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o Design of Experiment

How to collect useful information?



Number of factors
Number of Runs
Reproducibility
Time taken
Blocking

Missing values
Randomization
Other

Agricultural
Experiments
Small

Large
Large
Long
Nature
Often
Important

Industrial
Experiments
Large

Small

Small

Short

Not obvious
Seldom

OK

Designing industrial experiments Is very different
From designing agricultural experiments



Design Objectives

‘*Treatment Comparison
“*Screening

“*Model Building
‘»Parameter Estimation
“*Optimization

**Prediction

**Confirmation

“*Discovery (Random Shot)
“»etc.



° Design Methodology

® Treatment Comparison

o Fractional & Full Factorial Design
@ Combinatorics Design

® Coding Theory

® Response Surface Methodology
@ ANOVA type Design

® Optimal Design

@ Bayesian (Optimal) Design



Design Methodology (continued)

® Saturated (Minimal Point) Design
® Taguchi Product (Robust) Design
® Mixture Experiment

® Computer Experiment

® Supersaturated Design

@ Uniform Design

® MicroArray Design



° Summary: Design of Experiment

® Model is known
= Optimal design
= Optimality Criteria
(e.qg., alphabetical optimalities)
® Model is unknown

(or is not completely known)
= Bayeslan Design

= Robustness

= Robustness Criterion

@ Representative Points




Design of Experiment: Looking Ahead

® Theoretical
@ Multiple response

= Higher (mixed) level combinatorics
= Analysis Methods (ANOVA->Regression—>7??77?)

® Practical (Restrictions)
= Mixture
= Error in variables
= Run size, number of level consideration
= Order In level values



Design of Experiment: Looking Ahead

® Applications

@ Information Technology
(Computer Experiment)
= Micro-Array
(Gene Expression)
=z Data Mining—Data Squashing, Dimension Reduction

® Related Areas
= Number Theory
= Combinatorics
=z Coding Theory



° Design of Experiment (Lin)

® Multiple Response Problems

= Optimization: Kim and Lin (JASS-C, 2000)

= Design: Chang, Lo, Lin & Young (JS5P/, 2001)
® Computer Experiment
= Beattie and Lin (1998)

® Dispersion Effect
= McGrath and Lin (7echnometrics, 2002)

® Foldover Plan
= Li and Lin (7echnometrics, 2003)

® Supersaturated Designs
= Lin (7echnometrics, 1993, 1995, 2001) and others

® Uniform Designs
= Fang, Lin, Winker & Yang (7echnometrics, 1999)
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Data

Data Collection
Data Preparation
Data Quality

Data Understanding
Data Description
Data Visualization

Data Analysis



K

el 775:'% (Sampling)
pevl o o

*1*%\4}%%% (Design of Experiment)



Industrial Statistics

@ Statistical Process Control
o Reliability
¢ Design of Experiments
® Others:
@ Data Mining, Neural Networks
= Information Technology, Fuzzy
= Marketing, Six-Sigma
= etc. --- LIn(1995)



® Why Experiment?
@ Confirm OLD theory
Newton’s three laws
@ Discover NEW theory

® Why Design Experiments?
= A lesson from Edison
=m0 -1 rule

® Statistics

@2 Not to teach them how to improve but
to teach them fow to speed up the
Improvement



How to collect
“useful”
Information?

“Design” occurs
before “data analysis”.

*What do you have?

*\What do you want?



A

*»*Treatment Comparison
“*Model Building
‘s»Parameter Estimation
*»Confirmation
“»Optimization
“*Screening

“*Discovery

“»eftc.



Before Experiment

Y= T X, Xpgreen Xy ) + €

=

After Experiment
y — f (X]_1°°°1Xp) +5(Xp+1,...,Xk)

p <<K



Saturated Design of First-Order Model

@ Plackett & Burman Designs (1946)

@ Regular Simplex Design (Box, 1952)

@ Optimal Design

@ p-efficient Design (Lin, 1993)

@ Cyclic Orthogonal Design (Lin & Chang, 2000)
® Summary and Comparisons

@ Minimal Point Designs



First-Order Model

Y =00+ X+ BoXo++ S X +&

Higher-order terms,
nonlinearity, noise,

Testing etc.




Design Principle

¢ Simplicity

o Efficiency
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(1) Treatment Comparison

3k pick-the-winner (jf1 % & &)
treatment assignment

F ¥k, #i& 5, Block Design

-

15 Y Y12 - Yin,

27 Y21 Y22:--Yon,

3- Y31 Y32:+-Yan,
Block: B, B,...



Type | Error: X T 5EE EA G#Z
(B &k AHF)

Type Il Error: T~ 2188 T8
(FEART1LZ)



(2) 7rEs i B[ y: >
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*R.A. Fisher (1920)
*F. Yates



@ w7z
Combinatorics & Coding Theory

® Column-Row Design

& ;Tkrr F/\l [\ﬁ:@? ® Weighing Design
< Blocking @ BIBD

® PBIBD

® Coding

2 R. C. Bose
o J N. Srivastava
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Response Surface Methodology
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< G. E. P. Box I

** N. R. Draper
* R. H. Myers



(6) WAL

ANOVA type Design

TR

_'\

AN S Y
RN By, Yo. Y,

AR EI BT (Total Sum Squares)

TSS=(y1 -y )+(2- y )+ *(n- Y )
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Source  Sum  Degree
squares Freedom

el

2 ) %ﬁiﬂ
Block 1 Z 'E{mﬁ}
e 4 5
Total TSS n-1
Split-plot Design Randomization
Nested Design Missing values
Factorial Design etc.
etc

+V. L. Anderson (Purdue)
+C. R. Hicks



Q@ () AEZ
(Optimal Design)

Design

X(m)=(x,(m),x,(m),...,.x(m)) in I¥
Model

Y(X(m))=Ff(X(m))B + &, m=1,2,...n
Let & be the probability measure on I¥

M@= [ f(x) f(x)d&(x)

Information matrix
% J. Keifer

% C. S. Cheng (g”r’[ﬁ\]ﬁj—/ﬁ)



(8) ;/:6,%‘,_%5 (Bayesian Design)

@ 13§ optimal Design
BA A 5% B B 2 (prior)

® 3 38 Optimal Design

& Optimal in term of a group of models



Optimal Design

¢ Specify the model
® Specify the optimality criterion
® Construct the design

® For Bayesian Design, add the prior
distribution to the model information.



(9) Saturated Design
(Minimal-Point Design)

® Given the model

y=Po+ X+ BoXo +o 4 fiX + &

® The design matrix is n x (k+1)
Find a (k+1) x (k+1) matrix which is
“optimal”.

® For D-opt, this is a Det-max matrix.



(9) Saturated Design
(Minimal-Point Design)

® Given a n x n matrix, with 2 symbols, what Is
Its maximal determinant possible?

= (Hadamard, 1893).

= Hadamard Matrix, for n=1, 2, and 4t, iIs also
known as Plackett and Burman Design.

® P-efficient design

Lin (1993).
® Extension: Saturated Second-order designs...
® Non-orthogonality.



o (10) A 4 & 47 (Taguchi Design)
R S F“—‘“%‘?rf)

A& F: X1 X2 X3
AA[EREF: 71 72
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® G. Taguch (F'I[fId—)
® IEpIT
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One Observation
Y1

Several Replicates
Yll, Y12,

Designing these Replicates

Compound Orthogonal Arrays

Uniform Design



1 45 %77
v

(Mixture Experiment)
ZEFX, Xy oo X BX X+ X =T (B
Bl X, X, Xq (0,0.1)

(0,1,0) ¢ * ¢ (1,0,0)
1

LI LEAEAEERE
Scheffe (1958), J. A. Cornell (1990)

=




. (12) 54575257 (Uniform Design)

F (x) = Empirical Cumulative Distribution Function
F(x) = Uniform Cumulative Distribution Function
FInd  x = (%, %,y X,,)
suchthat £ (y) Isclosestto g (x)
Discrepancy
- i

Iodx

D=

| Q

® HEH, R (i)
& LR

-



One-Dimension Optimal Representing Points in [0,1]

n Uniform Normal Exponential
2 0.25 0.3876  0.0575
0.75 0.6124  0.2773

3 0.1667 0.3388  0.0365
0.5000 0.5000  0.1386
0.8333 0.6612  0.3584

4 0.125 0.3083  0.0267
0.375 0.4470  0.0940
0.625 0.5530  0.1962
0.875 0.6917  0.4159

5 01 0.2864  0.0211
0.3 0.4127  0.0713
0.5 0.5000 0.1386
0.7 0.5873  0.2408
0.9 0.7136  0.4605

6 0.0833 0.2695 0.0174
0.2500 0.3876  0.0575
0.4167 0.4650  0.1078
0.5833 0.5350 0.1751
0.7500 0.6124  0.2773

0.9167  0.7305  0.4970 Wang, Lin, and Fang (1993)



°he centered Lp-discrepancy IS Invariant under
exchanging coordinates from x to 1-x. Especially,

the centered L,-discrepancy, denoted by CL,, has
the following computation formula:

(CL2(P))?

(BY _29¢m(1.t,,. L 1
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+ZZZH{1+|XK|_| | x —_| _‘Xk| jl:|'
N~ k=1j=li=1
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» 7' 71 T B (Computer Experiment)
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All models are wrong, some are useful.
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Q@ (13) &y

(Supersaturated Design)

L NS

a # 1 Xy EE
1 Y1
2 Yo
14 Y14

Dennis Lin



» supersaturated Design From Hadamard Matrix of Order 12
(Using 11 as the branching column)

Run Factors
No. I 1 2 3 4 5 6 7 8 9 10 (11
1 + + + - + + + - -+ -
2 + + - + 4+ + - - - 4+ - 4
3 + - + + + - - - 4+ - + +
4 + + + + - - - + - + + -
5 + + + - - - 4+ - + + - +
6 + + - - - + - 4+ + - + +
{f + - - - + - 4+ 4+ - + + 4+
8 + - - + - + 4+ - + + + -
9 + - + - 4+ + - + + + - -
0 + + - + + - + + + - - -
1 + - + + - + 4+ + - - - 4+
12 + - - - - - 4 . - e e .




Half Fraction Hadamard Matrix
(n, K) = (2t, 4t-2)

Balanced Incomplete Block Design
v =2t-1
b =4t-2
r = 2t-2
k=t-1

ave(s?) = n?/(2n-3) proved to be E(s%)-optimal!
Non-isomorphic class exists!



(14) @51 &3R5

(Computer Experiment)

#Expensive simulation

©E Monte Carlo7f a] 17 B
1A% st Simulation?

#Latin Hypercube



Computer Experiments

¢ The problem

_atin Hypercube (LHC)
_HC with constraints
Rotated Factorial Designs

Uniform Design

® Summary and Comparisons



Goal

¢ Confirmation

® Sensitivity Analysis

® Empirical Model Building

o Optimization

® Model Validation

® High Dimension Integration



Irrelevant Issues

& Replicates
® Blocking
® Randomization

Question.: How can a computer
experiment be run in an efficient
manner?



Current Approaches to Experimental Design

® Geometric (Frequentist) Designs
= Full and Fractional Factorial Designs
= Other Traditional Designs
= Latin Hypercube Designs (McKay, Beckman, and Conover
(1979))
® Computer-Generated (Bayesian) Designs
= Maximin Distance Designs (Johnson, Moore, and Ylvisaker
(1990))
® Combination Designs (Computer-Generated
Geometric)

= Maximin Latin Hypercube Designs (Morris and Mitchell
(1992))

= Orthogonal Array-based LHs (Tang (1993), Owen (1992))
= Rotated Factorial Designs (Beattie and Lin, 1997)
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Some Latin Hypercube Designs
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A special class
of LHC

now N e X

16

T16
T;. permutation of {1, ..., 16}
16!

n! forsize n &
(nYd-1for d-dim



Bayesian Designs

@ Maximin Distance Designs, Johnson,
Moore,and Ylvisaker (1990)

@ Maximizes the Minimum Interpoint Distance
(MID)

@ Moves design points as far apart as possible
In design spaceMID = min d (X, X,)

Xl,X2€D

® D* is a Maximin Distance Design if
MID = min d(X;,X,)=max min d(X;,X,)

Xl,X2€D* D Xl,X2€D
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Rotated Factorial Designs

Aullion Ly aaetan] 1/3) radians

Figure 2: Three rotations of & standard 3¢ factonial design:

jal w=tan"'(1}, (b1 w=tan~"1/2}, {c} w = tan~"{1/3)




Rotation by arctan(1/4) radians
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e Rotation Theorem

e Orthogonality Theorem



Rotated Factorial Designs

® Computer experiments are gaining in
popularity

©= main research area of the next 10 years

® Rotated factorial designs

= good factorial design properties
(orthogonality and structure)

=z good Latin hypercube properties
(unigue and equally-spaced projections)

© easy to construct

@ comparable by Bayesian criteria

© very suitable for computer experiments



(15) Micro Array Design

® Coming Soon...



@ Some Personal Views

@1 and e
@ Multiple response problem

# Classical design Is as important as it was,
but there are new problems requiring new
designs

@ Business world: experimental economics,
supply chain design, electronic commerce,
etc.

# Large data set problems (data mining, data
warehouse, etc.): Design and Analysis

@ Your conclusion is only as good as your
assumption



Ssummary: DOE

® Model i1s known

= Optimal design

= Optimality Criteria (alphabetical optimality)
® Model Is unknown

(or i1s not completely known)
= Robustness

= Robustness Criterion

= Representative Points
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