Periods of automorphic functions, Subconvexity of *L*-functions and Representation Theory

Joseph Bernstein

Abstract

This lecture is based on my joint work with A. Reznikov (see arxiv $\mathrm{RT}/0504411$ and $\mathrm{RT}/0305351$).

Let \mathbb{H} denote the upper half plane equipped with the standard Riemannian metric of constant curvature -1. We denote by dv the associated volume element and by Δ the corresponding Laplace-Beltrami operator on \mathbb{H} .

Fix a discrete group Γ of motions of \mathbb{H} and consider the Riemann surface $Y = \Gamma \backslash \mathbb{H}$. For simplicity we assume that Y is compact.

Consider the spectral decomposition of the operator Δ in the space $L^2(Y, dv)$ of functions on Y. It is known that the operator Δ is non-negative and has purely discrete spectrum; we will denote by $0 = \mu_0 < \mu_1 \le \mu_2 \le ...$ the eigenvalues of Δ . For these eigenvalues we always use a natural from representation-theoretic point of view parametrization $\mu_i = \frac{1-\lambda_i^2}{4}$, where $\lambda_i \in \mathbb{C}$. We denote by $\phi_i = \phi_{\lambda_i}$ the corresponding eigenfunctions (normalized to have L^2 -norm one).

In the theory of automorphic forms, the functions ϕ_{λ_i} are called automorphic functions or *Maass forms* (after H. Maass). The study of Maass forms plays an important role in analytic number theory, analysis and geometry.

In my lecture I will discuss the following problem.

Let us fix two Maass forms ϕ , ϕ' , and consider the following triple product or triple period $c_i = \int_V \phi \phi' \phi_i$.

I will describe a new method, based on representation theory of the group $SL(2, \mathbf{R})$, which allows to obtain some highly non-trivial estimates for the coefficients c_i as a function of parameter λ_i . I will also discuss how these estimates are connected to some non-trivial estimates of L-functions.