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Response Surface Methodology

Box and Wilson (1951)
“On the Experimental Attainment of 
Optimum Condition,” JRSS-B, 13, 1-45.

Box and Hunter (1957)
“Multi-Factor Experimental Designs for 
Exploring Response Surface,” Annals of 
Mathematical Statistics, 28, 195-241.



Ambitious Goal

What is Response Surface Methodology?
What type of problems they had in mind 
back to 1950?
What was available in 1950?
What type of problems today 
(50 years later)?
What is available today?
Can we do something significantly 
different?



What is RSM All About?

The Experimenter is like a 
person attempting to map the 
depth of the sea by making 
soundings at a limited number 
of places



給我
一把槌子，
全世界的問題都像
一根釘子



Basic Approach
If we are far away from the top, all we 
need is to find the direction for 
improvement…in this case, a first-order 
approximation may be sufficient.
If we are close to the top, all we need is 
to find the exact location of the top…in 
this case, a more complicated model 
(such as a second-order model) is 
needed.



Illustrative Example (BH2)
Response (y): Yield
Input Variable (x1): time
Input Variable (x2): temperature

y=f (x1, x2)+ε



Least Square Fitting:

y = 62.01+2.35x1+4.50x2 + ε
b12  = −0.65 (+0.75)
b11+b22  = −0.50 (+1.15)

Conclusion:

First-order model is adequate.

Action Taken:

Steepest Ascent
—direction for  improvement
— 2.35:4.50   (or   1:1.91)
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Run more experiments…
…following the direction of   1:1.91  (= 2.35 : 4.50)



Conclusion:
Use Point #10 as
the new center point
and start all over again!!



Least Square Fitting:
y = 84.73 − 2.025x1+ 1.325x2 + ε
b12  = −4.88 (+0.75)
b11+b22  = −5.28 (+1.15)

Conclusion:
First-Order Model is inadequate!

Action Taken:
Add few more points for fitting
A more complicated
(second-order) model.
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Add few more points for
fitting a second-order model.



Least Square Fitting:
y = 87.36 – 1.39x1+ 0.37x2 

+2.15 x1
2 –3.12 x2

2

– 4.88 x1 x2 + ε

Conclusion:
Second-Order model    
is adequate!

Action Taken:
Finding Optimal Setting!
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Final Remarks
The global optimum turns out to be
x1=80 minutes
x2=150 oC
E(y)=91.2  
(as oppose to 62.5 at the beginning)

Is such an optimal setting feasible?



FIRST ORDER 
MODEL

Fit Well? Add New 
Variables?

You are still pretty far away 
from the optimal point

You are probably close to 
the optimal setting

Find the direction for 
improvement

SECOND ORDER MODEL

Fit Well?Set up a new center 
point

OPTIMIZATION

HIGHER ORDER 
MODEL?

No

Yes

Yes

No

Yes
No

Lin (JQT, 1998)



Response Surface Methodology
(Box and Draper, 1987)

WHICH (Screening)

HOW (Empirical Model Building)

WHY (Mechanistic Model Building)



What are the issues?
Data Collection:

What will be a good design?  For what 
purpose?

Data Analysis:
What will be a good model?

Optimization:
Objective function? 

Confirmation



Response Surface Methodology
Theoretical Formulation

εθ += ),(xfy

Ω∈x



Objective
Find 

x=x* such that y is optimized.
Basic Assumption/Belief

Life is Good
— y is a smooth function of x



Data Structure & Coding
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Design
Matrix

We have “control” on the design matrix!!!



Issues to be Addressed

x: variable selection
Screening Input variables x1, x2,…, xk

f: model selection

Θ: parameter estimation

ε: error properties (stochastic)

Ω: Experimental Region

εθ += ),(xfy Ω∈x



Special Case-I

x: known
Input variables x1, x2,…, xk

f: model selection
First-Order Polynomial y=β0+Σβixi+ε

Θ: parameter estimation
Least square fitting
ε: error properties
i.i.d. N(0,σ2)

Ω: Experimental Region
Correctly identified.



A (Typical) Special Case
x: known

Input variables x1, x2,…, xk

f: model selection
Second-Order Polynomial y=β0+Σβixi+Σβijxixj+ε

Θ: parameter estimation
Least square fitting

ε: error properties
i.i.d. N(0,σ2)

Ω: Experimental Region
Correctly identified.



RSM: General Steps
Define
Design
Modeling
Estimation
Optimization
Forecasting
Confirmation



Design of Screening Experiments
Two-Level Fractional Factorials
Plackett & Burman Design
(Hadamard Matrix)
Two-Level Orthogonal Arrays
Regular Simplex & T-optimal
p-efficient Designs
Supersaturated Designs Lin(2003)



MODEL
Y = 1~ ⋅ + +μ β εX
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Examples
ANONA Approach:

Orthogonal Array (n=4t)

First-Order Model:
Minimal-Point Design (n=k+1)

Significant Test Approach
Good estimate of σ!

Others?



About Model Building
Smoothing assumption in f.
Typically polynomial model is assumed, 
as the empirical model building.
Spline Fitting
Artificial Neural Network
Radial Basis Function
Non- (Semi-) Parametric Fitting
Optimality versus Robustness



Designs for Model Building
Central Composite Design (CCD)
Small Composite Design 
Box and Behnken Design
Three-Level Design
Uniform Design
Others

εββββ ++++= ∑∑∑ 2
0 iiijiijii xxxxy



Parameter Estimation
Least Square Estimate
Likelihood approach (with proper 
assumption on the distribution)
Bayesian approach, when appropriate
Black-Box approach, such as Artificial 
Neural Network



Assumption on Noise
i.i.d. N(0, σ2) Assumption
Generalized Least square
Generalized Linear model

Bayesian Approach

Confidence Interval & significant test



Objectives
Overall Surface structure
Optimal value of y
Corresponding setup x*
Future exploration

Analysis of Response Surface



How About
Goodness/Badness of fit
Optimal y outside the current domain
Confidence Region of y*
Confidence Region of x*



Second-Order Polynomial Model
Estimation:  β vs
Bias:  f vs
Prediction: ymax vs
Prediction: x* vs
Point Estimate & Confidence Region 
(Sweet Spot)
General f ?

β̂
f̂

maxŷ
*x̂



Assignment #1
Suppose that
y1=α0+α1x+α11x2+ε1 and 
y2=β0+β1x+β11x2+ε2
Find x=x* such that both Yi’s are maximized.

Suppose that
y1=f1(x,θ1)+ε1 and y2=f2(x,θ2)+ε2
Find x=x* such that both Yi’s are maximized.
What will you do?



Assignment #2
In general, suppose that
y1=f1(x,θ1)+ε1 ,
y2=f2(x,θ2)+ε2 , 
…
yp=fp(x,θp)+εp .

Find x=x* such that all yi’s are 
maximized.



Assignment #3
An expensive experiment has five (5) 
experimental variables (x1,…,x5) each at 
two levels.  Provide a design for such a 
study, under the scenarios 
(a) the budget is unlimited and 
(b) the budget is very tight.  For each 
design you provide, explain what can be 
estimated and why your design is a good 
one.


