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Abstract. This lecture series consists of two parts. The first part is on Stein’s method. In

contrast to the traditional method of characteristic function, Stein in 1972 introduced a totally new

method to determine the accuracy of the normal approximation. The method works well not only

for independent random variables but also for dependent variables. Stein’s ideas have been extended

beyond normal approximation and applied to problems in other areas. In these lectures, we focus on

univariate normal approximation with emphasis on the main ideas behind the method. The second

part is about the self-normalized limit theorems. The normalizing constants in classical limit

theorems are usually sequences of real numbers. Moment conditions or other related assumptions

are necessary and sufficient for many classical limit theorems. However, the situation becomes very

different when the normalizing constants are sequences of random variables. A self-normalized large

deviation holds without any moment conditions. A self-normalized law of the iterated logarithm

remains valid for all distributions in the domain of attraction of a normal or stable law. This reveals

that the self-normalization preserves much better properties than deterministic normalization does.

We shall briefly review recent development on the self-normalized limit theorems and show how

Stein’s method can be used to recover some of the results.
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Part I. Stein’s Method (based on Chen and Shao (2005))

1 Introduction

Let X1, X2, · · · , Xn be independent random variables with zero means and finite variances. Put

Sn =
n∑

i=1

Xi and B2
n =

n∑
i=1

EX2
i .

It is well-known that if the Lindeberg condition

∀ ε > 0,
1

B2
n

n∑
i=1

EX2
i I{|Xi|>εBn} → 0 as n →∞ (1.1)

is satisfied, then
Sn

Bn

d.−→ N(0, 1).

Furthermore, if E|Xi|3 < ∞, then we have the uniform Berry-Esseen inequality

sup
z
|P

( Sn

Bn
≤ z

)
− Φ(z)| ≤ C0B

−3
n

n∑
i=1

E|Xi|3 (1.2)

and the non-uniform Berry-Esseen inequality

∀ z ∈ R1, |P
( Sn

Bn
≤ z

)
− Φ(z)| ≤ C1(1 + |z|)−3B−3

n

n∑
i=1

E|Xi|3, (1.3)

where Φ(z) is the standard normal distribution function, and both C0 and C1 are absolute constants.

One can take C0 = 0.7975 [van Beeck (1972)] and C1 = 114.7 for independent random variables

[Paditz (1977)] and C1 = 30.54 for i.i.d. random variables [Michel (1988)] . The standard proof of

Berry-Esseen inequalities is based on the method of characteristic function or the Fourier transform,

which works well for independent random variables although it is already very complicated. A

totally new method of normal approximation was introduced by Stein in 1972. Stein’s method is

striking. It works well not only for independent random variables but also for dependent variables.

Stein’s ideas can be also applied to many other probability approximations, notably to Poisson,

Poisson process, compound Poisson and binomial approximations.

In the first part of this lecture series, we shall give an overview of the use of the Stein method for

normal approximation. We start with basic results on the Stein equations and their solutions and

then prove several classical limit theorems to illustrate the beauty of the Stein method. The focus

will be on the ideas behind different approaches such as the concentration inequality approach,
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induction approach and exchangeable pair approach. We shall present a totally self-contained

proof for (1.2) and (1.3) via Stein’s method. The second part will focus on the self-normalized limit

theorems. In contrast to the classical limit theorems, the self-normalized limit theorems remain

valid under much less moment conditions than those in the classical limit theorems. We shall briefly

review recent developments in this area and especially, use Stein’s method to recover the Cramér

type self-normalized moderate deviations.

2 Stein’s method

2.1 The Stein equation

Let Z be a standard normally distributed random variable and let Cbd be the set of continuous and

piecewise continuously differentiable functions f : R → R with E|f ′(Z)| < ∞. Stein’s method

rests on the following observation.

Lemma 2.1 Let W be a real valued random variable. Then W has a standard normal distribution

it is necessary and sufficient that for all f ∈ Cbd

Ef ′(W ) = EWf(W ). (2.1)

Proof. Necessity. If W has a standard normal distribution, then for f ∈ Cbd

Ef ′(W ) =
1√
2π

∫ ∞

−∞
f ′(w)e−w2/2dw

=
1√
2π

∫ 0

−∞
f ′(w)

( ∫ w

−∞
(−x)e−x2/2dx

)
dw

+
1√
2π

∫ ∞

0
f ′(w)

( ∫ ∞

w
xe−x2/2dx

)
dw

=
1√
2π

∫ 0

−∞

( ∫ 0

x
f ′(w)dw

)
(−x)e−x2/2dx

+
1√
2π

∫ ∞

0

( ∫ x

0
f ′(w)dw

)
xe−x2/2dx

=
1√
2π

∫ ∞

−∞
[f(x)− f(0)]xe−x2/2dx

= EWf(W ).

Sufficiency. For fixed z ∈ R1, let f(w) := fz(w) be the solution of the following equation

f ′(w)− wf(w) = I{w≤z} − Φ(z). (2.2)
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Multiplying by e−w2/2 on both sides of (2.2) yields(
e−w2/2f(w)

)′
= e−w2/2

(
I{w≤z} − Φ(z)

)
Thus,

fz(w) = ew2/2

∫ w

−∞
[I{x≤z} − Φ(z)]e−x2/2dx

= −ew2/2

∫ ∞

w
[I{x≤z} − Φ(z)]e−x2/2dx

=

{ √
2πew2/2Φ(w)[1− Φ(z)] if w ≤ z,

√
2πew2/2Φ(z)[1− Φ(w)] if w ≥ z.

(2.3)

By Lemma 2.2 below, the solution fz above is a bounded continuous and piecewise continuously

differentiable function. Suppose that (2.1) holds for all f ∈ Cbd. Then it holds for fz. By (2.2)

0 = E[f ′z(W )−Wfz(W )] = E[I{W≤z} − Φ(z)] = P (W ≤ z)− Φ(z).

Thus, W has a standard normal distribution. �

Equation (2.2) is called the Stein equation. In general, for a real valued measurable function h

with E|h(Z)| < ∞, the Stein equation refers to

f ′(w)− wf(w) = h(w)− Eh(Z). (2.4)

Clearly, if h(w) = I{w≤z}, (2.4) reduces to (2.2). Similar to (2.3), the solution f = fh is given by

fh(w) = ew2/2

∫ w

−∞
[h(x)− Eh(Z)]e−x2/2dx

= −ew2/2

∫ ∞

w
[h(x)− Eh(Z)]e−x2/2dx. (2.5)

2.2 Properties of solutions to the Stein equations

In this subsection we study basic properties of solutions to the Stein equations (2.3) and (2.5).

First, we consider the solution fz to (2.3).

Lemma 2.2 For the function fz defined by (2.3) we have

wfz(w) is an increasing function of w, (2.6)

|wfz(w)| ≤ 1, |wfz(w)− ufz(u)| ≤ 1 (2.7)

3



|f ′z(w)| ≤ 1, |f ′z(w)− f ′z(v)| ≤ 1 (2.8)

0 < fz(w) ≤ min(
√

2π/4, 1/|z|) (2.9)

and

|(w + u)fz(w + u)− (w + v)fz(w + v)| ≤ (|w|+
√

2π/4)(|u|+ |v|) (2.10)

for all real w, u, and v.

Next, we discuss the solution fh for bounded absolutely continuous function h.

Lemma 2.3 For absolutely continuous function h: R → R

sup
w
|fh(w)| ≤ min (

√
π/2 sup

w
|h(w)− Eh(Z)|, 2 sup

w
|h′(w)|), (2.11)

sup
w
|f ′h(w)| ≤ min (2 sup

w
|h(w)− Eh(Z)|, 4 sup

w
|h′(w)|) (2.12)

and

sup
w
|f ′′h (w)| ≤ 2 sup

w
|h′(w)|. (2.13)

Proofs of Lemmas 2.2 and 2.3 are given in the Appendix.

2.3 The main idea of the Stein approach

The Stein equation(2.4) is the starting point for normal approximations. To illustrate the main

idea of this approach, let ξ1, ξ2, · · · , ξn be independent random variables satisfying Eξi = 0 for each

1 ≤ i ≤ n and
∑n

i=1 Eξ2
i = 1. Put

W =
n∑

i=1

ξi, W (i) = W − ξi (2.14)

and

Ki(t) = Eξi(I{0≤t≤ξi} − I{ξi≤t<0}). (2.15)

It is easy to see that Ki(t) ≥ 0 for all real t,∫ ∞

−∞
Ki(t)dt = Eξ2

i and
∫ ∞

−∞
|t|Ki(t)dt = E|ξi|3/2. (2.16)

Let h be a measurable function with E|h(Z)| < ∞, and f = fh be the solution of the Stein equation

(2.4). Our goal is to estimate

Eh(W )− Eh(Z) = Ef ′(W )− EWf(W ).
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Since ξi and W (i) are independent and Eξi = 0 for each 1 ≤ i ≤ n, we have

EWf(W ) =
n∑

i=1

Eξif(W )

=
n∑

i=1

Eξi[f(W )− f(W (i))]

=
n∑

i=1

Eξi

∫ ξi

0
f ′(W (i) + t)dt

=
n∑

i=1

E

∫ ∞

−∞
f ′(W (i) + t)ξi(I{0≤t≤ξi} − I{ξi≤t<0})dt

=
n∑

i=1

E

∫ ∞

−∞
f ′(W (i) + t)Ki(t)dt. (2.17)

From
n∑

i=1

∫ ∞

−∞
Ki(t)dt =

n∑
i=1

Eξ2
i = 1,

it follows that

Ef ′(W ) =
n∑

i=1

E

∫ ∞

−∞
f ′(W )Ki(t)dt. (2.18)

Thus, by (2.17) and (2.18)

Ef ′(W )− EWf(W ) =
n∑

i=1

E

∫ ∞

−∞
[f ′(W )− f ′(W (i) + t)]Ki(t)dt. (2.19)

Equations (2.17) and (2.19) play a key role in proving a Berry-Esseen type inequality. We

remark that it holds for all bounded absolute continuous f . Let

γ =
n∑

i=1

E|ξi|3. (2.20)

2.4 Expectation of smooth functions

Equation (2.19) is ready to drive a Berry-Esseen type bound for smooth function h.

Theorem 2.1 Let ξ1, ξ2, · · · , ξn be independent random variables satisfying Eξi = 0, E|ξi|3 < ∞

for each 1 ≤ i ≤ n and
∑n

i=1 Eξ2
i = 1. Then for any absolutely continuous function h satisfying

supx |h′(x)| ≤ c1

|Eh(W )− Eh(Z)| ≤ 3c1

n∑
i=1

E|ξi|3. (2.21)
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In particular, we have

|E|W | −
√

2
π
| ≤ 3

n∑
i=1

E|ξi|3.

Proof. It follows from (2.13) that |f ′′h | ≤ 2c1. Therefore, by (2.19) and the mean value theorem

|Ef ′h(W )− EWfh(W )| ≤
n∑

i=1

E

∫ ∞

−∞
|f ′h(W )− f ′h(W (i) + t)|Ki(t)dt

≤ 2c1

n∑
i=1

E

∫ ∞

−∞
(|t|+ |ξi|)Ki(t)dt

= 2c1

n∑
i=1

(E|ξi|3/2 + E|ξi|Eξ2
i )

≤ 3c1

n∑
i=1

E|ξi|3. (2.22)

We note that it is not necessary to assume the existence of finite third moments in Theorem

2.1.

Theorem 2.2 Let ξ1, ξ2, · · · , ξn be independent random variables satisfying Eξi = 0 for each 1 ≤

i ≤ n and
∑n

i=1 Eξ2
i = 1. Let h be absolutely continuous with |h′| ≤ c1. Then

|Eh(W )− Eh(Z)| ≤ 4c1(4β2 + 3β3), (2.23)

where

β2 =
n∑

i=1

Eξ2
i I{|ξi|>1} and β3 =

n∑
i=1

E|ξi|3I{|ξi|≤1}. (2.24)

Proof. Observing from (2.12) and (2.13) that

|f ′h(W )− f ′h(W (i) + t)| ≤ min (8c1, 2c1(|t|+ |ξi|)) ≤ 8c1(|t| ∧ 1 + |ξi| ∧ 1),

where a ∧ b denotes min(a, b), we have by (2.19)

|Eh(W )− Eh(Z)|

≤ 8c1

n∑
i=1

E

∫ ∞

−∞
(|t| ∧ 1 + |ξi| ∧ 1)Ki(t)dt

= 8c1

n∑
i=1

(
E|ξi|(|ξi| − 1)I{|ξi|>1} +

1
2
E|ξi|(|ξi| ∧ 1)2 + Eξ2

i E(|ξi| ∧ 1)
)

= 8c1

n∑
i=1

(
Eξ2

i I{|ξi|>1} −
1
2
E|ξi|I{|ξi|>1} +

1
2
E|ξi|3I{|ξi|≤1} + Eξ2

i E(|ξi| ∧ 1)
)

≤ 8c1

{
β2 +

1
2
β3 +

n∑
i=1

Eξ2
i E(|ξi| ∧ 1)

}
. (2.25)
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We need the following fact: for any random variable ξ

Eξ2E(|ξ| ∧ 1) ≤ E|ξ|3I{|ξ|≤1} + Eξ2I{|ξ|>1}. (2.26)

To see this, let η be an independent copy of ξ. It is easy to verify that

ξ2(|η| ∧ 1) + η2(|ξ| ∧ 1) ≤ |ξ|3I{|ξ|≤1} + |η|3I{|η|≤1} + |ξ|2I{|η|>1} + |η|2I{|η|>1}.

Taking expectation on both sides yields (2.26).

Now (2.23) follows from (2.25) - (2.26). �

Remark 2.1 If h is bounded by c0, then the bound in (2.23) can be replaced by max(c1, 4(c0 ∧

c1))(4β2 + 3β3).

2.5 The Lindeberg central limit theorem

Since an indicator function is not continuous, unfortunately, Theorem (2.2) does not give a sharp

Berry-Esseen bound directly. However, one can use a bounded absolutely continuous function to

approximate the indicator function and then apply Theorem 2.2 to obtain a weak version of the

Berry-Esseen bound which is good enough to recover the Lindebderg central limit theorem.

Theorem 2.3 Let ξ1, ξ2, · · · , ξn be independent random variables satisfying Eξi = 0 for each 1 ≤

i ≤ n and
∑n

i=1 Eξ2
i = 1. Then

sup
z
|P (W ≤ z)− Φ(z)| ≤ 2.2(4β2 + 3β3)1/2, (2.27)

where β2 and β3 are defined in (2.24).

Proof. We can assume that (4β2 + 3β3)1/2 ≤ 1/2. Otherwise, (2.27) is trivial. Let α =

0.5(4β2 + 3β3)1/2, and define for fixed z

hα(w) =


1 if w ≤ z,

0 if w ≥ z + α,

linear if z ≤ w ≤ z + α.

It is easy to see that |h| ≤ 1, |h′| ≤ 1/α. By Remark 2.1 and the assumption α ≤ 1/4, we have

|Ehα(W )− Ehα(Z)| ≤ max(4, 1/α)(4β2 + 3β3) ≤ (4β2 + 3β3)/α (2.28)
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and hence

P (W ≤ z)− Φ(z) ≤ Ehα(W )− Ehα(Z) + Ehα(Z)− Φ(Z)

≤ (4β2 + 3β3)/α + EI{z≤Z≤z+α}

≤ (4β2 + 3β3)/α +
α√
2π

≤ 2.2(4β2 + 3β3)1/2. (2.29)

Similarly, we have

P (W ≤ z)− Φ(z) ≥ −2.2(4β2 + 3β3)1/2. (2.30)

This proves (2.27), by (2.29) and (2.30). �

Although Theorem 2.3 does not give a sharp Berry-Esseen bound, it does provide a self-

contained proof for the central limit theorem under Lindeberg’s condition.

Let X1, X2, · · · , Xn be independent random variables with EXi = 0 and EX2
i < ∞ for each

1 ≤ i ≤ n. Put

Sn =
n∑

i=1

Xi and B2
n =

n∑
i=1

EX2
i .

To apply Theorem 2.3, let

ξi = Xi/Bn and W = Sn/Bn. (2.31)

Observe that for any 0 < ε < 1

β2 + β3 =
1

B2
n

n∑
i=1

EX2
i I{|Xi|>Bn} +

1
B3

n

n∑
i=1

E|Xi|3I{|Xi|≤Bn}

≤ 1
B2

n

n∑
i=1

EX2
i I{|Xi|>Bn} +

1
B3

n

n∑
i=1

BnEX2
i I{εBn≤|Xi|≤Bn}

+
1

B3
n

n∑
i=1

εBnEX2
i I{|Xi|<εBn}

≤ ε +
1

B2
n

n∑
i=1

EX2
i I{|Xi|>εBn}. (2.32)

If Lindeberg’s condition (1.1) is satisfied, then (2.32) implies β2 + β3 → 0 as n → ∞ since ε is

arbitrary. This shows

sup
z
|P (Sn/Bn ≤ z)− Φ(z)| → 0 as n →∞

by Theorem 2.3.
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2.6 Converse to the Lindeberg-Feller theorem

Let X1, X2, · · · , Xn be independent random variables with EXi = 0 and EX2
i < ∞ for each

1 ≤ i ≤ n. The notation is as in Section 2.5. It is known that if the Feller condition is satisfied

max
1≤i≤n

EX2
i /B2

n → 0, (2.33)

then Lindebderg’s condition is necessary for the central limit theorem. Stein’s method can provide

a nice proof for the necessity.

Theorem 2.4 Let ξ1, ξ2, · · · , ξn be independent random variables satisfying Eξi = 0 for each 1 ≤

i ≤ n and
∑n

i=1 Eξ2
i = 1. Then there exists an absolute constant C such that for all ε > 0

(1− e−ε2/4)
n∑

i=1

Eξ2
i I{|ξi|>ε} ≤ C

(
sup

z
|P (W ≤ z)− Φ(z)|+

n∑
i=1

(Eξ2
i )2

)
. (2.34)

Now for the sequence of independent random variables {Xi, i ≥ 1}, recall ξi = Xi/Bn. Clearly,

Feller’s condition (2.33) implies that
∑n

i=1(Eξ2
i )2 ≤ max1≤i≤n Eξ2

i → 0 as n → ∞. Therefore, if

Sn/Bn is asymptotically normal, then
n∑

i=1

Eξ2
i I{|ξi|>ε} → 0

as n →∞ for every ε > 0, or the Lindeberg condition is satisfied.

Proof of Theorem 2.4. Let f(w) = we−w2/2 and h(w) = f ′(w)− wf(w). Put

c1 =
∫ ∞

−∞
|h′(w)|dw, c2 = sup

w
|f ′′′(w)|, c3 =

∫ ∞

−∞
|f ′′(w)|dw, ∆ = sup

z
|P (W ≤ z)− Φ(z)|.

Numerical computation gives c1 ≤ 5, c2 = 3, c3 ≤ 4.

Since Eh(Z) = 0 by (2.1), we have

|Eh(W )| = |Eh(W )− Eh(Z)| = |
∫ ∞

−∞
h′(w){P (W ≤ w)− Φ(w)}dw| ≤ c1∆. (2.35)

Furthermore with σ2
i = Eξ2

i

Eh(W ) =
n∑

i=1

E(σ2
i f

′(W (i) + ξi)− ξif(W (i) + ξi))

=
n∑

i=1

σ2
i E(f ′(W (i) + ξi)− f ′(W (i))− ξif

′′(W (i)))

−
n∑

i=1

E(ξi{f(W (i) + ξi)− f(W (i))− ξif
′(W (i))})

≥ −0.5c2

n∑
i=1

σ4
i + R1, (2.36)
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where

R1 = −
n∑

i=1

E(ξi{f(W (i) + ξi)− f(W (i))− ξif
′(W (i))}).

Let W ∗, Z and {ξi, 1 ≤ i ≤ n} be independent, where W ∗ and W have the same distribution and

Z has the standard normal distribution. Put

R2 = −
n∑

i=1

E(ξi{f(W ∗ + ξi)− f(W ∗)− ξif
′(W ∗)}),

R3 = −
n∑

i=1

E(ξi{f(Z + ξi)− f(Z)− ξif
′(Z)}).

We shall prove that R1 can be approximated by R2 and eventually by R3. Note that

R1 =
n∑

i=1

E
{

ξ2
i

∫ 1

0
[f ′(W (i) + tξi)− f ′(W (i))]dt

}
= R2 +

n∑
i=1

E
{

ξ2
i

∫ 1

0
[f ′(W ∗ + tξi)− f ′(W (i) + tξi)]dt

}
−

n∑
i=1

E
{

ξ2
i

∫ 1

0
[f ′(W ∗)− f ′(W (i))]dt

}
. (2.37)

For any constant θ,

|E(f ′(W ∗ + θ)− f ′(W (i) + θ))|

= |E(f ′(W (i) + ξi + θ)− f ′(W (i) + θ))|

= |E(f ′(W (i) + ξi + θ)− f ′(W (i) + θ)− ξif
′′(W (i) + θ))|

≤ 0.5c2σ
2
i .

So by (2.37),

R1 ≥ R2 − c2

n∑
i=1

σ4
i . (2.38)

Similarly,

R2 = R3 +
n∑

i=1

E
{

ξ2
i

∫ 1

0
[f ′(Z) + tξi)− f ′(W ∗ + tξi)]dt

}
−

n∑
i=1

E
{

ξ2
i

∫ 1

0
[f ′(Z)− f ′(W ∗)]dt

}
and for constant θ

|Ef ′(W ∗ + θ)− Ef ′(Z + θ)| = |
∫ ∞

−∞
f ′′(w)(P (W ∗ ≤ w − θ)− Φ(w − θ))dw| ≤ c3∆.
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Combining the above estimates with (2.35) - (2.38) yields

R3 ≤ (c1 + 2c3)∆ + 1.5c2

n∑
i=1

σ4
i . (2.39)

Observing that

g(y) := −y−1E(f(Z + y)− f(Z)− yf ′(Z)) = 2−1.5(1− e−y2/4),

we have

R3 =
n∑

i=1

Eξ2
i g(ξi)

≥ 2−1.5(1− e−ε2/4)
n∑

i=1

Eξ2
i I{|ξi|>ε} (2.40)

for every ε > 0. This proves (2.34). �

3 Uniform Berry-Esseen Bounds

Throughout this section we assume that ξ1, ξ2, · · · , ξn are independent random variables with zero

means and finite second moment. We also assume
∑n

i=1 Eξ2
i = 1. Use the notation in the previous

section,

W =
n∑

i=1

ξi, W (i) = W − ξi, Ki(t) = Eξi(I{0≤t≤ξi} − I{ξi≤t<0}).

Let fz be the solution of the Stein equation (2.1). Our goal is to use Stein’s method to prove the

uniform Berry-Esseen inequality

sup
z
|P (W ≤ z)− Φ(z)| ≤ C

n∑
i=1

E|ξi|3.

3.1 Bounded random variables

For bounded ξi, we are ready to apply (2.17) to obtain the following Berry-Esseen type bound.

Theorem 3.1 If |ξi| ≤ δ0 for 1 ≤ i ≤ n, then

sup
z
|P (W ≤ z)− Φ(z)| ≤ 3.3δ0 (3.1)
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Proof. Write f = fz. It follows from (2.17) that

EWf(W ) =
n∑

i=1

E

∫ ∞

−∞
f ′(W (i) + t)Ki(t)dt

=
n∑

i=1

E

∫ ∞

−∞
{(W (i) + t)f(W (i) + t) + I{W (i)+t≤z} − Φ(z)}Ki(t)dt

and
n∑

i=1

∫ ∞

−∞
P (W (i)+t ≤ z)Ki(t)dt−Φ(z) =

n∑
i=1

E

∫ ∞

−∞
{Wf(W )−(W (i)+t)f(W (i)+t)}Ki(t)dt. (3.2)

By (2.10),

n∑
i=1

E

∫ ∞

−∞
|Wf(W )− (W (i) + t)f(W (i) + t)|Ki(t)dt

≤
n∑

i=1

∫ ∞

−∞
E(|W (i)|+

√
2π/4)(|ξi|+ |t|)Ki(t)dt

≤ (1 +
√

2π/4)
n∑

i=1

∫ ∞

−∞
(E|ξi|+ |t|)Ki(t)

= (1 +
√

2π/4)
n∑

i=1

{E|ξi|Eξ2
i + 0.5E|ξi|3}

≤ 1.5(1 +
√

2π/4)
n∑

i=1

E|ξi|3. (3.3)

Noting that the assumption |ξi| ≤ δ0 implies Ki(t) = 0 for |t| > δ0, we have

n∑
i=1

∫ ∞

−∞
P (W (i) + t ≤ z)Ki(t)dt

=
n∑

i=1

∫
|t|≤δ0

P (W − ξi + t ≤ z)Ki(t)dt

≥
n∑

i=1

∫
|t|≤δ0

P (W ≤ z − 2δ0)Ki(t)dt

= P (W ≤ z − 2δ0).

Combining with (3.2) and (3.3) gives

P (W ≤ z − 2δ0)− Φ(z − 2δ0)

≤ Φ(z)− Φ(z − 2δ0) + 1.5(1 +
√

2π/4)
n∑

i=1

E|ξi|3

≤ 2δ0√
2π

+ 1.5(1 +
√

2π/4)δ0 ≤ 3.3δ0 (3.4)
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Similarly, we have
n∑

i=1

∫ ∞

−∞
P (W (i) + t ≤ z)Ki(t)dt ≤ P (W ≤ z + 2δ0).

and

P (W ≤ z + 2δ0)− Φ(z + 2δ0) ≥ −3.3δ0 (3.5)

This proves (3.1) by (3.4) and (3.5). �

One can see from the above proof that the boundness of ξi is used only in the approximation

of
∑n

i=1

∫∞
−∞ P (W (i) + t ≤ z)Ki(t)dt by P (W ≤ z). On the other hand, it is intuitively appealing

that P (W (i) + t ≤ z) should be close to P (W ≤ z). We shall present two different approaches in

the next two subsections.

3.2 The inductive approach

Assume that E|ξi|3 < ∞. We shall prove

sup
z
|P (W ≤ z)− Φ(z)| ≤ C

n∑
i=1

E|ξi|3 (3.6)

by induction, where C can be taken 76.

Let γ =
∑n

i=1 E|ξi|3, τ2
i = EW (i)2 and τ = min1≤i≤n τi. Since (11.2) is trivial if γ > 1/76, we

can assume γ < 1/76 which in turn implies that τ2 ≥ (1− γ2/3) ≥ 0.9.

If n = 1, E|ξ1|3 ≥ (Eξ2
i )2/3 = 1. (11.2) is true. Suppose inductively that (11.2) has been

established whenever W consists of fewer than n summands. Then, in particular

P (a < W (i) ≤ b) = Φ(b/τi)− Φ(a/τi) + P (W (i) ≤ b)− Φ(b/τi)− {P (W (i) ≤ a)− Φ(a/τi)}

≤ 2Cτ−3
i

∑
j 6=i

E|ξj |3 + (2π)−1/2τ−1
i (b− a)

≤ 4Cγ + (b− a) (3.7)

for a < b.

For δ = 16γ, we have

n∑
i=1

∫ ∞

−∞
P (W (i) + t ≤ z)Ki(t)dt

= P (W ≤ z − 2δ) +
n∑

i=1

∫ ∞

−∞
{P (W (i) + t ≤ z)− P (W (i) + ξi ≤ z − 2δ)}Ki(t)dt

≥ P (W ≤ z − 2δ)−
n∑

i=1

∫ ∞

−∞
E

{∫
t≥2δ+ξi

I{z−t≤W (i)≤z−2δ−ξi}Ki(t)
}

dt

13



= P (W ≤ z − 2δ)−
n∑

i=1

∫ ∞

−∞
E

{∫
t≥2δ+ξi

P (z − t ≤ W (i) ≤ z − 2δ − ξi)Ki(t)
}

dt

≥ P (W ≤ z − 2δ)−
n∑

i=1

∫ ∞

−∞
E

{∫
t≥2δ+ξi

(4Cγ + t− 2δ − ξi)Ki(t)dt
}

[by (3.7)]

≥ P (W ≤ z − 2δ)− 2δ − 1.5γ − 4Cγ

n∑
i=1

E
{∫

t≥2δ+ξi

Ki(t)dt
}

≥ P (W ≤ z − 2δ)− 2δ − 1.5γ

−4Cγ
n∑

i=1

E
{

I{ξi≤−δ}

∫ ∞

−∞
Ki(t)dt +

∫
t≥δ

Ki(t)dt
}

≥ P (W ≤ z − 2δ)− 34γ − 4Cγ
n∑

i=1

(P (ξi < −δ)Eξ2
i + Eξ2

i I{ξi>δ})

≥ P (W ≤ z − 2δ)− 34γ − 4Cγ
n∑

i=1

E|ξi|3/δ

= P (W ≤ z − 2δ)− 34γ − Cγ/4. (3.8)

Thus, by (3.2) and (3.3)

P (W ≤ z − 2δ)− Φ(z − 2δ) ≤ 38γ + Cγ/2 = Cγ

if we take C = 76. Similarly, we have

P (W ≤ z + 2δ)− Φ(z + 2δ) ≥ −38γ − Cγ/2 = −Cγ.

This completes the proof of (11.2). �

3.3 The concentration inequality approach

The proofs in previous two subsections suggest that the key step in proving the Berry-Esseen bound

is the concentration inequality (3.7). In this subsection, we give a direct proof for (3.7) and hence

the Berry-Esseen inequality. Let γ =
∑n

i=1 E|ξi|3.

Proposition 3.1 We have

P (a ≤ W (i) ≤ b) ≤
√

2(b− a) + (1 +
√

2)γ (3.9)

for all real a < b and for every 1 ≤ i ≤ n.

Proof. Define δ = γ/2 and

f(w) =


−1

2(b− a)− δ if w < a− δ,

w − 1
2(b + a) if a− δ ≤ w ≤ b + δ,

1
2(b− a) + δ for w > b + δ

(3.10)
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Let

M̂j(t) = ξj(I{−ξj≤t≤0} − I{0<t≤−ξj}),

M̂(t) =
∑

1≤j≤n

M̂j(t), M(t) = EM̂(t).

Since ξj and W (i) − ξj are independent for j 6= i, Eξj = 0, M̂(t) ≥ 0 and f ′(t) ≥ 0, we have

EW (i)f(W (i))− Eξif(W (i) − ξi)

=
n∑

j=1

Eξj [f(W (i))− f(W (i) − ξj)]

=
n∑

j=1

Eξj

∫ 0

−ξj

f ′(W (i) + t)dt

=
n∑

j=1

Eξj [f(W (i))− f(W (i) − ξj)]

=
n∑

j=1

E

∫ ∞

−∞
f ′(W (i) + t)M̂j(t)dt

= E

∫ ∞

−∞
f ′(W (i) + t)M̂(t)dt

≥ E

∫
|t|≤δ

f ′(W (i) + t)M̂(t)dt

≥ EI{a≤W (i)≤b}

∫
|t|≤δ

M̂(t)dt

= EI{a≤W (i)≤b}

n∑
j=1

|ξj |min(δ, |ξj |)

≥ H1,1 −H1,2, (3.11)

where

H1,1 = P (a ≤ W (i) ≤ b)
n∑

j=1

E|ξj |min(δ, |ξj |),

H1,2 = E|
n∑

j=1

|ξj |min(δ, |ξj |)− E|ξj |min(δ, |ξj |)|.

A direct calculation yields

min(x, y) ≥ x− x2/(4y) (3.12)

for x > 0 and y > 0. Then

n∑
j=1

E|ξj |min(δ, |ξj |) ≥
n∑

j=1

{
Eξ2

j −
E|ξj |3

4δ

}
=

1
2

(3.13)
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and hence

H1,1 ≥ .5P (a ≤ W (i) ≤ b). (3.14)

By the Hölder inequality,

H1,2 ≤
(
Var(

n∑
j=1

|ξj |min(δ, |ξj |))
)1/2

≤
( n∑

j=1

Eξ2
j min(δ, |ξj |)2

)1/2

≤ δ
( n∑

j=1

Eξ2
j

)1/2
= δ. (3.15)

Combining (3.14) and (3.15) with (3.11) and observing that

|f | ≤ .5(b− a) + δ,

we have

P (a ≤ W (i) ≤ b) ≤ 2δ + (E|W (i)|+ E|ξi|)(b− a + 2δ)

≤ 2δ +
√

2
(
(E|W (i)|)2 + (E|ξi|)2

)1/2
(b− a + 2δ)

≤ 2δ +
√

2
(
E|W (i)|2 + E|ξi|2

)1/2
(b− a + 2δ)

= 2δ +
√

2 (EW 2)1/2(b− a + 2δ)

=
√

2(b− a) + 2(1 +
√

2)δ

=
√

2(b− a) + (1 +
√

2)γ

as desired. �

We are now ready to prove

Theorem 3.2 We have

sup
z
|P (W ≤ z)− Φ(z)| ≤ 7γ. (3.16)

Proof. It follows from (3.9) that

|
n∑

i=1

∫ ∞

−∞
P (W (i) + t ≤ z)Ki(t)dt− P (W ≤ z)|

≤
n∑

i=1

∫ ∞

−∞
|P (W (i) + t ≤ z)− P (W ≤ z)|Ki(t)dt

=
n∑

i=1

∫ ∞

−∞
E{P (z −max(t, ξi) ≤ W (i) ≤ z −min(t, ξi) | ξi)}Ki(t)dt
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≤
n∑

i=1

∫ ∞

−∞
E{
√

2(|t|+ |ξi|) + (1 +
√

2)γ}Ki(t)dt

= (1 +
√

2)γ +
√

2
n∑

i=1

(0.5E|ξi|3 + E|ξi|Eξ2
i )

≤ (1 + 2.5
√

2)γ. (3.17)

Now by (3.2)

|P (W ≤ z)− Φ(z)| ≤ (1 + 2.5
√

2 + 1.5(1 +
√

2π/4))γ ≤ 7γ,

which is (3.1). �

We remark that following the above lines of proof, one can prove

sup
z
|P (W ≤ z)− Φ(z)| ≤ 7

n∑
i=1

(Eξ2
i I{|ξi|>1} + E|ξi|3I{|ξi|≤1}).

We leave the proof to the reader. A refined concentration inequality can lead to reduce the constant

7 to 4.1.

3.4 A randomized concentration inequality

In this subsection we present a randomized concentration inequality, which is useful to establish the

Berry-Esseen inequality for functions of independent random variables, in particular for non-linear

statistics. Let ∆1 and ∆2 be real-valued Borel measurable functions of (ξi, 1 ≤ i ≤ n).

Theorem 3.3 We have

P (∆1 ≤ W ≤ ∆2) ≤ E|W (∆2 −∆1)|+ 2γ

+
n∑

i=1

{E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|}, (3.18)

where ∆1,i and ∆2,i are Borel measurable functions of (ξj , 1 ≤ j ≤ n, j 6= i), and γ is defined as

in (2.20).

Proof. We follow the proof of Proposition 3.1. Define δ = 0.5γ and

f∆1,∆2(w) =


−(∆2 −∆1)/2− δ for w ≤ ∆1 − δ

w − 1
2(∆1 + ∆2) for ∆1 − δ ≤ w ≤ ∆2 + δ

(∆2 −∆1)/2 + δ for w > ∆2 + δ.

Let

M̂i(t) = ξi{I(−ξi ≤ t ≤ 0)− I(0 < t ≤ −ξi)}, M̂(t) =
n∑

i=1

M̂i(t).
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Since ξi and f∆1,i,∆2,i(W − ξi) are independent for 1 ≤ i ≤ n and Eξi = 0, we have

EWf∆1,∆2(W ) =
n∑

i=1

Eξi[f∆1,∆2(W )− f∆1,∆2(W − ξi))]

+
n∑

i=1

Eξi[f∆1,∆2(W − ξi)− f∆1,i,∆2,i(W − ξi))}

:= H1 + H2. (3.19)

Using the fact that M̂(t) ≥ 0 and f ′∆1,∆2
(w) ≥ 0, we have

H1 =
n∑

i=1

E
{

ξi

∫ 0

−ξi

f ′∆1,∆2
(W + t)dt

}
=

n∑
i=1

E
{∫ ∞

−∞
f ′∆1,∆2

(W + t)M̂i(t)dt
}

= E
{∫ ∞

−∞
f ′∆1,∆2

(W + t)M̂(t)dt
}

≥ E
{∫

|t|≤δ
f ′∆1,∆2

(W + t)M̂(t)dt
}

≥ E
{

I{∆1≤W≤∆2}

∫
|t|≤δ

M̂(t)dt
}

= E
{

I{∆1≤W≤∆2}

n∑
i=1

|ξi|min(δ, |ξi|)
}

. (3.20)

From the proof of (3.14) and (3.15) one can see that

H1 ≥ .5P (∆1 ≤ W ≤ ∆2)− δ. (3.21)

As to H2, it is easy to see that

|f∆1,∆2(w)− f∆1,i,∆2,i(w)| ≤ |∆1 −∆1,i|/2 + |∆2 −∆2,i|/2.

Hence

|H2| ≤ (1/2)
n∑

i=1

{E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|}. (3.22)

It follows from the definition of f∆1,∆2 that

|f∆1,∆2(w)| ≤ (1/2)(∆2 −∆1) + δ.

Hence, by (3.19), (3.21), and (3.22)

P (∆1 ≤ W ≤ ∆2)
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≤ 2EWf∆1,∆2(W ) + 2δ +
n∑

i=1

{E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|}

≤ E|W (∆2 −∆1)|+ 2δE|W |+ 2δ +
n∑

i=1

{E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|}

≤ E|W (∆2 −∆1)|+ 2γ +
n∑

i=1

{E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|}.

�

It follows easily from Theorems 3.3 and 3.2 that

Theorem 3.4 Let ∆ = ∆(ξ1, · · · , ξn) : Rn −→ R1 be a Borel measurable function. Then we have

Then we have

sup
z
|P (W + ∆ ≤ z)− Φ(z)| ≤ 9γ + E|W∆|+

n∑
i=1

E|ξi(∆−∆i)|, (3.23)

where ∆i is a measurable function of (ξj , 1 ≤ j ≤ n, j 6= i).

Theorem 3.4 provides a general result on Berry-Esseen type bounds for many non-linear statis-

tics. To see the usefulness of the above general result, let’s consider the U -statistic. Let X1, X2, · · · , Xn

be a sequence of independent identically distributed random variables, and let h(x, y) be a real-

valued Borel measurable symmetric function, i.e., h(x, y) = h(y, x). Define the U -statistic with the

kernel h by

Un =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj).

Theorem 3.5 Assume that Eh(X1, X2) = 0 and σ2 = Eh2(X1, X2) < ∞. Let g(x) = Eh(x,X2)

and σ2
1 = Eg2(X1). If σ1 > 0, then

sup
z
|P (

√
nUn

2σ1
≤ z)− Φ(z)| ≤ 2σ

(n− 1)1/2σ1
+

9E|g(X1)|3

n1/2σ3
1

. (3.24)

Proof. Let

W =
1√
nσ1

n∑
i=1

g(Xi),

∆ =
√

n

n(n− 1)σ1

∑
1≤i<j≤n

{h(Xi, Xj)− g(Xi)− g(Xj)},

∆l =
√

n

n(n− 1)σ1

∑
1≤i<j≤n,i6=l,j 6=l

{h(Xi, Xj)− g(Xi)− g(Xj)}.
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It is easy to see that √
nUn

2σ1
= W + ∆

and that ∆l is a measurable function of (Xj , 1 ≤ j ≤ n, j 6= l). By Theorem 3.4, it suffices to show

that

E∆2 ≤ σ2

2(n− 1)σ2
1

(3.25)

and

E|∆−∆l|2 ≤
σ2

n(n− 1)σ2
1

. (3.26)

It is known that {
∑j−1

i=1 (h(Xi, Xj) − g(Xi) − g(Xj)), 2 ≤ j ≤ n} is a martingale difference

sequence. Hence

E∆2 =
1

n(n− 1)2σ2
1

n∑
j=2

E
( j−1∑

i=1

{h(Xi, Xj)− g(Xi)− g(Xj)}
)2

=
1

n(n− 1)2σ2
1

n∑
j=2

E
(
E

{( j−1∑
i=1

{h(Xi, Xj)− g(Xi)− g(Xj)}
)2

| Xj

})
=

1
n(n− 1)2σ2

1

n∑
j=2

(j − 1)E
{

E
(
(h(X1, X2)− g(X1)− g(X2))2 | Xj

)}
=

1
2(n− 1)σ2

1

{
Eh2(X1, X2)− 2Eg2(X1)

}
≤ σ2

2(n− 1)σ2
1

.

This proves (3.25).

As to (3.26), note that ∆−∆l, 1 ≤ l ≤ n are identically distributed. Thus,

E|∆−∆l|2 = E|∆−∆1|2

=
1

n(n− 1)2σ2
1

E
( n∑

j=2

{h(X1, Xj)− g(X1)− g(Xj)}
)2

=
1

n(n− 1)σ2
1

{
Eh2(X1, X2)− 2Eg2(X1)

}
≤ σ2

n(n− 1)σ2
1

.

This is (3.26). �
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4 Non-uniform Berry-Esseen Bounds

We shall prove the non-uniform Berry-Esseen bound in the normal approximation in this section.

To do this, we first need to have a non-uniform concentration inequality.

Let ξ1, ξ2, · · · , ξn be independent random variables satisfying Eξi = 0 for every 1 ≤ i ≤ n and∑n
i=1 Eξ2

i = 1. Let

ξ̄i = ξiI{ξi≤1}, W̄ =
n∑

i=1

ξ̄i, W̄ (i) = W̄ − ξ̄i.

Proposition 4.1 We have

P (a ≤ W̄ (i) ≤ b) ≤ e−a/2(5(b− a) + 7γ) (4.1)

for all real b > a and for every 1 ≤ i ≤ n, where γ =
∑n

i=1 E|ξi|3.

We first need to have the following Bennett-Hoeffding inequality.

Lemma 4.1 Let η1, η2, · · · , ηn be independent random variables satisfying Eηi ≤ 0 , ηi ≤ a for

1 ≤ i ≤ n, and
∑n

i=1 Eη2
i ≤ B2

n. Put Sn =
∑n

i=1 ηi. Then

EetSn ≤ exp
(
a−2(eta − 1− ta)B2

n

)
(4.2)

for t > 0,

P (Sn ≥ x) ≤ exp
(
− B2

n

a2

[
(1 +

ax

B2
n

) ln(1 +
ax

B2
n

)− ax

B2
n

])
(4.3)

and

P (Sn ≥ x) ≤ exp
(
− x2

2(B2
n + ax)

)
(4.4)

for x > 0.

Proof. It is easy to see that (es − 1− s)/s2 is an increasing function of s. We have

ets ≤ 1 + ts + (ts)2(eta − 1− ta)/(ta)2 (4.5)

for s ≤ a. We have

EetSn =
n∏

i=1

Eetηi

≤
n∏

i=1

(
1 + tEηi + a−2(eta − 1− ta)Eη2

i

)
≤

n∏
i=1

(
1 + a−2(eta − 1− ta)Eη2

i

)
≤ exp

(
a−2(eta − 1− ta)B2

n

)
.
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This proves (4.2).

To prove (4.3), let

t =
1
a

ln
(
(1 +

ax

B2
n

)
.

Then, by (4.2)

P (Sn ≥ x) ≤ e−txEetSn

≤ exp
(
− tx + a−2(eta − 1− ta)B2

n

)
= exp

(
− B2

n

a2

[
(1 +

ax

B2
n

) ln(1 +
ax

B2
n

)− ax

B2
n

])
.

In view of the fact that

(1 + s) ln(1 + s)− s ≥ s2

2(1 + s)

for s > 0, (4.4) follows from (4.3). �

Lemma 4.2 Let ξ1, ξ2, · · · , ξn be independent non-negative random variables with Eξ2
j < ∞ for

each 1 ≤ j ≤ n. Put S =
∑n

j=1 ξj, µ =
∑n

j=1 Eξj and σ2 =
∑n

j=1 Eξ2
j . Then for any 0 < x ≤ µ

P (S ≤ x) ≤ exp
(
−(µ− x)2

2σ2

)
. (4.6)

Proof. Noting that

e−a ≤ 1− a + a2/2 for a ≥ 0,

We have for any t ≥ 0 and x ≤ µ

P (S ≤ x) ≤ etxEe−tS = etx
n∏

j=1

Ee−tξj

≤ etx
n∏

j=1

E(1− tξj + t2ξ2
j /2)

≤ exp
(
−t(µ− x) + t2σ2/2

)
.

Letting t = (µ− x)/σ2 yields (4.6).

Proof of Proposition 4.1. It follows from (4.2) that

P (a ≤ W (i) ≤ b) ≤ e−a/2EeW (i)/2 ≤ e−a/2 exp(e0.5 − 1.5) ≤ 1.19e−a/2.

Thus, (4.1) holds if 7γ ≥ 1.19.
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We now assume γ ≤ 0.17. Similarly to the proof of Proposition 3.1, define δ = γ/2(≤ 0.085)

and

f(w) =


0 if w < a− δ,

ew/2(w − a + δ) if a− δ ≤ w ≤ b + δ,

ew/2(b− a + 2δ) if w > b + δ

(4.7)

Put

M̄i(t) = ξi(I{−ξ̄i≤t≤0} − I{0<t≤−ξ̄i}), M̄(t) =
n∑

i=1

M̄i(t).

Clearly, M̄(t) ≥ 0, f ′(w) ≥ 0 and f ′(w) ≥ ew/2 for a− δ ≤ w ≤ b + δ. Analogous to (3.11),

EW (i)f(W̄ (i))

=
∑
j 6=i

Eξj [f(W̄ (i))− f(W (i) − ξ̄j)]

=
n∑

j 6=i

E

∫ ∞

−∞
f ′(W̄ (i) + t)M̄i(t)dt

= E

∫ ∞

−∞
f ′(W̄ (i) + t)M̄ (i)(t)dt

≥ EI{a≤W̄ (i)≤b}

∫
|t|≤δ

f ′(W̄ (i) + t)M̄ (i)(t)dt

≥ Ee(W̄ (i)−δ)/2I{a≤W̄ (i)≤b}

∫
|t|≤δ

M̄ (i)(t)dt

≥ Ee(W̄ (i)−δ)/2I{a≤W̄ (i)≤b}
∑
j 6=i

|ξj |min(δ, |ξ̄j |)

≥ e−δ/2(H2,1 −H2,2), (4.8)

where

H2,1 = EeW̄ (i)/2I{a≤W̄ (i)≤b}
∑
j 6=i

E|ξj |min(δ, |ξ̄j |),

H2,2 = EeW̄ (i)/2|
∑
j 6=i

|ξj |min(δ, |ξ̄j |)− E|ξj |min(δ, |ξ̄j |)|.

Noting that δ ≤ .085 and γ ≤ .17 and following the proof of (3.13), we have∑
j 6=i

E|ξj |min(δ, |ξ̄j |) =
∑
j 6=i

E(|ξj |(min(δ, |ξj |)− δI{ξj>1}))

≥ −δE|ξi| − δγ +
n∑

j=1

E|ξj |min(δ, |ξj |)

≥ 0.5− δγ1/3 − δγ

≥ 0.5− 0.085(0.17)1/3 − 0.085(0.017) ≥ 0.43. (4.9)
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Hence

H2,1 ≥ .45ea/2P (a ≤ W̄ (i) ≤ b) (4.10)

By the Bennett inequality (4.2) again, we have

EeW̄ (i) ≤ exp(e− 2)

and hence

H2,2 ≤ (EeW̄ (i)
)1/2

(
Var(

∑
j 6=i

|ξj |min(δ, |ξ̄j |))
)1/2

≤ exp(.5e− 1)δ ≤ 1.44δ. (4.11)

As to the left hand side of (4.7), we have

EW (i)f(W̄ (i)) ≤ (b− a + 2δ)E|W (i)|eW̄ (i)/2

≤ (b− a + 2δ)(E|W (i)|2)1/2(EeW̄ (i)
)1/2

≤ (b− a + 2δ) exp(e− 2) ≤ 2.06(b− a + 2δ).

Combining the above inequalities yields

P (a ≤ W̄ (i) ≤ b) ≤ e−a/2

.45

(
eδ/22.06(b− a + 2δ) + 1.44δ

)
≤ e−a/2

.45

(
e.04252.06(b− a + 2δ) + 1.44δ

)
≤ e−a/2(4.8(b− a) + 12.76δ)

≤ e−a/2(5(b− a) + 7γ).

This proves (4.1). �

We also need the following moment inequality.

Lemma 4.3 Let 2 < p ≤ 3, and {ηi, 1 ≤ i ≤ n} be independent random variables with Eηi = 0

and E|ηi|p < ∞. Put Sn =
∑n

i=1 ηi and B2
n =

∑n
i=1 Eη2

i . Then

E|Sn|p ≤ (p− 1)Bp
n +

n∑
i=1

E|ηi|p (4.12)

Proof. Let S
(i)
n = Sn − ηi. Then

E|Sn|p =
n∑

i=1

EηiSn|Sn|p−2
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=
n∑

i=1

Eηi(Sn|Sn|p−2 − S(i)
n |Sn|p−2) +

n∑
i=1

Eηi(S(i)
n |Sn|p−2 − S(i)

n |S(i)
n |p−2)

≤
n∑

i=1

Eη2
i |Sn|p−2 +

n∑
i=1

E|ηi||S(i)
n |{(|S(i)

n |+ |ηi|)p−2 − |S(i)
n |}

≤
n∑

i=1

Eη2
i (|ηi|p−2 + |S(i)

n |p−2)

+
n∑

i=1

E|ηi||S(i)
n |p−1{(1 + |ηi|/|S(i)

n |)p−2 − 1}

≤
n∑

i=1

E|ηi|p +
n∑

i=1

Eη2
i E|S(i)

n |p−2)

+
n∑

i=1

E|ηi||S(i)
n |p−1(p− 2)|ηi|/|S(i)

n |

=
n∑

i=1

E|ηi|p + (p− 1)
n∑

i=1

Eη2
i E|S(i)

n |p−2

≤
n∑

i=1

E|ηi|p + (p− 1)
n∑

i=1

Eη2
i (E|S(i)

n |2)(p−2)/2

≤
n∑

i=1

E|ηi|p + (p− 1)Bp
n,

as desired. �

We are now ready to prove the non-uniform Berry-Esseen inequality.

Theorem 4.1 There exists an absolute constant C such that for every real number z,

|P (W ≤ z)− Φ(z)| ≤ Cγ

1 + |z|3
. (4.13)

Proof. Without loss of generality, assume z ≥ 0. By (4.12),

P (W ≥ z) ≤ 1 + E|W |3

1 + z3
.

So (4.13) holds if γ ≥ 1, and we can assume γ ≤ 1. Let

ξ̄i = ξiI{ξi≤1}, W̄ =
n∑

i=1

ξ̄i, W̄ (i) = W̄ − ξ̄i.

Observing that

{W ≥ z} = {W ≥ z, max
1≤i≤n

ξi > 1} ∪ {W ≥ z, max
1≤i≤n

ξi ≤ 1}

⊂ {W ≥ z, max
1≤i≤n

ξi > 1} ∪ {W̄ ≥ z},
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we have

P (W > z) ≤ P (W̄ > z) + P (W > z, max
1≤i≤n

ξi > 1) (4.14)

and similarly,

P (W̄ > z) ≤ P (W > z) + P (W̄ > z, max
1≤i≤n

ξi > 1). (4.15)

Note that

P (W > z, max
1≤i≤n

ξi > 1)

≤
n∑

i=1

P (W > z, ξi > 1)

≤
n∑

i=1

P (ξi > max(1, z/2)) +
n∑

i=1

P (W (i) > z/2, ξi > 1)

=
n∑

i=1

P (ξi > max(1, z/2)) +
n∑

i=1

P (W (i) > z/2)P (ξi > 1)

≤ γ

max(1, z/2)3
+

n∑
i=1

(1 + E|W (i)|3)
1 + (z/2)3

E|ξi|3

≤ Cγ

1 + z3
,

here and in the sequel, C denotes an absolute constant but whose value may be different at each

appearance. Similarly,

P (W̄ > z, max
1≤i≤n

ξi > 1)

≤
n∑

i=1

P (W̄ > z, ξi > 1)

=
n∑

i=1

P (W̄ (i) > z − ξiI{ξi≤1}, ξi > 1)

=
n∑

i=1

P (W̄ (i) > z, ξi > 1)

=
n∑

i=1

P (W̄ (i) > z)P (ξi > 1)

≤ e−z/2
n∑

i=1

EeW̄ (i)/2P (ξi > 1)

≤ 2e−z/2γ ≤ Cγ

1 + z3

by (4.2). Thus, to prove (4.1), it suffices to show that

|P (W̄ ≤ z)− Φ(z)| ≤ Ce−z/2γ. (4.16)
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Let fz be the Stein solution to (2.2) and define

K̄i(t) = Eξ̄i(I{0≤t≤ξ̄i} − I{ξ̄i≤t<0}).

Following the proof of (2.17) and noting that ξ̄i ≤ 1, we have

EW̄fz(W̄ ) =
n∑

i=1

E

∫ 1

−∞
f ′z(W̄

(i) + t)K̄i(t)dt +
n∑

i=1

Eξ̄iEfz(W̄ (i)).

From
n∑

i=1

∫ 1

−∞
K̄i(t)dt =

n∑
i=1

Eξ̄2
i = 1−

n∑
i=1

Eξ2
i I{ξi>1},

we obtain that

P (W̄ ≤ z)− Φ(z)

= Ef ′z(W̄ )− EW̄fz(W̄ )

=
n∑

i=1

Eξ2
i I{ξi>1}Ef ′z(W̄ )

+
n∑

i=1

E

∫ 1

−∞
[f ′z(W̄

(i) + ξ̄i)− f ′z(W̄
(i) + t)]K̄i(t)dt

+
n∑

i=1

EξiI{ξi>1}Efz(W̄ (i))

:= R1 + R2 + R3. (4.17)

By (A1.3), (2.8) and (4.2),

E|f ′z(W̄ )| = E|f ′z(W̄ )|I{W̄≤z/2} + E|f ′z(W̄ )|I{W̄>z/2}

≤ (1 +
√

2π(z/2)ez2/8)(1− Φ(z)) + P (W̄ > z/2)

≤ (1 +
√

2π(z/2)ez2/8)(1− Φ(z)) + e−z/2EeW̄

≤ Ce−z/2

Hence

|R1| ≤ Cγe−z/2. (4.18)

Similarly, we have Efz(W̄ (i)) ≤ Ce−z/2 and

|R3| ≤ Cγe−z/2. (4.19)

To estimate R2, write

R2 = R2,1 + R2,2,
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where

R2,1 =
n∑

i=1

E

∫ 1

−∞
[I{W̄ (i)+ξ̄i≤z} − I{W̄ (i)+t≤z}K̄i(t)dt,

R2,2 =
n∑

i=1

E

∫ 1

−∞
[(W̄ (i) + ξ̄i)fz(W̄ (i) + ξ̄i)− (W̄ (i) + t)fz(W̄ (i) + t)]K̄i(t)dt.

By Proposition 4.1,

R2,1 ≤
n∑

i=1

E

∫ 1

−∞
I{ξ̄i≤t}P (z − t < W̄ (i) ≤ z − ξ̄i | ξ̄i)K̄i(t)dt

≤ C

n∑
i=1

E

∫ 1

−∞
e−(z−t)/2(|ξ̄i|+ |t|+ γ)K̄i(t)dt

≤ Ce−z/2γ. (4.20)

From Lemma 4.4 below it follows that

R2,2 ≤
n∑

i=1

E

∫ 1

−∞
I{t≤ξ̄i}[E({W̄ (i) + ξ̄i}fz(W̄ (i) + ξ̄i) | ξ̄i)− E(W̄ (i) + t)fz(W̄ (i) + t)]K̄i(t)dt

≤ Ce−z/2
n∑

i=1

E

∫ 1

−∞
(|ξ̄i|+ |t|)K̄i(t)dt

≤ Ce−z/2γ. (4.21)

Therefore

R2 ≤ Ce−z/2γ. (4.22)

Similarly, we have

R2 ≥ −Ce−z/2γ. (4.23)

This proves the theorem. �

We remain to prove the following lemma.

Lemma 4.4 For s < t ≤ 1 we have

E(W̄ (i) + t)fz(W̄ (i) + t)− E(W̄ (i) + s)fz(W̄ (i) + s)

≤ Ce−z/2(|s|+ |t|) (4.24)

Proof. Let g(w) = (wfz(w))′. Then

E(W̄ (i) + t)fz(W̄ (i) + t)− E(W̄ (i) + s)fz(W̄ (i) + s) =
∫ t

s
Eg(W̄ (i) + u)du.
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From the definition of g and fz, we get

g(w) =


(√

2π(1 + w2)ew2/2(1− Φ(w))− w
)
Φ(z), w ≥ z(√

2π(1 + w2)ew2/2Φ(w) + w
)
(1− Φ(z)), w < z.

By (2.6), g(w) ≥ 0 for all real w. A direct calculation shows that

√
2π(1 + w2)ew2/2Φ(w)) + w ≤ 2 for w ≤ 0.

Thus, we have

g(w) ≤

{
4(1 + z2)ez2/8(1− Φ(z)) if w ≤ z/2

4(1 + z2)ez2/2(1− Φ(z)) if w > z/2

Hence, by (4.2)

Eg(W (i) + u) = Eg(W (i) + u)I{W (i)+u≤z/2} + Eg(W (i) + u)I{W (i)+u>z/2}

≤ 4(1 + z2)ez2/8(1− Φ(z)) + 4(1 + z2)ez2/2(1− Φ(z))P (W (i) + u > z/2)

≤ Ce−z/2 + C(1 + z)e−z+2uEe2W (i)

≤ Ce−z/2 + C(1 + z)e−zEe2W (i)
since u ≤ 1

≤ Ce−z/2,

which gives

E(W̄ (i) + t)fz(W̄ (i) + t)− E(W̄ (i) + s)fz(W̄ (i) + s) ≤ Ce−z/2(|s|+ |t|).

This proves (4.24). �

5 Exchangeable Pair Approach

Let W be a random variable which is not necessary the partial sum of independent random variables.

Suppose that W is approximately normal, we want to get the rate of convergence. Another basic

approach of Stein’s method is via introducing an exchangeable pair (W, Ŵ ). That is, (W, Ŵ ) and

(Ŵ , W ) have the same distribution. The approach is based on the fact that for all antisymmetric

measurable function g(x, y)

Eg(W, Ŵ ) = 0 (5.1)

provided the expected value exists.

A key identity is the following lemma.
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Lemma 5.1 Let (W, Ŵ ) be an exchangeable pair of real random variables such that

E(Ŵ |W ) = (1− λ)W, E(Ŵ −W )2 = 2λ, (5.2)

where 0 < λ < 1. Then for every piecewise continuous function f satisfying |f(w)| ≤ C(1 + |w|),

we have

EWf(W ) =
1
2λ

E(W − Ŵ )(f(W )− f(Ŵ )). (5.3)

Proof. By (5.1),

0 = E(W − Ŵ )(f(Ŵ ) + f(W ))

= E(W − Ŵ )(f(Ŵ )− f(W )) + 2Ef(W )(W − Ŵ )

= E(W − Ŵ )(f(Ŵ )− f(W )) + 2E{f(W )E(W − Ŵ | W )}

= E(W − Ŵ )(f(Ŵ )− f(W )) + 2λEWf(W ) [by (5.2)],

which gives (5.3). �

Now we prove

Theorem 5.1 Let h be absolute continuous with bounded h′. Then under the condition of Lemma

5.1

|Eh(W )−Eh(Z)| ≤ 2 sup
x
|h(x)−Eh(Z)|E|1− 1

2λ
E((Ŵ −W )2 | W )|+ 1

4λ
sup

x
|h′(x)|E|W − Ŵ |3.

(5.4)

Proof. Let f = fh be the Stein solution in (2.5) and define

K̂(t) = (W − Ŵ )(I{−(W−Ŵ )≤t≤0} − I{0<t≤−(W−Ŵ )}).

By (5.3),

EWf(W ) =
1
2λ

E

∫ 0

−(W−Ŵ )
f ′(W + t)(W − Ŵ )dt =

1
2λ

E

∫ ∞

−∞
f ′(W + t)K̂(t)dt

and

Ef ′(W ) = Ef ′(W )(1− 1
2λ

(W − Ŵ )2) +
1
2λ

E

∫ ∞

−∞
f ′(W )K̂(t)dt.

Therefore

|Eh(W )− Eh(Z)| = |Ef ′(W )− EWf(W )|

= |Ef ′(W )(1− 1
2λ

(W − Ŵ )2) +
1
2λ

E

∫ ∞

−∞
(f ′(W )− f ′(W + t))K̂(t)dt|
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≤ |E
{

f ′(W )(1− 1
2λ

E((W − Ŵ )2 | W ))
}
|

+
1
2λ

E|
∫ ∞

−∞
(f ′(W )− f ′(W + t))K̂(t)dt|

≤ 2 sup
x
|h(x)− Eh(Z)|E|(1− 1

2λ
E((W − Ŵ )2 | W )|

+
1
2λ

sup
x
|h′(x)|E|

∫ ∞

−∞
|t|K̂(t)dt| [by (2.11) and (2.13)]

= 2 sup
x
|h(x)− Eh(Z)|E|1− 1

2λ
E((Ŵ −W )2 | W )|+ 1

4λ
sup

x
|h′(x)|E|W − Ŵ |3

as desired. �

We end this section with the following example to show how to estimate the bound in the above

theorem. Let ξi be independent random variables with zero means and
∑n

i=1 Eξ2
i = 1, and put

W =
∑n

i=1 ξi. Let {η∗i , 1 ≤ i ≤ n} be an independent copy of {ξi, 1 ≤ i ≤ n}, and I have uniform

distribution on {1, 2, · · · , n}. Assume that I, {ξi}, {ξ∗i } are independent. Define Ŵ = W−XI +X∗
I .

Then (W, Ŵ ) is an exchangeable pair satisfying

E(Ŵ |W ) = (1− 1
n

)W, E(W − Ŵ )2 =
2
n

.

That means (5.2) is satisfied with λ = 1/n. Directly calculation also gives

E|W − Ŵ |3 =
1
n

n∑
i=1

E|ξi − ξ∗i |3 ≤ (8/n)
n∑

i=1

E|ξi|3

and

E((W − Ŵ )2 | W ) =
1
n

(1 +
n∑

i=1

E(ξ2
i | W )).

Thus,

E|1− 1
2λ

E((Ŵ −W )2 | W )|

= (1/2)E|1− E(
n∑

i=1

ξ2
i | W )|

≤ (1/2)E|
n∑

i=1

(ξ2
i − Eξ2

i )|.

So the bound is sharp if the fourth moment of ξi exists.

6 Uniform and Non-uniform Bounds under Local Dependence

In this section we discuss normal approximation under local dependence using Stein’s method. Our

aim is to establish optimal uniform and non-uniform Berry-Esseen bounds under local dependence.
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Local dependence is more general than m-dependence for sequences of random variables. It applies

to random variables with arbitrary index set, such as those indexed by the vertices of a graph with

dependence defined in terms of common edges.

Throughout this section let J be an index set and {ξi, i ∈ J } be a random field with zero

means and finite variances, and let n be the cardinality of J . Define W =
∑

i∈J ξi and assume

that Var(W ) = 1.

For A ⊂ J , let ξA denote {ξi, i ∈ A}, Ac = {j ∈ J : j 6∈ A}, and |A| the cardinality of A.

We first introduce dependence assumptions.

(LD1) For each i ∈ J there exists Ai ⊂ J such that ξi and ξAc
i

are independent.

(LD2) For each i ∈ J there exist Ai ⊂ Bi ⊂ J such that ξi is independent of ξAc
i

and ξAi is

independent of ξBc
i
.

(LD3) For each i ∈ J there exist Ai ⊂ Bi ⊂ Ci ⊂ J such that ξi is independent of ξAc
i
, ξAi is

independent of ξBc
i
, and ξBi is independent of ξCc

i
.

(LD4∗) For each i ∈ J there exist Ai ⊂ Bi ⊂ B∗
i ⊂ C∗

i ⊂ D∗
i ⊂ J such that ξi is independent of ξAc

i
,

ξAi is independent of ξBc
i
, ξAi is independent of {ξAj , j ∈ B∗c

i }, {ξAl
, l ∈ B∗

i } is independent

of {ξAj , j ∈ C∗c
i }, and {ξAl

, l ∈ C∗
i } is independent of {ξAj , j ∈ D∗c

i }.

It is clear that (LD4∗) implies (LD3), (LD3) yields (LD2) and (LD1) is the weakest assumption.

Roughly speaking, (LD4∗) is a version of (LD3) for {ξAi , i ∈ J }. On the other hand, (LD1) in

many cases actually implies (LD2), (LD3) and (LD4*) and Bi, Ci, B
∗
i , C∗

i and D∗
i could be chosen

as: Bi = ∪j∈AiAj , Ci = ∪j∈BiAj , B∗
i = ∪j∈AiBj , C∗

i = ∪j∈B∗
i
Bj and D∗

i = ∪j∈C∗
i
Bj .

We first present a general uniform Berry-Esseen bound under assumption (LD2).

Theorem 6.1 Let N(Bi) = {j ∈ J : BjBi 6= ∅} and 2 < p ≤ 4. Assume that (LD2) is satisfied

with |N(Bi)| ≤ κ. Then

sup
z
|P (W ≤ z)− Φ(z)| ≤ (13 + 11κ)

∑
i∈J

(E|ξi|3∧p + E|Yi|3∧p) + 2.5
(
κ

∑
i∈J

(E|ξi|p + E|Yi|p)
)1/2}

where Yi =
∑

j∈Ai
ξj. In particular, if E|ξi|p +E|Yi|p ≤ θp for some θ > 0 and for each i ∈ J , then

sup
z
|P (W ≤ z)− Φ(z)| ≤ (13 + 11κ) n θ3∧p + 2.5θp/2√κn, (6.1)

where n = |J |.

32



Note that in many cases κ is bounded and θ is of order of n−1/2. In those cases κ n θ3∧p +

θp/2√κn = O(n−(p−2)/4), which is of the best possible order of n−1/2 when p = 4. However, the

cost is the existence of fourth moments. To reduce the assumption on moments, we need the

stronger condition (LD3).

Theorem 6.2 Suppose that (LD3) is satisfied. Let 2 < p ≤ 3. Assume that (LD3) is satisfied

with |N(Ci)| ≤ κ, where N(Ci) = {j ∈ J : CiBj 6= ∅}. Then

sup
z
|P (W ≤ z)− Φ(z)| ≤ 75κp−1

∑
i∈J

E|ξi|p. (6.2)

We now present a general non-uniform bound for locally dependent random fields {ξi, i ∈ J }

under (LD4∗).

Theorem 6.3 Assume that E|ξi|p < ∞ for 2 < p ≤ 3 and that (LD4∗) is satisfied. Let κ =

maxi∈J max(|D∗
i |, |{j : i ∈ D∗

j}|). Then

|P (W ≤ z)− Φ(z)| ≤ Cκp(1 + |z|)−p
∑
i∈J

E|ξi|p, (6.3)

where C is an absolute constant.

The above results can immediately be applied to m-dependent random fields. Let d ≥ 1 and Zd

denote the d-dimensional space of positive integers. The distance between two points i = (i1, · · · , id)

and j = (j1, · · · , jd) in Zd is defined by |i − j| = max1≤l≤d |il − jl| and the distance between two

subsets A and B of Zd is defined by ρ(A,B) = inf{|i− j| : i ∈ A, j ∈ B}. For a given subset J of

Zd, a set of random variables {ξi, i ∈ J } is said to be an m-dependent random field if {ξi, i ∈ A}

and {ξj , j ∈ B} are independent whenever ρ(A,B) > m, for any subsets A and B of J .

Thus choosing Ai = {j : |j − i| ≤ m} ∩ J , Bi = {j : |j − i| ≤ 2m} ∩ J , Ci = {j : |j − i| ≤

3m}∩J , B∗
i = {j : |j− i| ≤ 3m}∩J , C∗

i = {j : |j− i| ≤ 4m}∩J , and D∗
i = {j : |j− i| ≤ 5m}∩J

in Theorems 12.3 and 6.3 yields a uniform and a non-uniform bound.

Theorem 6.4 Let {ξi, i ∈ J } be an m-dependent random fields with zero means and finite E|ξi|p <

∞ for 2 < p ≤ 3. Then

sup
z
|P (W ≤ z)− Φ(z)| ≤ 75(10m + 1)(p−1)d

∑
i∈J

E|ξi|p (6.4)

33



and

|P (W ≤ z)− Φ(z)| ≤ C(1 + |z|)−p11pd(m + 1)(p−1)d
∑
i∈J

E|ξi|p, (6.5)

where C is an absolute constant.

The main idea of the proof is similar to that in Sections 3 and 4, first deriving a Stein identity

and then uniform and non-uniform concentration inequalities. We outline some main steps in the

proof and refer to Chen and Shao (2002) for details.

Define
K̂i(t) = ξi{I(−Yi ≤ t < 0)− I(0 ≤ t ≤ −Yi)}, Ki(t) = EK̂i(t),
K̂(t) =

∑
i∈J K̂i(t), K(t) = EK̂(t) =

∑
i∈J Ki(t).

(6.6)

We first derive a Stein identity for W . Let f be a bounded absolutely continuous function.

Then

E{Wf(W )} =
∑
i∈J

E{ξi(f(W )− f(W − Yi))}

=
∑
i∈J

E
{

ξi

∫ 0

−Yi

f ′(W + t)dt
}

=
∑
i∈J

E
{∫ ∞

−∞
f ′(W + t)K̂i(t)dt

}
= E

∫ ∞

−∞
f ′(W + t)K̂(t)dt (6.7)

and hence by the fact that
∫∞
−∞ K(t)dt = EW 2 = 1,

Ef ′(W )− EWf(W ) = E

∫ ∞

−∞
f ′(W )K(t)dt− E

∫ ∞

−∞
f ′(W + t)K̂(t)dt

= E

∫ ∞

−∞
(f ′(W )− f ′(W + t))K(t)dt

+Ef ′(W )
∫ ∞

−∞
(K(t)− K̂(t))dt + E

∫ ∞

−∞
(f ′(W + t)− f ′(W ))(K(t)− K̂(t))dt

:= R1 + R2 + R3.

Now let f = fz be the Stein solution (2.3). Then

|R1| ≤ E

∫ ∞

−∞
(|W |+ 1)|t||K(t)|dt

+|E
∫ ∞

−∞
(I{W≤z} − I{W+t≤z})K(t)dt|

≤ 0.5
n∑

i=1

E(|W |+ 1)|ξi|Y 2
i +

∫ ∞

−∞
P (z −max(t, 0) ≤ W ≤ z −min(t, 0))K(t)dt

:= R1,1 + R1,2
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Estimating R1,1 is not so difficult, while R1,2 can be estimated via a concentration inequality given

below.

Observe that

R2 = Ef ′(W )
n∑

i=1

(ξiYi − E(ξiYi)),

which can also be estimated easily. The main difficulty arises from estimating R3. The reader may

refer to Chen and Shao (2004) for details.

At the end this section, we give the simplest non-uniform concentration inequality in the pa-

per Chen and Shao (2004) and provide a detailed proof to illustrate the difficulty for dependent

variables.

Proposition 6.1 Assume (LD1). Then for any real numbers a < b,

P (a ≤ W ≤ b) ≤ 0.625(b− a) + 4r1 + 4r2, (6.8)

where r1 =
∑

i∈J E|ξi|Y 2
i and r2 =

∫∞
−∞Var(K̂(t))dt.

Proof. Let α = r1 and define

f(w) =


−(b− a + α)/2 for w ≤ a− α
1
2α(w − a + α)2 − (b− a + α)/2 for a− α < w ≤ a
w − (a + b)/2 for a < w ≤ b
− 1

2α(w − b− α)2 + (b− a + α)/2 for b < w ≤ b + α
(b− a + α)/2 for w > b + α

(6.9)

Then f ′ is a continuous function given by

f ′(w) =


1, for a ≤ w ≤ b
0, for w ≤ a− α or w ≥ b + α,
linear, for a− α ≤ w ≤ a or b ≤ w ≤ b + α

Clearly |f(w)| ≤ (b− a + α)/2. With this f , Yi, and K̂(t) and K(t) as defined in (6.6), we have by

(6.7)

(b− a + α)/2 ≥ EWf(W ) = E

∫ ∞

−∞
f ′(W + t)K̂(t)dt

:= Ef ′(W )
∫ ∞

−∞
K(t)dt + E

∫ ∞

−∞
(f ′(W + t)− f ′(W ))K(t)dt

+E

∫ ∞

−∞
f ′(W + t)(K̂(t)−K(t))dt

:= H1 + H2 + H3. (6.10)

Clearly,

H1 = Ef ′(W ) ≥ P (a ≤ W ≤ b). (6.11)
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By the Cauchy inequality,

|H3| ≤ (1/8)E
∫ ∞

−∞
[f ′(W + t)]2dt + 2E

∫ ∞

−∞
(K̂(t)−K(t))2dt

≤ (b− a + 2α)/8 + 2r2. (6.12)

To bound H2, let

L(α) = sup
x∈R

P (x ≤ W ≤ x + α).

Then by writing

H2 = E

∫ ∞

0

∫ t

0
f ′′(W + s)dsK(t)dt− E

∫ 0

−∞

∫ 0

t
f ′′(W + s)dsK(t)dt

= α−1

∫ ∞

0

∫ t

0
{P (a− α ≤ W + s ≤ a)− P (b ≤ W + s ≤ b + α)}dsK(t)dt

−α−1

∫ 0

−∞

∫ 0

t
{P (a− α ≤ W + s ≤ a)− P (b ≤ W + s ≤ b + α)}dsK(t)dt,

we have

|H2| ≤ α−1

∫ ∞

0

∫ t

0
L(α)ds|K(t)|dt + α−1

∫ 0

−∞

∫ 0

t
L(α)ds|K(t)|dt (6.13)

= α−1L(α)
∫ ∞

−∞
|tK(t)|dt ≤ 0.5α−1r1L(α) = 0.5L(α).

It follows from (6.10) - (6.13) that

P (a ≤ W ≤ b) ≤ 0.625(b− a) + 0.75α + 2r2 + 0.5L(α). (6.14)

Substituting a = x and b = x + α in (6.14), we obtain

L(α) ≤ 1.375α + 2r2 + 0.5L(α)

and hence

L(α) ≤ 2.75α + 4r2. (6.15)

Finally combining (6.14) and (6.15), we obtain (6.8). �

7 Appendix 1

Proof of Lemma 2.2. Since fz(w) = f−z(−w), we need only consider the case z ≥ 0. Note that

for w > 0 ∫ ∞

w
e−x2/2dx ≤

∫ ∞

w

x

w
e−x2/2dx =

e−w2/2

w
,
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which also yields

(1 + w2)
∫ ∞

w
e−x2/2dx ≥ we−w2/2

by comparing the derivatives of the two functions. Thus

we−w2/2

(1 + w2)
√

2π
≤ 1− Φ(w) ≤ e−w2/2

w
√

2π
. (A1.1)

It follows from (2.3) that

(wfz(w))′ =


√

2π[1− Φ(z)]
(
(1 + w2)ew2/2Φ(w) + w√

2π

)
if w < z,

√
2πΦ(z)

(
(1 + w2)ew2/2(1− Φ(w))− w√

2π

)
if w > z

≥ 0

by (A1.1). This proves (2.6).

In view of the fact that

lim
w→−∞

wfz(w) = Φ(z)− 1 and lim
w→∞

wfz(w) = Φ(z), (A1.2)

(2.7) follows by (2.6).

By (2.2), we have

f ′z(w) = wfz(w) + I{w≤z} − Φ(z)

=

{
wfz(w) + 1− Φ(z) for w < z,

wfz(w)− Φ(z) for w > z.

=

{
(
√

2πwew2/2Φ(w) + 1)(1− Φ(z)) for w < z,

(
√

2πwew2/2(1− Φ(w))− 1)Φ(z) for w > z.
(A1.3)

Since wfz(w) is an increasing function of w, by (A1.1) and (A1.2)

0 < f ′z(w) ≤ zfz(z) + 1− Φ(z) < 1 for w < z (A1.4)

and

−1 < zfz(z)− Φ(z) ≤ f ′z(w) < 0 for w > z . (A1.5)

Hence for any w and v,

|f ′z(w)− f ′z(v)| ≤ max(1, zfz(z) + 1− Φ(z)− (zfz(z)− Φ(z)) = 1.

This proves (2.8).
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Observe that by (A1.4) and (A1.5), fz attains its maximum at z. Thus

0 < fz(w) ≤ fz(z) =
√

2πez2/2Φ(z)(1− Φ(z)). (A1.6)

By (A1.1), fz(z) ≤ 1/z. To finish the proof of (2.9), let

g(z) = Φ(z)(1− Φ(z))− e−z2/2/4 and g1(z) =
1√
2π

+
z

4
− 2Φ(z)√

2π
.

Observe that g′(z) = e−z2/2g1(z) and

g′1(z) =
1
4
− 1

π
e−z2


< 0 if 0 ≤ z < z0,

= 0 if z = z0,

> 0 if z > z0,

where z0 = (2 ln(4/π))1/2. Thus, g1(z) is decreasing on [0, z0) and increasing on (z0,∞). Since

g1(0) = 0 and g1(∞) = ∞, there exists z1 > 0 such that g1(z) < 0 for 0 < z < z1 and g1(z) > 0 for

z > z1. Therefore, g(z) attains maximum at either z = 0 or z = ∞, that is

g(z) ≤ max(g(0), g(∞)) = 0,

which is equivalent to fz(z) ≤
√

2π/4. This completes the proof of (2.9).

The last inequality (2.10) is a consequence of (2.8) and (2.9) by rewriting (w + u)fz(w + u)-

(w + v)fz(w + v) = w(fz(w + u) − fz(w + v)) + ufz(w + u) − vfz(w + v) and using the Taylor

expansion. �

Proof of Lemma 2.3. Let h̃(w) = h(w)−Eh(Z) and put c0 = supw |h̃(w)|, c1 = supw |h′(w)|.

Since h̃ and fh are unchanged when h is replaced by h − h(0), we may assume that h(0) = 0.

Therefore |h(t)| ≤ c1|t| and |Eh(Z)| ≤ c1E|Z| = c1

√
2/π.

First we verify (2.11). From the definition (2.5) of fh, it follows that

|fh(w)| ≤

{
ew2/2

∫ w
−∞ |h̃(x)|e−x2/2dx if w ≤ 0,

ew2/2
∫∞
w |h̃(x)|e−x2/2dx if w ≥ 0

≤ ew2/2 min
(
c0

∫ ∞

|w|
e−x2/2)dx, c1

∫ ∞

|w|
(|x|+

√
2/π)e−x2/2dx

)
≤ min(

√
π/2, 2c1),

where in the last inequality we used the fact that

ew2/2

∫ ∞

|w|
e−x2/2dx ≤

√
π/2.
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Next we prove (2.12). By (2.4), for w ≥ 0

|f ′h(w)| ≤ |h(w)− Eh(Z)|+ wew2/2

∫ ∞

w
|h(x)− Eh(Z)|e−x2/2dx

≤ |h(w)− Eh(Z)|+ c0wew2/2

∫ ∞

w
e−x2/2dx ≤ 2c0

by (A1.1). It follows from (2.5) again that

f ′′(w)− wf ′(w)− f(w) = h′(w)

or equivalently

(e−w2/2f ′(w))′ = e−w2/2(f(w) + h′(w)).

Therefore

f ′(w) = −ew2/2

∫ ∞

w
(f(x) + h′(x))e−x2/2dx

and by (2.11)

|f ′(w)| ≤ 3c1e
w2/2

∫ ∞

w
e−x2/2dx ≤ 3c1

√
π/2 ≤ 4c1.

Thus we have

sup
w≥0

|f ′(w)| ≤ min (2c0, 4c1).

Similarly, the above bound holds for supw≤0 |f ′(w)|. This proves (2.12).

Now we prove (2.13). Differentiating (2.4) gives

f ′′h (w) = wf ′h(w) + fh(w) + h′(w)

= (1 + w2)fh(w) + w(h(w)− Eh(Z)) + h′(w). (A1.7)

From

h(x)− Eh(Z)

=
1√
2π

∫ ∞

−∞
[h(x)− h(s)]e−s2/2ds

=
1√
2π

∫ x

−∞

∫ x

s
h′(x)dte−s2/2ds− 1√

2π

∫ ∞

x

∫ s

x
h′(t)dte−s2/2ds

=
∫ x

−∞
h′(t)Φ(t)dt−

∫ ∞

x
h′(t)(1− Φ(t))dt, (A1.8)

it follows that

fh(w) = ew2/2

∫ w

−∞
[h(x)− Eh(Z)]e−x2/2dx
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= ew2/2

∫ w

−∞

( ∫ x

−∞
h′(t)Φ(t)dt−

∫ ∞

x
h′(t)(1− Φ(t))dt

)
e−x2/2dx

= −
√

2πew2/2(1− Φ(w))
∫ w

−∞
h′(t)Φ(t)dt

−
√

2πew2/2Φ(w)
∫ ∞

w
h′(t)[1− Φ(t)]dt. (A1.9)

From (A1.7) - (A1.9) and (A1.1) we obtain

|f ′′h (w)| ≤ |h′(w)|+ |(1 + w2)fh(w) + w(h(w)− Eh(Z))|

≤ |h′(w)|+ |
(
w −

√
2π(1 + w2)ew2/2(1− Φ(w))

) ∫ w

−∞
h′(t)Φ(t)dt|

+|
(
− w −

√
2π(1 + w2)ew2/2Φ(w)

) ∫ ∞

w
h′(t)(1− Φ(t))dt|

≤ |h′(w)|+ c1

(
− w +

√
2π(1 + w2)ew2/2(1− Φ(w))

) ∫ w

−∞
Φ(t)dt

+c1

(
w +

√
2π(1 + w2)ew2/2Φ(w)

) ∫ ∞

w
(1− Φ(t))dt

= |h′(w)|+ c1

(
− w +

√
2π(1 + w2)ew2/2(1− Φ(w))

)(
wΦ(w) +

e−w2/2

√
2π

)
+c1

(
w +

√
2π(1 + w2)ew2/2Φ(w)

)(
− w(1− Φ(w)) +

e−w2/2

√
2π

)
= |h′(w)|+ c1 ≤ 2c1, (A1.10)

as desired. �
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Part II. Self-normalized limit theorems

8 Introduction

Let X, X1, X2, · · · be independent and identically distributed random variables. Put

Sn =
n∑

i=1

Xi and V 2
n =

n∑
i=1

X2
i . (8.1)

It is well-known that moment conditions or other related conditions are necessary and sufficient for

many classical limit theorems. For example, the strong law of large numbers holds if and only if the

mean of X is finite; the central limit theorem holds if and only if EX2I(|X| ≤ x) is slowing varying

as x → ∞; and a necessary and sufficient condition for the large deviation is that the moment

generating function of X is finite in a neighborhood of zero. On the other hand, limit theorems

for self-normalized sums Sn/Vn put a totally new countenance upon the classical limit theorems.

In contrast to the well-known Hartman-Wintner law of the iterated logarithm and its converse by

Strassen (1966), Griffin and Kuelbs (1989) obtained a self-normalized law of the iterated logarithm

for all distributions in the domain of attraction of a normal or stable law. Shao (1997) showed that

no moment conditions are needed for a self-normalized large deviation result P (Sn/Vn ≥ x
√

n)

and that the tail probability of Sn/Vn is Gaussian like when X1 is in the domain of attraction

of the normal law and sub-Gaussian like when X is in the domain of attraction of a stable law,

while Giné, Götze and Mason (1997) proved that the tails of Sn/Vn are uniformly sub-Gaussian

when the sequence is stochastically bounded. Shao (1999) established a Cramér type result for

self-normalized sums only under a finite third moment condition. These results strongly show that

self-normalized partial sums preserve desirable properties much better than non-randomized partial

sums. Self-normalization is also commonly used in statistics. Many statistical inferences require

the use of classical limit theorems. However, these classical results often involve some unknown

parameters, one needs to first estimate the unknown parameters and then substitute the estimators

into the classical limit theorems. This commonly used practice is exactly the self-normalization.

A typical case is the Student t-statistic. The close relationship between the Student t-statistic Tn

and the self-normalized sum Sn/Vn can be seen below:

Tn :=
X̄

s/
√

n
=

Sn

Vn

( n− 1
n− (Sn/Vn)2

)1/2
(8.2)

and

{Tn ≥ t} =
{

Sn

Vn
≥ t

( n

n + t2 − 1

)1/2
}

, (8.3)
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where X̄ is the sample mean and s is the sample standard deviation. In the second part of lecture

series, we shall first give a brief survey on recent developments in the direction of self-normalized

limit theory and then focus on how to use Stein’s method to prove the Berry-Esseen inequality and

Cramér type large deviation for self-normalized sums. The following topics will be reviewed:

1. Self-normalized large deviations

2. Self-normalized saddlepoint approximations

3. Self-normalized moderate deviations

4. Cramér type large deviations for independent random variables

5. Self-normalized laws of the iterated logarithm

6. Limiting distributions of self-normalized sums

7. Weak invariance principle for self-normalized partial sum processes

8. Exponential inequalities for self-normalized processes

9. Applications to statistics

9 Self-normalized large deviations

Let X, X1, X2, · · · be a sequence of independent and identically distributed (iid) random variables.

The classical Chernoff large deviation [8] states that if

A) Eet0X < ∞ for some t0 > 0,

then for every x > EX,

lim
n→∞

P

(
Sn

n
≥ x

)1/n

= ρ(x), (9.4)

where ρ(x) = inft≥0 e−txEetX .

Roughly speaking, this type of large deviation shows that the convergence rate in the law of

large numbers is exponential if the moment generating function is finite in a right neighbourhood

of zero. The latter is also necessary for an exponential scale. Essentially built on condition A), the

area of large deviations in finite dimensional spaces, as well as in abstract spaces, has been well

developed, and various applications in statistics (c.f., e.g., Bahadur (1971)), engineering, statistical
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mechanics and applied probability have been found in recent years. We refer to de Acosta (1988),

Stroock (1984), Donsker and Varadhan (1987) and the book by Dembo and Zeitouni (1992), and

references therein, for more details.

On the other hand, the following result shows that a self-normalized large deviation remains

valid for arbitrary random variables without any moment conditions.

Theorem 9.1 [Shao (1997)] Assume that either E(X) ≥ 0 or E(X2) = ∞. Then

lim
n→∞

P

(
Sn

Vn n1/2
≥ x

)1/n

= sup
c≥0

inf
t≥0

e−tx2
Eet(2cX−c2X2) (9.5)

for x > E(X)/(E(X2))1/2, where E(X)/(E(X2))1/2 = 0 if E(X2) = ∞.

Remark 9.1 Note that for any random variable X, E(X2) is either finite or infinite. When E(X2)

is finite, of course, E(|X|) is finite. It is reasonable to assume E(X) ≥ 0. In fact, when E(X) ≤ 0,

(9.5) remains true for x > 0.

A key observation of the proof of Theorem 9.1 is the following identity

∀ x ≥ 0, y ≥ 0, x1/2 y1/2 = (1/2) inf
c>0

(x/c + yc). (9.6)

Thus, one can write

x
√

nVn = (1/2) inf
c>0

(V 2
n /c + cx2n)

and

P (Sn/Vn ≥ x
√

n) = P
(
Sn ≥ (1/2) inf

c>0
(x2n/c + V 2

n c)
)

= P
(

sup
c>0

n∑
i=1

(2cXi − c2X2
i ) ≥ x2n

)
. (9.7)

Now for each fixed c > 0, {2cXi − c2X2
i , i ≥ 1} is a sequence of i.i.d. random variables with finite

moment generating function in a right neighborhood of zero. Applying the Chnorff large deviation

(9.4) yields

lim inf
n→∞

P (Sn/Vn ≥ x
√

n)1/n ≥ sup
c≥0

inf
t≥0

e−tx2
E(et(2cX−c2X2)).

As to the upper bound, intuitively, the order of magnitude for the probability of the union of events

should be close to the maximum of the probability of the individual event. The detailed proof is

much more involved.

Theorem 9.1 has been extended to high dimension by Dembo and Shao (1998a) and to self-

normalized empirical processes by Bercu, Gassiat and Rio (2002).
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10 Self-normalized saddlepoint approximations

Let X, X1, X2, · · · be i.i.d random variables and denote X̄ the sample mean of {Xi, 1 ≤ i ≤ n}.

Large deviation result provides an exponential rate of convergence for tail probability. However,

a more fine-tuned approximation can be offered by saddlepoint approximations. Daniels (1954)

showed that the density function of X̄ satisfies

fX̄(x) = e−n(τx−κ(τ))
( n

2πκ′′(τ)

)1/2
(1 + O(n−1)),

where τ is the saddlepoint satisfying κ′(τ) = x. Lugannani and Rice (1980) obtained the tail

probability of X̄:

P (X̄ ≥ x) = 1− Φ(
√

nŵ) +
φ(
√

nŵ)√
n

(1
û
− 1

ŵ
+ O(n−1)

)
,

where κ′(τ) = x, ŵ = {2[τκ′(τ)− κ(τ)]}1/2sign{τ}, û = τ [κ′′(τ)]1/2, Φ and φ denote the standard

normal distribution function and density function, respectively. So, the error incurred by the

saddlepoint approximation is O(n−1) as against the more usual O(n−1/2) associated with the normal

approximation. Another desirable feature of saddlepoint approximation is that the approximation

is quite satisfactory even when the sample size n is small. The book by Jensen (1995) gives a

detailed account of saddlepoint approximations and related techniques. However, a finite moment

generating function is an essential requirement for saddlepoint expansions. Daniels and Young

(1991) derived saddlepoint approximations for the tail probability of the Student t-statistic under

the assumption that the moment generating function of X2 exists. Note that Theorem 9.1 holds

without any moment assumption. It is natural to ask whether the saddle point approximation is

still valid without any moment condition for the t statistic or equivalently, for the self-normalized

sum Sn/Vn. Jing, Shao and Zhou (2004) recently give an affirmative answer to this question. Let

K(s, t) = lnEesX+tX2
,

K11(s, t) =
∂2K(s, t)

∂s2
,K12(s, t) =

∂2K(s, t)
∂s∂t

,K22(s, t) =
∂2K(s, t)

∂t2
.

For 0 < x < 1, let t̂0 and a0 be solutions t and a to the equations

EXet(−2aX/x2+X2)

Eet(−2aX/x2+X2)
= a,

EX2et(−2aX/x2+X2)

Eet(−2aX/x2+X2)
=

a2

x2

It is proved in [36] that t̂0 < 0. Put ŝ0 = −2a0t̂0/x2 and define

Λ0(x) = ŝ0a0 + t̂0a
2
0/x2 −K(ŝ0, t̂0),

Λ1(x) = 2t̂0/x2 + (1, 2a0/x2)∆−1(1, 2a0/x2)′,
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where

∆ =
(

K11(ŝ0, t̂0) K12(ŝ0, t̂0)
K12(ŝ0, t̂0) K22(ŝ0, t̂0)

)
.

Theorem 10.1 [Jing, Shao and Zhou (2004)]. Assume EX = 0 or EX2 = ∞ and that∫∞
−∞

∫∞
−∞ |EeisX+itX2 |rdsdt < ∞ for some r > 1. Then for 0 < x < 1

P (Sn/Vn ≥ x
√

n) = 1− Φ(
√

nw)− φ(
√

nw)√
n

( 1
w
− 1

v
+ O(n−1)

)
,

where w =
√

2Λ0(x), and v = (−t̂0/2)1/2x3/2a−1
0 (det∆)1/2Λ1(x)1/2.

11 Self-normalized moderate deviations

Let X, X1, X2, · · · be i.i.d random variables and let {xn, n ≥ 1} be a sequence of positive numbers

with xn →∞ as n →∞. It is known that

lim
n→∞

x−2
n lnP

(
|Sn|√

n
≥ xn

)
= −1

2

holds for any sequence {xn} with xn → ∞ and xn = o(
√

n) if and only if EX = 0, EX2 = 1

and Eet0|X| < ∞ for some t0 > 0. The sufficient part follows from the Cramér large deviation

(c.f. Petrov (1975) ). Following Shao (1989), the necessary part can be proved by studying the

increments of Sn. The next result shows again that the situation is quite different in the case of

self-normalized limit theorems. It tells us that the main term of the asymptotic probability of

P (Sn ≥ xn Vn,2) is distribution free as long as X is in the domain of attraction of a normal law and

xn = o(
√

n).

Theorem 11.1 [Shao (1997)] Let {xn, n ≥ 1} be a sequence of positive numbers with xn → ∞

and xn = o(
√

n) as n →∞. If EX = 0 and EX2I{|X| ≤ x} is slowly varying as x →∞, then

lim
n→∞

x−2
n lnP

(
Sn

Vn,2
≥ xn

)
= −1

2
.

Similar results to that of Theorem 11.1 remain valid when X is in the domain of attraction of

a stable law.

Theorem 11.2 [Shao (1997)] Assume that there exist 0 < α < 2, c1 ≥ 0, c2 ≥ 0, c1 + c2 > 0 and

a slowly varying function h(x) such that

P (X ≥ x) =
c1 + o(1)

xα
h(x) and P (X ≤ −x) =

c2 + o(1)
xα

h(x) as x →∞.
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Moreover, assume that EX = 0 if 1 < α < 2, X is symmetric if α = 1 and that c1 > 0 if 0 < α < 1.

Let {xn, n ≥ 1} be a sequence of positive numbers with xn → ∞ and xn = o(n1/2) as n → ∞.

Then, we have

lim
n→∞

x−2
n lnP

(
Sn

Vn
≥ xn

)
= −β(α, c1, c2),

where β(α, c1, c2) is the solution of Γ(β, α, c1, c2) = 0 and

Γ(β, α, c1, c2) =



c1

∫ ∞

0

1 + 2x− e2x−x2/β

xα+1
dx + c2

∫ ∞

0

1− 2x− e−2x−x2/β

xα+1
dx if 1 < α < 2,

c1

∫ ∞

0

2− e2x−x2/β − e−2x−x2/β

x2
dx if α = 1,

c1

∫ ∞

0

1− e2x−x2/β

xα+1
dx + c2

∫ ∞

0

1− e−2x−x2/β

xα+1
dx if 0 < α < 1.

In particular, if X is symmetric, then

lim
n→∞

x−2
n lnP

(
Sn

Vn
≥ xn

)
= −β(α),

where β(α) is the solution of
∫ ∞

0

2− e2x−x2/β − e−2x−x2/β

xα+1
dx = 0.

12 Cramér type large deviations for independent random vari-
ables

Let X1, X2, · · · be a sequence of independent random variables with EXi = 0 and 0 < EX2
i < ∞

for i ≥ 1. Set

Sn =
n∑

i=1

Xi, B2
n =

n∑
i=1

EX2
i , V 2

n =
n∑

i=1

X2
i .

It is well-known that the central limit theorem holds if the Lindeberg condition is satisfied. There

are mainly two approaches for estimating the error of the normal approximation. One approach

is to study the absolute error in the central limit theorem via Berry-Esseen bounds or Edgeworth

expansions. Another approach is to estimate the relative error of P (Sn ≥ xBn) to 1 − Φ(x). One

of the typical results in this direction is the so-called Cramér large deviation. If X1, X2, · · · are

a sequence of i.i.d. random variables with zero means and a finite moment-generating function

EetX1 < ∞ for t in a neighborhood of zero, then for x ≥ 0 and x = o(n1/2)

P (Sn ≥ xBn)
1− Φ(x)

= exp
{

x2λ(
x√
n

)
} [

1 + O(
1 + x√

n
)
]
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where λ(t) is the so-called Cramér’s series (see [Petrov (1975), Chapter VIII] for details). In

particular, if Eet|X1|1/2
< ∞ for some t > 0, then

P (Sn ≥ xBn)
1− Φ(x)

→ 1 (12.1)

holds uniformly for x ∈ (0, o(n1/6)). Note that the moment condition Eet|X1|1/2
< ∞ is necessary.

Similar results are also available for independent but not necessarily identically distributed random

variables under a finite moment-generating function condition.

Shao (1999) established a (12.1) type result for self-normalized sums only under a finite third-

moment condition. More precisely, he showed that if E|X1|2+δ < ∞ for 0 < δ ≤ 1, then

P (Sn ≥ xVn)
1− Φ(x)

→ 1 (12.2)

holds uniformly for x ∈ (0, o(nδ/(2(2+δ)))). Recently, several papers have focused on the self-

normalized limit theorems for independent but not necessarily identically distributed random vari-

ables. Bentkus, Bloznelis and Götze (1996) obtained the following Berry-Esseen bound:

|P (Sn/Vn ≥ x)− (1− Φ(x))|

≤ A
(
B−2

n

n∑
i=1

EX2
i I{|Xi|>Bn} + B−3

n

n∑
i=1

E|Xi|3I{|Xi|≤Bn}

)
,

where A is an absolute constant. Assuming only finite third moments, Wang and Jing (1999)

derived exponential non-uniform Berry-Esseen bounds. Chistyakov and Götze (2003) refined Wang

and Jing’ results and obtained the following result among others: If X1, X2, · · · are symmetric

independent random variables with finite third moments, then

P (Sn/Vn ≥ x) = (1− Φ(x))
(
1 + O(1)(1 + x)3B−3

n

n∑
i=1

E|Xi|3
)

(12.3)

for 0 ≤ x ≤ Bn/(
∑n

i=1 E|Xi|3)1/3, where O(1) is bounded by an absolute constant.

Result (12.3) is useful because it provides not only the relative error but also a Berry-Esseen

rate of convergence. It should be noted that if Xi is symmetric, then

Sn/Vn and (
n∑

i=1

εiXi)/Vn

have the same distribution, where {εi, i ≥ 1} is a Rademacher sequence that is independent of

{Xi, i ≥ 1}. Hence given {Xi, 1 ≤ i ≤ n}, the problem reduces to estimate the tail probability

of the partial sum of independent random variables εiXi/Vn, 1 ≤ i ≤ n. So, the assumption of
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symmetry not only takes away the main difficulty in proving a self-normalized limit theorem but

also limits its potential applications. Jing, Shao and Wang (2003) recently obtained a Cramér-type

large deviation for general independent random variables. In particular, they show that (12.3)

remains valid for non-symmetric independent random variables. Let

∆n,x =
(1 + x)2

B2
n

n∑
i=1

EX2
i I{|Xi| > Bn/(1 + x)}+

(1 + x)3

B3
n

n∑
i=1

E|Xi|3I{|Xi| ≤ Bn/(1 + x)}

for x ≥ 0.

Theorem 12.1 [Jing, Shao and Wang (2003)]. There is an absolute constant A (> 1) such that

P (Sn ≥ xVn)
1− Φ(x)

= eO(1)∆n,x

for all x ≥ 0 satisfying

x2 max
1≤i≤n

EX2
i ≤ B2

n

and

∆n,x ≤ (1 + x)2/A,

where |O(1)| ≤ A.

Theorem 18.1 provides a very general framework. The following result is a direct consequence

of the above general theorem.

Theorem 12.2 [Jing, Shao and Wang (2003)]. Let {an, n ≥ 1} be a sequence of positive numbers.

Assume that

a2
n ≤ B2

n/ max
1≤i≤n

EX2
i (12.4)

and

∀ ε > 0, B−2
n

n∑
i=1

EX2
i I{|Xi| > εBn/(1 + an)} → 0 as n →∞. (12.5)

Then
lnP (Sn/Vn ≥ x)

ln(1− Φ(x))
→ 1 (12.6)

holds uniformly for x ∈ (0, an).

When the Xi’s have a finite (2+ δ)th moment for 0 < δ ≤ 1, we obtain (12.3) without assuming

any symmetric condition.
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Theorem 12.3 [Jing, Shao and Wang (2003)]. Let 0 < δ ≤ 1 and set

Ln,δ =
n∑

i=1

E|Xi|2+δ, dn,δ = Bn/L
1/(2+δ)
n,δ .

Then,
P (Sn/Vn ≥ x)

1− Φ(x)
= 1 + O(1)

(1 + x

dn,δ

)2+δ
(12.7)

for 0 ≤ x ≤ dn,δ, where O(1) is bounded by an absolute constant. In particular, if dn,δ → ∞ as

n →∞, we have
P (Sn ≥ xVn)

1− Φ(x)
→ 1 (12.8)

uniformly in 0 ≤ x ≤ o(dn,δ).

By the fact that 1−Φ(x) ≤ 2e−x2/2/(1 + x) for x ≥ 0, it follows from (12.7) that the following

exponential non-uniform Berry-Esseen bound

|P (Sn/Vn ≥ x)− (1− Φ(x))| ≤ A(1 + x)1+δe−x2/2/d2+δ
n,δ (12.9)

holds for 0 ≤ x ≤ dn,δ.

The original proof of Theorem 18.1 is quite complicated. We shall use Stein’s method to give

a new proof.

Theorem 18.1 has been successfully applied to study the studentized bootstrap and the self-

normalized law of the iterated logarithm. The proof of Theorem 18.1 is quite complicated. Shao

(2004) refined Theorem 12.2 which only requires condition (12.5).

Theorem 12.4 [Shao (2004)] Let xn be a sequence of real numbers such that xn → ∞ and xn =

o(Bn). Assume

∀ ε > 0, B−2
n

n∑
i=1

EX2
i I{|Xi| > εBn/xn} → 0. (12.10)

Then we have

lnP (Sn/Vn ≥ xn) ∼ −x2
n/2. (12.11)

13 Self-normalized laws of the iterated logarithm

Let X, X1, X2, · · · be i.i.d. random variables. It is well-known that the Hartman-Wintner law of the

iterated logarithm holds if and only if the second moment of X is finite. In contrast to this classical

result, Griffin and Kuelbs (1989) established a self-normalized law of the iterated logarithm for all

distributions in the domain of attraction of a normal or stable law:

52



Theorem 13.1 [Griffin and Kuelbs (1989)]

(a) If EX = 0 and EX2I{|X| ≤ x} is slowly varying as x →∞, then

lim sup
n→∞

Sn

Vn(2 log log n)1/2
= 1 a.s.

(b) Under the conditions of Theorem 11.2, there is a positive constant C such that

lim sup
n→∞

Sn

Vn(2 log log n)1/2
= C a.s.

By applying the self-normalized moderate deviation result of Theorem 11.2 and the subsequence

method, the precise constant C in Griffin and Kuelbs’s LIL can be determined.

Theorem 13.2 [Shao (1997)] Under the conditions of Theorem 11.2, we have

lim sup
n→∞

Sn

(log log n)1/2Vn
= (β(α, c1, c2))

1/2 a.s.

For non-identically distributed independent random variables, as a direct consequence of The-

orem 12.4, we have

Theorem 13.3 [Shao(2004)] Let X1, X2, · · · be independent random variables with E(Xi) = 0 and

E(X2
i ) < ∞. Assume that B2

n :=
∑n

i=1 EX2
i →∞ as n →∞ and that

∀ ε > 0, B−2
n

n∑
i=1

EX2
i I{|Xi| > εBn/(log log Bn)1/2} → 0,

then

lim sup
n→∞

Sn

Vn(2 log log Bn)1/2
= 1 a.s.

14 Limiting distributions of self-normalized sums

Let X, X1, X2, · · · be i.i.d random variables. It is well-known that Sn/bn−an has a non-degenerate

limiting distribution for some suitably chosen real constants an and bn > 0 if and only if X is in

the domain of attraction of a stable law with index α (0 < α ≤ 2). When α = 2, it is equivalent to

EX2I(|X| ≤ x) is slowly varying as x →∞, while for 0 < α < 2, it is equivalent to

P (X ≥ x) =
(c1 + o(1))h(x)

xα
, P (X ≤ −x) =

(c2 + o(1))h(x)
xα
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as x →∞, where c1 ≥ 0, c2 ≥ 0, c1 + c2 > 0 and h(x) is slowly varying at ∞. It is also known that

the normalizing constants an and bn are complicatedly determined by the slowly varying function l.

On the other hand, self-normalization shows again its neatness. Logan, Mallows, Rice and Shepp

(LMRS)(1973) proved that all limit laws of Sn/Vn,2 for X in the domain of attraction of a stable

law with index α ∈ (0, 2) have a subgaussian tail which depends in a complicated way on the

parameter α, and posed a conjecture which was solved in [47].

Theorem 14.1 [Logan, Mallows, Rice and Shepp (1973) and Shao (1997)]

Under the conditions of Theorem 11.2, the limiting density function p(x) of Sn/Vn,2 exists and

satisfies as x →∞

p(x) ∼ 1
α

(
2
π

)1/2 √
2β(α, c1, c2)e−x2β(α,c1,c2).

Logan, Mallows, Rice and Shepp (1973) also stated that Sn/Vn is asymptotically normal if [and

perhaps only if] X is in the domain of attraction of the normal law and that it seems worthy of

conjecture that the only possible nontrivial limiting distributions of Sn/Vn are those obtained when

X follows a stable law. The first conjecture of LMRS was proved by Giné, Götze and Mason (1997)

and the second conjecture was recently confirmed by Chistyakov and Götze (2004).

Theorem 14.2 [Gine, Götze and Mason (1997)]

Sn/Vn,2
d.−→ N(0, 1)

if and only if EX = 0 and EX2I{|X| ≤ x} is slowly varying.

Theorem 14.3 [Chistyakov and Götze (2004)]. Sn/Vn converges weakly to a random variable Z

such that P (|Z| = 1) < 1 if and only if

(i) X is in the domain of attraction of a stable law with index α ∈ (0, 2];

(ii) EX = 0 if 1 < α ≤ 2;

(iii) if α = 1, then X is in the domain of attraction of the Cauchy law and Feller’s condition

holds, that is, limn→∞ nE sin(X/an) exists and is finite, where an = inf{x > 0 : nx−2(1 +

EX2I{|X| ≤ x}) ≤ 1}.
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Chistyakov and Götze (2004) also proved that Sn/Vn converges weakly to Z with P (|Z| = 1) if

and only if P (|X| > x) is a slowly varying function at +∞.

For the asymptotic distribution of self-normalized censored sums and trimmed sums, we refer

to Hahn, Kuelbs and Weiner (1990) and Griffin and Pruitt (1991).

15 Weak invariance principle for self-normalized partial sum pro-
cesses

Let X, X1, X2, · · · be i.i.d. random variables. As a generalization of the central limit theorem, the

classical weak invariance principle states that on an appropriate probability space,

sup
0≤t≤1

| 1√
nσ

S[nt] −
1√
n

W (nt)| = o(1) in probability

if and only if EX = 0 and Var(X) = σ2, where {W (t), t ≥ 0} is a standard Wiener process.

The weak invariance principle is a stronger version of Donsker’s classical functional central limit

theorem. In view of the self-normalized central limit theorem, Csörgő, Szyszkowicz and Wang

(2003) proved a self-normalized version of the weak invariance principle.

Theorem 15.1 [Csörgő, Szyszkowicz and Wang (2003)]. As n →∞, the following statements are

equivalent:

(a) EX = 0 and X is in the domain of attraction of the normal law;

(b) S[nt]/Vn → W (t) weakly on (D[0, 1], ρ), where ρ is the sup-norm metric for functions in

D[0, 1], and {W (t), 0 ≤ t ≤ 1} is a standard Wiener process;

(c) On an appropriate probability space, we can construct a standard Wiener process {W (t), t ≥ 0}

such that

sup
0≤t≤1

|S[nt]/Vn −W (nt)/
√

n| = o(1) in probability.

The following are immediate corollaries of the above weak invariance principle. If EX = 0 and

X is in the domain of attraction of the normal law, then

P ( max
1≤i≤n

Si/Vn ≤ x) → P ( sup
0≤t≤1

W (t) ≤ x),

P ( max
1≤i≤n

|Si|/Vn ≤ x) → P ( sup
0≤t≤1

|W (t)| ≤ x),
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P (n−1
n∑

i=1

S2
i /V 2

n ≤ x) → P
( ∫ 1

0
W 2(t)dt ≤ x

)
,

P (n−1
n∑

i=1

|Si|/Vn ≤ x) → P
( ∫ 1

0
|W (t)|dt ≤ x

)
.

When X is in the domain of attraction of a stable law, Hu and Shao (2005) obtained a similar

invariance principle.

Let N1, N2 be two independent poisson random measures with intensity L on σ-finite measure

space (R2,B2, L), where B2 is the Borel σ-algebra of R2 and L is the Lebesgue measure on R2. For

i = 1, 2 put

Ni(t, y) := Ni([0, t]× [0, y]) for t ≥ 0, y ≥ 0

and define the following processes:

∆α,i(t) =


α−1

∫∞
0 Ni(t, y)y−1−1/αdy if 0 < α < 1∫∞

e (Ni(t, y)− ty)y−2dy +
∫ e
0 Ni(t, y)y−2dy if α = 1

α−1
∫∞
0 (Ni(t, y)− ty)y−1−1/αdy if 1 < α ≤ 2

Theorem 15.2 [Hu and Shao (2005)] Assume that there exists α ∈ (0, 2), c1 ≥ 0, c2 ≥ 0, c1 +c2 >

0 and a slowly varying function h(x) such that

P (X ≥ x) =
c1 + o(1)

xα
h(x) and P (X ≤ −x) =

c2 + o(1)
xα

h(x)

as x →∞ Moreover, assume that EX = 0 if 1 < α < 2 and X is symmetric if α = 1. Write

∆α(t) = −ω1∆α,1(t) + ω2∆α,2(t),

∆̃α(t) = ω2
1∆α/2,1(t) + ω2

2∆α/2,2(t), 0 ≤ t ≤ 1,

where w1 =
(

c2
c1+c2

) 1
α

, w2 =
(

c1
c1+c2

) 1
α , then in D[0, 1],

S[nt]/Vn ⇒ ∆α(t)/
√

∆̃α(1).

Theorem 15.2 can be applied to obtain the limiting distribution of a unit-root test statistic

when the data is in the domain of attraction of a stable law.

16 Exponential inequalities for self-normalized processes

We have focused on limit theorems for self-normalized sums so far. Several papers have recently

discussed moment inequalities for self-normalized processes. de la Pena, Klass and Lai (2004)

established very interesting exponential inequalities for general self-normalized processes.

56



Theorem 16.1 [de la Pena, Klass and Lai (2004)]. Let S and V be two variables with V ≥ 0 such

that

E exp{λS − λ2

2
V 2} ≤ 1 (16.1)

for all λ ∈ R. Then for all y > 0,

E
y√

V 2 + y2
exp{ S2

2(V 2 + y2)
} ≤ 1. (16.2)

Consequently, if EV > 0, then

E exp
( S2

4(V 2 + (EV )2)

)
≤
√

2

and

E exp
( xS√

V 2 + (EV )2

)
≤
√

2 exp(x2)

for x > 0. Moreover, for all p > 0,

E
( |S|√

V 2 + (EV )2

)p
≤ 2p+ 1

2 p Γ(p/2).

Condition (16.1) is satisfied for a large classes of random variables (S, V ). Important examples

include: (i) S = WT , V =
√

T , where Wt is a standard Brownian motion, and T is a stopping time

with T < ∞ a.s.; (ii) S = Mt, V =
√
〈Mt〉, where Mt is a continuous square-integrable martingale

with M0 = 0; (iii) S =
∑n

i=1 di, V =
√∑n

i=1 d2
i , where {di} is a sequence of variables adapted to an

increasing sequence of σ-fields {F i} and the di’s are conditionally symmetric. They also developed

maximal inequalities and iterated logarithm bounds for self-normalized martingales.

17 Application to statistics

The idea of self-normalization is by no means new. Self-normalized statistics have been used, out

of necessity, for quite some time by now. The celebrated “Student t-statistic” tn, a classical object

familiar to virtually everyone who does data analysis, is closely related to Sn/Vn,2 via the following

identities

tn =
Sn

Vn,2

(
n− 1

n− (Sn/Vn,2)2

)1/2

and

{tn ≥ t} =

{
Sn

Vn,2
≥ t

(
n

n + t2 − 1

)1/2
}

.
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Thus, appropriate properties of self-normalized partial sums can be easily transformed to the t-

statistic. For example, under the conditions of Theorem 11.1,

lim
n→∞

x−2
n lnP (tn ≥ xn) = −1

2

for any xn →∞ with xn = o(
√

n).

The above result enables one to evaluate the exact Bahadur slope of all score tests for any

univariate model. He and Shao (1996) derived the exact Bahadur slopes of studentized score tests

and showed that under mild conditions the likelihood score is locally optimal in Bahadur efficiency.

The self-normalized technique was successfully applied in Chen and Shao (1997) to study the

performance of Monte Carlo methods for estimating ratios of normalizing constants.

Cao (2005) recently studied the moderate deviations for two-sample t-statistics.

Let X1, · · · , Xn1 be a random sample from a population with mean µ1 and variance σ2
1, and

Y1, · · · , Yn2 be a random sample from another population with mean µ2 and variance σ2
2. Define

the two sample t-statistic

T =
X̄ − Ȳ − (µ1 − µ2)√

s2
1/n1 + s2

2/n2

,

where

s2
1 =

1
n1 − 1

n1∑
i=1

(Xi − X̄)2, s2
2 =

1
n2 − 1

n2∑
i=1

(Yi − Ȳ )2.

Theorem 17.1 [Cao(2005)] Let n = n1 + n2. Assume that there are 0 < c1 ≤ c2 < ∞ such that

c1 ≤ n1/n2 ≤ c2. Then for any x := x(n1, n2) satisfying x →∞, x = o(n1/2)

lnP (T ≥ x) ∼ −x2/2

as n1, n2 →∞. If in addition, E|X1|3 < ∞ and E|Y1|3 < ∞, then

P (T ≥ x)
1− Φ(x)

= 1 + O(1)(1 + x)3n−1/2d3

for 0 ≤ x ≤ n1/6/d, where d3 = (E|X1 − µ1|3 + E|Y1 − µ2|3)/(σ2
1 + σ2

2)
3/2 and O(1) is a finite

constant depending only on c1 and c2. In particular,

P (T ≥ x)
1− Φ(x)

→ 1

uniformly in x ∈ (0, o(n1/6)).
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18 An explicit Berry-Esseen bound for Student’s t-statistic via
Stein’s method

Let X1, X2, ..., Xn be a sequence of independent random variables with EXi = 0 and EX2
i < ∞.

Put

Sn =
n∑

i=1

Xi, V 2
n =

n∑
i=1

X2
i , B2

n =
n∑

i=1

EX2
i .

Define the Student t-statistic by

Tn =
Sn√
n s

,

where s2 = 1
n−1

∑n
i=1(Xi − Sn/n)2. The study of Berry-Esseen bound for Student’s statistic has

a long history (see, e.g., Bentkus and Götze (1996) and references therein) and the first optimal

result is due to Bentkus and Götze (1996) for i.i.d case, which is extended to the non-i.i.d case by

Bentkus, Bloznelis and Götze (1996). In particular, they show that

sup
z
|P (Tn ≤ z)− Φ(z)| ≤ C1B

−2
n

n∑
i=1

EX2
i I{|Xi|>Bn/2} + C2B

−3
n

n∑
i=1

E|Xi|3I{|Xi|≤Bn/2}, (18.1)

where C1 and C2 are absolute constants. The bound coincides the classical Berry-Esseen bound for

the standardized mean Sn/Bn up to an absolute constant. Their proof is based on the characteristic

function approach. Her we give a direct proof of (18.1) with explicit values of C1 and C2 via Stein’s

method. As we mentioned before, the Student t-statistic is closely related to the self-normalized

sum Sn/Vn via the following identity

{Tn ≥ x} =
{Sn

Vn
≥ x

( n

n + x2 − 1

)1/2}
.

Hence we state our main result in terms of the self-normalized sum.

Theorem 18.1 We have

sup
z
|P (Sn/Vn ≤ z)− Φ(z)| ≤ 10.2β2 + 25β3, (18.2)

where

β2 = B−2
n

n∑
i=1

EX2
i I{|Xi|>0.5Bn} and β3 = B−3

n

n∑
i=1

E|Xi|3I{|Xi|≤0.5Bn}. (18.3)

In particular, we have

sup
z
|P (Sn/Vn ≤ z)− Φ(z)| ≤ 25B−p

n

n∑
i=1

E|Xi|p (18.4)

for 2 < p ≤ 3.
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Remark. For i.i.d case, Nagaev (2002) also obtained an explicit bound similar to (18.4) but

with a bigger value of the constant.

Proof. We assume that {Xi, 1 ≤ i ≤ n} are independent with EXi = 0 and finite second moments.

Without loss of generality, assume Bn = 1 and z ≥ 0. The proof is carried out via (i) truncation

and (ii) applying the Stein’s method to the truncated variables. The main difficulty arises from

the variable Vn in the denominator which can not be simply replaced by (E(V 2
n ))1/2.

(18.2) is obviously true if β2 > 0.1 or β3 > 0.04. So we can assume that

β2 ≤ 0.1 and β3 ≤ 0.04. (18.5)

Recall a Hoeffding (1963) type inequality for non-negative independent random variables (see

(4.6))

Let {Yi, 1 ≤ i ≤ n} be independent non-negative random variables with µ =
∑n

i=1 EYi and

σ2 =
∑n

i=1 EY 2
i < ∞. Then for 0 < x < µ

P (
n∑

i=1

Yi ≤ x) ≤ exp
(
− (µ− x)2

2σ2

)
. (18.6)

A direct corollary of (18.6) is: for c2 < 1− β2

P (Vn ≤ c) ≤ P (
n∑

i=1

X2
i I{|Xi|≤0.5} ≤ c2)

≤ exp
(
−

(
∑n

i=1 EX2
i I{|Xi|≤0.5} − c2)2

2
∑n

i=1 EX4
i I{|Xi|≤0.5}

)
≤ exp

(
− (1− β2 − c2)2

β3

)
. (18.7)

Hence for z > 0

P (Sn/Vn ≥ z) ≤ P (Vn ≤ 0.7) + P (Sn ≥ 0.7z)

≤ exp
(
− (1− 0.1− 0.49)2

0.04

)
+

1
1 + (0.7z)2

≤ 0.015 +
1

1 + (0.7z)2

and

sup
z≥0

(P (Sn/Vn ≥ z)− (1− Φ(z)))

≤ 0.015 + sup
z≥0

( 1
1 + (0.7z)2

− (1− Φ(z))
)

≤ 0.015 + 0.585 = 0.6. (18.8)

60



Thus, (18.2) holds if β2 > 0.6/10 = 0.06 or β3 > 0.6/25 = 0.024. Therefore we can further assume

β2 ≤ 0.06 and β3 ≤ 0.024. (18.9)

Let
X̄i = XiI{|Xi|≤0.5}, S̄n =

∑n
i=1 X̄i,

V̄ 2
n =

∑n
i=1 X̄2

i , V ∗
n = max(V̄n, 0.8),

ξi = X̄i/V ∗
n , W =

∑n
i=1 ξi = S̄n/V ∗

n ,
κi(t) = ξiI{−ξi≤t≤0} − ξiI{0<t≤−ξi}, κ(t) =

∑n
i=1 κi(t).

(18.10)

Note that

|P (Sn/Vn ≤ z)− P (W ≤ z)|

≤ P ( max
1≤i≤n

|Xi| > 0.5) + P (V̄n < 0.8)

≤ 4β2 + exp
(
− (1− 0.06− 0.64)2

β3

)
[by (18.7)]

≤ 4β2 + β3 sup
0<x<0.024

1
x

exp
(
− 0.09

x

)
≤ 4β2 + 0.98β3. (18.11)

Now we use the Stein method to bound P (W ≤ z) − Φ(z). Observe that for any absolute

continuous function f

Wf(W )−
n∑

i=1

ξif(W − ξi) (18.12)

=
n∑

i=1

ξi(f(W )− f(W − ξi)) =
n∑

i=1

ξi

∫ 0

−ξi

f ′(W + t)dt

=
n∑

i=1

ξi

∫ 1

−1
f ′(W + t)[I{−ξi≤t≤0} − I{0<t≤−ξi}]dt

=
n∑

i=1

∫ 1

−1
f ′(W + t)mi(t)dt =

∫ 1

−1
f ′(W + t)m(t)dt.

Noting that ∫ 1

−1
m(t)dt =

n∑
i=1

ξ2
i = V̄ 2

n /V ∗2
n = 1− (1− V̄ 2

n /0.64)I{V̄n<0.8},

we have

f ′(W )−Wf(W ) (18.13)

= f ′(W )(1− V̄ 2
n /0.64)I{V̄n<0.8} −

n∑
i=1

ξif(W − ξi) +
∫ 1

−1
[f ′(W )− f ′(W + t)]m(t)dt.
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Now we let f := fz be the solution of the following Stein equation:

f ′(w)− wf(w) = I(w ≤ z)− Φ(z). (18.14)

Then

P (W ≤ z)− Φ(z) = R1 −R2 + R3, (18.15)

where

R1 = Ef ′z(W )(1− V̄ 2
n /0.64)I{V̄n<0.8}, (18.16)

R2 =
n∑

i=1

Eξifz(W − ξi), (18.17)

R3 =
∫ 1

−1
E{(f ′z(W )− f ′z(W + t))m(t)}dt. (18.18)

Recall

0 ≤ fz(w) ≤
√

2π/4 < 0.627, (18.19)

|f ′z(w)| ≤ 1, (18.20)

|wfz(w)− (w + t)fz(w + t)| ≤ (|w|+ 0.627)|t|. (18.21)

It follows from (18.20), (18.7) and the proof of (18.11) that

|R1| ≤ P (V̄n ≤ 0.8) ≤ 0.98β3. (18.22)

Now by Lemmas 18.1 and 18.2 below,

|R2| ≤ 1.568β2 + 1.85β3 and |R3| ≤ 4.59β2 + 21.92β3.

This proves (18.2) by combining the inequalities above. �

We now present two lemmas used in the main proof.

Lemma 18.1 Under (18.9), we have

|R2| ≤ 1.568β2 + 1.85β3. (18.23)

Proof. Note that ξi and W − ξi are almost independent and the dependence is mainly because of

the denominator V ∗
n in ξi and W − ξi. To eliminate the dependence, we introduce

V̄(i) =
( ∑

1≤j≤n,j 6=i

X̄2
j

)1/2
, V ∗

(i) = max(V̄(i), 0.8), W ∗
(i) =

S̄n − X̄i

V ∗
(i)

. (18.24)
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Since E(Xi) = 0,

|E(S̄n − X̄i)| = |
∑
j 6=i

E(XjI{|Xj |>0.5}| ≤ 2β2.

Thus, under (18.9), we have

E|S̄n − X̄i| ≤ (E(S̄n − X̄i)2)1/2

≤
( n∑

j=1

EX̄2
j + (E(S̄n − X̄i))2

)1/2

≤ (1 + 4β2
2)1/2 ≤ 1.008. (18.25)

Noting that by (18.19) and (18.20)

| d

dx
(axfz(bx))| = |afz(bx) + abxf ′z(bx)| ≤ 0.627|a|+ |ab|/0.8

for |x| ≤ 1/0.8 and for constants a and b, and

0 ≤ 1
V ∗

(i)

− 1
V ∗

n

=
V ∗2

n − V ∗2
(i)

V ∗
n V ∗

(i)(V
∗
n + V ∗

(i))

≤ X̄2
i

V ∗
n V ∗

(i)(V
∗
n + V ∗

(i))
≤ X̄2

i

2(0.8)3
≤ 0.98X̄2

i , (18.26)

we have

|R2| ≤
n∑

i=1

|E
{ X̄i

V ∗
n

fz

( S̄n − X̄i

V ∗
n

)}
− E

{ X̄i

V ∗
(i)

fz

( S̄n − X̄i

V ∗
(i)

)}
|

+
n∑

i=1

|E
{ X̄i

V ∗
(i)

fz

( S̄n − X̄i

V ∗
(i)

)}
|

≤
n∑

i=1

E
{

(0.627|X̄i|+
|X̄i(S̄n − X̄i)|

0.8
)0.98X̄2

i

}
+

n∑
i=1

|EX̄i| |E
{ 1

V ∗
(i)

fz

( S̄n − X̄i

V ∗
(i)

)}
|

≤ 0.615
n∑

i=1

E|X̄i|3 + (0.98/0.8)
n∑

i=1

E|X̄i|3E|S̄n − X̄i|

+0.627(0.8)−1
n∑

i=1

|EX̄i| [by (18.19)]

≤ (0.615 + (1.008)(0.98)/0.8)β3 + 0.627/0.4β2 [by (18.25)]

≤ 1.568β2 + 1.85β3, (18.27)

as desired. �

Next lemma provides an estimate for R3.
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Lemma 18.2 Under (18.9), we have

|R3| ≤ 4.59β2 + 21.06β3. (18.28)

Proof. First we prove

R3 ≤ 4.59β2 + 21.92β3. (18.29)

The proof of −R3 ≤ 4.59β2 + 21.92β3 is similar and hence will be omitted.

By (18.14) and (18.21),

R3 ≤ E

∫ 1

−1
m(t)(|W |+ 0.627)|t|dt + E

∫ 1

−1
m(t)(I{W≤z} − I{W+t≤z})dt

≤ 0.5E
(
(|W |+ 0.627)

n∑
i=1

|ξi|3
)

+
n∑

i=1

E

∫ 1

0
m(t)I{z−t<W≤z}dt

≤ 0.5(0.8)−3
n∑

i=1

E
(
|X̄i|3(|S̄n|/0.8 + 0.627)

)
+

n∑
i=1

E(ξ2
i I{z+ξi<W≤z,ξi≤0})

≤ 0.98
n∑

i=1

E
(
|X̄i|3(0.627 + |S̄n|/0.8)

)
+

n∑
i=1

E(ξ2
i I{z−|X̄i|/0.8<W≤z})

:= R3,1 + R3,2. (18.30)

By (18.25),

R3,1 ≤ 0.98
n∑

i=1

{
(0.627 + 0.5/0.8)E|X̄i|3 + E|X̄i|3E|S̄n − X̄i|/0.8

}
≤ 0.98(0.627 + 1/1.6 + 1.008/0.8)β3 ≤ 2.47β3. (18.31)

To bound R3,2, let

δ = 0.75
n∑

i=1

|ξi|3, ηi = |X̄i|/0.8

and define

hi,δ(x) =


−δ − ηi/2 for x ≤ z − ηi − δ
x− (2z − ηi)/2 for z − ηi − δ < x < z + δ
δ + ηi/2 for x ≥ z + δ

(18.32)

Then, by (18.12)

W hi,δ(W )−
n∑

j=1

ξjhi,δ(W − ξj)

=
∫ 1

−1
m(t)h′i,δ(W + t)dt ≥

∫
|t|≤δ

I{z−ηi≤W≤z}m(t)dt

= I{z−ηi≤W≤z}

n∑
j=1

|ξj |min(δ, |ξj |)
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≥ I{z−ηi≤W≤z}

n∑
j=1

|ξj |(|ξj | − ξ2
j /(4δ))

= I{z−ηi≤W≤z}(V̄
2
n / max(V̄ 2

n , 0.82)− 1/3)

≥ (2/3)I{z−ηi≤W≤z} − I{V̄n<0.8}, (18.33)

where in the last but second inequality, we used the fact that:

min(a, b) ≥ a− a2/(4b) for any a ≥ 0, b > 0.

Hence

(2/3)
n∑

i=1

Eξ2
i I{z−ηi≤W≤z}

≤ EI{V̄n<0.8}

n∑
i=1

ξ2
i +

n∑
i=1

Eξ2
i Whi,δ(W )−

n∑
j=1

n∑
i=1

Eξ2
i ξjhi,δ(W − ξj)

≤ P (V̄n < 0.8) + R3,3 + R3,4 + R3,5

≤ 0.98β3 + R3,3 + R3,4 + R3,5 (18.34)

by (18.22), where

R3,3 =
n∑

i=1

E
(
ξ2
i |W |(δ + ηi/2)

)
,

R3,4 = −
n∑

i=1

Eξ3
i hi,δ(W − ξi),

R3,5 = −
n∑

i=1

∑
j 6=i

Eξ2
i ξjhi,δ(W − ξj).

From (18.25) we obtain that

|R3,3| ≤ E(|W |δ) + 0.5
n∑

i=1

E(ξ2
i ηi|W |)

≤ (0.5 + 0.75)0.8−4
n∑

i=1

E|X̄3
i S̄n|

≤ 1.25(0.8)−4(0.5 + 1.008)β3 ≤ 4.603β3 (18.35)

and

|R3,4| ≤
n∑

i=1

E|ξ3
i |(δ + 0.5ηi)

≤ 0.75E
( n∑

i=1

|ξi|3
)2

+ 0.5(0.8)−4
n∑

i=1

E|X̄i|4
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≤ (0.75/1.6)E
( n∑

i=1

|ξi|3
)

+ 0.6104
n∑

i=1

E|X̄i|3

≤ 1.53β3, (18.36)

where we used the fact that
∑n

i=1 |ξi|3 ≤ (0.5/0.8)
∑n

i=1 ξ2
i ≤ 1/1.6.

To bound R3,5, we define V ∗
(j) as in (18.24) and hi,δj

as in (18.32) with

δj = 0.75
n∑

1≤l≤n,l 6=j

|X̄l|3/V ∗3
(j) .

Observe that

0 ≤ 1
V ∗3

(j)

− 1
V ∗3

n

=
V ∗3

n − V 3
(j)

V ∗3
n V ∗3

(j)

=

1.5
∫ V ∗2

n

V ∗2
(j)

√
t dt

V ∗3
n V ∗3

(j)

≤ 1.5|X̄j |2

V ∗2
n V ∗3

(j)

.

Clearly for any x

|hi,δ(x)− hi,δj
(x)| ≤ |δ − δj | (18.37)

≤ 0.75|X̄j |3

V ∗3
n

+ 0.75
∑
l 6=j

|X̄l|3(1/V ∗3
(j) − 1/V ∗3

n )

≤ 0.75|X̄j |3

V ∗3
n

+
1.5(0.75)|X̄j |2

V ∗2
n V ∗3

(j)

∑
l 6=j

|X̄l|3

≤ 0.375|X̄j |2

0.83
+

1.125|X̄j |2

V ∗2
n 0.83

∑
l 6=j

0.5X̄2
l

≤ 1.832X̄2
j .

Write R3,5 = R3,6 + R3,7, where

R3,6 =
n∑

i=1

∑
j 6=i

E{ξ2
i ξj(hi,δj

(W − ξj)− hi,δ(W − ξj))},

R3,7 = −
n∑

i=1

∑
j 6=i

Eξ2
i ξjhi,δj

(W − ξj).

By (18.37),

|R3,6| ≤ 1.832
n∑

i=1

∑
j 6=i

E{ξ2
i |ξj |X̄2

j }

≤ 1.832
n∑

j=1

E{|ξj |X̄2
j }

≤ (1.832/0.8)β3 = 2.29β3. (18.38)
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Notice that

|hi,δj
| ≤ δi + ηi/2 ≤ 0.75(0.5/0.8) + 0.5/1.6 = 0.782.

Since X̄j and {V ∗
(j), S̄n − X̄j , X̄i} are independent for j 6= i, we have

|R3,7| ≤ |
n∑

i=1

∑
j 6=i

|E(X̄j) EX̄2
i V −3

(j) hi,δj
((S̄n − X̄j)/V(j))

}
|

+
n∑

i=1

∑
j 6=i

|E
(
X̄2

i X̄j(1/V ∗
n )3hi,δj

((S̄n − X̄j)/V ∗
n )− X̄2

i X̄j(1/V ∗
(j))

3hi,δj
((S̄n − X̄j)/V ∗

(j))
)
|

≤ 0.782(0.8)−3
n∑

i=1

∑
j 6=i

E|Xj |I{|Xj |>0.5} EX̄2
i

+
n∑

i=1

∑
j 6=i

|E
(
X̄2

i X̄j(V ∗−3
n − V ∗−3

(j) )hi,δj
((S̄n − X̄j)/V ∗

(j))
)
|

+
n∑

i=1

∑
j 6=i

|E
(
X̄2

i X̄jV
∗−3
n (hi,δj

((S̄n − X̄j)/V ∗
n )− hi,δj

((S̄n − X̄j)/V ∗
(j)))

)
|

≤ 3.06β2 + 0.782
n∑

i=1

∑
j 6=i

E
(1.5X̄2

i |X̄j |3

V ∗2
n V 3

(j)

)
+

n∑
i=1

∑
j 6=i

E
(X̄2

i |X̄j ||S̄n − X̄j |
V ∗3

n

(
1

V ∗
(j)

− 1
V ∗

n

)
)

≤ 3.06β2 +
0.782(1.5)

0.83
β3

+
n∑

i=1

∑
j 6=i

E
(X̄2

i |X̄j |3|S̄n − X̄j |
V ∗3

n

)
[by (18.26)]

≤ 3.06β2 + 2.292β3 +
1

0.8

n∑
j=1

E|X̄j |3E|S̄n − X̄j | [by (18.25)]

≤ 3.06β2 + 3.56β3. (18.39)

Now combining (18.34), (18.35), (18.36), (18.38) and (18.39) yields

R3,2 ≤ 1.5(0.98β3 + 4.603β3 + 1.53β3 + 2.29β3 + 3.06β2 + 3.56β3) ≤ 4.59β2 + 19.45β3. (18.40)

This proves (18.29) by (18.30), (18.31) and (18.40). �
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[12] S. Csörgő, E. Haeusler and D.M. Mason, The asymptotic distribution of trimmed sums. Ann.

Probab. 16 (1988), 672-699.

[13] S. Csörgő, E. Haeusler and D.E. Mason, The quantile-transform approach to the asymptotic

distribution of modulus trimmed sums. Sums, Trimmed Sums and Extremes (Hahn, M. G.,

Mason, D.M., Weiner, D.C., eds) 337-354, Progr. Probab. 23 (1991), Birkhäuser, Boston.
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[43] S.V. Nagaev, The Berry-Esseen bound for self-normalized sums. Siberian Adv. Math. 12 (2002),

79-125.

[44] V. de la Pena, M. Klass and T.Z. Lai, Self-normalized processes: exponential inequalities,

moment bounds and iterated logarithm laws. Ann. Probab. 32 (2004), 1902–1933.

[45] V.V. Petrov, Sums of Independent Random Variables. Springer-Verlag, New York, 1975.
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