Response Surface Methodology: 50 Years Later

Dennis K.J. Lin University Distinguished Professor The Pennsylvania State University DennisLin@psu.edu

Zhejiang University 05 July, 2005

Response Surface Methodology

Box and Wilson (1951)

"On the Experimental Attainment of Optimum Condition," *JRSS-B*, **13**, 1-45.

Box and Hunter (1957)

"Multi-Factor Experimental Designs for Exploring Response Surface," *Annals of Mathematical Statistics*, **28**, 195-241.

- What is Response Surface Methodology?
- What type of problems they had in mind back to 1950?
- What was available in 1950?
- What type of problems today (50 years later)?
- What is available today?
- Can we do something significantly different?

What is RSM All About?

The Experimenter is like a person attempting to map the depth of the sea by making soundings at a limited number of places

給我 一把槌子, 全世界的問題都像 一根釘子

Basic Approach

- If we are far away from the top, all we need is to find the direction for improvement...in this case, a first-order approximation may be sufficient.
- If we are close to the top, all we need is to find the exact location of the top...in this case, a more complicated model (such as a second-order model) is needed.

Illustrative Example (BH²)

- Response (y): Yield
- Input Variable (x₁): time
- Input Variable (x₂): temperature

$$y = f(x_1, x_2) + \varepsilon$$

	variab	les in original units	variab coded		response:
run*	time (min)	temperature (°C)	$\frac{codod}{x_1}$	$\frac{x_2}{x_2}$	(grams)
1	70	127.5	-1	-1	54.3
2	80	127.5	+1	-1	60.3
3	70	132.5	-1	+1	64.6
4	80	132.5	+1	+1	68.0
5	75	130.0	0	0	60.3
6	75	130.0	0	0	64.3
7	75	130.0	0	0	62.3

Least Square Fitting:

$$y = 62.01+2.35x_1+4.50x_2 + \epsilon$$

 $b_{12} = -0.65 (+0.75)$
 $b_{11}+b_{22} = -0.50 (+1.15)$

Conclusion:

First-order model is adequate.

Action Taken:

Steepest Ascent

- —direction for improvement
- 2.35:4.50 (or 1:1.91)

	variab	les in original units	variab coded		response:
run*	time (min)	temperature (°C)	$\frac{coded}{x_1}$	$\frac{x_2}{x_2}$	(grams)
1	70	127.5	-1	-1	54.3
2	80	127.5	+1	-1	60.3
3	70	132.5	-1	+1	64.6
4	80	132.5	+1	+1	68.0
5	75	130.0	0	0	60.3
6	75	130.0	0	0	64.3
7	75	130.0	0	0	62.3

Least Square Fitting:

y =
$$62.01+2.35x_1+4.50x_2 + e$$

 $b_{12} = -0.65 (+0.75)$
 $b_{11}+b_{22} = -0.50 (+1.15)$

Conclusion:

First-order model is adequate.

Action Taken:

Steepest Ascent

- —direction for improvement
- 2.35:4.50 (or 1:1.91)

Run more experiments...

...following the direction of 1:1.91 (= 2.35 : 4.50)

	coded		time (min)	temperature (°C)		observed
	x_1	x_2	t	T	run	yield
center conditions	0	0	75	130.0	5, 6, 7	62.3 (average)
	[1	1.91	80	134.8	8	73.3
A CONTRACTOR OF CHARLES	2	3.83	85	139.6		
path of steepest	{3	5.74	90	144.4	10	86.8
ascent	4	7.66	95	149.1		
	5	9.57	100	153.9	9	58.2

time (min)

Use Point #10 as the new center point and start all over again!!

run*	variables	in original units	variables in coded units		response:
	time (min)	temperature (°C)	x_1	x ₂	yield (grams)
11	80	140	-1	-1	78.8
12	100	140	+1	-1	84.5
13	80	150	-1	+1	91.2
14	100	150	+1	+1	77.4
15	90	145	0	0	89.7
16	90	145	0	0	86.8

Least Square Fitting:

y =
$$84.73 - 2.025x_1 + 1.325x_2 + \varepsilon$$

 $b_{12} = -4.88 (\pm 0.75)$
 $b_{11} + b_{22} = -5.28 (\pm 1.15)$

Conclusion:

First-Order Model is inadequate!

Action Taken:

Add few more points for fitting A more complicated (second-order) model.

	variables	in original units	variables in coded units		**********	
run*	time (min)	temperature (°C)	x_1	x_2	response: yield (grams)	
11	80	140	-1	-1	78.8	
12	100	140	+1	-1	84.5	
13	80	150	-1	+1	91.2	
14	100	150	+1	+1	77.4	
15	90	145	0	0	89.7	
16	90	145	0	0	86.8	

Least Square Fitting:

$$y = 84.73 - 2.025x_1 + 1.325x_2 + \varepsilon$$

$$b_{12} = -4.88 \ (\pm 0.75)$$

$$b_{11} + b_{22} = -5.28 \ (\pm 1.15)$$

Conclusion:

First-Order Model is inadequate!

Action Taken:

Add few more points for fitting A more complicated (second-order) model.

Add few more points for fitting a second-order model.

	variables	variables in original units		oles in units	response:	
run*	time (min)	temperature (°C)	x_1	x_2	yield (grams)	
11	80	140	-1	-1	78.8	
12	100	140	+1	-1	84.5	second
13	80	150	-1	+1	91.2	first-orde
14	100	150	+1	+1	77.4	design
15	90	145	0	0	89.7	
16	90	145	0	0	86.8	
17	76	145	$-\sqrt{2}$	0	83.3	runs
18	104	145	$+\sqrt{2}$	0	81.2	added to
19	90	138	0	$-\sqrt{2}$	81.2	form a
20	90	152	0	$+\sqrt{2}$	79.5	composit
21	90	145	0	0	87.0	design
22	90	145	0	0	86.0	

	variables in original units		variables in coded units		response:	
run*	time (min)	temperature (°C)	x ₁	x_2	yield (grams)	
11	80	140	-1	-1	78.8	
12	100	140	+1	-1	84.5	second
13	80	150	-1	+1	91.2	first-orde
14	100	150	+1	+1	77.4	design
15	90	145	0	0	89.7	1.50
16	90	145	0	0	86.8	
17	76	145	$-\sqrt{2}$	0	83.3	runs
18	104	145	$+\sqrt{2}$	0	81.2	added to
19	90	138	0	$-\sqrt{2}$	81.2	form a
20	90	152	0	$+\sqrt{2}$	79.5	composit
21	90	145	0	0	87.0	design
22	90	145	0	0	86.0	

Least Square Fitting:

$$y = 87.36 - 1.39x_1 + 0.37x_2$$
$$+2.15 x_1^2 - 3.12 x_2^2$$
$$-4.88 x_1 x_2 + \varepsilon$$

Conclusion:

Second-Order model is adequate!

Action Taken:

Finding Optimal Setting!

	variables in original units			oles in l units	response:	
run*	time (min)	temperature (°C)		x ₂	yield (grams)	
11	80	140	-1	-1	78.8	
12	100	140	+1	-1	84.5	second
13	80	150	-1	+1	91.2	first-orde
14	100	150	+1	+1	77.4	design
15	90	145	0	0	89.7	
16	90	145	0	0	86.8	
17	76	145	$-\sqrt{2}$	0	83.3	runs
18	104	145	$+\sqrt{2}$	0	81.2	added to
19	90	138	0	$-\sqrt{2}$	81.2	form a
20	90	152	0	$+\sqrt{2}$	79.5	composit
21	90	145	0	0	87.0	design
22	90	145	0	0	86.0	

Least Square Fitting:

$$y = 87.36 - 1.39x_1 + 0.37x_2 + 2.15 x_1^2 - 3.12 x_2^2 - 4.88 x_1 x_2 + \varepsilon$$

Conclusion:

Second-Order model is adequate!

Action Taken:

Finding Optimal Setting!

 $y = 87.36 - 1.39x_1 + 0.37x_2 + 2.15 x_1^2 - 3.12 x_2^2 - 4.88 x_1 x_2 + \varepsilon$

Final Remarks

• The global optimum turns out to be

$$x_1$$
=80 minutes

$$x_2 = 150 \, {\rm oC}$$

$$E(y) = 91.2$$

(as oppose to 62.5 at the beginning)

Is such an optimal setting feasible?

Response Surface Methodology (Box and Draper, 1987)

WHICH (Screening)

HOW (Empirical Model Building)

WHY (Mechanistic Model Building)

What are the issues?

- Data Collection:
 - What will be a good design? For what purpose?
- Data Analysis:
 - What will be a good model?
- Optimization:
 - Objective function?
- Confirmation

Response Surface Methodology Theoretical Formulation

$$y = f(x, \theta) + \varepsilon$$

$$x \in \Omega$$

- Objective
 - Find

 $x=x^*$ such that y is optimized.

- Basic Assumption/Belief
 - Life is Good
 - y is a smooth function of x

Data Structure & Coding

#	\mathbf{X}_1	X_2	• • • •	$\mathbf{X}_{\mathbf{k}}$	Resp
1					y ₁
2		_	_		y_2
•		Des	sign		•
•		Mat	rix		•
•		iviat			•
n					y _n

We have "control" on the design matrix!!!

$$y = f(x, \theta) + \varepsilon \qquad x \in \Omega$$

Issues to be Addressed

- * x: variable selection
 - Screening Input variables $x_1, x_2, ..., x_k$
- f: model selection
- Θ: parameter estimation
- ε: error properties (stochastic)
- Φ Ω : Experimental Region

Special Case-I

- *●x*: known
 - Input variables $x_1, x_2, ..., x_k$
- •f: model selection
 - First-Order Polynomial $y = \beta_0 + \Sigma \beta_i x_i + \varepsilon$
- Θ: parameter estimation
 - Least square fitting
- ε: error properties
 - \blacksquare i.i.d. $N(0,\sigma^2)$
- Ω: Experimental Region
 - Correctly identified.

A (Typical) Special Case

- **⊕**x: known
 - Input variables $x_1, x_2, ..., x_k$
- f: model selection
 - Second-Order Polynomial $y = \beta_0 + \Sigma \beta_i x_i + \Sigma \beta_{ij} x_i x_j + \varepsilon$
- Θ: parameter estimation
 - Least square fitting
- ε: error properties
 - \blacksquare i.i.d. $N(0,\sigma^2)$
- \bullet Ω : Experimental Region
 - Correctly identified.

RSM: General Steps

- Define
- Design
- Modeling
- Estimation
- Optimization
- Forecasting
- Confirmation

Design of Screening Experiments

- Two-Level Fractional Factorials
- Plackett & Burman Design (Hadamard Matrix)
- Two-Level Orthogonal Arrays
- Regular Simplex & T-optimal
- p-efficient Designs
- Supersaturated Designs

Lin(2003)

$$Y = \underbrace{1}_{\sim} \cdot \mu + X \underbrace{\beta}_{\sim} + \underbrace{\varepsilon}_{\sim}$$

MODEL

 $\mathbf{Y}_{n \times 1}$: observable data

 $X_{n \times k}$: design matrix

 $\beta_{k \times 1}$: parameter vector

 $\varepsilon_{n \times 1}$: noise

$$N = \{i_1, i_2, ..., i_p\}$$
 inert factor

$$A = \{i_{p+1}, i_{p+2}, ..., i_k\}$$
 active factor

$$N \cup A = \{1, 2, ..., k\}$$

Goal

Test
$$H_{j}: \beta_{j} = 0$$
 vs. $H_{j}^{c}: \beta_{j} \neq 0$

$$\begin{cases} H_{j} \text{ is true if } j \in N \\ H_{j}^{c} \text{ is true if } j \in A \end{cases}$$

Examples

- ANONA Approach:
 - Orthogonal Array (n=4t)
- First-Order Model:
 - Minimal-Point Design (n=k+1)
- Significant Test Approach
 - Good estimate of σ !
- Others?

About Model Building

- Smoothing assumption in f.
- Typically polynomial model is assumed, as the empirical model building.
- Spline Fitting
- Artificial Neural Network
- Radial Basis Function
- Non- (Semi-) Parametric Fitting
- Optimality versus Robustness

Designs for Model Building

- Central Composite Design (CCD)
- Small Composite Design
- Box and Behnken Design
- Three-Level Design
- Uniform Design
- Others

$$y = \beta_0 + \sum \beta_i x_i + \sum \beta_{ij} x_i x_j + \sum \beta_{ii} x_i^2 + \varepsilon$$

Parameter Estimation

- Least Square Estimate
- Likelihood approach (with proper assumption on the distribution)
- Bayesian approach, when appropriate
- Black-Box approach, such as Artificial Neural Network

Assumption on Noise

- i.i.d. $N(0, \sigma^2)$ Assumption
- Generalized Least square
- Generalized Linear model

- Bayesian Approach
- Confidence Interval & significant test

Analysis of Response Surface

Objectives

- Overall Surface structure
- Optimal value of y
- Corresponding setup x*
- Future exploration

How About

- Goodness/Badness of fit
- Optimal y outside the current domain
- Confidence Region of y*
- Confidence Region of x*

Second-Order Polynomial Model

- Estimation: β vs $\hat{\beta}$
- Bias: f vs \hat{f}
- Prediction: y_{max} vs \hat{y}_{max}
- Prediction: x^* vs \hat{x}^*
- Point Estimate & Confidence Region (Sweet Spot)
- General *f*?

Assignment #1

Suppose that

$$y_1 = \alpha_0 + \alpha_1 x + \alpha_{11} x^2 + \epsilon_1$$
 and $y_2 = \beta_0 + \beta_1 x + \beta_{11} x^2 + \epsilon_2$

Find $x=x^*$ such that both Y_i 's are maximized.

Suppose that

$$y_1 = f_1(x, \theta_1) + \varepsilon_1$$
 and $y_2 = f_2(x, \theta_2) + \varepsilon_2$
Find $x = x^*$ such that both Y_i 's are maximized. What will you do?

Assignment #2

In general, suppose that

$$y_1 = f_1(x, \theta_1) + \varepsilon_1 ,$$

$$y_2 = f_2(x, \theta_2) + \varepsilon_2 ,$$

. . .

$$y_p = f_p(x, \theta_p) + \varepsilon_p$$
.

Find $x=x^*$ such that all y_i 's are maximized.

Assignment #3

An expensive experiment has five (5) experimental variables $(x_1,...,x_5)$ each at two levels. Provide a design for such a study, under the scenarios

- (a) the budget is unlimited and
- (b) the budget is very tight. For each design you provide, explain what can be estimated and why your design is a good one.