only contains a finite number of non zero elements in A. This is clearly a ring for the
usual rule of matrix multiplication. We make CA into a Banach algebra by completing it with
respect to the following norm

— 0 C

Il = sup =i oyl
Finally we define@\, the “stabilization” of A as the closure of the set of finite matddas
CA. Itis a closed 2-sided ideal in CA and the suspension of A - denoted by SA - is the quotient
ring CAA.
DEFINITION/THEOREM . Let A be a Banach algebra. Let us define the grokipgA) to
be K(SnA), whereS'A is thenth-suspension oA. Then BGL(SA) is a “delooping” of
Ko(A) x BGL(A), i.e. we have a homotopy equivalence

Q(BGL(SA)) = Kq(A) x BGL(A)

Accordingly, to any exact sequence of Banach algebras as above

0 A’ A A’ 0
we can associate an exact sequende-gfoups
Knea(A) — Kppa(A) —— Kp(A) —— Kp(A) —— Ky(A")

forne Z.

3 A matrix in CA is called finite if all its elements are 0, except a finite number.
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For a better understanding of SA, it is interesting to notice that the ring of Laurent series
A<t, t>isa good approximation of the suspension. Any element of'A}(ﬁsta series

_ n
S _ngz %t
such that gz |lal| < +co . We may define a ring homomorphism
n

A<t, > — sA

It associates to the series above the class of the following infinite matrix

(o & & - C
(2, & g - (]
a, 3 3 []

For instance, in order to construct the elemeynmentionned above, it is enough to construct a
projective module over the Banach alge®Brat, u, t'l, u'1>, i.e. a non trivial complex vector
bundle on the torus' Sl, as we can see easily, using the theory of Fourier series.

Let us come back now to usual Algebraic Topology and d&ﬂﬁ)i), ne= Z, for a compact
space with base point * as/fA) where A is the Banach algebra of continuous functions on X
which vanish on the base point. The (contravariant) functass DE”(X) define a (reduced)
cohomology theory for compact spaces. One may also define a relative K-theory by putting
K"(X, Y) = K"(X/Y) which is also isomorphic to the group,p) defined p.2, where the
functor@is associated to the surjection of rings

B: C(X)—— C(Y)
To sum up, one therefore has an exact sequence
K" —— K™Hy)—— K", V) —— K" —— K"(Y)
and an excision isomorphism
K"(X, Y) = KXY, *)

Finally, it is easy to show that0K<X, 0) = KtOp(X), the original K-theory of Grothendieck-
Atiyah-Hirzebruch.
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What we have defined above is a “cohomology theory” satisfying all the Eilenberg-Steenrod
axioms, except the dimension axiom. This is just an example of what mathematicians called an
“extraordinary” cohomology theory in the 60’s (other famous examples are coming from
cobordism). As we shall see in the next lecture, this theory has many interesting topological
applications.

There are many variants of topological K-theory which were considered in the 60’s. One of
appealing interest is equivariant K-theorg(®) where G is a compact Lie group acting on X
which was introduced by Atiyah and Segal. It is defined as the K-theory of G-equivariant vector
bundles on X. The analog of Bott periodicity in this context is the “Thom isomorphism” : one
considers @omplex G-vector bundle V on X and we would like to compute the equivariant K-
theory of V (viewed as a locally compact space)ﬁ.@(VJ’) , where V is the one-point
compactification of V. If we denote this group simply by(), we have a Thom isomorphism
(due to Atiyah)

Ke(X) —— Kg(V)

More generally, if V is a real vector bundle, we can define onpdsitive definite metric
invariant under the action of G and consk(;ler the associated Clifford bundle C(V) ; the group G
also acts naturally on C(V). We denote%d(x) the category of real vector bundles where G
and C(V) act simultaneously ; these two actions are linked together by the formula

gx(a.e) = (ga).(-e)

where the symbal (resp..) denotes the action of G (resp. of C(V)). For instance, if G is finite,

Vv
it is easy to show thaiG(X) is equivalent to the category of finitely generated projective
modules over the crossed product algébta E(V), whereE(V) is the algebra of continuous

sections of the bundle C(V). On the other hand, if “1” denotes the trivial bundle of rank one
(with trivial action of G), we have a “restriction” functor

080 (X) —— BeX)

A generalization of the theorem of Atiyah quoted above is the following : the relative group
K(¢) is isomorphic to the equivariant K-theory of the Thom space, (VK with the
notations above.

We should notice that the last statement is true in both real and complex K-theory and implies
Bott periodicity for the K-theory of vector bundles !
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It is also worth mentioning that Atiyah’s theorem and its generalization are not easy to prove
even if X is reduced to a point. A key ingredient in the proof is an index map which Atiyah
constructed with suitable elliptic operators.

There is another generalization of topological K-theory which was considered by Donovan and
the author at the beginning of the 70’s and which became “fashionable” recently : this is the

“K-theory with twisted coefficients” R(X) defined fora = H3(X ; Z) (we limit ourselves to
the complex case). The simplest way to define it is to notice that the usual complex K-theory is
also the K-theory of the Banach algebra of continuous functions

f: X— %

where®; is the ideal of compact operators in a Hilbert space H (we just e@lami., which
is quite usual in functional analysis). This is also the algebra of sections of the trivial bundle

E=Xx%
l
X
viewed as a bundle of algebras. The idea is now to “twist” this algebra by an automorphism of
the bundle. More precisely, using the fact that Aut(H) is contractile by Kuiper’s theorem, we

have the following principal bundles with contractible total spaces (where P(H) = ALit(H)/

BC* —— B(Aut(H))—— B(P(H))

XK(2) BC BC*

This shows BP(H) is the Eilenberg-Mac Lane spacg, Bj. In other words, any elemembf

H3(X ; Z) Is associated to a principal bundle with fiber P(H) which may be defined by transition
functions g over an open cover (Jof X. We can use this P(H) bundle to twist the previous

algebra bundle E in the following way : the twistalgebra bundI€ is obtained by gluing |
o with Uj x %, over ( , Uj) x 1. : we identify (x, ki) with (X, k) whenever x ==X & U;

A Ujand k= gio) ki (gio0)™

The space of sections Bfis a Banach algebra whose K-theory is precisely the twisted K-
theory of X we wanted to define.
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Exercise Let V be an oriented real vector bundle of even rank with second Stiefel-Whitney

class w = HZ(X ; Z/2) anda the Bockstein of win H3(X ; Z). Show that IQ(X) is then
isomorphic to the K-theory of the Thom space of V.

L . . . top .
Let us mention finally that in the classical case of untwisted K-thEory{X), there is a
t
spectral sequence due to Atiyah and Hirzebruch wheseri is H(X ; Kqu(*)), where * is a

t
point. This spectral sequence convergesi(S(K). There is a generalization of this spectral
sequence in the case of K-theory with twisted coefficients which will appear in a forthcoming
paper by Atiyah and Segal.
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Lecture 3

Some applications of topological K-theory
The Atiyah-Singer index theorem

There are many applications of topological K-theory, most of them due to Atiyah and Adams.
More recent applications in the K-theory of Banach algebras are also given.

1) Riemann-Roch theorems for differentiable manifolds [AH2][K1]
As it was explained in the first lecture, Grothendieck’s original aim was to generalize the
Hirzebruch-Riemann-Roch theorem in the context of projective algebraic smooth varieties. Soon

after the discovery of topological K-theory, Atiyah and Hirzebruch achieved the same result in
the category of differentiable manifolds.

The simplest case is the following : let us consider tffen@nifolds X and Y, with an almost
complex structure given on the tangent bundles, together with a spropdr map

f:X——Y
Since X and Y are oriented, there is a Gysin map in cohomology
H*(X) —— H*(Y)
which increases the degrees by the number dim(Y) - dim(X). On the other hand, as briefly stated
in the first lecture, any complex vector bundle V has a “Todd class” Todd(V) which can be

formally defined as follows. We express the “total Chern class”

cV)=1+qg(V)+cy(V) +... + (V) + ...

as a formal product|_| (1 + x%) , so that the;€v) are the elementary symmetric functions of

the %. Then we consider the formal prodlﬂ xi/ (1 - e%i) which can be written as
Todd(V) =1 + Todg(V) + Toddy(V) + ... Todg,(V) + ...

For instanc® one has the following formulas (with=g(V), and T, = Todd(V))

4 Note that this definition of Todd(V) can be extended to elements xt%?(K) Cifx =V - W, we put
formally Todd(x) = Todd(V)/Todd(W).
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Tl =1/2 q

Tp=1/12(g + (&)

T3=1/24 ¢cq

T4 = 1/720 [-g+ ce¢; + 3(0)° + 4 o)’ - ()" ]

Using (complex) Bott periodicity and the Thom isomorphism in K-theory, one may also define
a Gysin map in K-theory

iy - KPP —— KUP(y)

The Atiyah-Hirzebruch theorem may be then stated as follows : for any elemenEOQ(M)K
we have the formula

Ch(fy(x)). Todd(TY) = {(ch(x).Todd(TX))

If Y is reduced to a poinf';| is given by integration over the compact manifold X and we find

that for any element x in the K-theory of X, ch(x).Todd(TX) is alwayg&eygralclass in
degree 2n = dim(X) (a priori it is only a rational class). For instance,,{b&ylis an integral

class when X is a manifold of dimension 2n with an almost complex structure.

There are many interesting generalizations of this formula (all due to Atiyah and Hirzebruch)

when Tf (the tangent bundle of f “along the fibers”) is provided witkpanorial structure.

There is an analog of the Todd class, caIIeoEEIgenus which can be expressed in terms of the
Pontrjagin classes of TX. Here is the type of formula we get :

Ch(fy(x)) = f(ch(x) AT

This relation implies other integrality theorems in terms of the Pontrjagin classes of the tangent
bundles involved. Here is a typical example : if X is a manifold of dimension 8 which is

spinorial, the value of 7@:2 - 4 p, is divisible by 11720. Hereqpand p are the first two
Pontjagin classes of TX (see [K1] for more examples and details].

2. The Atiyah-Singer index theorem

There is an extensive literature about this famous theorem and the basic references are the series
of papers by the authors themselves [AS1][AS2]. Therefore, we limit ourselves to the general

ideas underlying this theorem. Let X be a compact oriented manifold, E and F twec®r
bundles on X and DI:(X , E) —— T (X, F) an elliptic differential operator. Then Ker(D)
and Coker(D) are finite dimensional vector spaces and one would like to compute the index of
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Index(D) = dim(KerD) - dim(CokerD)
in purely topological terms.
Since the operator D is elliptic, its symbol may be viewed as a morphism of vector bundles
o:.1(E) —— 1*(F),

wherertis the projection of the cotangent bundle T*X over X, which is an isomorphism outside
the zero section of T*X. If B(X) (resp. S(X)) denotes the ball bundle (resp. the sphere bundle)
of T*(X) with respect to a metric, the symbol gives rise to an element, calleaf fhe relative

group KO(B(X), S(X)). Let us denote @] the image ofd] under the composition of the Chern
character : RB(X), S(X))—— H®YB(X), S(X)) and the Thom isomorphism

H®Y(B(X), S(X))—— H*(X). The product of C§) by the Todd class of the complexified
bundle T'(X) of TX is a cohomology class &@(Todd(T’(X)) which we can evaluate on the

fundamental class [X] of the manifold. This evaluation is written classically as
C(0).Todd(T’(X))[X]. The Atiyah-Singer index theorem can be stated as follows :

Index(D) = C6).Todd(T’(X))[X]

In particular, C¢).Todd(T’(X))[X] is an intege?. On the other hand, various classical elliptic
differential operators enable us to recover classical previous results : the Riemann-Roch theorem
in the differentiable category and the signature theorem of Hirzebruch among many others
[AS1][AS2]. We may also notice that the integrality theorems are a consequence of the index
theorem. However, as it was shown in [AH2] (see also [K1]), these theorems are topological in
nature and do not require the pseudo-differential operators needed in the proof of the index
theorem.

3) The Hopf invariant one problem

Before attacking this topological problem, we recall the operazsilénstrothendieck, defined
by the exterior powers of bundles. As Adams has pointed out, there exist more convenient

operations, callemk, which are ring endomorphisms of K(X) (and als,18p(<X)). Moreover,

we have the remarkable relatitlthJI = qJ'ka. In order to define this operatiqff, we notice the
universal formula expressing the “fundamental” symmetric functions

S= ) ()

5 As a matter of fact, one has to be careful with signs, according to the chosen conventions.
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in terms of the elementary symmetric functions

Ok = Z X -

X
ip<.<ip 1

k

For instance, §=04, S = (01)2 -209, = (01)3 - 3040, + 303, etc.
In general §= Q«(0y, ...,0k) , where the Qare the so-called Newton polynomials. Then, for

any element x of K(X) or EQP(X), we definquk(x) as the expressionle(x), ...,)\k(x)).

The Hopf invariant one problem in Algebraic Topology is linked with another problem of more

appealing interest : for which values of n can the sph%'r]eldé provided with an H-space
structure ? It is not difficult to show (using Kiinneth theorem in rational cohomology for

instance) that this is not possible if n is odd > 1. On the other h8n81§’ s’ are easily

seen to have a structure of H-spaces, in fact topological groups, exce7ptlf(irs 8 remarkable
theorem of Adams that these spheres are the only ones with an H-space structure. The K-theory
proof (due to Adams and Atiyah) is as follows (see [K1] for more details). Starting with the

given product &1 x §"1 —— 5™ with n even, and following Hopf, we construct a map f :

sl g"to which we associate the “Puppe sequence”

S2n-1 Sn Cf 82n4) Sn+1

More precisely, Cf, the cone of f, is a CW-complex with 2 cells of dimensions n and 2n
respectively : we attach a 2n-cell t8 @sing the map f. Now the reduced K-theory of Cf is
easily computed : it is a free group with 2 generators u and v and wehavw for a certain
scalar h which is precisely 1 (for a general map f,#h(f) is called theHopf invariant of f).

We now follow the pattern given by Atiyah and Adams to show that h(f) cannot be odd in
general (except if n = 2, 4 or 8). From the general properties of the Adams opapétimms
haveyX(v) = K*'v andyX(u) = Ku +o(k)v, where n = 2r and(k) = Z. On the other hand, since

L|J2 = ()\1)2 - 2)\2, we havepz(u) = # mod. 2 = h(f)v mod.2. Hena®(2) must be odd, since

h(f) is odd by hypothesis. On the other hand, from the reququJ] = Lpll]Jk, we deduce (for#

1)

K'(K" - Do) = I'(1" - 1) (k)

If we choose | = 2 and k odd, we see tHat®uld divide k- 1 for all odd integers k, a property
of rwhich is only true if r= 1, 2 or 4 (an easy exercise left to the reader).

23



4) The vector field problem on the sphere

Let M be a compact connected oriented manifold. Here is a classical result due to Hopf : there
exists a non zero tangent vector field on M if and onlx () - the Euler Poincaré
characteristic of M - vanishes. A much harder problem is to find the maximum number of
linearly independent tangent vector fields on M, even if M is the spﬁéré’ & Gram-Schmidt
orthonormalization procedure may be used to replace any field of (n-1)- linearly independent
tangent vectors by a field of n-1 tangent vectors of norm one which are orthogonal to each other.
Therefore, if Q ; denotes the Stiefel manifold O(t)/O(t-n), the existence of a field of (n-1)
linearly independent tangent vectors dir & equivalent to the existence of a continuous
sectiono : Op = gt Opt of the natural projection

Ont— Oqt

Note that each element a of, (tefines a linear mag, : R"—— R'which is injective and
depends continuously on a.

Let us introduce now the (real) Hopf bundlen RP1= SH/ZZ as the quotient of
™1 xRt by the equivalence relation (X) = (-x, -A). In the same way, the Whitney sum of t
copies of¢ (denoted by ) is the quotient of %y R! by the identification

(X, Ag u A = (X, A, oo A

If we write S(t() (resp. S(k)) for the sphere bundle oft(resp. &), the existence af shows
the existence of a commutative diagram

Ste)——  S()

NS
X Rp

Here0 is induced by the map (x, M (X, g)(X)) from 1% dtinto itself, wherep, is the
linear mapR"—— R defined above. Moreove,induces a homotopy equivalence on each
fiber.

We are now in the general situation of two vector bundles V and W (bewsdtt ) such that

the associated sphere bundles S(V) and S(W) have thefibmbomotopy type. The same
property is true if we compactify the fibers instead of considering the spheres. Therefore, the
map0 (extended to the vector bundles by radial extension) has the property that for each point x
in X we have the commutative diagram
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KrW) 8 Kg(V)

! !

R0 X KR(Vy)

where Kz meangeal K-theory. As it was shown by Adams, this condition implies the existence
of an element y dER(X) such that for each k we have the relation

YL +y)

k _ Ak
vy = o W)

under the condition that V and W are spinorial bundles of zafkmod. 8.

Here pk(V) is the characteristic class in K-theBryptroduced by Bott : it is defined as the
image of 1 under the composition of the following maps

0 Y ¢
KR(X) —— Kgr(V) —— Kgr(V) —— Kg(X)

where¢ is the Thom isomorphism ind<theory. These remarks, together with the computation
of the order of the grouER(RFﬁ'l) are the key ingredients for the solution in two steps of our
original problem.

PROPOSITION. Let &, be the order of the grougR(RPn'l), that isa, = 2f wherefis
the number of integenssuch thatO <i < nandi =0, 1, 2or 4 mod. 8.f g1 admitsn-1
linearly independent tangent vector fields, thena multiple of,.

From this proposition and the theory of Clifford algebras over the real numbers, we deduce the
following fundamental theorem of Adams

THEOREM. Let us write each integeiin the formt = (20 - 1).2G wheref3 =y + 49 with
0 <y < 3. Then the maximum number of linearly independent tangent vector fields on the
sphereStisa(t) = 2 + 85 - 1.

6 Note that this class is constructed in complete analogy with the Stiefel-Whitney classes in cohomology
mod. 2 : one just has to replace the Adams operations by the Steenrod squares.
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5) Applications to C*-algebras.

Here is a theorem due to Connes : if A:=(CG) is the reduced C*-algebra of a free group on n
generators, then the only idempotents of A are 0 and 1. The proof is too technical to give the
details here (see [R] p. 358-361) ; K-theory comes into the picture since one has to consider in
the proof extensions of C*algebras of the type

0 N D A 0

where}. is the ideal of compact operators in a Hilbert space. A splitting of this extension
induces a homomorphism K(Ay—— K(%.) £ Z which Connes identifies with the usual
positive normalized trace on A.

Another beautiful application in Connes’s book [C1] is a description of the Penrose tiling in
terms of inductive limits of finite dimensional algebras (so-called AF-algebras). Such an
inductive limit A (or rather its closure in the algebra of bounded operators in a Hilbert space)
has of course a Grothendieck group K(A). Moreover, K(A) isrdered group (an element of
K(A) is called = 0 if it comes from a genuine projective module). In the case of the Penrose
tiling, one has K(A)z 7?2 , the positive cone being given by the set of all (m, n) such that
n(1 +/5)/2 + m= 0. As a matter of fact, all AF-algebras A are classified by their ordered
Grothendieclgroup K(A).

In order to get more applications of the theory to C*-algebras, a considerable generalization was
made by Kasparov [Kas], in relation to the Atiyah-Singer theorem. In Kasparov’s theory, one
associates to two C*algebras A and B a new group called KK(A, B) with remarkable formal
properties. According to Higson [H] for instance, this new theory KK(A, B) - at least for
separable C*-algebras, not necessarily unitary - is characterized by the following properties

1. Homotopy invariance : the group is unchanged (functorially) if we replace A or B by the ring of
continuous function on [0, 1] with values in A or B.

2) The group is C*-stable with respect to the second variable, i.e. we have the functorial
isomorphism

KK(A, B) = KK(A, . & B),
where’l; is the C*-algebra of compact operators in a Hilbert space.

3. If
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is a split exact sequence of C*-algebras, we have KRjA KK(A, J) O KK(A, B).
4. A “composition” (called Kasparov product)

KK(A, B) x KK(B, C) —— KK(A, C)
may be defined.

Therefore, the correspondence (A,H)KK(A, B) defines a functor from the category of C*-
algebras couples (A, B) to the the category of abelian groups, which is an extended definition of the
usual K-theory in the following sense. We have KK@A) = K(A) and every morphism f : A

—— B gives rise to an element of KK(A, B). By Kasparov’s product, this induces a morphism
from K(A) = KK(C, A) to KK(C, B) = K(B) which is the usual one : to every A-module M we

associate the B-modulg(M) = B [EJA M.

A concrete definition of KK(A, B) and of the Kasparov product has been given by Cuntz [Cu]. He
describes KK(A, B) as the set of homotopy classeslaimomorphisms

QA—— K. ®@ B
Here gA is the ideal in the free product A * A generated by the elements of *tyype»x. One
can prove that this definition is equivalent to the first one of Kasparov and also to the definition of
Connes-Skandalis ([C1] p. 428-436).
The relation with the Atiyah-Singer theorem is the following. Let 8 be the field of complex

numbers and let A be the algebra of continuous functions on a compact manifold of even
dimension. Then, an elliptic operator D on X defines a “Fredholm module” on A [At2] which gives

rise to an element of KK(AC). The image of & K(A) by the associated morphism
K(A) —— K(C)=Z
Is the index of the operator D.
An open problem is to define a group KK(A, B) for general algebras A and B and to find the

relation with Algebraic K-theory on one side (lecture 5) and cyclic homology on the other side
(lecture 7).
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Lecture 4

Algebraic K-theory of Bass and Milnor
Applications

After the success of topological K-theory, the algebraists felt challenged to “derivejthe K
group for ANY ring A, as it was done for Banach algebras and, hopefully, prove some kind of
“Bott periodicity” for these hypothetic KA).

The first problem was of course to define thegkoup in a purely algebraic context. Remember

that for a Banach algebra K,tfp(A) (called before K(A)) was defined either as K(R()) or
TH(GL(A)) = injlim, TH(GLL(A)). The first definition does not make any sense a priori for an
abstract ring A. However, Bass managed to give a meaning to the second definition thanks to the
notion of an elementary matrix. Such a matrix - calﬁéd leas all entries = 0, except for the
diagonal entries = 1 and the entry at the spot (i4), which is equal to the scalar These
matrices satisfy the following identities

We call E(A) the subgroup generated by these elementary matrices. One has to think of the
elements of E(A) as those “homotopic to the identity matrix”.

THEOREM/DEFINITION. The subgrougs’ = E(A) is equal to the commutator subgroup
[G, G] of G = GL(A). Moreover it is perfect, i.fG’, G’] = G’. We defineK;(A) as the
guotient groupG/G’, in other words the grou® made abelian

This theorem is quite easy to prove, using the relations above between elementary matrices. One
of the key point is to show that a commutator'i'jhié is a product of elementary matrices if we
stabilize 3 times the size of the matrix, say n. Indeed, let us write Diag(u, v, w) for a matrix of
size 3n with u, v and w as n-diagonal blocks. Then we have Dié&j@lhg, 1) =[u, v], where u

= Diag(g, 1, gl) and v = Diag(h, TJr, 1). On the other hand, a matrix of type

g O
g-l

BEH:I
ot
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may be written as the product

We notice also that the matrix

may be written as the product of 3 matrices, each of them being a product of elementary
matrices, i.e.

Caution : if A is a Banach algebra, this groug(R) does not coincide with its topological
analog. For instance, if A is the field of complex numi@rare have K(C) £ C*, whereas the
topological analogip(GL(C)) is equal to O.

THEOREM. Let us consider a cartesian square of rings with units
A—— Al
l @, l(Pl
2 A— A
with @, or @, surjective. Then we have a “Mayer-Vietoris exact sequenck-gfoups
K1(A) — K1(Ap O K1(Ag) — Kg(A) — K(A) — K(Ap) O K(Ap) —— K(A)
This theorem implies “excision” for thegkgroup ; in other words, if | is an ideal in a ring A,

the K-group of the functdri(A) —— i (A/l) only depends on the ideal 1, i.e. is isomorphic
to Ker(K(H — K(2)), wherel’denotes th&-algebra | with a unit added.

7 Here we should be here more precise about the definition of the Grothendieck group of an additive functor
¢ : T — T . Itis the quotient of the free group generated by isomorphism classes of(fdplEsa),

where E and F are objects & and o : ¢(E)—— ¢(F) is an isomorphism, by the following relations
(E,F,o)+(E,F,a)=(ELOE,FOF,al’)
(E, F,a) + (F, G,B) = (E, G,.0).

8 See also M. Karoubi : Homologie de groupes discrets associés a des algebres d'opérateurs. Journal of
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In the case of a group ring AZG], the group K has applications in differential topology as it
was shown in the 60’s. A striking one is the s-cobordism theorem ([R] p. 86) : if M is a
compact connected manifold of dimensioa B, any h-cobordism built on M is homeomorphic
(rel. M) to a product M x [0, 1]. There is just one algebraic condition for this : Wh(G) =
K1(A)/£G should be trivial. A spectacular application is the famous theorem of Smale which
solves the Poincaré conjecture in dimensio® : any manifold of dimension B 5
homotopically equivalent to the sphef&isindeed homeomorphic t8.S

A more algebraic application is the famous “congruence subgroup problem” : if R is a
commutative ring and SL(R) the subgroup of GL(R) consisting of matrices of determinant 1, is
every normal subgroup of SL(R) a congruence subgroup, i.e. the kernel of a group
homomorphism SL(Ry—— SL(R/I) for a certain ideal | ? An analysis of a “relative; K
group shows this is the case for instance if R # general one should have §K, 1) = 0 for

all ideals I ([R] p. 106).

Let us mention here an important result with many applications, due to Bass, Milnor and Serre :
if A'is the ring of integers in a number field F, thef(K) £ A* by the determinant map. In
other words, the map{A) —— Ky(F) = F*is injective.

One question we may ask is whethg(A) is the Ky-group of another ring ; this is inspired by
Topology where we saw that'kX) is essentially K of the suspension of X. There is indeed a
dual notion of the suspension of a space which is the “loop €#gdf A : it is the subring

A[x], consisting of polynomials P(x) such that P(0) = P(1) = 0. Under certain conditions (for
instance if A is regular noetherian), one can show thgAKz Ky(QA). This is the point of
departure of the so-called “Karoubi-Villamayor” K-theory which will be sketched in the next
lecture.

Exercise: Let Q" (A) be the A-algebr&)A with a unit added. Show th@&*(A) may be
identified with the coordinate ring of the following cubic

QA = Alu, v)i(u - v)° - uv.

Exercise(Milnor). Let A be the Banach algebra of continuous functions on a compact space X
with complex values. Then show thaj(K) = A* [ 1(SL(A))

Remark. In contrast with the situation of thegroup, the definition of (1) when | is a ring

without unit is unclear. For instance, if we defing(liKas Ker[Kl(I+)—> Kq(K)] if I is a k-
algebra, this definition depends strongly on the choice of k

For certain special rings | however, there is a “good” definition of A, for instance thédeal
of compact operators in a Hilbert space, or the ring of continuous functions from a compact
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space X tdk..

The next step in Algebraic K-theory was done by Milnor who gave an algebraic definition of
Ko(A). He first introduced the (infinite) Steinberg group ST(A) which is generated by elements
Xﬁ , I # ], subject to the “universal” relations between elementary matrices, i.e.

[X; ,x}‘k]:x?k“ if i # k

>

[Xi %, 1=1ifj#kandiz|

=

Note : for convenience, we shall sometimes write these symbojg@gs X
There is an obvious epimorphism
ST(A)—— E(A)
As we said before, the group E(A) is perfect (i.e. is equal to its own commutator subgroup

[E(A), E(A)]) and Milnor proved that the exact sequence

1—— Ko(A)—— ST(A) EA) 0

is in fact the universal central extension of the perfect group E(A). In particy(a), i abelian
and may be identified with }{E(A) ; Z), the second homology group of E(A) with
coefficients. Analogously, one may remark tha(A is the homology group HGL(A) ; Z).

An important part of the structure obKs defined by Milnor’s cup-product

K1(A) x K1(A) —— K(A)

when A is commutative. In particular, if u an&\A* < K4(A), the Steinberg symbol {u, v} is
the cup-product of u and v inKA). It satisfies the following relations

(@{u,1-u}=1ifuand 1 - u belong to A*
(b) {u,-u}=1ifue A*

[if Ais a field, the second relation follows from the first].
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THEOREM (Matsumoto). Let F be a (commutative) field. The Steinberg symbol identifies
K5(F) with the quotient ofF* iz, F* by the subgroup generated by the relations
u (1-u)foruzo, 1.

This theorem is the starting point for applications ¢fitK Algebra and Number Theory, in
relation with the Brauer group and Galois cohomology.Edte the separable closure of F, G
the Galois group of this extension grgthe multiplicative group consisting of roots of unity in
F. Then, the exact sequence

0— py— F—F*— 0

induces an isomorphismlfG THp) £ F*/F*" | since I—Jr(G : F*) = 0. By a classical argument,
the composition

s: F*x F*— F*F*"x Fr/F" = Hl(G i Hp) X Hl(G THp) — H2(G ; (un)g]z)

where the last map is the cup-product in Galois cohomology, is a Steinberg symbol

(i.e. s(u, 1-u) = 0 if ¥ O, 1). Therefore, s induces a homomorphism frasfi-nK(F) to

H2(G ; (un)®2). The following classical theorem ([Sr] p. 149) is one of the nicest in the
subject :

THEOREM (Merkurjev-Suslin). The homomorphism
2 2
K2(F)/InKa(F) — HY(G ; () )
defined above is an isomorphism

As a concrete application let us consider the Brauer group of F, Br(F), generated
(multiplicatively) by central simple algebras A with the relation A ~ B if{A) £ MyB) for

some numbers n et s. It is well known that Br(F) is canonically isomorphic to the Galois
cohomology group ﬁ(G, F).

COROLLARY. Let us assumg, < F. ThenH2(G : (lJn)g]Z) = H2(G ; MUp) g Br(F),, the
n-torsion of the Brauer group. Therefore, we have an isomorphism

Ka(F)InKy(F) — Br(F),

A striking example is the case when n = 2 and F is of characterti€hen, the central simple
algebra associated to the symbol {a, b} is the quaternion algebra generated by the symbols i and
j with the relationsd = a, j2 = b and ij = -ji. This corollary implies that any element of the 2-
torsion in Br(F) is stably isomorphic to a product of quaternion algebras, an open problem
before Merkurjev and Suslin proved their theorem.
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As another example, let us consider the casetg/vhen A is a Banach algebra. As we have seenin a
previous lecture, there is a topologically definezdp tA) which is simply the fundamental group
T (GL(A)). In order to see the relation with the Algebraic groyp™, we can send a generator

A

. At .
X; of the Steinberg group to the path;tXij . The relations

X % T=1ifj#kand i# |

still hold if we replac@ andu by At andut. Now if we compute the commutatori’}[w#kt] for

2
i #k, we find the patbt?‘lft which is homotopic (end points fixed) to the p&%Ht. This shows
that the previous corresponderimguces a well defined homomorphism :

¢ : ST(A)—— E(GL(A))/T.

Here EX denotes in general the path space of X, i.e. the set of continuous paths-f:16; 1]
X such that f(0) = 1, the unit matrix, arig the equivalence relation defined by homotopy with
end point fixed. Since §A) is the kernel of the homomorphism ST(A)— GL(A), we see
immediately thatp(x) is a loop in GL(A) if x= K»(A) and that$ induces a well defined
homomorphism

6 : Ko(A) —— Ty(GL(A)) = K, (A)

In generalgp is neither an injection nor a surjection. As a typical example, if we choose A to be
the field of complex numbelS, we see thab is reduced to O since its image is contained in

T (SL(C)) = 0. Therefore, the kernel ¢fis the full group K(C), which is known to be an
uncountable group.

There are however Banach algebras A suchjtigfin isomorphism. A typical example is the
algebrak. of compact operators in Hilbert space or, more generally, the algebra of continuous
functions X—— ‘K., where X is a compact space. A technical problem appears here since
these algebras have no unit. However, as it was proved in8[SWdse algebras satisfy
excision and we may choose to add a unit the way we want, as for the gyotprKhese
algebras, Bott periodicity holds KA) = Kp(A), which is quite exceptional in Algebraic K-
theory.

8 See also M. Karoubi : Homologie de groupes discrets associés a des algebres d'opérateurs. Journal of
Operator Theory, 15, p. 109-161 (1986)
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The previous considerations suggest to replace Topological homotopy by Algebraic homotopy
for the definition of the groupy (GL(A)) (A being now a discrete ring). An “algebraic loop” is
just an elementr of GL(A[t]) such thato(0) =o(1). Two algebraic loopsy ando, are called
homotopic if there is an elemenbf GL(A[t, u]) such that

3(t, 0) =aq(t), Z(t, 1) =0y ()

20,u=2(1L,u=1
This is an equivalence relation because GL(A) is a group and we define the algebraic
fundamental groupx?'g(GL(A)) as the group of homotopy classes of algebraic loops (like in
Topology). As before, we have an homomorphism

al

Ko(A) —— TC (GL(A))

which is an isomorphism if A is a regular Noetherian ring. This gives an alternative definition of
K,, closer to Topology for this type of rings.

From another viewpoint, we also have a cup-product in Topological K-theory (for commutative
Banach algebras)

t
Ky (A) x K P(A) —— K (A)
The obvious diagram
K1(A) x K1(A) —— Kz(A)

l l
K P(A) x K (A) —— KaT(A)

is then commutative. As a typical exartwggle, it is easy to show th@)k= Z/2 and the
composition K(Z) —— Ky(R) —— K, (R) is injective. It follows that the cup-product
of the generator of {Z) by itself is a non trivial element ofKZ), because the same is true for
the topological K-theory dR. As a matter of fact, as it was proved in Milnor’s book, we have
Ko(Z) = ZJ2.

There are many other examples where we can compute the gs@)p For finite fieldsk, for
instance, Milnor showed thabi) = 0. Another fundamental example is the case of a number
field F and its ring of integers A. We then have a “localization” exact sequence :

Ko(A) —— Ka(F)—— ﬂD:' Kiy(AF) —— Kq(A) —— Ky(F)

where® runs over all the prime ideals of A. As a matter of fact, by a famous result of Bass,
Milnor and Serre quoted in the previous lecture, the mgd)X— K1(F) £ F* is injective
and we therefore have a well defined surjective mgpk—— 0 Kq(A/F) = O(A/F)*
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Each component
Ko(F) —— (A/#)*

is called the tame symbol and may be defined explicitly, usintj'thdic valuation.

Finally, there is a “fundamental theorem” due to Bass, Heller and Swan which enables us to
compute the Algebraic K-theory; Kfor i = 1 and 2) of the ring of Laurent polynomials Aﬂ] t
in terms of of the groups;K of A. More precisely, we have an exact sequence

0—— Ki(A) —— K{(Alt) O KAL) —— KA, t™) —— Ki1(A) —— 0

If A is a regular Noetherian ring there is a “homotopy invariance” (first proved by
Grothendieck) i.e. KA) = K;(A[t]) for i = 0, 1, 2. Therefore, the previous exact sequences
reduce to the isomorphisms

Ki(AlL, t7]) = Ki(A) O Kiq(A)

in this case. We shall come back to this matter for the definition oetegive K-groups in the
next lecture.

As for the functor K there is an application of Kn differential topology which is due to
Hatcher and Wagoner. This application is related to pseudo-isotopy classes of diffeomorphisms
on manifolds. As it is well known, isotopy classes of diffeomorphisms of the sphéoe S
instance parametrize the set of differentiable structure§ Gri® n= 5. However, it is difficult

to tell in practice when two diffeomorphismgdnd h of a manifold M are isotopic. There is a
weaker notion of “pseudo-isotopy” which is a diffeomorphism of a cyclinder

M x [0, 1], whose restrictions to M x {0} and M x {1} givegtand R respectively. Let us call

it (M) the space of pseudo-isotopies of M, i.e. diffeomorphisms of M x [0, 1] which restrict to
the identity on M x {0}.

Before stating the result about this sp&t@v), we need a preliminary definition : in the
Steinberg group St(A) of a group algebra 5], we define w(u) = X; (u).xji(-u'l).xij (u)
and Wg the subgroup of St(A) generated by thgwy. Finally, we define

th(G) = Kz(A)/K 2(A) N WG'
THEOREM (Hatcher-Wagoner) ([R] p. 242) Let M be a smooth compact connected
manifold without boundary of dimensiare 5 and with fundamental grou@. Then there is

a surjection my(# (M)) —— Why(G).

In some cases, the kernel has been computed and identified with a group relatg@io Wh
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Lecture 5

Higher Algebraic K-theory
Some computations

After the definition of Kl(A) and Ky(A) by Bass and Milnor, the problem was open at the
beginning of the 70’s of a “good” definition of,kA) for n=> 3. It is widely accepted now that

this definition was proposed by Quillen at the International Congress of Mathematicians in Nice
(1970). However, other definitions were proposed at the same time and are in fact isomorphic to
Quillen’s definition in favourable cases. We shall discuss briefly one of them at the end of the
lecture.

Let us point out first that there is no “axiomatic” definition of these groyjs ke spirit of

what has been done for Banach algebras for instance (lecture 2, p. 2). More precisely, Swan has
pointed out the following disturbing fact : we cannot have a Mayer-Vietoris exact sequence
associated to a cartesian square of rings with units

A—— A

l 0 l(P1
A— A

with ¢, andg, surjective In other words, we cannot have a functorially defined exact sequence
Kn+1(A) = Kn+1(A) O Kpa(A2) = Kpg(A) = Kp(A) = Kp(Ap) U Kp(A) — Ki(A)
with Kg isomorphic to the Grothendieck group.

This means that instead of waiting for a “good” axiomatic definition gfAK Quillen’s
proposal is justified by the nice theorems and applications proved with it (the Merkurjev-Suslin
theorem in the previous lecture is for instance a good example of an application ; it could not be
proved without Quillen’s theory).

The definition of K,(A) uses the machinery of Algebraic Topology, as we have seen in
Berrick’s series of lectures : more precisely, we hay@K= m(BGL(A)+), for n > 0, where
BGL(A)+ is a space obtained from the classifying space of the infinite general linear group
GL(A) by adding cells of dimension 2 and 3. For a change, we shall adopt a more geometric
viewpoint, using the concept of “virtual” flat A-bundles.

Firstly, we define a flat A-bundle on a space X as a coverirgP> X such that each fiber is a
f.g.p. (= finitely generated projective) A-module. Note that if &we recover the usual notion
of flat complex vector bundle.

A virtual flat A-bundle on the space X (assumed to be a finite CW-complex) is given by
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1) an acyclic map ¥—— X (i.e. a map inducing an isomorphism in homology with
local coefficients or, equivalently, such that the homotopy fiber is an acyclic space).
2) aflat A-bundle Eon'Y

Two virtual A-bundles E and E’ on Y and Y’ respectively are called equivalent if we can find a
commutative diagram (up to homotopy)

Y—X

L2

A41Y

with an acyclic map Z—— X, together with a flat A-bundle F on Z such that the pull-back of

F through the map ¥— Z (resp. Y'—— X) is isomorphic to E (resp. E’). Two virtual flat A-
bundles (for instance E and E’ with the same notations) may be added by taking the homotopy
fiber product T of Y and Y’ over X and addiyy(E) andy*(E’), where y andy are the
obvious projections of T on Y and Y'. This addition is compatible with the equivalence relation.

DEFINITION/THEOREM. Let us callKa(X) the Grothendieck group of equivalence
classes of virtual fla-bundles onX. Then, as a functor of the fini@W-complexX,
Ka(X) is representable and we have the following isomorphism

Ka(X) = [X, Ko(A) x BGL(A) "]
In particular, KA(S”) = Kg(A) O K (A), where theK,(A) are QuillenK-groups
Remarks. This theorem should be related tC{ the same type of result in topological K-theory
(for complex vector bundles) '®(S") = Z 0 K, "(C). Note also that this definition includes

both Ky and K, for n > 0.

As in topological K-theory, one can define tensor products of virtual flat A-bundles and
construct this way a bilinear pairing

Ka(X) xKg(Z) —— Ka @(X X Z)

In particular, if A is commutative A) becomes a graded ring and one sees in more
geometrical terms Milnor’s cup-product

K1(A) x K1(A) —— K3(A)

TheA and L|Jk operations also go through to the ring(X) (if A is commutative).
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The first K-groups were calculated by Quillen of course. If A is a finite field with g elements,
Quillen proved that

Kon(Fg) =0 forn>0
Kan+1(Fg) = Ziq™1

On the other hand, as we have seen in Berrick’s lecturés) E Q is the primitive part of the
homology of GL(A) (with rational coefficients). If A is the ring of integers in a number field,
Quillen has shown on one side thg{A is a finitely generated abelian group ; Borel has
computed on the other side the cohomology of SL(A) with complex coefficients. Comparing
these results one find the following isomorphisms with i > 0 (mod. finite abelian groups)

K2i(A) =0
Kaisq(A) =217 12
Kai-1(A) =22

where  and p are determined by the isomorphism
A®,R=z=R1xC2

Following Grothendieck and Bass, Quillen has succeeded in generalizing to higher K-groups
some theorems proved fogland K. Let us mention a few of them.

THEOREM (homotopy invariance). Let A be a regular Noetherian ring. Thef,(A[t])
= Ky(A). Therefore, we also havg,(Altq, ..., t]) = K (A).

Note that if A is a field, it was an old question of Serre whether a f.g.p. module over
Altq, ..., t] is free. This question was answered in the affirmative by Quillen and Suslin in the
70’s.

THEOREM (“fundamental” theorem) . Let Alt, t'l]) bethe ring of Laurent polynomial
with coefficients irA. Then we have the exact sequence

0— Kn(A)— Kn(Alt) O Kn(Alt ™)) — Kn(Alt, t']) — Kp.q(A) — 0

THEOREM (one form of the “dévissage” and localization theorerms) A be a regular
Noetherian ring and a non zero divisor such thatf is regular Noetherian. Then we have
an exact sequence

Kn+1(A) — Kp+1(Af) — Ky(Af) — K(A) — K (Af)

whereAs is the ringA localised aff (i.e. making invertible).
Another variant of this theorem is the following : let A be a Dedekind ring and F its field of
fractions. Then we have an exact sequence
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Kn+1(A) — Kpsa(F)— ﬁD;. Kn(A/F) — Kn(A) — K(F)

wherei runs through the set of all prime ideals in A.

Remarks. All these theorems may be paraphrased with a parameter space X instead of the
sphere 8 by introducing a suitable fibration. For instance, the homotopy invariance may be
restated as

Kapg (X) £ Ka(X)

for any regular Noetherian ring A. We should also notice that Quillen was able to prove his
theorems by using another construction in Algebraic K-theory, called the “Q-construction”.
This has been detailed in Berrick’s lectures (see also [FW]).

Having stated all these theorems, one may ask what the definitigifAffiér n <0 should be,

so that the previous theorems can be extended to all values @f This definition is due
independently to Bass and the author of these notes. Since we are going to use the second
definition in Hermitian K-theory, let us choose the latter. The key ingredient is the use of
“infinite” matrices. More precisely, let us define the “cone” of A, called CA, as the set of
infinite matrices such that in each row and each column we have a finite number of non zero
elements chosen among a finite number of elements of A. Clearly CA is a ring by matrix
multiplication, containing the finite matrices (i.e. whose entries are 0, except for a finite number)
as a 2-sided ideal. We define the suspension SA of A as the quotient ring. This definition may
be iterated and"GA) will denote the i suspension of A.

DEFINITION/THEOREM. The groupK_,(A) is by definitionK(S"A) . All the theorems
stated before are true for the functdfsg, n= Z. Note however thaK,(A) = 0forn <0
if A is regular Noetherian

A theorem which is missing in the picture is “Bott periodicity”. Of course, it does not work in
general : for finite fields for instance, we are far from getting the same answerdod, ..
However, we can get a partial answer for other types of K-groups which we shall introduce now.
As a matter of fact, since we know that Algebraic K-theory is represented by a spE¢&kim
defined through the BGL{®,)", there is a well known procedure in Algebraic Topology taking
this spectrum mod. n for any integer n. A more concrete way to do it is to take the Puppe
sequence associated to a map of degree n between spheres

S S M(n,r) = X gt gt
Therefore, X (so-called Moore space) is a space with 2 cells of dimension r and r+1
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respectively, the second cell being attached to the first by a map of degreer. Ifn=2andr=1
for instance, X is just the real projective space of dimension 2.

We now define K-theory with coefficients #/n, denoted by K 1(A ; Z/n), as the quotient
group Ka (X)/Kg(A). From the Puppe sequence, we get an exact sequence

Krs2(A) — Kpaq(A) —— Kpag(A; ZIn)—— K(A) —— K(A)
where the arrows between the group@Kare the multiplication by n.
Here is a fundamental theorem of Suslin which is the true analog of Bott periodicity.

THEOREM. LetF be an algebraically closed field and lebe a number prime to the
charaél:teristic ofF. Then there is a canonical isomorphism of graded rikggF ; Z/n)
=(uy) " andKypq(F ;Z/n) = 0.

A sketch of the proof of this theorem may be found (among other things) in [FW], lecture 8.

With this theorem in mind, one may naturally ask if there is a way to comp(Ke K/n) for

an arbitrary field (not necessarily algebraically closed). If F is the field of real numbers, and if
we work in topological K-theory instead, we know that it is not an easy task since we get an 8-
periodicity which looks mysterious compared to the 2-periodicity before. All these types of
guestion are in fact related to the so-called homotopy fixed point set relative to a group action.
Roughly speaking, we kndwhatIE (F) is the fixed point set dE (F), whereF denotes the
separable closure of F, with respect to the action of the Galois group G. We have a fundamental
map

¢: EF) =KF° —— EF"™

Where]I{(T:)hG is the “homotopy fixed point set” dE (F), ie the set of equivariant maps EG
—— IE(F) where EG is the “universal” principal G bundle over BG. One version of the
Lichtenbaum-Quillen conjecture is thginduces an isomorphism on homotopy gromp®r i

> n-cohomological dimension of G 3.dThis implies the existence of a spectral sequence

9 L Ba :
£ =HG ") O K pqlF 12/0)

if the characteristic of the field does not divide n and if 2q - g.3dr instance, g= 1 if n is

odd and if F is a number field : then the spectral sequence degenerates and we get a direct link
between Algebraic K-theory and Galois cohomology, quite interesting in Number Theory. By
the recent work of Voevodsky, the conjecture is true for n = 2. We shall hear more about this in

9 We now denote b¥ (F) the classifiying space of Algebraic K-theory mod. n : its homotopy groups are the
K-groups with coefficients iZ/n.
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Morel’s lectures.

We should notice that the topological analog of this conjecture is true : one should replace the
classifying space of Algebraic K-theory by the classifying space of (complex) topological K-
theory whereZ/2 acts by complex conjugation. Then the fixed point set (i.e. the classifying
space ofeal topological K-theory) has the homotopy type of the homotopy fixed point set.

Although the definition of the K{(A) is getting relatively old now, they are quite difficult to
compute, even for such simple rings as the ring of intefjéatthough we know these groups
rationally since the work of Borel on the rational cohomology of arithmetic groups). Thanks to
the remarkable work of Voevodsky followed by Bokstedt, Rognes and Weibel, we can now
compute the 2 primary torsion of,&) through the following homotopy cartesian square
(wherezZ’ = Z[1/2])

BGL(Z")" 4+~ BGLR),
l

BGL(" 4 — BGL(C),

where the symbat means 2-adic completion and where BR)L&nd BGLC) are the classifying
spaces of theopological groups GIR) and GLC) respectively. From this homotopy cartesian
square, Rognes and Weibel found the following results (mod. a finite odd torsion group and with n
> 0 for the first 2 groups and=n0 for the others)

Kegn(Z) =0
Kgn+1(Z) =2 0 Z/2
Kgn+4Z) =212
Kgn+dZ) =Z/16

Kgn+4Z) =0
Kgn+5Z) =Z
Kegn+gZ) =0

Kgn+AZ) = Z/2" where 2is the 2 primary component of the number 4n+4.

One should also mention (in reverse historical order) that Milnor gave another definition of the
groups Ky(F), n > 2, for dield F. This definition does not agree with Quillen’s definition in general

and we should denote it by M(F) : it is the quotient of the tensor product® ... &5, F* (n
factors) by the subgroup generated by the teng@rs.x@ X, such that 4 = 1 - % for a certain i.
By the usual cup-product in Algebraic K-theory, there is an obvious map

KN(F)—— Kn(F)
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which is an isomorphism if n = 1 or 2 according to Matsumoto’s theorem. The next interesting case
is when n = 3. Then we have the following nice theorem of Suslin :

THEOREM. The map KZ'(F)—> K3(F) is injective and the quotietts(F)i,q fits into an
exact sequence

0 " Ka(Fling B(F) 0

In this sequence, B(F) is the “Bloch group” i.e. the group which fits into the exact sequence

0 B(F) P(F)—— A%(F*) —— KyF) —— 0

Here P(F) is the quotient of the free group generated by elements [x] in F* by the “cross-ratio
relations” :

SRV SR

1 -
-y 1-

v =0
and r([x] = xO(1 - x). Moreoverp is a torsion group which is deduced from the gnagpf roots

of unity in F. If, following [FW], we writepg(2) as Torflg, M), M is the groupug(2) if the
characteristic is 2 and the non trivial extensio@ &f by u=(2) otherwise.

It is a wide open problem to describe the othegkoups of a field in such a nice algebraic way...

One of the most striking applications of Algebraic K-theory to Differential Topology is due to
the hard work of Waldhausen which we have not touched in this report. For instance, in the
lecture 4 we introduced the spatéM) of pseudo-isotopies of M, i.e. diffeomorphistef

M x [0, 1] which restrict to the identity on M x {0}. If M has a boundary, we ask moreover that

B is the identity oM x [0, 1].

THEOREM. LetM be the balB" of dimensiom. Then, we have an isomorphism
m(F(M)) Bz Q = Kj41o(Z) B2 Q

for 0<i<n/6 - 7.Therefore, mod. torsion elements, and within this range of degrees, we
haverg((M)) = Z for i = 4i - 1 andtg(#(M)) = Ofor i # 4i - 1.

The same type of results applies to the group of diffeomorphisn‘%mbB. its boundary. We
getrg(Diff(B N 9) #- Q = Kj;o(Z) B Q for the same range0i < n/6 - 7 and n odd if i = 4k
- 1.
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For Banach algebras A, thetre are now two competing theories : topological K-theory on one
side which we denoted blynOp(A) previously and Algebraic K-theory KA). There is a
homomorphism

@ KnA) —— KA

If A is the field of complex numbers and if we take K-theory with finite coefficients, we know

by Suslin’s theorem that this map is an isomorphism. Other Banach algebras of interest in
functional analysis are the so-called “stable” C*-algebras ; this means that# is
isomorphic to A (for a suitable notion of tensor product), wh€rés the ring of compact
operators in Hilbert space. A surprising result proved by the author of these notes at the end of
the 80’s is thatp, is an isomorphism for g 2 (n may be negative). The question arose then
whetherq, is also an isomorphism for n > 2. This question was answered positively by Suslin
and Wodzicki [SW]. In fact, they proved excision for this kind of rings A (without unit) :
Kh(A) does not depend of the ambiant ring where the ideal A lives. The idea of the proof
(assuming excision) is quite simple and is based on cup-products with Bott elements as it was
explained in the second lecture.

Let us conclude this lecture by trying to answer a frustration the algebraists might feel at this
point. Is there a way to defing,i®) which avoids the machinery of Algebraic Topology ? For
regular noetherian rings, this definition was indeed proposed by Villamayor and myself [KV]
and is based on polynomial homotopies (much related tolmma)motopy in Morel’s lectures).

The definition is the following. Let us consider the ring

An =A [xo, Xpo e xn]/(x0 tX X 1)
and the subgrodf G,, of GL(A,) consisting of matrices which are equal to the unit matrix if
one of the variables;x 0 (for i < n). We define a homomorphisrg :dGn% Gn_1 by
setting X = 0(fn<Q0, (%1 = {1} by convention). Then Kerdim d, 41 is naturally isomorphic
to K4(A) for n> 0.

Exercise: check this for n = 1.

We can put these last considerations in a more sophisticated framework by consigerrg A

N, as a simplicial ring and constructing its classifying space BGLg#iit is usual in simplicial
topology (A is now an arbitrary ring). If we view A as a “constant” simplicial ring, we have a

map

0 : BGL(A)—— BGL(Ax)

10 we should notice thatGis a simplicial group. In modern language, we just say t?}e}_tl((A) is the n-

homotopy group of this simplicial group.
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Now BGL(A+) is a connected space whose fundamental group is easily seen to be GL(A)/U(A)
where U(A) is the group generated by unipotent matrices. Since we have the inclusions

[GL(A), GL(A)] = E(A) < U(A) € GL(A)
the quotient GL(A)/U(A) is an abelian group and thereleads to a map
BGL(A)" —— BGL(A«)
If we follow [FW] by putting KV},(A) = T,(BGL(A+)), we therefore have a homomorphism
Y Kn(A) —— KV(A)
Now the groups KY(A) are just the groups described above by polynomial homotopies and

another way of stating the previous result (due essentially to Quillen) is the following fact :
an isomorphism if A is a regular Noetherian ring.
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Lecture 6

Hermitian K-theory

As we know, usual K-theory is deeply linked with the general linear group and there is no a
priori reason why we should not consider the other classical groups on an equal footing. As we
shall see, it is not only desirable, but this setting appears to be very suitable for a generalization
of Bott periodicity and the computation of the homology of classical groups in terms of
classical Witt groups.

The starting point is a ring with antiinvolutiomsaa together with an elemegibf the center of

A such that € = 1. In most examples,= + 1. For the sake of simplicity, we also assume the
existence of an elemehtof the center of A such that+ A = 1 (if 2 is invertible in A, we
might choose\ = 1/2). We refer to the book of A. Bak (Annals of Math Studies) for a more
refined notion of hermitian forms using so called “form-parameters” (when thereAs no
satisfying this condition).

If M is aright f.g.p. module over A, we define its dual M* as the group-bhear maps f : M
— A such that f(m.a) =a.f(m) for me M and a= A. It is again a right f.g.p. A-module if we
put (f.b)(m) = f(m).b for b= A. An g-hermitian form on M is roughly speaking a A-linear map
M —— M* satisfying some conditions a-symmetry. More precisely, it is given byZa
bilinear map
¢:MXM— A

such that

@(ma, m’b) =a@m, m’)b

@o(m’, m)=¢g @m, m")

with obvious notations. Suchais called are-hermitian form and (M) is ane-hermitian
module. The correspondence

(Dp:m’n-) M » @o(m m)]

does define a morphism from M to M* and we say thpas non-degenerate Eo IS an
isomorphism.

Fundamental example (the hyperbolic module)Let N be a f.g.p. module and M =
N [0 N*. Then a non degeneratehermitian form on M is given by the formula

o((x, f), (x, ) = f(x') +ef(x)
We denote this module by H(N). If N ='Awe may identify N with its dual via the mapsyfy

defined by §(x) = Xy . The hermitian form on "0 A" may then be written as
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oX y), (X, y) =y X +€e XY

There is an obvious definition of the direct sung-bermitian modules and of an isomorphism
between two hermitian modules. We wiit€A) for the Grothendieck group constructed with

such modules.
Exercise: computeL(A) for A = R, C orH and all possible antiinvolutions aad

Exercise: if (M, @) is ane-hermitian module, prove that (M) [ (M, -¢) is isomorphic to
H(M)) (one has to use the existence ofXrebove).

Exercise: let A be the ring of continuous functions on a compact spacewnitiplex values. If
A is provided with the trivial involution and if we take= 1, prove thajL(A) is isomorphic to
thereal topological K-theory of X.

Here the analog of the general linear group isstbethogonal group which is the group of

automorphisms of H(A. We denote this group RP-(A) : it can be described concretely by
matrices in n-blocks

_ %
M=
such that M*M = MM* = | where
4 wU
M* = D(tj ébD
[gc &

Example: if A = the field of real numberR, 10,4(A) is the classical group O(n, n) which has
the homotopy type of O(n) x O(n). By contragD,(A) is the classical group Sp(2R)
which has the homotopy type of the unitary group U(n).

The infinite orthogonal group

¢O(A) = lim (O(A)
has the same formal property as the infinite general linear group. In particular, its commutator
subgroup is perfect. Therefore, we can perform the + construction (or, more geometrically,

consider virtual flat A-bundles wittthermitian forms as in lecture 5).
DEFINITION. The higher HermitiarK-theory of a ringA (for n > 0) is defined as

11we use here the letter L which is quite convenient, but the reader should not be confused with the definition
of the surgery groups, also denoted by the letter L.
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eLn(A) = T(B:O(A))

Example. Let F be a field of characteristic different from 2 provided with the trivial involution.
Then Ly(F) = 0 ife = -1 and y(F) =Z/2 x F*/F*2if € = +1

Notation. We write
H.(A) = K(A) x BGL(A)

for the classifiying space of Algebraic K-theory and
e53(A) = ¢L(A) x BO(A)"
for the classifying space of Hermitian K-theory

There are two interesting functors between Hermitian K-theory and Algebraic K-theory. One is
the forgetful functor from modules with hermitian forms to modules (with no forms) and the

other one from modules to modules with forms, sending N to H(N), the hyperbolic module
associated to N. These functors induce two maps

FielB(A)—— KA and HI¥(A)—— LA

We define;1" (A) as the homotopy fiber of F andl (A) as the homotopy fiber of H. We
define this way two “relative” theories :

eVn(A) = (1 (A)) and ¢Up(A) = Ti(U.(A))

THEOREM (the fundamental theorem of Hermitian K-theory). There is a natural
homotopy equivalence betwedfi(A) and the loop space of‘Ll.(A). In particular,

eVn(A) = _¢Una(A)

Moreover, if we work within the framework of Banach algebras, the same statement is valid
for the topological analog§.e. replacing BGL(A)* by BGL(A)°P and B,O(A)* by
B.O(A)P).

In order to get a feeling for this theorem (and believe in its validity...), it is worthwhile to work
out the classical topological examples &R=C orH , with various involutions (ang=%1).

Note in general that the connected component1d{A) (resp..U. (A)) is the connected
component of the homogeneous space GL@(R) (resp._.O(A)/GL(A)). If for instance A =

R, e = -1, we get the spaces G)/_.;O(R) (which has the homotopy type of O/U) and
10(R)/GL(R) (which has the homotopy type of O, the infinite orthogonal group). Therefore,
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the previous theorem implies that O/U has the homotopy type of the loox3pacee of the

eight homotopy equivalences of Bott (see the end of lecture 2, where O has the homotopy type
of GL(R) and U the homotopy type of GCJ). It is a pleasant exercise to recover the other
seven homotopy equivalences by dealing with other classical groups. Since the list of classical
groups is finite, it is “reasonable” to expect some periodicity...

There are two remarkable involutiddson the H-space$;(A) and 33 (A) and it is better to
describe them in the context of classical groups. On GL(A), one takes the contragredient

M s M

OnO(A) the involution is more delicate. The idea is to take the functor which associates to any
hermitian module (M¢g) the “opposite” module (M,@). On the level of groups, this means

that we have to identify the hyperbolic module By& A" O A" with its opposite via the map

(a, b)» (a, -b). Therefore, in terms of the orthogonal group, this involution sends the matrix

%5

M=

ENEN

to the matrix
7 e v Hooa -
Lo -1l lﬁfﬂ) AL e tif
Therefore, if we localize the spacEgA) and 15 (A) away from 2, we obtain spac#yA)’ and
¢33 (A)’, together with splittings according to these involutions

H(A) = K(A) + X K(A) . and BA) = BA) 4 X B(A)

According to this decompositon, the hyperbolic functor and the forgetful functor are both
represented by the matrix

ER

12 One has to be careful about the precise definition of these spaces when a group is acting. For instance, the
decompositiorit; (A) = K(A) x BGL(A)+ is NOT canonical. A correct definition (among others) consists in

taking Q(BGL(SA) ).
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If follows from this decomposition that, after localisation which we denote by a ‘, the space
¢F(A) has the homotopy type Qf3(A) _x Q'K.(A) ., whereas the spacgll.(A)’ has the
homotopy type oft.(A)". x Q_4&3(A)’ .. Therefore, the fundamental theorem of Hermitian K-
theory is equivalent to saying thdk(A) . has the homotopy type o, 13 (A) ..

The preceding considerations give us an idea of how to prove the fundamental theorem in
Hermitian K-theory after localisation (a more delicate proof, taking into account the 2-torsion is
presented in [K4]).Define the/itt groups,W,(A) as Coker (K(A) —— ¢L,(A)). Then

the fundamental theorem amounts to saying that

eWhH(A) = _Wpio(A) mod. 2 torsion

since these Witt groups are essentially the homotopy groups of the.&(@9é.. In order to

prove such a statement, one may follow the pattern used to prove complex Bott periodicity in the
second lecture. The base ring which plays the rofe fedre is the rin@ [x] with the involution

X 1 - X. Then the scheme is the following

1) Construct non connected deloopings of Hermitian K-theory with a good notion of cup-
product. More precisely if we have a pairing of rings with involution

AxB——C

we should have a pairing between the representing spaces of Hermitian K-theory, taking into
account the sign of symmetry :

eB3(A) X p&(B) — £ B(C)

This is done as in usual K-theory, using the suspension of a ring. One can proceed in the same
way for Banach algebras by completing the cone and the suspension.

2) Itis a well known theorem thgiV(Z[x]) = Z = ;W(R). The key point is now to construct
elements & -{\Wy(Z[x]) and v= -{W_»(Z[x]) such that their cup-product is 4 times a generator
of 1W(Z[x]). The construction of u and v is done very explicitly in [K4]. To check that their
cup-product is non trivial, one has to seffX] into R, the image of x being 1/2 and use
topological K-theory of Banach algebras. This is a nice point where Algebraic and Topological
K-theory are interacting.

3) Using u and v, we define morphisms

eWR(A) —— - Wp(A) and. Wpio(A) —— Wy(A)
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such that the composition is 4 times the identity. This essentially concludes the proof.
Let me quote a theorem which is not published yet, but will appear soon.

THEOREM. There exist’ € .{Wy(Z) andV’ = _{W_»(Z) such that their cup-product is an
element ofW(Z) whose image iRW(R) & Z is 32 times the canonical generator. Now let
A be ANY ring with involution (we no longer assume the existericeusth that + A = 1).
Then, using u’ and v’, we define as before two morphisms bejfWgg€A) and

_¢Wh+2(A) such that their composite is 32 times the identity. In particular,

WHA)E Z[1/2] = _ Wj(A) & Z[1/2]
for any ringA.
The fundamental theorem and the slight generalization above have nice applications for the
computation of the homology of the geneg-alrthogonal group. The philosophy is that this
homology splits into two parts, one coming from the general linear group which is unknown in
general and the other coming from more accessible invariants whigtVdgeA) for n = 0 and
1 only (since we have periodicity). As a typical example, let us consider the homology of the

symplectic group SE() = lim Sp,(Z) and the orthogonal groy®(Z) = lim {O,4(Z) .

THEOREM. LetZ’ =Z[1/2]. Then for the homology with coefficientsdah we have the
following decomposition of the homology-{BSpE)) :

H«(BSpE)) & Z'[Xp Xg, ...] & M«
whereMg =27’ andM; a finite group fori > 0.
The theorem follows from the decomposition of B (after localisation
BSP@)" = 15(2)'+ x 15(2)".
wheretg(143(Z)’ ) =Z’ fori = 2 mod. 4 and O otherwise
andrg(.143(2)’ +) is the symmetric part of KZ) after localisation which is 0 mod. torsion since

the regulator map sends symmetric elements to O.

THEOREM. LetZ’ =Z[1/2]. Then for the homology with coefficientsZin we have the
following decomposition of the homologyH{10(2)) :

H*(]_O(Z)) 2 7 [X4, X8 ] ) M«

whereMg =Z" andM; is a finite group foii > 0.
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For both groups, it is important to notice that the elemeqis x the symplectic case are
determined by embedding Z(in the topological group SB) which has the homotopy type

of the infinite (topological) unitary group. In the same way, the elemgpts the orthogonal

case are determined by embeddi@(Z) in the topological grougO(R) which has the
homotopy type of the product of two copies of the classical (topological) infinite orthogonal
group. The situation there is in sharp contrast with what happens for the general linear group :
by Chern-Weil theory, we know that the homomorphism

top
Kn(R)—— Kn (R)
has a finite cokernel. This is not true for the homomorphism
top top
1Ln(R)— 1L, (R) (resp.iLp(R)—— 1L, (R)

for n= 0 mod. 4 (resp. & 2 mod. 4).

Let us now turn to some computations, starting with finite fields.lbkaga proved by Quillen
that BGL(R)™" is the homotopy fiber of the may' - 1, where

g9 : BGL(C) —— BGL(C)

is the map induced by the Adams operation. In the same way, for g odd, it has been proved by
Friedlander that BO(F;) [resp.B,O(Fy)] is the homotopy fiber of the malp - 1, where

g9 : B,O(C) —— B,0(C) [resp.y¥ : B,O(C) —— B_,0(C)]
Note that;O(C) has the homotopy type of the usual infinite orthogonal group O = injlim O(n)

and .1O(C) has the homotopy type of Sp = injlim Sp(n). This leads to the following
computations ofLj(Fg) fori >0 and i mod. 8

i (mod. 8) 1Li(Fg) Li(Fg)

i=0 Z/2 0

i=1 z/20 22 0

i=2 ZI2 0

i=3  z/q"D2_q) 7/(q™D2. 1y
i=4 0 0
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ki(Fg) -1Li(Fg)

i=5 0 Z/20 212
i=6 0 Z/2
A /(D2 1) 2172 _ 1)

Friedlander has also noticed that the Witt grofW{Fy) and_;W;(F) are periodic of period 8
with respect to i. More precisely, we haWj(Fg) = .1Wj.4(Fg) and these are isomorphic to the
following list, starting for & 0 mod. 8

Z/2,2/2,0,0,0,0Z/2,Z/2
Another case of interest is when our basic ring’is Z[1/2]. Some computations have been

done recently by A.J. Berrick and the author. They will be published shortly. Here are the
results for i > 0 and mod. an odd torsion finite group

i (mod. 8) Li(2) 1Li(2)
i=0 z02z2 0
i=1 Z202/20 212 0
i=2 z/202/2 Z
i=3 Z/8 /16
i=4 y Z/2
i=5 0 Z/2
i=6 0 y
i=7 z/2"t z/2tt

where 2is the 2-primary component of i + 1.
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Lecture 7

Cyclic homology and K-theory

Let me say a few historical words on the subject before explaining more recent achievements.
Cyclic homology (and cohomology) grew from at least 3 sources :

1) In his attempt to understand the Atiyah-Singer index theorem in noncommutative geometry,
Connes was forced to find the analog of the de Rham complex for suitable dense subalgebras of
C*-algebras (typical examples are the Schatten ideals introduced in Higson’s lectures). Connes
explained his ideas in the K-theory seminar in Paris in 1981 and with more details in his course
at the College de France in the following years. He called his groups “cyclic homology” and
denoted them by HQA). These groups are very much related to Hochschild homology
HHx(A), introduced 50 years ago. As a matter of fact, there is a well defined homomorphism

B: HCk(A) - HH*+1(A)
which plays a central role in the theory.

2) From a quite different perspective, Tsygan was trying to compute the Lie algebra homology
of infinite matrices over a ring A of characteristic 0. He proved that this homology is primitively
generated (as a Hopf algebra) by precisely the cyclic homology groups of A, introduced by
Connes independently. This result was proved also by Quillen and Loday in 1983, using
invariant theory.

3) Finally, from my work in K-theory during the late 70’s, | was looking for a kind of Chern
character for general rings. The target was then a new homology theory of rings called

“noncommutative de Rham homology” (see [K2] § 1] and denotedfﬁgAI)-l but the relaton
with cyclic homology was unclear at the first glance. However, as it was realized in 1983 by

Connes and myself, this theorfFf(IA) happens to be just the kernel of the map B (AT
— HH«;1(A) mentioned above. From this clarified viewpoint, &) is looking very
much as Deligne cohomology in a noncommutative context.

The purpose of this lecture is to bridge the gap between K-theory and cyclic homology, via
various types of “Chern characters”. In order not to overlap with the lectures of Berrick and

Higson, we shall take here the viewpoint of functional analysis and deal essentially with

Algebraic and Topological K-theory of Fréchet algebras (which are more general than Banach
algebras), comparing them with the corresponding cyclic homology groups.
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More precisely, let A be a unitary, but not necessarily commutative Fréchet algebra. As we have
seen in previous lectures, we can define Algebraic and Topological K-theory denoted

respectively by K(A) and K\ "°(A). For n > 0, we have KA) = T,(BGL(A)") ; here BGL(AY
denotes the + construction of Quillen applied to the classifying space B?;MA) GL(A)6:

GL(A), viewed as aliscrete group. On the other hamfp(A) is defined as the homotopy

group1,(BGL(A)), where BGL(A) denotes the classifying space of thy@ologicalgroup
GL(A) (at least if A is a Banach algebra ; the general case needs simplicial methods). The

obvious map BGL(AJ5—> BGL(A) induces a natural homomorphism

Kn(A) —— K\ P(A)

We shall use cyclic homology as a tool to construct an intermediary K-theory, called the

“multiplicative K-theory of A” and denoted b{ ,(A), which is more accessible than
Algebraic K-theory. The previous homomorphism can be factored as

Kn(A) —— KnA) —— K P(A)

The homomorphism KA) —— X ,(A) contains various interesting invariants of the
Algebraic K-theory of the Fréchet algebra A. For instdggA) = C” when A =C and n odd.
The map K(C)—— Cis essentially the regulator map. We also ha%za:m(sl)) = C
and the map §(C°°(Sl))—> c’ gives rise to the well-known Kac-Moody extension of
SL(C™(SY) by C.

In order to put all this information together, we shall construct a commutative diagram with 16
entries (when & 1) and exact horizontal sequences :

rel

KIE(A) —— K (A) — Kj'A) —— KA
! ! H l
HG(A) —— % (A)—— K(A) —— HC_(A)
H ! ! H

HC_,(A)—— HC;(A)— HCh (A) —— HC_(A)
H ! ! H

HG(A) —— HHp(A) — HCH(A) —— HC_(A)

Most of the work describing this diagram is included in a paper by Connes and myself [CK]
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and in a paper of Weib€l In the first row, the group {ﬁ(A) is defined as the' homotopy

group of the homotopy fiber of the map BGL(% BGL(A). Therefore, the first exact
sequence is tautological. The other terms and arrows of this diagram will be detailed now, at the
same time we shall explain what the Chern character should be in this context.

Cyclic homology has already been defined in previous lectures. Therefore, we shall innovate
slightly by taking cyclic homology of Fréchet algeBfsisstead, since it is our viewpoint here.

If & denotes the completed tensor product of Grothendieck, we define a double complex by
the following formulas

Co.dA) =A B ABL ... BA (g+l times)

forpe Z and g= N. The first differential b : (A) ——— Cp q.4(A) is the usual Hochschild
boundary

g-1 .
b(gy - @) = ; (-1 8y 88y - @) F (-1)q(aqa0, a8 )
The second differentiad : C, (A) —— Cp.1 (A) is defined by 1 - tif p is even and -N if p
is odd. Here the operators t and N,:{®) —— C; ((A) are defined by
t(q . ) = -1/ (CHE )
N=1+t+..+9
We therefore get the following picture :

l l l l l
Cop Cip2 Co,2 Ci2 Cloe—
l l l l l
Coa Ci1 Co,1 Ci1 Crie——
l l l l l
Coo Cipo Co,0 Ci0 Cro——

The “total” complex of this diagram is defined bpraduct formula :

camw=T] c

(A)
pra=n P4

p1

We denote by HE:er(A) the (periodic cyclic) homology of this complex. The restriction of this
double complex to the first quadrant defines a complex whose homologfAHIS by
definition the cyclic homology of the Fréchet algebra A (taking the topology into account ). The
restriction to the second quadrant (denoteqAY) of the double complex gives the definition

13 ¢. weibel. Nil K-theory maps to cyclic homology. Trans. AMS 303 (1987), 541-558.
14 For instance, a Banach algebra or the algebr&°diu@ctions on a manifold.
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of the negative cyclic homology HQ).
We have an exact sequence (see [L1] p. 160 for instance) :

.1 per .
0—— lim HCn+2r+1(A) —— HC, (A)—— 1im HCn+2r(A) —0
r r
Here the projective limits of order O or 1 are computed using the periodicity operator S of
Connes [C1]. We should notice that the homology spaces obtained this way are not Hausdorff

in general.

For technical reasons which will appear later on, we shall truncate the comp,l,exéﬁeéor
C, byOifn<0and Ker(g% E_l) if n = 0, the other Estaying unchanged. Forn0,

the groups HE,:erandHC}]' are still the same as before. Finally, we notice the following diagram
with two exact sequences

HC_,(A)—— HC,(A)—— HC, (A)—— HC_(A)

H ! ! H

HC (A)—— HH (A)—— HC (A) —— HC__(A)

Another way to introduce cyclic homology is to consider the double complex (B, b) of Connes
(cf. [L1] p. 56 for instance). It can be written over 3 quadrants in the following way

2 B D, B Do

l l lb
2D Dy Do
D D; Do
g+l
where we put in general> G, ;= A ™ . If we truncate as before, we can restrict it to the

two first quadrants. We denote by B (resp. b) the horizontal arrows (resp. the vertical ones).
The bidegrees are obvious (thg @ the second line has bidegree (0, 0)).

We may normalise this double complex by replacigdppQq = Qq(A) = A @A B B A
(q copies ofA = A/C.1). The bicomplex
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Qz A — Qli QO

! ! lb

Qz% Ql A — QO

! |

Q, Qq Qg

: : . per
also enables us to compute cyclic homology and its varlantps (HHT,,..).

Finally, there is a last variant of cyclic homology, called non commutative de Rham homology,
mentionned at the beginning, which we shall define now. The direct sum@f(#eabove is a

differential graded algebra : we write formally an element @A & ...E ;A as a linear
combination (infinite since we are dealing with the topological case) of expressions of the type

ag da... dg

and we multiply them formally using the Leibniz rule : for instance, (x.dy).(z.dt) = x.d(yz).dt -
xy.dz.dt. The differential is defined simply by g@g;... dg) = 1.dg da;... dg,. Let us now

consider the algebv%obtained by adding a unit to A and the quotmﬂ) of Q*(E\) by the

C-module generated by commutataes - wA, A = R, and their differentials. Thi€-module is
easily seen to be the quotient of the algeﬁ;e&) by the module generated by graded
commutators.

THEOREM ([C1][K2]). We have a natural isomorphism
AR _
Hy (A) = Ker[ B : HG,(A) —— HH11(A) ]

From the classical proof of the Poincaré lemma in de Rham cohomology, we deduéijibat H

a homotopy invariant. More precisely, we ha‘Hg,R(E\) = HﬂR(R @ C*(R)). As a
consequence, we deduce from the previous theorem that Ker B is also a homotopy invariant
which in turn implies the following theorem :

THEOREM. Let A, be the algebra o€® functions on the canonical simpi‘éﬂr with

values in A, interpreted as the completed tensor prodﬁf’cmr) lEJnA. Then, the obvious

mapA—— AIr induces an isomorphismcﬁer(A) = HCIE:er(AIr ).

15 we may avoid “angle problems” by definiﬂg as theaffine space of points with coordinatea, (tt:L tr)

in Rr+1 such thatd + t1 + ..+ tr = 1 (we do not assume that tharte= 0. The face and degeneracy operators
enable us to define a simplicial ring from th@(@r). If X is a manifold and A a Banach algebra, it is a well

known fact that @(X) IEJH A may be identified with the algebra ofCfunctions on X with values in A.
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In order to go further, we need a “differential form” version of the Dold-Kan correspondance.
If we denote byG the category of chain complexes (positively graded and assumedCto be

vector spaces, which is our framework) and3the category o$implicial C-vector spaces,
they are equivalent. In particular, we can associate to a chain comglexgi@ace such that its
homotopy groups are the homology groups of the chain complex. There are many choices of

space¥® which are equivalent up to homotopy. The one which is most suitable for our purpose

is the following. LetQ*(4A,) be the DGA of usual € differential forms on the r-simplex. We
associate now to (fa double simplicial complex defined on the second quadrant by

Dp (&) = QP(@) B¢

The two differentials (which decrease the degrees p and q by 1) are induced by the differential
onQ~ and on €. To this double complex we associategimeplicial complex defined by

Cnh(d) = O DpdB)=10 QTMan®; Cq
p+g=n g=n

where n= Z. There is a remarkable simplicial subgroup gf/%) : it consists otlosed chains
of total degree O : it is a subgroup of the direct ﬂﬂm*) & ¢ Cq - The face and degeneracy
operators are induced by those®@HA-). We call it DK(G).

THEOREM. The functoDK : C« » DK(C«) fromT to G is inverse up to homotopy to
the well-known category equivalenee § —— T . We shall simplyrite |C*| for

DK(C«) and we call it the “simplicial realization” of the chain compléx.

Let X« be a simplicial abelian group and let € F(X+) be the associated chain complex.
According to the previous theorem, there should be an explicit homotopy equivalence

C.
This may be applied to the particular case whensdtheC-vector space with basis the
simplicial set BG or EG, when G is a discrete group. To be more precise, 3e6.(EG) be

the “homogeneous” Eilenberg-Mac Lane chain complex defining the homology of BG =
G\EG. Then we define a simplicial map

Q@ Xoe—

o :BG——

C.

by the following formula for g = @ 9y, ..., §) of degree rin BG = G\EG

16 M. Karoubi. Formes différentielles et théoréme de Dold-Kan. Journal of Algebra 198, p. 618-626 (1997).
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a(g) :.Z x U g+ (%Xi dxJ 0 {9, q} + (i,JZk) X dx Odxe @ {gj, g, 9t + -

where{g, g}, {9, g, 9 etc... are the corresponding classes.(BG). Here xdx;,
Xj dx; L dxy, etc... are the usual differential forms on the standard r-sindplevith the x as
barycentric coordinates. It is easy to check ¢hatthe expected map.

With these definitions, let us now describe the Chern character in Algebraic K-theory. For this
purpose we consider the double com;ﬁé;((G) defined in [K2] and ¢ (G) = G\E** (G) the

guotient complex by the left action of G. The definition of this double complex follows the
same pattern as-<JA), using the obvious cyclic module associated to the bar construction of

EG. The doubles indices ianqXG) oreIO q((3) are in the same range as befores: 4§, g= N.
In the same way, we put

per, . per . _
C (G) = p[an C, ((G) for n >0 andcy” (G) = Ker [puzocp'q(e)% pu-lcp,q(G)]’

and analogous definitions fof;(&S) if n= 0. In particular, we define HQG) as the homology

of the total complex associated to the previous double complex restricted to the first quadrant.
With the method described in [K2], it is easy to show, using classical homological algebra (see
[K2] or the book of Weibel) that

HCH(G) = Hy(G) O Hpo(G) O ...

HCx@) = [ Hnak@)

HC, (G) = [ Hns2dG)
k

According to the previous considerations, we therefore have well defined maps of simplicial

complexes
C.G)fF—

BG——

G (G)|

C;(E\)l . If we apply the +
c.(8)| —

In particular, if G = GL(A), we get a morphis|g; (G)| ——

construction, we obtain a well defined map up to homotopy BGL{A)—

C.(A)| and therefore a homomorphism
Kn(A)——  HC;(A)
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defined by Hood and Joridsgeneralizing the results obtained in [K2], with the same method.

In order to define the same type of invariants in topological K-theory, we just apply the same
ideas, but with G = GL(A) replaced by the simplicial group 5GL(A+). We write the
composition

0_per

C.(A)| —— E(ALE

BGi ——

C.(G)

 —

C.(G)

 —

Now comes the crucial fact : since periodic cyclic homology is homotopy invariant, the space

@Cfer(A*)ﬁ is homotopically equivalent to the spziDiEé)er(A)@ and finally we get the Chern
character in topological K-theory defined as a map

0_per

BGL(A) —— FC. (A)f
By taking homotopy groups, one finally gets a homomorphism
top per
Kn (A)—— HG, (A)

THEOREM-DEFINITION. LetG« be the simplicial grougsL(A«) and let¥, (A) be the
homotopy fiber of the map

BG, —— [C. (A —— i ()

C (A
For n > 0, the multiplicative K-theory group$< n(A) are then defineds the homotopy

groups of the spack, (A). We have an exact sequence

top top
KnealA) —— HC_,(A)—— K (A)— K (A) —— HC_/(A)

0_per

Il is easy to see that the composite map BGE(A&e BGL(Ax) — HC, (A*)ﬁ =

()7 can be factored througl; (A)|. We deduce from this observatiosanonical map

from BGL(A)5 to . (A).In the same way, if we denote Bythe homotopy fiber of the map

17 c. HOOD and J.D.S. JONES. Some algebraic properties of cyclic homology groups. K-theory 1 (1987),
361-384.
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BGL(A) —— BGL(A,)

we have a canonical map fraggnto

C.,(A) | Thanks to the + construction, we can write the

following diagram of homotopy fibrations (wiff = 9+) :

QBGL(A+) —— F —— BGL(A)" —— BGL(A)
l l l l

OBGL(A:) — Q[C.,(A)|— K(A) —— BGL(A)

Applying thert, functor, we find part of the commutative diagram at the beginning

rel

Ka) —— KA —— KA —— K5
! ! H l

HC,(A)—— K (A —— K, "(A) — HC_(A)

The commutativity of the diagram

HC (A) ——% (A)—— Kp'(A) —— HC_JA)
H ! ! H

- per
HC (A)—— HCi(A)— HC; (A) —— HC_(A)

is a consequence of the homotopy fibrations :
% (A) —— BGL(A) —— [l () [C/A)]

l l l

)| —— €Al —— A

C.(A)]

Finally, the commutativity of the diagram

HCHn_l(A)% HC;l{(A)—> HCET(A) — HcHn_Z(A)

HC (A) —— HHp(A) — HCy(A) —— HC_(A)

follows from the classical definitions (cf. [L], p. 158 for instance).
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