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What is the bootstrap?

The bootstrap is the statistical procedure which

models sampling from a population by the

process of resampling from the sample.

Therefore, if a quantity (e.g. a parameter) can

be expressed as a functional of an unknown

distribution, then its bootstrap estimator is

the same functional of the empirical distribu-

tion function.



Simple examples

Best known example is the case of the mean,

µ say, of a population drawn by sampling ran-

domly from a population with distribution fun-

ction F :

µ =
∫

x dF (x) .

Its mean is the same functional of the empir-

ical distribution function Fn, i.e. of

F̂ (x) =
1

n

n∑
i=1

I(Xi ≤ x) ,

where X1, . . . , Xn denote the data. There-

fore the bootstrap estimator of the population

mean, µ, is the sample mean, X̄:

X̄ =
∫

x dF̂ (x) =
1

n

n∑
i=1

Xi .

Likewise, the bootstrap estimator of a pop-

ulation variance is the corresponding sample



variance; the bootstrap estimator of a popula-

tion correlation coefficient is the correspond-

ing empirical correlation coefficient; and so

on.

Note particularly that Monte Carlo simulation

does not play a role in the definition of the

bootstrap, although simulation is an essential

feature of most implementations of bootstrap

methods.



Prehistory of the bootstrap

In view of the definition above, one could

fairly argue that the calculation and applica-

tion of bootstrap estimators has been with us

for centuries.

One could claim that general first-order limit

theory for the bootstrap was known to Laplace

by about 1810 (since Laplace developed one

of the earliest general central limit theorems);

and that second-order properties were devel-

oped by Chebyshev at the end of the 19th

Century. (Chebyshev was one of the first to

explore properties of what we usually refer to

today as Edgeworth expansions.)

However, a ‘mathematical’ or ‘technical’ ap-

proach to defining the bootstrap, and hence

to defining its history, tends to overlook its

most important feature: using sampling from

the sample to model sampling from the pop-

ulation.



Sample surveys and the bootstrap

The notion of sampling from a sample is re-

moved only slightly from that of sampling from

a finite population. Unsurprisingly, then, a

strong argument can be made that important

aspects of the bootstrap’s roots lie in meth-

ods for sample surveys.

There, the variance of samples drawn from

a sample have long been use used to assess

sampling variability, and to assess sampling

variation.



J.A. Hubback

Arguably the first person to be involved in this

type of work was not a statistician but an In-

dian Civil Servant, John Hubback. Hubback,

and Englishman, was born in 1878 and worked

in India for most of the 45 year period after

1902. He died in 1968.

In 1923 Hubback began a series of crop trials,

in the Indian states of Bihar and Orissa, in

which he developed spatial sampling schemes.

In 1927 he published an account of his work in

a Bulletin of the Indian Agricultural Research

Institute.

Hubback went on to become the first governor

of Orissa province. As Sir John Hubback he

served as an advisor to Lord Mountbatten’s

administration of India, at the end of British

rule.



J.A. Hubback (continued)

Hubback’s work was to have a substantial in-

fluence on subsequent work on random sam-

pling for assessing crop yields in the UK, con-

ducted at Rothamsted by Fisher and Yates.

Fisher was to write:

The use of the method of random sampling

is theoretically sound. I may mention that its

practicability, convenience and economy was

demonstrated by an extensive series of crop-

cutting experiments on paddy carried out by

Hubback.... They influenced greatly the de-

velopment of my methods at Rothamsted.

(R.A. Fisher, 1945)



P.C. Mahalanobis

Mahalanobis, the eminent Indian statistician,

was inspired by Hubback’s work and used Hub-

back’s spatial sampling schemes explicitly for

variance estimation. This was a true precur-

sor of bootstrap methods.

Of course, Mahalanobis appreciated that the

data he was sampling were correlated, and he

carefully assessed the effects of dependence,

both empirically and theoretically. His work

in the late 1930s, and during the War, antic-

ipated the much more modern technique of

the block bootstrap.



Other contributors

So-called ‘half-sampling’ methods were used

by the US Bureau of the Census from at least

the late 1950s. This pseudo-replication tech-

nique was designed to produce, for stratified

data, an effective estimator of the variance

of the grand mean (a weighted average over

strata) of the data. The aim was to im-

prove on the conventional variance estimator,

computed as a weighted linear combination of

within-stratum sample variances.

Names associated with methodological devel-

opment of half-sampling include Gurney (1962)

and McCarthy (1966, 1969). Substantial con-

tributions on the theoretical side were made

by Hartigan (1969, 1971, 1975).



Julian Simon, and others

Permutation methods related to the bootstrap

were discussed by Maritz (1978) and Maritz

and Jarrett (1978), and by the Social Scientist

Julian Simon, who wrote as early as 1969 that

computer-based experimentation in statistics

“holds great promise for the future.”

Unhappily, Simon (who died in 1998) spent a

significant part of the 1990s disputing with

some of the statistics profession his claims

to have ‘discovered’ the bootstrap. He ar-

gued that statisticians had only grudgingly ac-

cepted ‘his’ ideas on the bootstrap, and and

borrowed them without appropriate attribu-

tion.



Julian Simon (continued)

Simon saw the community of statisticians as

an unhappy ‘priesthood’, which felt jealous

because the computer-based bootstrap made

their mathematical skills redundant:

The simple fact is that resampling devalues

the knowledge of conventional mathematical

statisticians, and especially the less compe-

tent ones. By making it possible for each user

to develop her/his own method to handle each

particular problem, the priesthood with its se-

cret formulaic methods is rendered unneces-

sary. No one...stands still for being rendered

unnecessary. Instead, they employ every pos-

sible device fair and foul to repel the threat to

the economic well-being and their self-esteem.



Efron’s contributions

Efron’s contributions, the ramifications of

which we shall explore in subsequent lectures,

were of course far-reaching. They vaulted for-

ward from the earlier ideas, of people such as

Hubback, Mahalanobis, Hartigan and Simon,

creating a fully fledged methodology that is

now applied to analyse data on virtually all

human beings (e.g. through the bootstrap for

sample surveys).

Efron married the power of Monte Carlo ap-

proximation with an exceptionally broad view

of the sort problem that bootstrap methods

might solve. For example, he saw that the

notion of a ‘parameter’ (that functional of

a distribution function, which we considered

earlier) might be interpreted very widely, and

taken to be (say) the coverage level of a con-

fidence interval.



Main principle

Many statistical problems can be represented
as follows: given a functional ft from a class
{ft: t ∈ T }, we wish to determine the value of
a parameter t that solves an equation,

E{ft(F0, F1) | F0} = 0 , (1)

where F0 denotes the population distribution
function and F1 is the distribution function ‘of
the sample’ — that is, the empirical distribu-
tion function F̂ .

Example 1: bias correction

Here, θ = θ(F0) is the true value of a param-
eter, and θ̂ = θ(F1) is its estimator; t is an
additive adjustment to θ̂; θ̂ + t is the bias-
corrected estimator; and

ft(F0, F1) = θ(F1)− θ(F0) + t

denotes the bias-corrected version of θ̂, minus
the true value of the parameter. Ideally, we
would like to choose t so as to reduce bias to
zero, i.e. so as to solve E(θ̂−θ+t) = 0, which
is equivalent to (1).



Example 2: confidence interval

Here we take

ft(F0, F1) = I {θ(F1)− t ≤ θ(F0) ≤ θ(F1) + t}
− (1− α) ,

denoting the indicator of the event that the

true parameter value θ(F0) lies in the interval,

[θ(F1)− t, θ(F1) + t] = [θ̂ − t, θ̂ + t] ,

minus the nominal coverage, 1 − α, of the

interval. (Thus, the chosen interval is two-

sided and symmetric.) Asking that

E{ft(F0, F1) | F0} = 0

is equivalent to insisting that t be chosen so

that the interval has zero coverage error.



Bootstrapping equation (1)

We call equation (1), i.e.

E{ft(F0, F1) | F0} = 0 , (1)

the population equation. The sample equa-

tion is obtained by replacing the pair (F0, F1)

by (F1, F2), where F2 = F̂ ∗ is the bootstrap

form of the empirical distribution function F1:

E{ft(F1, F2) | F1} = 0 . (2)

Recall that

F1(x) =
1

n

n∑
i=1

I(Xi ≤ x) ;

analogously, we define

F2(x) =
1

n

n∑
i=1

I(X∗
i ≤ x) ,

where the bootstrap sample X ∗ = {X∗
1, . . . , X∗

n}
is obtained by sampling randomly, with re-

placement, from the original sample X =

{X1, . . . , Xn}.



Sampling randomly, with replacement

‘Sampling randomly, with replacement from

X ’ means that

P
(
X∗

i = Xj | X
)
=

1

n

for i, j = 1, . . . , n.

This is standard ‘random, uniform bootstrap

sampling.’ More generally, we might tilt the

empirical distribution F1 = F̂ by sampling with

weight pj attached to data value Xj:

P
(
X∗

i = Xj | X
)
= pj

for i, j = 1, . . . , n. Of course, we should insist

that the pi’s form a multinomial distribution,

i.e. satisfy pi ≥ 0 and
∑

i pi = 1.

Tilting is used in many contemporary gener-

alisations of the bootstrap, such as empirical

likelihood and the weighted, or biased boot-

strap.



Example 1, revisited: bias correction

Recall that the population and sample equa-

tions are here given by

E{θ(F1)− θ(F0) + t | F0} = 0 ,

E{θ(F2)− θ(F1) + t | F1} = 0 ,

respectively. Clearly the solution of the latter

is

t = t̂ = θ(F1)− E{θ(F2) | F1}
= θ̂ − E(θ̂∗ | F̂ ) .

This is the bootstrap estimate of the additive

correction that should be made to θ̂ in order

to reduce bias. The bootstrap bias-corrected

estimator is thus

θ̂bc = θ̂ + t̂ = 2 θ̂ − E(θ̂∗ | F̂ ) ,

where the subscript bc denotes ‘bias corrected.’



Example 2, revisited: confidence interval

In the confidence-interval example, the sam-

ple equation has the form

P{θ(F2)− t ≤ θ(F1) ≤ θ(F2) + t | F1}
−(1− α) = 0 ,

or equivalently,

P (θ̂∗ − t ≤ θ̂ ≤ θ̂∗ + t | X ) = 1− α .

Since θ̂, conditional on X , has a discrete dis-

tribution then it is seldom possible to solve

exactly for t. However, any error is usually

small, since the size of even the largest atom

decreases exponentially fast with increasing n.

We could remove this difficulty by smooth-

ing the distribution F1, and this is sometimes

done in practice.



Example 2, revisited (continued; 1)

To obtain an approximate solution, t = t̂, of

the equation

P (θ̂∗ − t ≤ θ̂ ≤ θ̂∗ + t | X ) = 1− α .

we use Monte Carlo methods. That is, con-

ditional on X we calculate independent values

θ̂∗1, . . . , θ̂∗B of θ̂∗, and take t̂(B) to be an ap-

proximate solution of the equation

1

B

B∑
b=1

I(θ̂∗b − t ≤ θ̂ ≤ θ̂∗b + t) = 1− α .

For example, it might denote the largest t

such that

1

B

B∑
b=1

I(θ̂∗b − t ≤ θ̂ ≤ θ̂∗b + t) ≤ 1− α .



Example 2, revisited (continued; 2)

The resulting confidence interval is a standard

‘percentile method’ bootstrap confidence in-

terval for θ. Under mild regularity conditions

its limiting coverage, as n →∞, is 1− α, and

its coverage error equals O(n−1). That is,

P (θ̂ − t̂ ≤ θ ≤ θ̂ + t̂) = 1− α + O(n−1) . (3)

Interestingly, this result is hardly affected by

the number of bootstrap simulations we do.

Usually one derives (3) under the assumption

that B = ∞, but it can be shown that (3)

remains true uniformly in B0 ≤ B ≤ ∞, for

finite B. However, we need to make a minor

change to the way we construct the interval,

which we shall discuss shortly in the case of

two-sided intervals.



Example 2, revisited (continued; 3)

As we shall see later, the good coverage ac-

curacy of two-sided intervals is the result of

fortuitous cancellation of terms in approxima-

tions to coverage error (Edgeworth expan-

sions). No such cancellation occurs in the

case of one-sided versions of percentile con-

fidence intervals, for which coverage error is

generally only O(n−1/2) as n →∞.

A one-sided percentile confidence interval for

θ is given by (−∞, θ̂ + t̂], where t = t̂ is the

(approximate) solution of the equation

P (θ̂ ≤ θ̂∗ + t | X ) = 1− α .



Example 2, revisited (continued; 4)

(Here we explain how to construct a one-sided

interval so that its coverage performance is

not adversely affected by too-small choice of

B.) Observing that B simulated values of θ̂

divide the real line into B + 1 parts, choose

B, and an integer ν, such that

ν

B + 1
= 1− α . (4)

(For example, in the case α = 0.05 we might

take B = ν = 19.) Let θ̂(ν) denote the νth

largest of the B simulated values of θ̂∗, and let

the confidence interval be (−∞, θ̂(ν)]. Then,

P
{
θ ∈ (−∞, θ̂(ν)]

}
= α + O(n−1/2)

uniformly in pairs (B, ν) such that (4) holds,

as n →∞.



Combinatorial calculations connected with

the bootstrap

• If the sample X is of size n, and if all its

elements are distinct, then the number, N(n)

say, of different possible resamples X that can

be drawn equals the number of ways of plac-

ing n indistinguishable objects into n num-

bered boxes (box i representing Xi), the boxes

being allowed to contain any number of ob-

jects. (The number, mi say, of objects in box

i represents the number of times Xi appears

in the sample.)

• In fact, N(n) =
(
2n−1

n

)
. (Exercise: prove

this!) Therefore, the bootstrap distribution,

for a sample of n distinguishable data, has just(
2n−1

n

)
atoms.



Combinatorial calculations (continued; 1)

• The value of N(n) increases exponentially

fast with n; indeed, N(n) ∼ (nπ)−1/222n−1.

n N(n)

2 3

3 10

4 35

5 126

6 462

7 1716

8 6435

9 24310

10 92378

15 7.8× 107

20 6.9× 1010



Combinatorial calculations (continued; 2)

• Not all the N(n) atoms of the bootstrap

distribution have equal mass. The most likely

atom is that which arises when X ∗ = X , i.e.

when the resample is identical to the full sam-

ple. Its probability: pn = n!/nn ∼ (2nπ)1/2e−n.

n pn

2 0.5

3 0.2222

4 0.0940

5 0.0384

6 1.5× 10−2

7 6.1× 10−3

8 2.4× 10−3

9 9.4× 10−4

10 3.6× 10−4

15 3.0× 10−6

20 2.3× 10−8



METHODOLOGY AND THEORY

FOR THE BOOTSTRAP

(Second two lectures)

Main principle (revision)

We argued that many statistical problems can

be represented as follows: given a functional

ft from a class {ft: t ∈ T }, we wish to deter-

mine the value of a parameter t that solves

the population equation,

E{ft(F0, F1) | F0} = 0 , (1)

where F0 denotes the population distribution

function, and

F1(x) = F̂ (x) =
1

n

n∑
i=1

I(Xi ≤ x)

is the empirical distribution function, com-

puted from the sample X = {X1, . . . , Xn}.

Let t0 = T (F0) denote the solution of (1).



Revision (continued, 1)

We introduced a bootstrap approach to esti-

mating t0: solve instead the sample equation,

E{ft(F1, F2) | F1} = 0 , (2)

where

F2(x) = F̂ ∗(x) =
1

n

n∑
i=1

I(X∗
i ≤ x)

is the bootstrap form of the empirical distri-

bution function. (The bootstrap sample is

X ∗ = {X∗
1, . . . , X∗

n}, drawn by sampling ran-

domly, with replacement, from X ).)

The solution, t̂ = T (F1) say, of (2) is an es-

timator of the solution t0 = T (F0) of (1). It

does not itself solve (1), but (1) is usually

approximately correct if T (F0) is replaced by

T (F1):

E{fT (F1)
(F0, F1) | F0} ≈ 0 .



How accurate is this approximation, and

what does it mean?

We considered two examples, one of bias cor-

rection and the other of confidence intervals.

In the bias-correction example,

ft(F0, F1) = θ(F1)− θ(F0) + t = θ̂ − θ0 + t ,

and here it is generally true that the error in

the approximation is of order n−2:

E{fT (F1)
(F0, F1) | F0} = O(n−2) .

Equivalently, the amount of uncorrected bias

is of order n−2: writing t̂ for T (F1),

E(θ̂ − θ0 + t̂) = O(n−2) .

That is an improvement on the amount of

bias without any attempt at correction; this

is usually only O(n−1):

E(θ̂ − θ0) = O(n−1) .



How accurate is the approximation? (con-

tinued, 1)

The second example was of two-sided confi-

dence intervals, and there,

ft(F0, F1) = I {θ(F1)− t ≤ θ(F0) ≤ θ(F1) + t}
− (1− α) ,

denoting the indicator of the event that the

true parameter value θ(F0) lies in the interval

[θ(F1)− t, θ(F1) + t] = [θ̂ − t, θ̂ + t] ,

minus the nominal coverage, 1 − α, of the

interval.

Solving the sample equation, we obtain an es-

timator, t̂, of the solution of the population

equation. The resulting confidence interval,

[θ̂ − t̂, θ̂ + t̂] ,

is generally called a percentile bootstrap con-

fidence interval for θ, with nominal coverage

1− α.



How accurate is the approximation? (con-

tinued, 2)

In this setting the error in the approximation

to the population equation, offered by the

sample equation, is usually of order n−1. This

time it means that the amount of uncorrected

coverage error is of order n−1:

P{θ(F1)− t̂ ≤ θ(F0)≤ θ(F1) + t̂}
= 1− α + O(n−1) .

That is,

P{θ̂ − t̂ ≤ θ0 ≤ θ̂ + t̂} = 1− α + O(n−1) .

Put another way, “the coverage error of the

nominal 1−α level, two-sided percentile boot-

strap confidence interval [θ̂ − t̂, θ̂ + t̂], equals

O(n−1).”



How accurate is the approximation? (con-

tinued, 3)

However, coverage error in the one-sided case

is usually only O(n−1/2). That is, if we de-

fine t = T (F1) = t̂ to solve the population

equation with

ft(F0, F1) = I {θ(F0) ≤ θ(F1) + t} − (1− α) ,

then

P{θ0 ≤ θ̂ + t̂} = 1− α + O(n−1/2) .

That is, “the coverage error of the nominal

1−α level, one-sided percentile bootstrap con-

fidence interval (−∞, θ̂ + t̂] equals O(n−1/2).”



Bootstrap iteration

Here we suggest iterating the “bootstrap prin-

ciple” so as to produce a more accurate solu-

tion of the population equation.

Our solution currently has the property

E{fT (F1)
(F0, F1) | F0} ≈ 0 . (3)

Let us replace T (F1) by a perturbation, which

might be additive, U(F1, t) = T (F1) + t, or

multiplicative, U(F1, t) = (1 + t)T (F1). Sub-

stitute this for T (F1) in (1), and attempt to

solve the resulting equation for t:

E{fU(F1,t)(F0, F1) | F0} = 0 .

This is no more than a re-writing of the origi-

nal population equation, with a new definition

of f . Our way of solving it will be the same

as before — write down its sample version,

E{fU(F2,t)(F1, F2) | F1} = 0 , (4)

and solve that.



Repeating bootstrap iteration

Of course, we can repeat this procedure as
often as we wish.

Recall, however, that in most instances the
sample equation can only be solved by Monte
Carlo simulation: calculating t̂ involves draw-
ing B resamples X ∗ = {X∗

1, . . . , X∗
n} from the

original sample, X = {X1, . . . , Xn}, by sam-
pling randomly, with replacement. When solv-
ing the new sample equation,

E{fU(F2,t)(F1, F2) | F1} = 0 , (4)

we have to sample from the resample. That
is, in order to compute the solution of (4),
from each given X ∗ in the original bootstrap
resampling step we must draw data X∗∗

1 , . . . ,

X∗∗
n by sampling randomly, with replacement;

and combine these into a bootstrap re-re-
sample X ∗∗ = {X∗∗

1 , . . . , X∗∗
n }.

The computational expense of this procedure
usually prevents more than one iteration.



Implementing the double bootstrap

Let us work through the example of one-sided

bootstrap confidence intervals. Here, we ide-

ally want t such that

P (θ ≤ θ̂ + t) = 1− α ,

where 1−α is the nominal coverage level of the

confidence interval. Our one-sided confidence

interval for θ would then be (−∞, θ̂ + t).

One application of the bootstrap involves cre-

ating resamples X ∗1 , . . . ,X ∗n; computing the ver-

sion, θ̂∗b , of θ̂ from X ∗b ; and choosing t = t̂ such

that

1

B

B∑
b=1

I(θ̂ ≤ θ̂∗b + t) = 1− α ,

where we solve the equation as nearly as pos-

sible. (We do not actually use this t̂ for the it-

erated, or double, bootstrap step, but it gives

us the standard bootstrap percentile confi-

dence interval (−∞, θ̂ + t̂).)



Implementing the double bootstrap (con-

tinued, 1)

For the next application of the bootstrap, from

each resample X ∗b draw C re-resamples, X ∗∗b1 ,

. . . ,X ∗∗bC, the cth (for 1 ≤ c ≤ C) given by

X ∗∗bc = {X∗∗
bc1, . . . , X∗∗

bcn} ;

X ∗∗bc is obtained by sampling randomly, with

replacement, from X ∗b . Compute the version,

θ̂∗∗bc , of θ̂ from X ∗∗bc ; and choose t = t̂∗b such

that

1

C

C∑
c=1

I(θ̂∗b ≤ θ̂∗∗bc + t) = 1− α ,

as nearly as possible.



Implementing the double bootstrap (con-

tinued, 2)

Interpret t̂∗b as the version of t̂ we would em-

ploy if the sample were X ∗b , rather than X .

We “calibrate” or “correct” it, using the per-

turbation argument introduced earlier.

Let us take the perturbation to be additive,

for definiteness. Then we find t = t̃ such that

1

B

B∑
b=1

I(θ̂ ≤ θ̂∗b + t̂∗b + t) = 1− α ,

as nearly as possible.

Our final double-bootstrap, or bootstrap-cali-

brated, one-sided percentile confidence inter-

val is

(−∞, θ̂ + t̂ + t̃] .



How successful is bootstrap iteration?

Each application of bootstrap iteration usu-
ally improves the order of accuracy by an or-
der of magnitude.

For example, in the case of bias correction
each application generally reduces the order
of bias by a factor of n−1.

In the case of one-sided confidence intervals,
each application usually reduces the order of
coverage error by the factor n−1/2. Recall
that the standard percentile bootstrap con-
fidence interval has coverage error n−1/2.
Therefore, applying one iteration of the boot-
strap (i.e. the double bootstrap) reduces the
order of error to n−1/2 × n−1/2 = n−1.

Shortly we shall see that it is possible to con-
struct uncalibrated bootstrap one-sided confi-
dence intervals that have coverage error n−1.
Application of the double bootstrap to them
reduces the order of their coverage error to
n−1/2 × n−1 = n−3/2.



How successful is bootstrap iteration?

(continued)

In the case of two-sided confidence intervals,

each application usually reduces the order of

coverage error by the factor n−1. The stan-

dard percentile bootstrap confidence interval

has coverage error n−1, and after applying the

double bootstrap this reduces to n−2.

A subsequent iteration, if computationally fea-

sible, would reduce coverage error to n−3.



Note on choice of B and C

Recall that implementation of the double

bootstrap is via two stages of bootstrap simu-

lation, involving B and C simulations respec-

tively. The total cost of implementation is

proportional to BC. How should computa-

tional labour be distributed between the two

stage?

A partial answer is that C should be of the

same order as
√

B. As this implies, a high

degree of accuracy in the second stage is less

important than for the first stage.



Iterated bootstrap for bias correction

By its nature, the case of bias correction is rel-

atively amenable to analytic treatment in gen-

eral cases. We have already noted (in an ear-

lier lecture) that the additive bootstrap bias

adjustment, t̂ = T (F1), is given by

T (F1) = θ(F1)− E{θ(F2) | F1} .

Therefore, the bias-corrected form of the es-

timator θ(F1) is

θ̂1 = θ(F1)+ T (F1) = 2 θ(F1)−E{θ(F2) | F1} .



Iterated bootstrap for bias correction (con-

tinued, 1)

More generally, it may be proved by induction

that, after j iterations of the bootstrap bias

correction argument, we obtain the estimator

θ̂j given by

θ̂j =
j+1∑
i=1

(j + 1

i

)
(−1)i+1 E{θ(Fi) | F1} . (1)

Here Fi, for i ≥ 1, denotes the empirical distri-

bution function of a sample obtained by sam-

pling randomly from the distribution Fi−1.

Exercise: Derive (1).

Formula (1) makes explicitly clear the fact

that, generally speaking, carrying out j boot-

strap iterations involves computation of F1,

. . . , Fj+1.



Iterated bootstrap for bias correction (con-

tinued, 2)

The bias of θ̂j is generally of order n−(j+1);

the original, non-iterated bootstrap estimator

θ̂0 = θ̂ = θ(F1) generally has bias of order

n−1.

Of course, there is a penalty to be paid for

bias reduction: variance usually increases.

However, asymptotic variance typically does

not, since successive bias corrections are rela-

tively small in size. Nevertheless, small-sample

effects, on variance, of bias correction by boot-

strap or other means are generally observable.



Iterated bootstrap for bias correction (con-

tinued, 3)

It is of interest to know the limit, as j →∞, of

the estimator defined at (1). Provided θ(F )

is an analytic function the limit can gener-

ally be worked out, and shown to be an unbi-

ased estimator of θ with the same asymptotic

variance as the original estimator θ̂ (although

larger variance in small samples).

Sometimes, but not always, the j →∞ limit is

identical to the estimator obtained by a single

application of the jackknife. Two elementary

examples show this side of bootstrap bias cor-

rection.



Iterated bootstrap for bias correction (con-
tinued, 4)

Variance estimation

The conventional biased estimator of popula-
tion variance, σ2, is

σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2 ,

whereas its unbiased form uses divisor n− 1:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 ,

Noting that

σ2(F0) =
∫

x2 dF0(x)−
{∫

x dF0(x)
}2

,

we may write σ̂2 in the usual bootstrap form,
as σ̂2 = σ2(F̂ ). Therefore, σ̂2 is the standard
bootstrap variance estimator.

Iterating σ̂1 = σ̂2 through values σ̂2
j , we find

that as j →∞, σ̂2
j → S2. We can achieve the

same limit in one step by using a multiplicative
bias correction, or by the jackknife.



Percentile-t confidence intervals

The only bootstrap confidence intervals we

have treated so far have been of the percentile

type, where the interval endpoint is, in effect,

a percentile of the bootstrap distribution.

In pre-bootstrap statistics, however, confid-

ence regions were usually constructed very dif-

ferently, using variance estimates and “Stu-

dentising,” or pivoting, prior to using a central

limit theorem to compute confidence limits.

These ideas have a role to play in the boot-

strap case, too.



Percentile-t confidence intervals (contin-

ued, 1)

Let θ̂ be an estimator of a parameter θ, and

let n−1σ̂2 denote an estimator of its variance.

In regular cases,

T = n1/2(θ̂ − θ)/σ̂

is asymptotically Normally distributed. In pre-

bootstrap days one would have used this prop-

erty to compute the approximate α-level quan-

tile, tα say, of the distribution of T , and used

it to give a confidence interval for θ.

Specifically,

P (θ ≤ θ̂ − n−1/2tα)

= 1− P{n1/2(θ̂ − θ) ≤ tα}
≈ 1− P{N(0,1) ≤ tα} = 1− α ,

where the approximation derives from the cen-

tral limit theorem. Hence, (−∞, θ̂ − n−1/2tα]

is an approximate (1− α)-level confidence in-

terval for θ.



Percentile-t confidence intervals (contin-

ued, 2)

Now we can improve on this approach by using

the bootstrap, rather than the central limit

theorem, to approximate the distribution of

T .

Specifically, let θ̂∗ and σ̂∗ denote the boot-

strap versions of θ̂ and σ̂ (i.e. the versions of

θ̂ and σ̂ computed from a resample X ∗, rather

than the sample X ). Put

T ∗ = n1/2(θ̂∗ − θ̂)/σ̂∗ ,

and let t̂α denote the α-level quantile of the

bootstrap distribution of T ∗:

P (T ∗ ≤ t̂α | X ) = α .



Percentile-t confidence intervals (contin-
ued, 3)

Recall that the Normal-approximation confi-
dence interval for θ was

(−∞, θ̂ − n−1/2tα] .

If we replace tα by its more accurate bootstrap
form, θ̂α, we obtain the percentile-t bootstrap
confidence interval for θ:

(−∞, θ̂ − n−1/2t̂α] .

The coverage error of the former confidence
is usually only O(n−1/2):

P (θ ≤ θ̂ − n−1/2tα) = α + O(n−1/2) .

Likewise, the percentile-bootstrap confidence
interval also has coverage error only of this
size, unless we use the double bootstrap to
calibrate it.

However, the percentile-t bootstrap confid-
ence interval has coverage error O(n−1):

P (θ ≤ θ̂ − n−1/2t̂α) = α + O(n−1) .



METHODOLOGY AND THEORY

FOR THE BOOTSTRAP

(Third set of two lectures)

Main topic of these lectures: Edgeworth

expansions

Moments and cumulants

Let X be a random variable. Write χ(t) =
E(eitX) for the associated characteristic func-
tion, and let κj denote the jth cumulant of X,
i.e. the coefficient of (it)j/j! in an expansion
of logχ(t):

χ(t) = exp
{
κ1 it + 1

2 κ2 (it)2 + . . .

+ 1
j! κj (it)j + . . .

}
.

The jth moment, µj = E(Xj), of X is the
coefficient of (it)j/j! in an expansion of χ(t):

χ(t) = 1 + µ1 it + 1
2 µ2 (it)2 + . . .

+ 1
j! µj (it)j + . . .



Expressing cumulants in terms of mo-

ments, and vice versa

Comparing these expansions we deduce that

κ1 = µ1 , κ2 = µ2 − µ2
1 = var(X) ,

κ3 = µ3 − 3µ2 µ1 + 2µ3
1 = E(X − EX)3 ,

κ4 = µ4 − 4µ3 µ1 − 3µ2
2 + 12µ2 µ2

1 − 6µ4
1

= E(X − EX)4 − 3 (varX)2 .

In particular, κj is a homogeneous polynomial

in moments, of degree j. Likewise, µj is a

homogeneous polynomial in cumulants, of de-

gree j.

Third and fourth cumulants, κ3 and κ4, are

referred to as skewness and kurtosis, respec-

tively.

Exercise: Express µj in terms of κ1, . . . , κj for

j = 1, . . . ,4. Prove that, for j ≥ 2, κj is in-

variant under translations of X.



Sums of independent random variables

Let us assume µ1 = 0 and µ2 = 1. This

is equivalent to working with the normalised

random variable Y = (X − µ1)/κ
1/2
2 , instead

of Y , although we shall continue to use the

notation X rather than Y .

Let X1, X2, . . . be independent and identically

distributed as X, and put

Sn = n−1/2
n∑

j=1

Xj .

The characteristic function of Sn is

χn(t) = E {exp(itSn)}
= E{exp(itX1/n1/2) . . . exp(itXn/n1/2)}
= E{exp(itX1/n1/2)} . . .

× E{exp(itXn/n1/2)}
= χ(t/n1/2) . . . χ(t/n1/2) = χ(t/n1/2)n .



Sums of independent random variables
(continued)

Therefore, since κ1 = 0 and κ2 = 1,

χn(t) = χ(t/n1/2)n

=
[
exp

{
κ1 (it/n1/2) + . . .

+ 1
j! κj (it/n1/2)j + . . .

}]n
= exp

{
−1

2 t2 + n−1/2 1
6 κ3 (it)3 + . . .

+ n−(j−2)/2 1
j! κj (it)j + . . .

}
.

Now expand the exponent:

χn(t) = e−t2/2
{
1 + n−1/2 r1(it) + . . .

+ n−j/2 rj(it) + . . .
}

,

where rj denotes a polynomial with real co-
efficients, of degree 3j, having the same par-
ity as its index, its coefficients depending on
κ3, . . . , κj+2 but not on n. In particular,

r1(u) = 1
6 κ3 u3 , r2(u) = 1

24 κ4 u4 + 1
72 κ2

3 u6 .

Exercise: Prove this result, and the parity
property of rj.



Expansion of distribution function

Rewrite the expansion as:

χn(t) = e−t2/2 + n−1/2 r1(it) e−t2/2 + . . .

+ n−j/2 rj(it) e−t2/2 + . . . .

Note that

χn(t) =
∫ ∞

−∞
eitx dP (Sn ≤ x) ,

e−t2/2 =
∫ ∞

−∞
eitx dΦ(x) ,

where Φ denotes the standard Normal distri-

bution function. Therefore, the expansion of

χn(t) strongly suggests an “inverse” expan-

sion,

P (Sn ≤ x) = Φ(x) + n−1/2 R1(x) + . . .

+ n−j/2 Rj(x) + . . . ,

where ∫ ∞

−∞
eitx dRj(x) = rj(it) e−t2/2 .



Finding a formula for Rj

Integration by parts gives:

e−t2/2 =
∫ ∞

−∞
eitx dΦ(x)

= (−it)−1
∫ ∞

−∞
eitx dΦ(1)(x) = . . .

= (−it)−j
∫ ∞

−∞
eitx dΦ(j)(x) ,

where Φ(j)(x) = DjΦ(x) and D is the differ-

ential operator d/dx. Therefore,∫ ∞

−∞
eitx d{(−D)j Φ(x)} = (it)j e−t2/2 .

Interpreting rj(−D) as the obvious polynomial

in D, we deduce that∫ ∞

−∞
eitx d{rj(−D)Φ(x)} = rj(it) e−t2/2 .

Therefore, by the uniqueness of Fourier trans-

forms,

Rj(x) = rj(−D)Φ(x) .



Hermite polynomials

The Hermite polynomials,

He0(x) = 1 , He1(x) = x ,

He2(x) = x2 − 1 ,

He3(x) = x (x2 − 3) ,

He4(x) = x4 − 6x2 + 3 ,

He5(x) = x (x4 − 10x2 + 15) , . . .

are orthogonal with respect the standard Nor-

mal density, φ = Φ′; are normalised so that

the coefficient of the term of highest degree

is 1; and have the same parity as their index.

Note too that Hej is of precise degree j.

Most importantly, from our viewpoint,

(−D)j Φ(x) = −Hej−1(x)φ(x) .



Formula for Rj

Therefore, if

rj(u) = c1 u + . . . + c3j u3j ,

then

Rj(x) = rj(−D)Φ(x)

= −
{
c1 He0(x) + . . . + c3j He3j−1(u)

}
× φ(x) .

It follows that we may write Rj(x) = Pj(x)φ(x),

where Pj is a polynomial.

Since rj is of degree 3j and has the same

parity as its index; and Hej is of degree j and

has the same parity as its index; then Pj is of

degree 3j − 1 and has opposite parity to its

index. Its coefficients depend on moments of

X up to those of order j + 2.



Formula for Rj (continued)

Examples:

R1(x) = −1
6 κ3 (x2 − 1)φ(x) ,

R2(x) = −x
{

1
24 κ4 (x2 − 3)

+ 1
72 κ2

3 (x4 − 10x2 + 15)
}

φ(x).

Exercise: Derive these formulae. (This is

straightforward, given what we have proved

already.)



Asymptotic expansions

We have given an heuristic derivation of an

expansion of the distribution function of Sn:

P (Sn ≤ x) = Φ(x) + n−1/2 R1(x) + . . .

+ n−j/2 Rj(x) + . . . ,

where

Rj(x) = rj(−D)Φ(x) .

In order to describe its rigorous form, we must

first consider how to interpret the expansion.

The expansion seldom converges as an infinite

series. A sufficient condition, due to Cramér,

is that E(eX2/4) < ∞, which is rarely true for

distributions which are not very closely con-

nected to the Normal distribution.



Asymptotic expansions (continued, 1)

Nevertheless, the expansion does make sense

when interpreted as an asymptotic series,

where the remainder after stopping the ex-

pansion after a finite number of terms is of

smaller order then the last included term:

P (Sn ≤ x) = Φ(x) + n−1/2 R1(x) + . . .

+ n−j/2 Rj(x) + o(n−j/2) .

A sufficient regularity condition for this result

is

E(|X|j+2) < ∞ , lim sup
|t|→∞

|χ(t)| < 1 .

Rigorous derivation of the expansion under

these restrictions was first achieved by Cramér.

When these conditions hold the expansion is

valid uniformly in x.



Asymptotic expansions (continued, 2)

Since moments of order j + 2 appear among
the coefficients of the polynomial Pj, and since
Rj = Pj φ, then the condition E(|X|j+2) < ∞
is hard to weaken. It can be relaxed when j

is odd, however.

The second condition, lim sup|t|→∞ |χ(t)| < 1,
is called “Cramér’s continuity condition.” It
holds if the distribution function F of X can
be written as F = π G +(1− π)H, where G is
the distribution function of a random variable
with an absolutely continuous distribution, H

is another distribution function, and 0 < π ≤ 1.

Exercise: Prove that if the distribution F of
X is absolutely continuous, i.e. for a density
function f ,

F (x) =
∫ x

−∞
f(u) du ,

then Cramér’s continuity condition holds in
the strong form, lim sup|t|→∞ |χ(t)| = 0.
Hence, verify the claim made above.



Asymptotic expansions (continued, 3)

Therefore, Cramér’s continuity condition is an

assumption about the smoothness of the dis-

tribution of X. It fails if the distribution is

of lattice type, i.e. if all points x in the sup-

port of the distribution of X have the form

x = jh + a, where h > 0 and −∞ < a < ∞ are

fixed and j is an integer. (If h is as large as

possible such that these constraints hold, it is

called the “span” of the distribution of X.)

When X has a lattice distribution, with suf-

ficiently many finite moments, an Edgeworth

expansion of the distribution of Sn still holds

in the form

P (Sn ≤ x) = Φ(x) + n−1/2 R1(x) + . . .

+ n−j/2 Rj(x) + o(n−j/2) ,

but the functions Rj have a more complex

form. In particular, they are no longer contin-

uous.



Asymptotic expansions (continued, 4)

The “gap” between cases where Cramér’s con-

tinuity condition holds, and the case where X

has a lattice distribution, is well understood

only for j = 1. There was shown by Esseen

that the expansion

P (Sn ≤ x) = Φ(x) + n−1/2 R1(x) + o(n−1/2)

is valid under the sole conditions that the dis-

tribution of X is nonlattice and E(|X|3) < ∞.



Asymptotic expansions of densities

Cramér’s continuity condition holds in many

cases where the distribution of Sn does not

have a well-defined density. Therefore, it is

unrealistic to expect that an expansion of the

distribution of Sn will automatically imply an

expansion of its density. However, such an ex-

pansion is valid provided Sn has a well-defined

density for some n.

There, writing fn(x) = (d/dx)P (Sn ≤ x), we

have:

fn(x) = φ(x) + n−1/2 R′
1(x) + . . .

+ n−j/2 R′
j(x) + o(n−j/2) ,

provided E(|X|j+2) < ∞. The expansion holds

uniformly in x.



Asymptotic expansions of densities (con-

tinued)

A version of this “local” expansion, as it is

called, also holds for lattice distributions, in

the form:

P (Sn = x) = φ(x) + n−1/2 R′
1(x) + . . .

+ n−j/2 R′
j(x) + o(n−j/2) ,

uniformly in points x in the support of the

distribution.

Curiously, the functions Rn in this expansion

are the same ones that appear in the usual,

non-lattice expansion of P (Sn ≤ x).

Exercise: Derive the version of this local lat-

tice expansion in the case where the unstan-

dardised form of X has the Binomial Bi(n, p)

distribution. (Treating the case j = 1 is ade-

quate; larger j is similar, but more algebraically

complex.) [Hint: Use an expansion related to

Stirling’s formula to approximate
(
n
r

)
.]



Expansions in more general cases

The year 2003 was the 75th anniversary of

the publication of Cramér’s paper, “On the

composition of elementary errors,” in which

he gave the first general, rigorous expansion

of the distribution of a sum of independent

and identically distributed random variables.

The cases of other statistics have been dis-

cussed for many years, but it was not until

relatively recently, in a pathbreaking paper in

1978 by Bhattacharya and Ghosh, that rigour

was provided in a wide range of cases.



Expansions in more general cases (contin-

ued, 1)

Bhattacharya and Ghosh dealt with statistics

which can be represented as a smooth func-

tion, A, of a vector mean, X̄; that is, with

A(X̄) where

A(x) = {g(x)− g(µ)}/h(µ) or

A(x) = {g(x)− g(µ)}/h(x) ,

g and h are smooth functions from IRd to IR,

h(µ) > 0, and X̄ = n−1 ∑
i Xi is the mean

of the first n of independent and identically

distributed random d-vectors X1, X2, . . . with

mean µ. (We make these assumptions below.)

Let t = (t(1), . . . , t(d))T denote a d-vector, and

let χ(t) = E{exp(itTX)} be the characteristic

function of the d-vector X, distributed as Xj.

The two different versions of A(x) above allow

us to treat “non-Studentised” and “Studen-

tised” cases, respectively.



Expansions in more general cases (contin-

ued, 2)

Let σ2 > 0 denote the asymptotic variance of

Un = n1/2A(X̄), and put Sn = Un/σ.

Theorem. (Essentially, Bhattacharya &

Ghosh, 1978.) Assume the function A has j+

2 continuous derivatives in a neighbourhood

of µ, and that

E(‖X‖j+2) < ∞ , lim sup
‖t‖→∞

|χ(t)| < 1 .

Then,

P (Sn ≤ x) = Φ(x) + n−1/2 R1(x) + . . .

+ n−j/2 Rj(x) + o(n−j/2) ,

uniformly in x, where Rk(x) = Pk(x)φ(x) and

Pk is a polynomial of degree 3k − 1, with op-

posite parity to its index, and with coefficients

depending on moments of X up to order k+2

and on derivatives of A (evaluated at µ) up

to the (k + 2)nd.



Expansions in more general cases (contin-

ued, 3)

Note: x here is a scalar, not a d-vector, and

φ is the univariate standard Normal density.

For a proof, see:

Bhattacharya, R.N. & Ghosh, J.K. (1978).

On the validity of the formal Edgeworth ex-

pansion. Ann. Statist. 6, 434–451.

The polynomials Rj are identified by develop-

ing a Taylor approximation to Sn, of the form

Sn = Qn(X̄ − µ) + Op(n
−(j+1)/2) ,

where Qn is a polynomial of degree j+1. Here

we use the fact that:

A(X̄) = A(µ + X̄ − µ)

= A(µ) + (X̄ − µ)TȦ(µ)

+ 1
2 (X̄ − µ)TÄ(µ)(X̄ − µ) + . . .



Expansions in more general cases (contin-

ued, 4)

Since Qn is a polynomial and X̄ is a sample

mean then the cumulants of the distribution

of Qn(X̄−µ) can be written down fairly easily,

and hence a formal expansion of the distribu-

tion of Qn(X̄ − µ) can be developed, up to j

terms:

P{Qn(X̄ − µ) ≤ x}
= Φ(x) + n−1/2 R1(x) + . . .

+ n−j/2 Rj(x) + o(n−j/2) ,

The functions Rj appearing here are exactly

those appearing in the Taylor expansion of the

distribution of Sn.



Studentised and non-Studentised cases

Expansions in Studentised and non-Student-

ised cases have different polynomials. For ex-

ample, in the case of the Studentised mean,

P1(x) = 1
6 κ3 (2x2 + 1) ,

P2(x) = x
{

1
12 κ4 (x2 − 3)

− 1
18 κ2

3 (x4 + 2x2 − 3)

−1
4 (x2 + 3)

}
.

We know already that in the non-Studentised

case,

P1(x) = −1
6 κ3 (x2 − 1) ,

P2(x) = −x
{

1
24 κ4 (x2 − 3)

+ 1
72 κ2

3 (x4 − 10x2 + 15)
}

.



Cornish-Fisher expansions

We have shown how to develop Edgeworth

expansions of the distribution of a statistic

Sn:

P (Sn ≤ x) = Φ(x) + n−1/2 R1(x) + . . .

+ n−j/2 Rj(x) + o(n−j/2) .

This is an expansion of a probability for a

given value of a quantile, x. Defining ξα to

be the solution of

P (Sn ≤ ξα) = α ,

for a given, fixed value of α ∈ (0,1), we may

“invert” the expansion to express ξα as a se-

ries expansion:

ξα = zα + n−1/2 P cf
1 (zα) + . . .

+ n−j/2 P cf
j (zα) + o(n−j/2) ,

where zα = Φ−1(α) denotes the α-level quan-

tile of the standard Normal distribution and

P cf
1 , P cf

2 etc are polynomials.



Cornish-Fisher expansions (continued)

Noting that Rj = Pj Φ for polynomials Pj, it

may be proved that P cf
1 = −P1,

P cf
2 (x) = P1(x)P ′

1(x)− 1
2 x P1(x)

2 − P2(x) ,

etc.

Exercise: Prove these formulae.



METHODOLOGY AND THEORY

FOR THE BOOTSTRAP

(Fourth set of two lectures)

Main topic of these lectures: Theoretical

properties of bootstrap confidence inter-

vals

Studentised and non-Studentised estima-

tors

Let θ̂ = θ(F̂ ) denote the bootstrap estima-

tor of a statistic θ = θ(F ), computed from a

dataset X = {X1, . . . , Xn}. (Here, F denotes

the distribution function of the data Xi.)

Write σ2 = σ2(F ) for the asymptotic variance

of

S = n1/2 (θ̂ − θ) ,

which we assume has a limiting Normal

N(0, σ2) distribution.



Studentised and non-Studentised estima-

tors (continued)

Let σ̂2 = σ2(F̂ ) denote the bootstrap estima-

tor of σ2. The “Studentised” form of S is

T = S/σ̂ = n1/2 (θ̂ − θ)/σ̂ ,

which has a limiting Normal N(0,1) distribu-

tion. Therefore,

P (S ≤ σx) = Φ(x) + o(1) ,

P (T ≤ x) = Φ(x) + o(1) .

We say that T is (asymptotically) pivotal, be-

cause its limiting distribution does not depend

on unknowns.



Edgeworth expansions of distributions of

S and T

We know from previous lectures that, in a

wide range of settings studied by Bhattacharya

and Ghosh, the distributions of S and T admit

Edgeworth expansions:

P (S ≤ σx) = Φ(x) + n−1/2 P1(x)φ(x)

+ n−1 P2(x)φ(x) + . . . ,

P (T ≤ x) = Φ(x) + n−1/2 Q1(x)φ(x)

+ n−1 Q2(x)φ(x) + . . . ,

where Pj and Qj are polynomials of degree

3j − 1, of opposite parity to their indices.



Bootstrap Edgeworth expansions

Let X ∗ = {X∗
1, . . . , X∗

n} denote a resample
drawn by sampling randomly, with replace-
ment, from X ; and let θ̂∗ and σ̂∗ be the same
functions of the bootstrap data X ∗ as θ̂ and
σ̂ were of the real data X . Put

S∗ = n1/2 (θ̂∗ − θ̂) ,

T ∗ = n1/2 (θ̂∗ − θ̂)/σ̂∗ ,

denoting the bootstrap versions of S and T .
The bootstrap distributions of these quanti-
ties are their distributions conditional on X ,
and they admit analogous Edgeworth expan-
sions:

P (S∗ ≤ σ̂x | X ) = Φ(x) + n−1/2 P̂1(x)φ(x)

+ n−1 P̂2(x)φ(x) + . . . ,

P (T ∗ ≤ x | X ) = Φ(x) + n−1/2 Q̂1(x)φ(x)

+ n−1 Q̂2(x)φ(x) + . . . .

In these formulae, P̂j and Q̂j are the versions
of Pj and Qj in which unknown quantities are
replaced by their bootstrap estimators.



Bootstrap Edgeworth expansions (contin-
ued, 1)

For example, recall that when θ and σ2 denote
the population mean and variance,

P1(x) = −1
6 κ3 (x2 − 1) ,

P2(x) = −x
{

1
24 κ4 (x2 − 3)

+ 1
72 κ2

3 (x4 − 10x2 + 15)
}

,

Q1(x) = 1
6 κ3 (2x2 + 1) ,

Q2(x) = x
{

1
12 κ4 (x2 − 3)

− 1
18 κ2

3 (x4 + 2x2 − 3)

−1
4 (x2 + 3)

}
.

Replace κ3 = σ−3 E(X − EX)3 and κ4 =
σ−4 E(X − EX)4 − 3 by their bootstrap esti-
mators,

κ̂3 = σ̂−3 n−1
n∑

i=1

(Xi − X̄)3 ,

κ̂4 = σ̂−4 n−1
n∑

i=1

(Xi − X̄)4 − 3 ,

to get P̂1, P̂2, Q̂1, Q̂2.



Skewness and kurtosis

Note that we call κ3 “skewness,” and κ4 “kur-
tosis.” Therefore, the adjustment of order
n−1/2 that an Edgeworth expansion applies to
the standard Normal approximation is a cor-
rection arising from skewness, i.e. from asym-
metry. If skewness was zero (i.e. if κ3 = 0),
and in particular if the sampled distribution
was symmetric, then the term of order n−1/2

would vanish, and the first nonzero term ap-
pearing in the Edgeworth expansion would be
of size n−1.

Likewise, the term of size n−1 in the expan-
sion is a second-order correction for skewness,
and a first-order correction for kurtosis, or tail
weight. (Kurtosis describes the difference be-
tween the weight of the tails of the sampled
distribution and that of the Normal distribu-
tion with the same mean and variance. If
κ4 > 0 then the tails of the sampled distri-
bution tend to be heavier, and if κ4 < 0 they
tend to be lighter.)



Skewness and kurtosis (continued)

We can make the same interpretation for Edge-

worth expansions in general cases, not just

the case of the sample mean. In general, the

term of size n−1/2 in an Edgeworth expansion

provides a first-order correction for asymme-

try of the sampled distribution. The term of

size n−1 provides a first-order correction for

tailweight (relative to that of the Normal dis-

tribution) and a second-order correction for

asymmetry.

Note particularly that, to first order, the boot-

strap correctly captures the effects of asym-

metry. In particular, since κ̂3 = κ3+Op(n−1/2)

then

Q̂1(x) = 1
6 κ̂3 (2x2 + 1)

= 1
6 κ3 (2x2 + 1) + Op(n

−1/2)

= Q1(x) + Op(n
−1/2) ,

Similarly, P̂j = Pj + Op(n−1/2) and Q̂j = Qj +

Op(n−1/2) for each j.



Accuracy of bootstrap approximations

It follows that

P (S∗ ≤ σ̂x | X ) = Φ(x) + n−1/2 P̂1(x)φ(x)

+ Op(n
−1)

= Φ(x) + n−1/2 P1(x)φ(x)

+ Op(n
−1)

= P (S ≤ σx) + Op(n
−1) ,

P (T ∗ ≤ x | X ) = Φ(x) + n−1/2 Q̂1(x)φ(x)

+ Op(n
−1) ,

= Φ(x) + n−1/2 Q1(x)φ(x)

+ Op(n
−1)

= P (T ≤ x) + Op(n
−1) .

That is, the bootstrap distributions of S∗/σ̂
and T ∗ approximate the true distributions of
S/σ and T , respectively, to orders n−1:

P (S∗ ≤ σ̂x | X ) = P (S ≤ σx) + Op(n
−1) ,

P (T ∗ ≤ x | X ) = P (T ≤ x) + Op(n
−1) .

Compare this with the Normal approximation,
where accuracy is generally only O(n−1/2).

These orders of approximation are valid uni-
formly in x.



Accuracy of bootstrap approximations (con-

tinued)

These results underpin the performance of

bootstrap methods in distribution approxima-

tion, and show its advantages over conven-

tional Normal approximations.

Note, however, that the bootstrap distribu-

tion of S∗/σ̂ approximates the true distribu-

tions of S/σ, not the true distribution of S/σ̂ =

T . Therefore, in order to effectively use ap-

proximations based on S∗ we usually have to

know the value of σ; but generally we do not.

Therefore, we do not necessarily get such good

performance when using the standard “per-

centile bootstrap,” which refers to methods

based on S∗, rather than the “percentile-t

bootstrap,” referring to methods based on T ∗.



Cornish-Fisher expansions

Let ξα, ηα, ξ̂α, η̂α denote α-level quantiles of the

distributions of S/σ, T and the bootstrap dis-

tributions of S∗/σ̂, T ∗, respectively:

P (S/σ ≤ ξα) = P (T ≤ ηα) = P (S∗/σ̂ ≤ ξ̂α | X )

= P (T ∗ ≤ η̂α | X ) = α .

Cornish-Fisher expansions of quantiles, in both

their conventional and bootstrap forms, are:

ξα = zα + n−1/2 P cf
1 (zα) + n−1 P cf

2 (zα) + . . . ,

ηα = zα + n−1/2 Qcf
1 (zα) + n−1 Qcf

2 (zα) + . . . ,

ξ̂α = zα + n−1/2 P̂ cf
1 (zα) + n−1 P̂ cf

2 (zα) + . . . ,

η̂α = zα + n−1/2 Q̂cf
1 (zα) + n−1 Q̂cf

2 (zα) + . . . ,

where zα = Φ−1(α) is the standard Normal

α-level critical point.



Cornish-Fisher expansions (continued, 1)

Recall that P cf
1 = −P1, Qcf

1 = −Q1,

P cf
2 (x) = P1(x)P ′

1(x)− 1
2 x P1(x)

2 − P2(x) ,

Qcf
2 (x) = Q1(x)Q′

1(x)− 1
2 x Q1(x)

2 −Q2(x) ,

etc. Of course, the bootstrap analogues of

these formulae hold too: P̂ cf
1 = −P̂1, Q̂cf

1 =

−Q̂1,

P̂ cf
2 (x) = P̂1(x) P̂ ′

1(x)− 1
2 x P̂1(x)

2 − P̂2(x) ,

Q̂cf
2 (x) = Q̂1(x) Q̂′

1(x)− 1
2 x Q̂1(x)

2 − Q̂2(x) ,

etc.



Cornish-Fisher expansions (continued, 2)

Therefore, since P̂j = Pj + Op(n−1/2) and
Q̂j = Qj + Op(n−1/2), it is generally true that

P̂ cf
j (x) = P cf

j (x) + Op(n
−1/2) ,

Q̂cf
j (x) = Qcf

j (x) + Op(n
−1/2) ,

and hence that

ξ̂α = zα + n−1/2 P̂ cf
1 (zα) + n−1 P̂ cf

2 (zα) + . . . ,

= ξα + Op(n
−1) ,

η̂α = zα + n−1/2 Q̂cf
1 (zα) + n−1 Q̂cf

2 (zα) + . . . ,

= ηα + Op(n
−1) ,

(These orders of approximation are valid uni-
formly in x on compact intervals.)

Again the order of accuracy of the bootstrap
approximation is n−1, bettering the order,
n−1/2, of the conventional Normal approxima-
tion. But the same caveat applies: in order for
approximations based on the percentile boot-
strap, i.e. involving S∗, to be effective, we
need to know σ.



Bootstrap confidence intervals

We shall work initially only with one-sided con-

fidence intervals, putting them together later

to get two-sided intervals.

The intervals

I1 = (−∞, θ̂ − n−1/2 σ ξ1−α) ,

J1 = (−∞, θ̂ − n−1/2 σ̂ η1−α)

cover θ with probability exactly α, but are in

general not computable, since we do not know

either ξ1−α or η1−α. On the other hand, their

bootstrap counterparts

Î11 = (−∞, θ̂ − n−1/2 σ ξ̂1−α) ,

Î12 = (−∞, θ̂ − n−1/2 σ̂ ξ̂1−α) ,

Ĵ1 = (−∞, θ̂ − n−1/2 σ̂ η̂1−α)

are readily computed from data, but their cov-

erage probabilities are not known exactly.

They are respectively called “percentile” and

“percentile-t” bootstrap confidence intervals

for θ.



Bootstrap confidence intervals (continued)

The “other” percentile confidence intervals

for θ are

K1 = (−∞, θ̂ + n−1/2 σ ξα) ,

K̂1 = (−∞, θ̂ + n−1/2 σ̂ ξ̂α) .

Neither, in general, has exact coverage. The

interval K̂1 is the type of bootstrap confidence

interval we introduced early in this series of

lectures.

We expect the coverage probabilities of Î1, Ĵ1,

K1 and K̂1 to converge to α as n →∞. How-

ever, the convergence rate is generally only

n−1/2. The exceptions are I11 and Ĵ1, for

which coverage error equals α + O(n−1).

The interval I11 is generally not particularly

useful, since we need to know σ in order to

use it effectively. Therefore, of the intervals

we have considered, only J1 is both useful and

has good coverage accuracy.



Advantages of using a pivotal statistic

In summary: Unless the asymptotic variance
σ2 is known, one-sided bootstrap confidence
intervals based on the pivotal statistic T gen-
erally have a higher order of coverage accu-
racy than intervals based on the non-pivotal
statistic S.

Intuitively, this is because (in the case of in-
tervals based on S) the bootstrap spends the
majority of its effort implicitly computing a
correction for scale. It does not provide an
effective correction for skewness; and, as we
have seen, the main term describing the de-
parture of the distribution of a statistic from
Normality is due to skewness.

On the other hand, when the bootstrap is ap-
plied to a a pivotal statistic such as T , which
is already corrected for scale, it devotes it-
self to correcting for skewness, and therefore
adjusts for the major part of the error in a
Normal approximation.



Derivation of these properties

We begin with the case of the confidence in-

terval

Ĵ1 = (−∞, θ̂ − n−1/2 σ̂ η̂1−α) ,

our aim being to show that

P (θ ∈ Ĵ1) = α + O(n−1) .

Recall that η̂1−α is defined by

P (T ∗ ≤ η̂1−α | X ) = 1− α ,

and that, by a Cornish-Fisher expansion,

η̂1−α = z1−α + n−1/2 Q̂cf
1 (z1−α) + Op(n

−1)

= z1−α + n−1/2 Qcf
1 (z1−α) + Op(n

−1)

= η1−α + Op(n
−1) ,

where η1−α is defined by P (T ≤ η1−α) = 1−α.

Therefore,

P (θ ∈ Ĵ1) = P{n1/2(θ̂ − θ)/σ̂ > η̂1−α}
= P

{
n1/2(θ̂ − θ)/σ̂ > η1−α + Op(n

−1)
}

.



Derivation (continued, 1)

P (θ ∈ Ĵ1) = P
{
n1/2(θ̂ − θ)/σ̂ > η1−α + Op(n

−1)
}

= P{T > η1−α + Op(n
−1)}.

If the Op(n−1) term, on the right-hand side,
were a constant rather than a random vari-
able, it would be straightforward to show, us-
ing the property

P (T ≤ x) = Φ(x) + n−1/2 Q1(x)φ(x)

+ O(n−1) ,

on taking x = η1−α + Op(n−1), that

P{T ≤ η1−α + Op(n
−1)}

= Φ{η1−α + Op(n
−1)}

+ n−1/2 Q1{η1−α + Op(n
−1)}

× φ{η1−α + Op(n
−1)}

+O(n−1)

= Φ(η1−α) + n−1/2 Q1(η1−α)φ(η1−α)

+ O(n−1)

= P (T ≤ η1−α) + O(n−1) .

(These steps need only Taylor expansion.)
Therefore,

1− P (θ ∈ Ĵ1) = P (T ≤ η1−α) + O(n−1) .



Derivation (continued, 2)

This step can be justified using a longer ar-

gument, which we shall not give here. There-

fore,

1− P (θ ∈ Ĵ1) = P{T ≤ η1−α + Op(n
−1)}

= P (T ≤ η1−α) + O(n−1)

= 1− α + O(n−1) ,

the last line following from the definition of

ηα. That is,

P (θ ∈ Ĵ1) = α + O(n−1) ,

which proves that the coverage error of the

confidence interval J1 equals O(n−1).



Comparison with Normal-approximation in-

terval

A similar argument shows that coverage er-

ror for the corresponding confidence interval

based on a Normal approximation, i.e.

N1 = (−∞, θ̂ − n−1/2 σ̂ z1−α)

= (−∞, θ̂ + n−1/2 σ̂ zα) ,

equals only O(n−1/2).

Exercise. Prove that

P (θ ∈ N1) = α− n−1/2 Q1(zα)φ(zα) + O(n−1) .

Therefore, unless the effect of skewness is

vanishingly small (i.e. the polynomial Q1 van-

ishes), coverage error of the classical Nor-

mal approximation interval, N1, is an order

of magnitude greater than for the percentile-t

interval Ĵ1.



Derivation (continued, 3)

Similarly it can be proved that coverage error

of the interval

Î11 = (−∞, θ̂ − n−1/2 σ ξ̂1−α)

also equals α + O(n−1):

P (θ ∈ Î11) = α + O(n−1) .

However, this result fails for the more practi-

cal interval

Î12 = (−∞, θ̂ − n−1/2 σ̂ ξ̂1−α) ,

as we now show. The argument will highlight

differences between Edgeworth expansions in

Studentised and non-Studentised (i.e. pivotal

and non-pivotal) cases.



Derivation (continued, 4)

Recall that ξ̂1−α is defined by

P (S∗ ≤ σ̂ ξ̂1−α | X ) = 1− α ,

and that, by a Cornish-Fisher expansion,

ξ̂1−α = z1−α + n−1/2 P̂ cf
1 (z1−α) + Op(n

−1)

= z1−α + n−1/2 P cf
1 (z1−α) + Op(n

−1)

= ξ1−α + Op(n
−1) ,

where ξ1−α is defined by P (S ≤ σ ξ1−α) = 1−
α. Therefore,

P (θ ∈ Î12) = P{n1/2(θ̂ − θ)/σ̂ > ξ̂1−α}
= P

{
n1/2(θ̂ − θ)/σ̂ > ξ1−α + Op(n

−1)
}

= P{T > ξ1−α + Op(n
−1)} .



Derivation (continued, 5)

By Taylor expansion,

P{T ≤ ξ1−α + Op(n
−1)}

= Φ{ξ1−α + Op(n
−1)}

+ n−1/2 Q1{ξ1−α + Op(n
−1)}

× φ{ξ1−α + Op(n
−1)}

+O(n−1)

= Φ(ξ1−α) + n−1/2 Q1(ξ1−α)φ(ξ1−α)

+ O(n−1)

= P (T ≤ ξ1−α) + O(n−1)

= P (T ≤ η1−α) + (ξ1−α − η1−α)φ(η1−α)

+ O(n−1) .

Note too that

ξ1−α − η1−α

= n−1/2 {P cf
1 (z1−α)−Qcf

1 (z1−α)}+ O(n−1)

= n−1/2 {Q1(zα)− P1(zα)}+ O(n−1) .

(Recall that P cf
1 = −P1, Qcf

1 = −Q1, and P1

and Q1 are both even polynomials.)



Derivation (continued, 6)

Hence,

P{T ≤ ξ1−α + Op(n
−1)}

= P (T ≤ η1−α)

+ n−1/2 {Q1(zα)− P1(zα)}φ(zα)

+ O(n−1)

= 1− α + n−1/2 {Q1(zα)− P1(zα)}φ(zα)

+O(n−1) .

Therefore,

P (θ ∈ Î12) = P{T > ξ1−α + Op(n
−1)}

= α + n−1/2 {P1(zα)−Q1(zα)}φ(zα)

+ O(n−1) .

It follows that the confidence interval Î12 has
coverage error of order n−1 if and only if

P1(zα)−Q1(zα) = 0 ;

that is, if and only if the skewness terms, in
Edgeworth expansions of the distributions of
Studentised and non-Studentised forms of the
statistic, are identical when evaluated at zα.



Two-sided confidence intervals

Equal-tailed, two-sided confidence intervals are

usually obtained by combining two one-sided

intervals. For example, if we are using the

interval

Ĵ1 = Ĵ1(α) = (−∞, θ̂ − n−1/2 σ̂ η̂1−α) ,

for which the nominal coverage is α, we would

generally construct from it the two-sided in-

terval

Ĵ2 = Ĵ1

{
1
2 (1 + α)

}
\ Ĵ1

{
1
2 (1− α)

}
=

[
θ̂ − n−1/2 σ̂ η̂(1+α)/2 ,

θ̂ − n−1/2 σ̂ η̂(1−α)/2

)
.

The actual coverage of Ĵ2 equals α+O(n−1),

and can be derived as follows.



Two-sided confidence intervals (continued)

P (θ ∈ Ĵ2) = P
[
θ ∈ Ĵ1

{
1
2 (1 + α)

}]
− P

[
θ ∈ Ĵ1

{
1
2 (1− α)

}]
=

{
1
2 (1 + α) + O(n−1)

}
−

{
1
2 (1 + α) + O(n−1)

}
= α + O(n−1) .

However, the two-sided version of the per-

centile confidence interval Î12, which has cov-

erage error only O(n−1/2) in its one-sided form,

nevertheless has coverage error O(n−1). This

is a consequence of parity properties of poly-

nomials appearing in Edgeworth expansions.



METHODOLOGY AND THEORY

FOR THE BOOTSTRAP

(Fifth set of two lectures)

Main topic of these lectures: Completion

of work on confidence intervals, and sur-

vey of miscellaneous topics

Revision of confidence intervals

Recall that η̂α is the α-level quantile of the

bootstrap distribution of T ∗ = n1/2(θ̂∗− θ̂)/σ̂∗:

P (T ∗ ≤ η̂α | X ) = α .

A one-sided percentile-t confidence interval

for an unknown parameter θ, based on the

bootstrap estimator θ̂ and having nominal cov-

erage α, is therefore

Ĵ1 = Ĵ1(α) = (−∞, θ̂ − n−1/2 σ̂ η̂1−α) .



Revision (continued)

It has coverage error O(n−1):

P{θ ∈ Ĵ1(α)} = α + O(n−1) .

A conventional two-sided interval, for which

the nominal coverage is also α, is obtained

from two one-sided intervals:

Ĵ2(α) = Ĵ1

{
1
2 (1 + α)

}
\ Ĵ1

{
1
2 (1− α)

}
=

[
θ̂ − n−1/2 σ̂ η̂(1+α)/2 ,

θ̂ − n−1/2 σ̂ η̂(1−α)/2

)
.

Unsurprisingly, the actual coverage of Ĵ2 also

equals α + O(n−1):

P{θ ∈ Ĵ2(α)} = α + O(n−1) .



Percentile method intervals

Interestingly, however, this result extends to

the case of two-sided percentile intervals, the

one-sided versions of which have coverage ac-

curacy only O(n−1/2). Recall that one form

of percentile-method confidence interval for θ

is

Î12(α) = (−∞, θ̂ − n−1/2 σ̂ ξ̂1−α) ,

where ξ̂α is the α-level critical point of the

bootstrap distribution of S∗/σ̂:

P (S∗/σ̂ ≤ ξ̂α | X ) = α .

The corresponding two-sided interval is

Î22(α) = Î12

{
1
2 (1 + α)

}
\ Î12

{
1
2 (1− α)

}
=

[
θ̂ − n−1/2 σ̂ ξ̂(1+α)/2 ,

θ̂ − n−1/2 σ̂ ξ̂(1−α)/2

)
.



Coverage of two-sided percentile intervals

To calculate the coverage of Î22(α), recall

that

P{θ ∈ Î12(α)}
= α + n−1/2 {P1(zα)−Q1(zα)}φ(zα)

+ O(n−1) .

Since P1 and Q1 are even polynomials, and

z(1+α)/2 = −z(1−α)/2, then

P1(z(1+α)/2)−Q1(z(1+α)/2)

= P1(z(1−α)/2)−Q1(z(1−α)/2)

Therefore,

P{θ ∈ Î22(α)}
= P

[
θ ∈ Î12

{
1
2 (1 + α)

}]
−P

[
θ ∈ Î12

{
1
2 (1− α)

}]
= 1

2 (1 + α)− 1
2 (1− α) + O(n−1)

= α + O(n−1) .



Coverage of two-sided percentile intervals

(continued)

Therefore, owing to the parity properties of
polynomials in Edgeworth expansions, this two-
sided percentile confidence interval has cover-
age error O(n−1). The same result holds true
for the “other” type of percentile confidence
interval, of which the one-sided form is

K̂1(α) = (−∞, θ̂ + n−1/2 σ̂ ξ̂α) .

Its one- and two-sided forms have coverage

P{θ ∈ K̂1(α)} = α + O(n−1/2) ,

P{θ ∈ K̂2(α)} = α + O(n−1) .

Exercise: (1) Derive the latter property.

(2) Show that, when computing percentile
confidence intervals, as distinct from percen-
tile-t intervals, we do not actually need the
value of σ̂. (It has been included for didactic
reasons, to clarify our presentation of theory,
but it cancels in numerical calculations.)



Discussion

Therefore, the arguments in favour of percen-

tile-t methods are less powerful when applied

to two-sided confidence intervals. However,

the asymmetry of percentile intervals will usu-

ally not accurately reflect that of the statistic

θ̂, and in this sense they are less appropriate.

This is especially true in the case of the in-

tervals K̂ (“the other percentile method”).

There, when θ̂ has a markedly asymmetric

distribution, the lengths of the two sides of

a two-sided interval based on K̂1 will reflect

the exact opposite of the tailweights.



Other bootstrap confidence intervals

It is possible to correct bootstrap confidence

intervals for skewness without Studentising.

The best-known examples of this type are

the “accelerated bias corrected” intervals pro-

posed by Bradley Efron, based on explicit cor-

rections for skewness.

It is also possible to construct bootstrap con-

fidence intervals that are optimised for length,

for a given level of coverage.

The coverage accuracy of bootstrap confi-

dence intervals can be reduced by using the

iterated bootstrap to estimate coverage error,

and then adjust for it. Each application gen-

erally reduces coverage error by a factor of

n−1/2 in the one-sided case, and n−1 in the

two-sided case. Usually, however, only one

application is computationally feasible.



Other bootstrap confidence intervals (cont.)

Although the percentile-t approach has obvi-
ous advantages, these may not be realised in
practice in the case of small samples. This is
because bootstrapping the Studentised ratio
involves simulating the ratio of two random
variables, and unless sample size is sufficiently
large to ensure reasonably low variability of
the denominator in this expression, poor cov-
erage accuracy can result.

Note too that percentile-t confidence intervals
are not transformation-invariant, whereas in-
tervals based on the percentile method are.

From some viewpoints, particularly that of
good coverage performance in a very wide
range of settings (an analogue of “robust-
ness”), the most satisfactory approach is the
coverage-corrected form (using the iterated
bootstrap) of first type of percentile method
interval, i.e. of Î12 and Î22 in one- and two-
sided cases, respectively.



Bootstrap methods for time series

There are two basic approaches in the time-

series case, applicable with or without a struc-

tural “model,” respectively.

We shall say that we have a structural model

for a time series, X1, . . . , Xn, if there is a con-

tinuous, deterministic method for generating

the series from a sequence of independent and

identically distributed “disturbances,” ε1, ε2,

. . .. The method should depend on a finite

number of unknown, but estimable, parame-

ters. Moreover, it should be possible to es-

timate all but a bounded number of the dis-

turbances from n consecutive observations of

the time series.



Bootstrap for time series with structural

model

We call the model structural because the pa-

rameters describe only the structure of the

way in which the disturbances drive the pro-

cess. In particular, no assumptions are made

about the disturbances, apart from standard

moment conditions. In this sense the setting

is nonparametric, rather than parametric.

The best known examples of structural mod-

els are those related to linear time series, for

example the moving average

Xj = µ +
p∑

i=1

θi εj−i+1 ,

or an autoregression such as

Xj − µ =
p∑

i=1

ωi (Xj−i+1 − µ) + εj ,

where µ, θ1, . . . , θp, ω1, . . . , ωp, and perhaps

also p, are parameters that have to be es-

timated.



Bootstrap for time series with structural

model (continued, 1)

In this setting the usual bootstrap approach

to inference is as follows:

(1) Estimate the parameters of the structural

model (e.g. µ and ω1, . . . , ωp in the autore-

gression example), and compute the residuals

(i.e. “estimates” of the εj’s), using standard

methods for time series.

(2) Generate the “estimated” time series, in

which true parameter values are replaced by

their estimates and the disturbances are re-

sampled from among the estimated ones, ob-

taining a bootstrapped time series X∗
1, . . . , X∗

n,

for example (in the autoregressive case)

X∗
j − µ̂ =

p∑
i=1

ω̂i (X
∗
j−i+1 − µ̂) + ε∗j .



Bootstrap for time series with structural

model (continued, 1)

(3) Conduct inference in the standard way,

using the resample X∗
1, . . . , X∗

n thus obtained.

For example, to construct a percentile-t con-

fidence interval for µ in the autoregressive ex-

ample, let σ̂2 be a conventional time-series

estimator of the variance of n1/2µ̂, computed

from the data X1, . . . , Xn; let µ̂∗ and (σ̂∗)2 de-

note the versions of µ̂ and σ̂2 computed from

the resampled data X∗
1, . . . , X∗

n; and construct

the percentile-t interval based on using the

bootstrap distribution of

T ∗ = n1/2(µ̂∗ − µ̂)/σ̂∗

as an approximation to the distribution of

T = n1/2(µ̂− µ)/σ̂ .



Bootstrap for time series with structural

model (continued, 2)

All the standard properties we have already

noted, founded on Edgeworth expansions, ap-

ply without change provided the time series

is sufficiently short-range dependent. Early

work on theory in the structural time series

case includes that of

Bose, A. (1988). Edgeworth correction by

bootstrap in autoregressions. Ann. Statist.

16, 1709–1722.



Bootstrap for time series with structural

model (continued, 3)

It is common in this setting not to be able

to “estimate” n disturbances εj, based on a

time series of length n. For example, in the

context of autoregressions we can generally

estimate no more than n − p of the distur-

bances. But this does not hinder application

of the method; we merely resample from a set

of n− p, rather than n, values of ε̂j.

Usually it is assumed that the disturbances

have zero mean. We reflect this property em-

pirically, by centring the ε̂j’s at their “sample”

mean before resampling.



Bootstrap for time series without struc-

tural model

In some cases, for example where highly non-

linear filters have been applied during the pro-

cess of recording data, it is not possible or not

convenient to work with a structural model.

There is a variety of bootstrap methods for

conducting inference in this setting, based on

“block” or “sampling window” methods. We

shall discuss only the block bootstrap ap-

proach.



Block bootstrap for time series

Just as in the case of a structural time series,

the block bootstrap aims to construct simu-

lated versions “of” the time series, which can

then be used for inference in a conventional

way.

The method involves sampling blocks of con-

secutive values of the time series, say XI+1,

. . . , XI+b, where 0 ≤ I ≤ n − b is chosen in

some random way; and placing them one af-

ter the other, in an attempt to reproduce the

series. Here, b denotes block length.

Assume we can generated blocks XIj+1, . . . ,

XIj+b, for j ≥ 1, ad infinitum in this way. Cre-

ate a new time series, X∗
1, X∗

2, . . ., identical to:

XI1+1, . . . , XI1+b, XI2+1, . . . , XI2+b, . . .

The resample X∗
1, . . . , X∗

n is just the first n val-

ues in this sequence.



Block bootstrap for time series (contin-

ued, 1)

There is a range of methods for choosing the

blocks. One, the “fixed block” approach, in-

volves dividing the series X1, . . . , Xn up into m

blocks of b consecutive data (assuming n =

bm), and choosing the resampled blocks at

random. In this case the Ij’s are indepen-

dent and uniformly distributed on the values

1, b + 1, . . . , (m − 1)b + 1. The blocks in the

fixed-block bootstrap do not overlap.

Another, the “moving blocks” technique, al-

lows block overlap to occur. Here, the Ij’s

are independent and uniformly distributed on

the values 0,1, . . . , n− b.



Block bootstrap for time series (contin-

ued, 2)

In this way the block bootstrap attempts to

preserve exactly, within each block, the de-

pendence structure of the original time se-

ries X1, . . . , Xn. However, dependence is cor-

rupted at the places where blocks join.

Therefore, we expect optimal block length to

increase with strength of dependence of the

time series.

Techniques have been suggested for match-

ing blocks more effectively at their ends, for

example by using a Markovian model for the

time series. This is sometimes referred to as

the “matched block” bootstrap.



Difficulties with the block bootstrap

The main problem with the block bootstrap

is that the block length, b, which is a form

of smoothing parameter, needs to be chosen.

Using too small a value of b will corrupt the

dependence structure, increasing the bias of

the bootstrap method; and choosing b too

large will give a method which has relatively

high variance, and consequent inaccuracy.

Another difficulty is that the percentile-t ap-

proach cannot be applied in the usual way

with the block bootstrap, if it is to enjoy high

levels of accuracy. This is because the corrup-

tion of dependence at places where adjacent

blocks joins, significantly affects the relation-

ship between the numerator and the denomi-

nator in the Studentised ratio, with the result

that the block bootstrap does not effectively

capture skewness. However, there are ways of

removing this problem.



Successes of the block bootstrap

Nevertheless, the block bootstrap, and related
methods, give good performance in a range
of problems where no other techniques work
effectively, for example inference for certain
sorts of nonlinear time series.

The block bootstrap also has been shown to
work effectively with spatial data. There, the
blocks are sometimes referred to as “tiles,”
and either of the fixed-block or moving-block
methods can be used.

References for block bootstrap
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Bootstrap in non-regular cases

There is a “meta theorem” which states that

the standard bootstrap, which involves con-

structing a resample that is of (approximately)

the same size as the original sample, works (in

the sense of consistently estimating the lim-

iting distribution of a statistic) if and only if

that statistic’s distribution is asymptotically

Normal.

It does not seem possible to formulate this

as a general, rigorously provable result, but it

nevertheless appears to be true.

The result underpins our discussion of boot-

strap confidence regions, which has focused

on the case where the statistic is asymptoti-

cally Normal. Therefore, rather than take up

the issue of whether the bootstrap estimate

of the statistic’s distribution is asymptotically

Normal, we have addressed the problem of the

size of coverage error.



Example of non-regular cases

Perhaps the simplest example where this ap-

proach fails is that of approximating the dis-

tributions of extreme values. To appreciate

why there is difficulty, consider the problem

of approximating the joint distribution of the

two largest values of a sample, X1, . . . , Xn,

from a continuous distribution. The probabil-

ity that the two largest values in a resample,

X∗
1, . . . , X∗

n, drawn by sampling with replace-

ment from the sample, both equal maxXi, is

1−
(
1−

1

n

)n−1
− n

1

n

(
1−

1

n

)n−1
→ 1− 2e−1

as n →∞.

The fact that the probability does not con-

verge to zero makes it clear that the joint dis-

tribution of the two largest values in the boot-

strap sample cannot consistently estimate the

joint distribution of the two largest data.



The m-out-of-n bootstrap

The most commonly used approach to over-

coming this difficulty, in the extreme-value ex-

ample and many other cases, is the m-out-of-

n bootstrap. Here, rather than draw a sam-

ple of size n we draw a sample of size m < n,

and compute the distribution approximation

in that case. Provided

m = m(n) →∞ and m/n → 0

the m-out-of-n bootstrap gives consistent es-

timation in most, probably all, settings.

For example, this approach can be used to

consistently approximate the distribution of

the mean of a sample drawn from a very heavy-

tailed distribution, for example one in the do-

main of attraction of a non-Normal stable law.



The m-out-of-n bootstrap (continued)

The main difficulty with the m-out-of-n

bootstrap is choosing the value of m. Like

block length in the case of the block boot-

strap, m is a smoothing parameter; large m

gives low variance but high bias, and small

m has the opposite effect. In most problems

where we would wish to apply the m-out-of-n

bootstrap, it proves to be quite sensitive to

selection of m.

A secondary difficulty is that the accuracy of

m-out-of-n bootstrap approximations is not

always good, even if m is chosen optimally.

For example, when the m-out-of-n bootstrap

is applied to distribution approximation prob-

lems, the error is often of order m−1/2, which,

since m/n → 0, is an order of magnitude worse

than n−1/2.



Conclusion

Nevertheless, there is very substantial theoret-

ical evidence that the bootstrap works quite

well in a particularly wide range of statisti-

cal problems, and theoretical and empirical

evidence that it performs very well indeed in

some settings.

It is currently the only viable method for solv-

ing some problems, where asymptotic approx-

imations are either not available, or are poor.

(Certain extreme-value problems are of this

type.)

For these reasons the bootstrap is a vital com-

ponent of contemporary statistical methodol-

ogy.


