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1 Introduction

Automorphic forms live on locally symmetric, homogeneous Riemannian spaces
which are natural generalizations of periodic functions on a circle. One of the
most important tool in the theory of the Fourier analysis on a circle is the
Poisson summation formula which says that for any functions f in the Schwartz

class, we have
S sy =3 fn)

nezZ neZ

where

for= [ " (@) exp(~2rizy)de

is the Fourier transform of f. The proof is given by the Fourier expansion of
the periodic functions F(z) =: Y f(n + ) and taking z = 0.
neZ

Although we have the celebrated Selberg trace formula, which are natural
generalizations of the Poisson summation formula, we will concentrate on the
more arithmetic generalizations -the Petterson formula and the Kuznetsov for-
mula which connect Fourier coefficients of automorphic forms with Kloosterman
sums. Kloosterman sums are some exponential sums on algebraic curves or va-
rieties, sharp bounds of which are given using algebraic geometry. This allows
one to study spectral problems and Fourier coefficients of automorphic forms
borrowing the rich fruits from algebraic geometry and the deep machinery from
the classical theory of exponential sums.

The Peterson-Kuznetsov formula approach has, mainly through the work
of Iwaniec and his Collaborators Bombieri, Deshoulliers, Duke, Friedlander, ...
became a fundamental tool in modern analytic number theory. The theory
they have developed, which some have termed 'Klootermania’, has striking ap-
plications including mean value theorems of the Riemann zeta function over
short intervals, extending Bombieri-Vinogradov’s mean value theorem beyond
the capability of the Riemann hypothesis, achieving subconvexity bounds of
L-functions, etc. Another important application of Kuznetsov-Bruggman’s for-
mula made by Motohashi is the asymptotic formula of the 4th moment of the
Riemann zeta function.

In these lecture notes, our main goal is to introduce these valuable tools:
Peterson-Kuznetsov-Kloosterman approach to the beginners in the theory of au-
tomorphic forms. We develop the whole theory from scratch. We give detailed
proofs of Peterson’s formula and Kuznetsov’s formula. In proving Kuznetsov’s
formula, we take the approach of Zagier with the intention to generalize it to
higher rank groups. As for applications, we include the recent work of the au-
thor with Iwaniec [IL] on orthogonality of Fourier coefficients of automorphic
forms and the work with Sarnak [LS] on number variance for the modular group
SL(2,7Z), in the end, we sketch the proof of Iwaniec’s mean value theorem of
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the 4th moment of the Riemann zeta function over a short interval. In the
appendix we sketch the proof of Selberg’s trace formula for the modular group
SL(Z). Although many complicated and technical proofs, the basic theory is
developed in details, so essentially it is self-contained.

One should be aware that many other great progress in the analytic theory
of automorphic forms were made through other approaches. One of the exam-
ples is the recent remarkable progress on the generalized Ramanujan conjecture
made by Luo-Rudnick-Sarnak [LRS], Kim-Sarnak [KS] using the approach of
L-functions and converse theorems, see the nice expository paper [Sad] and the
references therein.

2 Holomorphic automorphic forms

2.1 The Poincare upper half plane and congruence sub-
groups

Let H = {z = = + iy|y > 0} be the upper half plane, it becomes a Riemannian
manifold of curvature —1 with the metric derived from the Poincare differential
form

ds? = y~2(da? + dy?),
we henceforth call H the Poincare upper half plane. The distance function on
H is given by
|21 — 22| + |21 — 22
|21 — Za| — |21 — 22|

d(z1,22) = log
Another simpler formula is
coshd(zy,22) =1+ 1/2u(z, 22)

with
_ =2

u(z1, 22) = 3755

We are interested in the quotient space of subgroups of SL(2,R) acting on H
by Mobius transformations
az+b

cz+d

7z =

for any v = (i Z) in SL(2,R). Although the mordern theory of automor-

phic forms was driven by consideration of more general groups, we are mainly
concerned with congruence subgroups of SL(2,Z) for many applications in arith-
metic. For ¢ > 1, the principal congruence subgroup of level g is

I(q) :={y € SL(2,Z)|y = I(mod ¢)}



where I is the identity matrix. Any subgroup of the modular group of SL(2,7Z)
which contains I'(g) is called a congruence subgroup of level g. The most im-
portant ones are

To(q) := {v € SL2,2)ly= (* ) (mod )}

and
1 %

Ti() = {y € SLR,Z)ly= (] )mod g),}

obviously T'o(1) = SL(2,Z).
The quotient space T'g(¢) \ H is a finite area, noncompact, hyperbolic surface.
Specifically, one can show
T

Vol(SL(2,Z)\ H) = 3
We can choose a fundamental domain for the action of I'g(g) on H formed by
a closed polygon whose sides meet at vertices called cusps. Cusps are also
described as fixed points of the parabolic elements in T'g(g) whose traces are 2
or —2. Clearly for

T, = {i((l) " ez,

clearly T'yo00 = 00, 80 00 is a cusp for [p(g). All the other cusps of T'y(g) are
equivalent to oo under the action of the modular group SL(2,7Z). The funda-
mental domain is noncompact because of the existence of cusps. The existence
of cusps makes the analysis much more interesting. For more details of this
section, one is suggested to read [Iw2].

2.2 Hilbert space of the holomorphic automorphic forms

Let x(mod ¢) be a Dirichlet character and k& > 0 be an integer with

for a function f on H and v = (Z 2) € SL(2,R), we set

az+b)

() = ez + D~ F (S

as the so-called slash operator, then it is easy to check that (f|,,)lr, = fl(y14s)
for any 71,7 € SL(2,R).

A holomorphic automorphic form of weight k attached to x(modq) is a holo-
morphic function on H satisfying the automorphy conditions

flv(z) = x(d)f(2)
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for any (Z 3) € To(q). Moreover f is required to be holomorphic at every

cusp 2. This means the following: Choose ¢ € SL(2,R) such that ¢(Q2) = oo,
then fly-1lpr o1 = flrog—1 = fls-1. Since ¢l'c¢ ™! contains a translation
z| = z 4+t for some real t > 0, it follows that f|,-1 has a Fourier expansion

> ane(zt™1), we say f is holomorphic at Q if a, = 0 for n < 0. If f has no
neEZ
zero term in the Fourier expansion at each cusp, we say f is a cusp form.

All the cusp forms form a finite dimensional Hilbert space Si(To(q),X)
equipped with the Petersson’s inner product

<fig>= / F(2)9(2)y duz
To(g)\H

where To(q) \ H is a fundamental domain and duz = y~?dzdy is the SL(2,R)
invariant measure. For k& > 2,

dim Si(To(q), x) < qu (1 + 11))
klq

which can be proved by the Riemann-Roch theorem (see [Sh], pp. 34) or Peters-
son’s formula we are going to develop. It is important to note that for weight
1 forms, all the above mentioned technology fail, the first nontrivial bound was
given by the ingenious work of Duke [Du] and was improved later on by Michel
and Venketash [MV].

Exercise: Prove that
SkTi@) = P SkTola),x)
x(mod q)

where the sum is over all Dirichlet characters modulo q.

2.3 Hecke operators and primitive forms

It was known from Ramanujan that Fourier coefficients of automorphic forms
have multiplicativity properties, it will be nice to choose an orthonormal basis
whose Fourier coefficients have multiplicativity properties, this is accomplished
by the introduction of Hecke operators. Let n > 1,k > 0 and yx a Dirichelt
character modulo ¢, the Hecke operator T,, is defined on functions f : H — C
which are periodic of period one by

T == 3 xwat 3 F(EE),

ad=n ogh<d

One can show that these operators are multiplicative, which means the following:

TnTp= Y x(d)d* ' Tppd™,
d|(m,n)



hence the Hecke operators commute with each other. T, maps cusp forms to
cusp forms and for (n,q) = 1 it is a normal operator, that means

<Tnf,9>=< f,x(n)Thg >,

for f,g € Sk(To(q), x). Therefore in the space of Si(To(q), x), we can choose
an orthonormal basis which consists of eigenfunctions of all the Hecke operators
T, with (n,q) = 1. One might hope to find an orthonormal basis consisting of
eigenfunctions of all the Hecke operators T7,, but in general this is not true, here
comes Atkin-Lehner, W. Li’s theory on primitive forms (i.e, the so-called new
forms).
Let ¢'d|lq,q¢ < ¢ and x'(mod ¢') be the Dirichlet character introduced by
x(mod ¢), then f in Si(To(g),x) is called an old form if f(z) = g(dz) with
g(z) € S(To(q'), x'- The orthogonal complement of the linear subspace of old
forms in Si(T'o(g), x) is the linear space of new forms S} (T'o(g), x). It turns out
by the multiplicity one theorem, see Chapter VII of [La], in S} (To(g), x), one
can indeed choose an orthonormal basis consisting of eigenfunctions of all Hecke
operators T, which are henceforth call them Hecke eigencusp forms. It follows
that if y is a primitive character modulo ¢, all the forms in Sk(T'0(gq),x) are
primitive, we then can find a basis formed by Hecke eigencusp forms.
One immediate important consequence for a new form f being an Hecke eigen-
cusp form is the multiplicativity of its Fourier coefficients, in more concrete
words, assume T, f = A(n)f for n # 1 and f(2) has the following Fourier series
expansion at the cusp oo :

fz) =) f(n)e(nz),
n>1

A

then A(n)f(1) = f(n) for all n > 1. One can check easily that f(1) # 0 and the
following multiplicativity holds:

Am)A(n) = Y x(d)d* ' X(mnd?)

d|(m,n)

for any m,n > 1.
Due to the multiplicativity of the Hecke eigenvalues of a new form f, the corre-
sponding Dirichlet series - the so-called L-function

for s > 1 has an Euler product of degree 2

Ly(s) = [J@ = x@p~* + x(p)p*~' 2~

which is one of the most important properties of L functions.
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2.4 Poincare series and Petersson’s formula

One of the most important techniques to construct automorphic forms is by
averaging. The Poincare series are constructed in this way: for m > 0 let

Pu(z)= Y X()i(v,2) Fe(myz)

7€l \To(a)

with j(v,z) = cz+d for y = (a b

. d) € SL(2,Z),k > 2. These are the Poincare

series at the cusp co. If m =0,

P(z)= Y x(ity2) "
Y€l \T0(q)

is the classical Eisenstein series of weight &, usually denoted as E(z). Indeed,
the Poincare series are automorphic forms of weight k over the group I'y(g) since
they are averages of e(mz) over the group I'y(q). By scaling, one can construct
other Poincare series at any other cusps of T'g(q).

Next we are going to develop the Fourier expansion of the Poincare series. We
are interested in the Fourier expansion of P, (z) mainly because it gives rise to
the classical :

(2.1) Sy(m,n;c) = Z X(a)e(@).
aa=1(mod c)

The Fourier series expansion of P,,(z) is a direct consequence of the Bruhat
decomposition of I'g(g) which states

Lemma 2.1.

Fo(q)zfooU(U U FOO(Z S)F”)

¢>0d(mod c)
e (d,c)=1

where (Z Z) € To(q)-

The proof is obvious since multiplying a matrix (i 3) in Ty(q) by a matrix

in 'y, on the left or on the right simply shifts @ and d. So the double coset
decomposition is determined uniquely by the pairs {(c, d)|g|c, d(mode), (d, ¢) =

1}.

For m > 0, assume P,,(z) has the following Fourier expansion:
Pp(z) = Z am(n)e(nz),
nez

then clearly

am(n):/0 P, (2)e(—nz)dx



due to the simple fact that

/Ole((n—n')x)da::{ é o

otherwise.

Applying the Bruhat decomposition to the definition of P,,(z), we have

(2.2) Pu(z)=e(mz)+ Y > x(d)I(c,d;z)
c>0 d(modc)
c¢=0(modgq) (d,c)=1

where

I(c,d;z2) = Z (C(Z+l) +d)_ke(m(% - C(C(Tll)‘i‘d))),

IeZ

this can be easily checked because

2y (e )1 1)) = - mrra)

In view of the above formula, to compute a,,(n), we are led to do the integral

(2.4) J(e,d,m, 1) = /0 (c(z-l-l)-l-d)—ke(c(c( —m

By a change of variable, the above integral is

1 c(l+1)+d _ . d
—/ (a:-{—iy)_ke( T n(@ + iy) +n—)d:n
¢ Jerrd c(z +iy) c c

which we denote it as e(”Td) J*(¢,d,m,l), the factor e(%d) in (2.3) and x(d) in
(2.2) give rise to the Kloosterman sum S, (m,n;c). Since

ZJ*(c,d,m,l):é/ z*ke(ﬂ—%)dz

IEZ Sz=cy €% ¢
0 ifn<0
T knk_l H
(2.5) = (2@7) NG if n>0,m =0,
k—1

%(m) > kal(@) ifn>0,m >0,

n

where J,(z) is the J— Bessel function of order p, the first formula is by contour
integration, the second formula is by ([GR], 8.315.1) and the last one is by ([GR],
8.412.2.) We conclude that
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Theorem 2.1.

= /01 P, (z)e(—nz)dz
(1

ifn=m=0
k-1 .
(27”) 711“(1@) (32>:0 c*5(0,n;¢) if n>0,m=0,
( )
=< (2.6) r1
m) 2§ 2miR S LS, (mynge) Ty [ Amn if n>0,m >0,
n X c
c>0
ale
L 0 otherwise

where 6,y is the Kronecker symbol.
The following corollary follows from the above theorem:
Corollary 2.1. For m > 1, P,,(2) € Sk(To(q), X)-

Another important property of Poincare series is that they pick up Fourier
coefficients of automorphic forms in the following sense: Let

(2.7) f2) =) f(m)e(nz)
n>1

be the Fourier expansion of a cusp form f in Si(To(q),x), we have
Proposition 2.1. < f, P, >= (47Tm)"’ 1f( ) where m > 1.

Proof: By the definition of the Petersson inner product and the definition of
the Poincare series, we have

< fy,Pn >
:/F (@)\ ZIONDY XNi02) " e(—mAE)dpz

'VGFOO\FO(‘I)

= [ Y S6a e -mide

Peo\H ep \I'o(q)

where we used the automorphy condition of f(z). By unfolding the inetgral, we
have

< f, Py >= /OO\H y* f(2)e(—mz)dpz
I / e

Fm)—

da?dy

/ f(m)exp(—4mmy) ydy

_ 1)
(47rm)k T
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as asserted. [

Hence P, (z) with m > 1 expands the whole space of Si(Io(q), x). Otherwise,
there is a cusp form in Sk(FO( ), x) all of whose Fourier coefficients are 0, obvi-
ously, that is impossible.

Let F be an orthonormal basis of Si(To(g),x), for each f in F, we have the
Fourier expansion (2.7), by the Parseval formula and the above proposition, we
have

< Py, Py >= Z < P, f>< f, Py >
fe]—'

r
(2.8) = (47T)21§ 2(mn)F—1 Z f

feF

On the other hand, we can use the Fourier expansion of poincare series and the
above proposition to compute the inner product:

T(k - 1)

< Pp, Py >= me(n)
_ Tk—1) rm\ 3"
where
47/
(2.10) oy (m,n) = 2mi=* Zc‘le(m,n;c)Jk_l( T Cmn)-
c>0
qle

Comparing (2.7) with (2.9), we end up with the Petersson formula

Theorem 2.2. For m,n > 1,k > 2, we have

where oy (m,n) as defined above.

Exercise: Use Petersson’s formula, for ¢ a prime, k > 2, x a Dirichlet character
modulo ¢, prove that dim S (To(q), x) < kg, try to get a good error term.

2.5 Orthogonalities of Hecke eigenvalues

In classical analytic number theory, the following so-called large sieve inequality
for Dirichlet characters are well known: For any complex vectors a = {a,}, we
have

(2.11) 22 STY e < (1+@)||0é||2

¢<Q x(mod q) N<n<2N
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where the superscript * restricts the summation y primitive and ||a]| is the I5—
norm. There are many proofs, see ([Monl], for example), we are going to give
a proof due to Bombieri which uses the powerful tool-the duality principle:

Lemma 2.2. ([Monl])

Let Cpry 1 <n <N, 1 <7 < R be any complex numbers and D > 0, the
following are equivalent:

1) For any complex vectors v = {z,},n < N,

(2.12) Y 1> Copwnl® < Dja]?.

r<R n<N

2) For any complex vectors y = {y,},r < R,

(2.13) Y 1Y Corel® < Dyl

n<N r<R

Proof. Suppose 1) holds, let L be the left side of (2.13), expand the square in
(2.13), the left side of (2.13) equals

Z Z Z Cnrénr’ yrgr’
n T r!
which is less than or equal to -
lyl| D> L>
by the Cauchy inequality and 1). It follows that
L < Dlyl1*.

2) is proved.

Similarly, we can derive 1) assuming 2) holds. This completes the proof of
the lemma. O
Now we are ready to give Bombieri’s unpublished proof of a slightly weaker
version of (2.11):

Proposition 2.2. For any complex vectors a = {a,}, we have

1 * 2 e N 2
1) mY XY el <@ (14 g)llel”

4<Q x(mod ¢) N<n<2N

Proof. The proof has two steps:

e The first step:

By the duality principle, it suffices to prove the following dual inequality: For
any complex numbers ¢, ,, we have

(2.15) SIY Y e mPo(y) < @@+ N)el?

N<n<2N ¢<Q x(mod gq)
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where we attached a smooth factor g(z) which is 1 on (1, 2)and 0 on (—o0,0) U
(3, 00).
Expanding out the square on the left, the left of (2.15) is equal to

(2-16) ZZ Z Z Cq1,x1Cq2,x2 ZXI (n)E(n)
g1 g2 x1(modgi)x2(modgsz) n

Now we recall that primitive characters can be expanded as sums of exponential
sums, i.e., if x is primitive, then

where 7(x) is the Gauss sum. It then follows that

S umEm)
211 = 3 S ) ane((;il - D))o
Now assuming

(2.18) N > Q%**e,

the above is equal to

0 s S w060 [ () ool

q1 42

the integral is negligable, i.e, O(N~4) with A any large number unless ¢, = ¢»
and a = b. In this case, the main contribution comes from the diagonal term, the
left of (2.15) is < Nl|¢||?, where we have used |7(x)| = /g for primitive character
X(mod ¢). By the duality principle, we proved (2.15) under the condition(2.18).

e The second step:
If (2.18) doesn’t hold, we are going to choose a number P >> log ), then

Y ST Y anmP?

¢<Q x(mod ¢) N<n<{2N

<3Y Y e XY dmpm)P

P<p2P x(mod ¢) Np<m<2Np
p prime,(p,q)=1

where
am if plm
! — P
@'(m) { 0 otherwise.
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and we used an important property of , that is,

Ix(np)| = |x(n)],

N
(2.18), so by the result what we have proved in the last step, we have the above

1S

if (p,q) =1.Fix P = [QHE] +1, then NP < Q2% which satisfies the condition

1 2 112
<5 D logp(@+ Np)ld|

P<p<2P
which is bouned by Q**¢||a||> because ||a’|| = ||a||. This finishes the second step.
Considering the above two steps, Proposition 2.2 is proved in the full generality.

O

Proposition 2.2 was applied by Bombieri to prove the famous mean value theo-
rem on primes. In histroy, such inequalities were called large sieve inequalities
(just a name). Let’s give more explanations:

Let F be a family of arithmetic objects. To each f € F, we assume that a
sequence {f(n)} with n positive integers is associated and f(n) has the size of
Oy(n?) for all n > 1, the large sieve inequality for F means the following:

For any complex vectors a = {a,} with 1 < n < N there exists a constant
C = C(F,N) which depends only on F and N such that

(2.20) 01 X auf0F < OFN) Y Janl

fEF n<N n<N

It is called an asymptotic large sieve if the inequality is replaced by an asymp-
totic formula as |F| and N go to infinity.

If we expand the square on the left of (2.20), we get a bilinear form in a,, and
an, the diagonal term m = n gives us the contribution (1 + O(N|F|~>))||H||€,
so the best estimate one can hope for C(F, N) is roughly,

(2.21) C(F,N) =1+ o(ﬁ).

| 7|
What’s the significance of the bound (2.21)?
1. With the bound (2.21), (2.20) says that the projections of any complex
vectors {a,} on {f(n)} are small quite often comparing to the norm of the
vectors {a,}, so we say {f(n)} are orthogonal in some sense as f varies over F.
2. If we take a,, = 1 for all n > 1, it follows that on the average the linear form

Li(ao) = Z fn) < N=*e,

n<N

if |F| < N. For each individual form, this bound is the consequence of the big
open Lindelof hypothesis for the L function L(f,s) = Y. f(n)n~* which says
n>1

that L(f,s) <y q(f,s)° on the line Rs = I, where ¢(f,s) is some constant
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depending on f and s.
3. Take a, = p(n) the Mobius function, we have, on the average the linear
form:

Ly(en) = Y un)f(n) < N=¥,

n<N

if |F| < N. For each individual form in F, this estimate is equivalent to the
Riemann hypothesis for the L function L(f,s). This also explains why (2.20)
often serves a substitute of the Riemann hypothesis for Dirichlet L functions.
Hecke eigenvalues, or more generally, Fourier coefficients of cusp forms are nat-
ural generalizations of Dirichlet characters, so one might hope such large sieve
inequalities (2.20) with the bound (2.21) still holds. Indeed, in some cases, it is
true as the following theorem says. For each f in an orthonormal basis 7, of
Sk(To(q), x), with k > 2, f(n) be its Fourier coefficients, set

T(k—1)\z
Yr(n) = (W) f(n)
be the nomalized Fourier coefficients, for N < ¢, we have

Theorem 2.3. ([Iw])

(2.22) Y P = (1406(3) 3 Jau?

f€F, n<N 7 3 <n
for any complex numbers a,,.

Proof. According to Petersson’s formula, the left side of (2.22) is equal to

llal]® + Z Z AmQn 0y (M, n)
m<N n<N
with o, (m,n) is defined in (2.10).
Expanding the Kloosterman sum and by the Cauchy ineqality, it is easy to see
that the bilinear form

ZZamdnSX(m,n;c)
(2.23) < 1Y we( )P < et Nl

d(mod ¢) n<N

To utilize the above argument, we have to separate the variables m and n in the
argument of J— Bessel function. For that purpose, we use the Mellin integral
representation

1
Jr—1(z) = / y(r)z"dr, 0 <o <k-—1
(o)

T 2mi
with

=z r(E e ()
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This represents the Bessel function Ji_1(x) by the power function z" which is
useful to separate variables, particularly when z is a product of many indepen-
dent parameters. However we lose control of the size of the function. We recover
this control by moving the line of integration Rr = ¢ to the contour Lx with
Rr=0=-1if |Sr| < X and Rr =0 = 1if |Sr| > X. Then write

Jr—1(z) = QLM/E 7X(r)(%)rdr

with yx(r) = y(r)X7". For r € Lx we have vx(r) < X (X + |r|)~2. Hence

/ by () dr| < 1.
Lx

Separating variables m and n as above and by the arguments (2.23), we get
what we claimed. O

Remarks. The above bound is consistent with the classical large sieve: (2.20)
and (2.21), so it serves the role as the average form of Riemann hypothesis. It
also shows 9 ¢(n) has the average size of q*% assuming that ¢ > n.

The larger family is put into the play, the stronger orthogonality should come
out, which means that we are supposed to get a better error term than the one
in the above theorem. Driven by this principle, in [IL], we performed extra av-
eraging over characters xy(modgq). we did get some extra saving, but surprisingly
not the maximal one as expected by the bound of the classical large sieve (2.20).
More precisely, using Petersson’s formula, Plancherel’s formula and other har-
monic analysis, we proved the following: Let

(2.24) Lia)= > amibs(m),
N<m<2N
and
_ 47 [hn
(2.25) Pri(a) = Z anS(hq,n;t)Jk,l(T’/?).
N<n<2N

Theorem 2.4. [IL] Let q be prime and o = (a,,) be any sequence of complex
numbers for N <n <2N. Then k> 2 and 1 < H < T, then

@ S Y )P

x(mod q) fEFy

x(—-1)=(-1)*
-! > Cay T 1Pt + of(1+5+ \/qEH)NE“O"V)

(t7Q):1

with any € > 0, the implied constant depending only on k and €.
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To estimate how large the main term is, we are led to the following large
sieve inequality for Kloosterman sums and J— Bessel functions, set

(2.26) AHT,N) = > > [Pule
H<h<2H T<t<2T
(t7Q):1

forany H,T, N > 1, where Pp¢(a) is the linear form (2.25), we have the following

1+e
Proposition 2.3. Let 1 < T < %, 1< HK (%) ,a = (a,) be a sequence

of complex numers, then

N N
2 € 2
(2.27) A(H,T,N) < ¢T (1 + +,/—q )N |

where the implied constant depends only on k and €.

This can be proved directly, but we would like to take the dual approach in
order to illustrate the techniques of the duality principle.
Proof. Because a,, are arbitrary numbers it suffices to estimate the dual form

(228) AN =333 v t)S(hanit) s (4%@) |
n h &

where y(h,t) are arbitrary complex numbers for H < h < 2H, T <t < 2T
with (¢,¢) = 1. Our estimate must depend on the y(h,t) only by way of being
proportional to the l3-norm

(2.29) P =33 (o)
h t

otherwise the result would be useless for applications to the original form A(H,T, N).
Before opening the square we enlarge and smooth the outer summation

A(H,TN) < g(5) 120 Y2 A, S (hyni )i 1(4;’ﬁ)|2
n h t

Here g(z) is a smooth function supported on [1, 2]. Now this equals

Z ZZZW B 12)7 (o, £2) Z e (hlzdl ~ hgtlidg)

h1  t1 ho t2 di(t1)

()82 (1) ()

The terms with ¢; = t5,d; = dy contribute

2.0 = Fa(2) S5 S the()onn (2.

todt) h
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Before squaring out we expand the summation over d(mod t),(d,t) = 1 to all
residue classes modulo ¢ getting

AS(H,T,N) S>> Y by, t)y(ha, 1)

t h1 ho= h1()

[ o) e (2 s (22, 2|

Assuming N > 128 HT ~2q~! (this is very weak condition) we find that the sum
over n is equal to the corresponding integral

N O T HC o

up to an error term O(N~4) which is negligible . Moreover the above integral
has no stationary phase, so

Vhi = vha| \/ 2|
2. N1 n(1,T
(2.30) < ( y v Vil = N)
aN hy — ha\2 N\~ qT2\ %
T\/H(1+( T )qH) (1+TN) '
Then, given h; the resulting sum over hy = hq (mod t) yields

S (0 () Y a2

ho

Hence we conclude that the terms ¢t; = t2,d; = ds contribute at most

N
* 2 2
(2.31) Ap(H,7,N) < g7 (1+ qH) (1+ —) I
We are left with the terms not satisfying
d d
(2.32) L =2(mod 1)
t1 to

As above the sum over n equals to the corresponding integral

239 [Tl - () [

up to an error term O(N~4) which is negligible. Now, however, one may en-
counter a stationary phase, unless we assume that the linear part in the expo-
nential dominates over the square root parts in the exponentials coming from
the Bessel functions . Note that
|y s
t 2 1t2
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Therefore, in order to miss the stationary point, we assume that [V is sufficiently
large, say

(2.34) N> (R + 128§)T2

where R > 1 is at our disposal. Then the integral (E1) is < NR™ for any
A > 0 by partial integration A times. Hence the terms (2.32) contributes to
A*(H,T,N) at most

YD vl t)y(ha, o)t NR™A < HTPNR ||y,

hi t1 ha t2

Adding this bound to (2.33) we obtain a bound for A§(H,T,N). Finally ap-
plying the duality principle we deduce the following bound for the original sum
A(H,T, N).

2

N 1 T _1
(2.35)  A(H,T,N) < {qT2(1 + q—H) : (1 + Z—N) * L HT*NR~YY||a%.

where A is any positive number, the implied constant depends only on &, A.

The condition (2.34) can be relaxed by the following device which is remi-
niscent to the one used in [FV].

Z logp>logP if P> logt.

P<pL2P
prt
Hence
1 _ 4r [hny 4
AHTN) <5 Y (ogp) Y Y lanS(hg,nst)J(= /=)
P<p<2P b (t,p)=1 q

Given p we can write S(hg,n;t) = S(hgp, np;t) and J(%’r, / %) = J(%’H / %).
Hence the resulting sum is of the same type as A(H,T, N), but with ¢ replaced
by ¢gp, N replaced by Np and the sequence a = (a,) replaced by the lacunary
sequence (anq) of the same lo-norm. The above arguments are applicable in the
modified situation provided

H
) > —\)1?
(2.36) NP> (R+128qP)T
getting
2

(2:37) A(H,T,N) < {aPT?(1+ %)5(1 + %)_% + HT*NPR™ }al?
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We take

RT? H
2. P = 12T | — + logT
(2.38) N + ”qN + log

which satisfies (2.36). Then we take R = N°¢, so

P < (1+§)N5
2

(1+§)(1+%)_% < (1+}2—3N)%

(1+q%)%(1+i—2N)% < (1+;V—2+\/qEH)N5.

Then we are done. [
We have the following corollary:

Corollary 2.2. Let q be prime and o = (ay,,) be any sequence of complex num-
bers for N <n <2N. Then k>2 and 1 < H <T, then

2 9 N N - 5
(2.39) 5@ S S ILH@)] e (q—2+\/;+1)N llae||?.

X(modq) fEFx
x(-1)=(-1)*
Remark. From the above corollary, in the most interesting range N =< ¢2, the
main term is bounded by ,/g||||* which is much larger than the bound [|a||* as
expected from the classical large sieve (2.20). The large sieve in this case fails
its power as a substitute as the Riemann hypothsis! The following proposition
shows the upper bound we gave is optimal: Taking the vector ag = (ag(n)), N <
n < 2N with

(2.40) aal) = S(hag.mit) (1 [

for N < n < 2N,

N
(2.41) GtEN "1 < ho < min(—, %)N*E,
q

one can show

Proposition 2.4.

2 p(to) | N -
2.42) —— L Py —(A+0O(N® 2
(242) o X(mEOdjq) f}gﬁj (@) > S22 [ (14 OV =)ol
X(=1)=(-1)*

where the implied constant depends only on €.

Remarks. This interesting phenomena shows the Fourier coefficients of f point
towards the direction of families of vectors formed by products of Kloosterman
sums and Bessel functions.
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3 Nonholomorphic automorphic forms

3.1 Invariant differential operators

Let’s back to the Poincare half plane H. The hyperbolic differential operators
derived from the differential ds? = y=2(dz> + dy?) is given by

0? 0?

T

It is easy to check that A is SL(2,R) invariant which means that for any func-
tions f on Hj

A= —y*(

A(f(vz)) = (Af)(vz)
for all v € SL(2,R), and the algebra of all the differential operaotrs is generated
by A.

Definition 3.1. A function f : H — C with continuous partial derivatives of
order 2 is an eigenfunction of A of type v if

Af=v(l—-v)f.

Since A is an elliptic operator, all its eigenfunctions are real analytic. One
can easily check that I,(z) := y" is an eigenfunction of A of type v.

3.2 Fourier expansions of nonholomorphic automorphic
forms

From now on, let’s fix I' = SL(2,Z) for simplicity although there is no essential
difficulty to generalize the whole theory to any congruence subgroups.

Definition 3.2. An automorphic form f of type v acting on H is an eigenfunc-
tion of A of type v satisfying the automorphy condition

flvz) = f(2)
for any v € T.

L?(T \ H) equipped with the Petersson inner product is an Hilbert space.
The main goal of the Harmonic analysis on I'\ H is to decompose L2(T"\ H) into
a direct sum of eigenspaces of A, i.e., the so-called spectral decomposition.

An automorphic form of type v is a periodic function, so it must have such a
Fourier expansion

(3.1) f(z) =Y am(y)e(maz).

mEZ

Set W) (z) = am(y)e(mz), then it satisfies the following conditions:
(3.2 AW (2) = (1 — )W (2),

(3.3) W (z +u) = W) (2)e(mu),

for any u € R. From the classical theory of differential equations, we have
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Theorem 3.1. (Multiplicity one theorem) The function f satisfying (3.2) and
(3.3) which grows not too fast, namely f(2) = o(e?™) as y — 0o is unique up
to a multiple of a constant. More precisely, f(z) must be a constant multiple of

(34) W (z) = V2(r|m|)" T (v) ™' /2ry K, _ 1 (27| my)e(ma)
with K, (y) the classical K— Bessel function.

Remark. W/"(z) is usually called the Whittaker function of type v associated
to the character e(mz).
From the above observation, we have the following

Corollary 3.1. Any automorphic form of type v with the growth condition
0(e*™*), as y — oo has the Fourier-Whittaker ezpansion

n#0

Definition 3.3. A Maass cusp form f is a bounded automorphic form whose
zero term in the Fourier expansion is 0, i.e, f(y) = 0.

For the modular surface I' = SL(2,Z), the first eigenvalue corresponding to
Maass cusp forms is > 0.91 as numerical analysis shows. While for the congru-
ence subgroups Selberg’s conjecture says that the lowest laplacian eigenvalue is
> i, the best upper bound up to now is due to Kim and Sarnak [KS].

3.3 Poincare series and Eisenstein series

By analogy with the classical Poincare series, following Selberg, we construct
real analytic Poincare series using the following datas:

e The power function y*;

e The so-called E— function which is bounded on H and satisfies E,,(z + u) =
e(mu)En(z) for all u € R and 2z € H.

Definition 3.4. The real analytic Poincare series is defined as

(3.6) Pn(z,5,E) =1 > S(y2)°En(72).
YET o\

It is easy to see that P,,(z,s, F) is absolutely convergent in the half plane
Rs > 1.

Definition 3.5. The Eisenstein series is

(3.7) E(z,s) =: Z (Svy2)*®

YET o \T

which is absolutely convergent in the half plane Rs > 1.
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Obviously the Eisenstein series is a Poincare series with m = 0.
We start to derive the Fourier expansion of the Poincare series:
Set

1

(3.8) an(y) = / Py (z,s, E)e(—nz)dz,
0

by the Bruhat decomposition,

(3.9) Pn(z,5,E) = y°Epn(iy)e(mz) + Z Z In(c,d, 2,5, E)
¢>0 d(mod ¢)
(d,e)=1

with

1 a 1
Im 7d777E:S —Em__—
(¢,d,2,5,E) =y é|c(z+z)+d|2s (< c(c(z+l)+d>)

s (Mma 1 1
—Y 6(7) 2 (c(z + 1) + d)2 +c2y2)sEm(_ c(c(z +1) +d))

lez

by the property of the E function. To compute a,(y), it leads to compute
(3.10)
1 1

Im(c,d,y, s, E) ::/0 (c(z + 1) +d)? +C2y2)sEm(_m

by a change of variable, the above equals

%e(%i) /C;jl;1)+d(a72+c2y2)sEm(c(wlilicy))e(—%)dx = %e(n?d)J;L(C, d,y,s, E)

)e(—na:)da:,

the factor e(”d) and e(de) toghether gives us the Kloosterman sum S(m,n;c)

as d runs through the residue class modulo ¢ such that (d, c) = 1, since

R B e L

lez e

= (ey)' ™% /°° (z> +1)"°Ep, (CQy_il)e(—na:y)da:

- (x +1)
=: ()" " Qmlc,y, s, E),

we have the following theorem:

Theorem 3.2. For Rs>1,n € Z,
1
a’n(y) = / Pm(Z;S,E)B(—TLCU)dCU
0

. _ 1
=y E(imy)dpm +y' ~° Z ES(m,n; €)Qm(c,y, s, E).
c>0
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In case m = 0, it is easy to show
o0
@5 B) = [ &+ ) e(-nmy)is

—00

s 37% —1 N .
(3.11) :{% Iny|*~3T(s) LK,y (2xlnyl),  if n#0

V7l(s — $)I(s)™ otherwise.
If m = 0, the Kloosterman sum degenerates to the Ramanujan sum
* rdn c
S(0,n;¢) = Z e(—) = Z ,u(a)d,
c

a(mod ¢) d|(c,n)
and S(0,0;¢) = ¢(c) the Euler function, it follows that
[ee]
Z c™255(0,n;5¢) = ((2s)7" Z d'=2
c=1 d|n

and

S e 285(0,0:0) = ((25) 1 g(25 - 1),
c=1

where ((s) is the Riemann zeta function, now we end up with the following
Fourier expansion of the Eisenstein series:

Corollary 3.2. For s > 1, we have

(3.12) E(z,8) = y* + p(s)y*~ s-l-an s)V/2myK,_1(2m|n|y)e(nz)

n#0

where

(3.13) pls) = wH(s — )D(s)1¢(28 — 1)C(28) 7,

(3.14) p(n,s) = V2n|*T(s)™* mT3((2s)” Zdl %,

From the above Fourier expansion of the Eisenstein series, we can derive its
meromorphic continuation and functional equation:

Theorem 3.3. The Eisenstein series can continued meromorphically to the
whole complex plane. The modified Fisenstein series E*(z,s) = m*['(s)((2s)E(z, s)
is reqular except for simple poles at s = 0 and 1 and satisfies the functional
equation:E*(z,s) = E*(z,1 — s) for all z € H. Specifically E(z,s) is holomor-

phic as a function of s on RNs = %
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As the classical Poincare series, another important property of real analytic
Poincare series is that it picks up Fourier coefficients of automorphic forms.
Particularly, for E,,(z) = e(mz),, i.e,

(3.15) Pu(z,5,E) = > (S(y2))e(myz),
YET \I'

for f a Maass cusp form of type v which has a Fourier expansion (3.1) with
ao(y) = 0 we have

Proposition 3.1.

< Pn(z,8,E), f >= (2)2 y/m(dwm) *ay,

and

1 1 .
— < Pulz,8,B), Bz, 5 +ir) >= 22725 (nm)2 5 "y ()
Vs
with os(n) = > d°.

0<d|n

With the help of the above formulas and the spectral theory decomposition
in the next section one can obtain the meromorphic continuation of P,,(z, s, E)
as Selberg did [Se].

3.4 Selberg’s spectral decomposition

In this section, we are going to prove Selberg’s spectral decomposition of L?(I"\
H) which states that

2 2 2
L (F \ H) = C D Lcusp D Lcont

where C is the space of constant functions, L2, is the space of Maass cusp

forms and L2, is the space of integrals of the Eisenstein series which are square

integrable. the existence of continuous spectrum L2, is due to the fact that

I' \ H has cusps which make it noncompact. More concretely, it states the
following

Theorem 3.4. Let ug(z) = \/g and u; for j > 1 is an orthonormal basis of
the space of Maass cusp forms, for any f € L*(T \ H), we have

1 1 1
= : : —_— E - ; E . ) .
f(2) ]E>0 < fouj > uj(z) + . /R < f,E(z, 5 +ir) > E(z, 5 +ir > dr

To prove the Selberg spectral decomposition theorem, we need the following
lemma:
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Lemma 3.1. For any bounded f € L>(T \ H) and < f,1 >=0, let

. 1 1 1
/<f, (2, +zr)>E( +zr>dr
C4rm
then f(z) is a Maass cusp form.
The reference of the following proof is [Za] or [Go]:

Proof. Let
= Z an(y)e(nz
neL

be the Fourier expansion of f, for s > 1, by unfolding the integral, we have

<LEGE) >= [ f2) ) (32)°dpuz

T\H YET L\

= sduz—/ / f(z da:dy
Too\H

= /Ooo ao(y)ysd—'g =: M(s —1).

Since Ress=1FE(z,s) = % and < f,% >=0, M(s — 1) has no pole at s = 1.
It follows that M (s — 1) is holomorphic for ®s > L. Also M(s — 1) has the
following functional equation inheriting the functional equation of E(z,s) :

(3.16) M(s—=1) = ¢(s)M(1 — s)
or equivalently

(3.17) M(=s)=¢(1—s)M(s—1).
By Mellin inversion, for ¢ > 1,

1 —s
ao(y) = 5 . M(s — 1)y *ds.

Since M (s — 1) is holomorphic for ®s > %, we can move the line of integration
to Rs = % e then have

1

_ = _ 1—s
ao(y) = 5 pet M(s—1)y *ds
1
= _— M(—s)y°d
27Ti %s:% ( S)y S

by changing variable s — 1 — s.
Applying the functional equation in Theorem 3.3, we have

o) = g [ Mo+ (sl s

47

1

= [ M-+ eyt
T Rs=1
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Recall that y® + ¢(s)y!~* is the constant term of E(z, s), the above means that
the constant term of f(2) is 0. So we are done. O

One can also show the resolvent of the Laplacian is a compact operator on
Lgusp( \ H), so A has pure point spectrum on this space, Selberg’s spetral
decomposition follows from this observation and the above lemma.

3.5 Kuznetsov’s formula

This section is devoted to the derivation of Kuznetsov’s formula which is a
generalization of Poisson’s summation formula to nonholomorphic forms. We
will use Zagier’s unpublished proof because it is easy to be generalized to GL(n).
We need to introduce some invariant integral operators. for each k on H x H
which is point pair invariant, i.e, k(vz,yzl) = k(z,z’) for any v € SL(2,R),
obviously, k£ only depends on the hyperbolic distance between two points, we
hence denote it as k(u(z,z)). Define an integral operator Lj which acts on
f € LA(D\ H) by

(3.18) (Lif)(z /f (2, w)dpw
= ; F\Hf yw)k(z, yw)dpw
= |  fw)K(z,w)duw
I\H
where
(3.19) K(z,w) = k(z,7w)

y€er

is called an automorphic kernel.
It is easy to check that these integral operators Lj are invariant operators, i.e,

(3.20) (Lif)(v2) = Lir(f(72))

for all v € SL(2,R) and they commute with the Laplacian. Furthermore, we
have

Proposition 3.2. Let ¢ be a Maass cusp form of type v, then
(Lk)(2) = k(v)o(2)

where lAc(l/) depends only on k and v. More precisely,

k(v) = (L 1,)(i) :/Hk(w i) (Sw)? dw.
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k(v) is usually called the Selberg (or Harish-Chandra) transform of k. It has
an inversion formula given by
1
4
with v = 1 +it, for any k(u) € L*(R), where F,(u) = P_,(2u + 1) being the
spherical functions given explicitly by

(3.22) Fy(u) = = / " (Qu+ 1+ 2/ulu 1) cos 8)~do,

™ Jo

(3.21) k(u) = /_ h F, (u)k(v) tanh(xt)tdt

and tanh(rwt)tdt is the spectral measure.
The following propositon states the properties of the Selberg transform:

Proposition 3.3. Set Q(w) = foo h(t dt ,g(u) = Q(e" + e ™ — 2), then
h(r) = ffooo g(u)e(%)du is the Selberg transform of k. Conversely, k(t) =
_ 1 oo dQ(w)

w Jt w—t '

Given k(u) € C°(R), we will compute the (m,n)— th Fourier coefficients of
K (z,2") with m,n > 1in two ways. One way is to use the Bruhat decomposition
and the other is to use the spectral decomposition of L?(T'\ H). After these two
computations are made, we end up with an identity which is termed as the
pre-Kuznetsov formula.
To start, define

(3.23) Pn(y,2") ::/0 K(z,2"Ye(mz)dz,

we have
Lemma 3.2. The function P, (y,z') is a Poincare series in z'.

Proof. We rewrite P, (y,2’) as

Z/ k(z,v2")e(mz)dz

vyer

(3.24) Z / (z,v2")e(mz)dz.

YET o\
Define -
Enly.#) = [k )e(ma)ds,

— 00

then for u € R

En(y,2' +u) = / k(z,2' + u)e(mz)dx
= k(z —u,2")e(mz)dz

(3.25) = e(mu) Em(y, 2")
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which shows that E,,(y,z’) is an E— function in z’. Now the lemma follows
from the definition of Poincare series.

It follows from Theorem 3.2 and the above lemma that
/P Y, 2 nw)m—énm/ k(z,iy")e(mz)dz

(3.26) +ZS (m,n;c) / / @ 41-zy ))e(mx —nx')dzdx'.

c>0

On the other hand, since K(z,2') € L?(I' \ H) in z or 2/, by Selberg’s spectral
decomposition,

B2 K#) = S ke)e )66 + 7 [ OB ) B s,

j20

we can decompute the Fourier coefficients of P, (y,2’) by the above spectral
expansion of K :

1
/Pm(y,z')e(—na:')da:'
0
11
:/ / K(z,Z'e(mz — na')dxdz'
o Jo

=2m\/yy' [ k(vy)pi(n)p;(m)K,,,_y (2xlnl)y) K, _ (27|mly)

jz1

(328)  + /% | k@)pm. )3, ),y @lnly) K, (2nlmly)ds]

Nl=

where
(3.29) o3 (VK (2xlily") / b4(

with y* =y or y’ and z* = z or 2’ and p(l, s) is defined by (3.14).

Remark. On the right of (3.28), the constant function ¢o(z) and ¢o(z') don’t
contribute because their (m,n) — th Fourier coefficients are 0, for m,n > 1.

Comparing (3.26) with (3.28), we arrive at the following pre-Kuznetsov for-
mula:

Proposition 3.4. (Pre-Kuznetsov formula) For k € C(R), p;(l) and p(l, s)
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are defined by (3.29) and (3.14) , m,n > 1, we have

2y’ (3 k()p; (m)5; (MK, _y @iy K,y (2 imly)

-l-/%s:l ];?(S)P(n,s)ﬁ(m,S)Ks,%(27r|n|y')K'sié(27T|m|y)ds)

330 =bn [ ki iy)e(ms) + Y S(mm o Hy.y'sc,n,m)
e >0
where
(3.31)  H(y,y',c,n,m) / / —1 )e(m:ﬂ — na')drdx'
i 2, i) .

To obtain a handy formula, we intend to remove those K — Bessel functions
in the pre-Kuznetsov formula. For that purpose, we set

(3.32) ny' =my:=v

multiplying both sides of (3.30) by v~ ! and integrate both sides with respect to
v from 0 to oo, due to

/ |Klu(l')|2dl' = Z(COShﬂ'U)il,
0

for u € R, we have

™ |1 - _
T (Zk v;)pj(n)p;(m)(coshmt;)~"
j=1

+/ i(s)p(n, 5)p(m )(coshm)*ldt)

s:

1
- mn/ / Yk(z 4+ im v, in tv)e(ma)dzdy
(3.33) Z (m,n;c) / Ule(mflv,nflv,c)dv).
>0

0

After the following long computations, it turns out all of the above integrals can
be explicitly given in terms of k.

Lemma 3.3. [Za]

[o @] o0 1 o0
/ / v k(x +im o, im e  w)e(ma)dedy = —/ h(t)t tanh wtdt.
o'} 8mm _ o
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Proof. By (3.57), for 0 < Rs < 1,
¥(s) ::/ / v k(ax?)e(zv)drdy
0 —00

- 2/ (2rla]) =T (s) cos = h(aa?)dr
0

I'(s)cos ZE [ _ [
- THQ /0 z”* /_ N Py (202” + 1)h(t) tanh(nt)tdtde
I'(s) cos &2

2(2m)*+1

ol
ol

= (4a) / u / P_%Ht(g + 1)h(t) tanh(7t)tdtdu,
0 —o0

2

where we used the following formula:

s

/000 v te(zv)dv = (27|z|*)[(s) cos >

Interchanging the order of integration again and using the formula ([GR 7.134]):

/oo T E Py (5 1) du= L G L CRRO L Ctl)
0

2 r(L)r (s +ir)r(3 - ir)

for 0 < Rs < 1, we have

=

m /oo I‘(f - it)F(f + it)h(t)t sinh mtdt.

(3:34) ¢(s) = (4a) ™ D 2 2

— 00

Since both sides are holomorphic for s > 0, the above formula holds when-
ever s > 0. Particularly, if we take s = 1, we have

(3.35) w(1) = — / h h(t)t tanh wtdt,

:8_7T .

00 00 2.2
_1, (mix
/0 /_oov k( v?
. 1 o0 oo 9
= m/o [m k(z?)e(zv)dzdu

1 o0
(3.36) = [ ) h(t)t tanh mtdt.

it follows that

)e(mw)dwdv

O

Lemma 3.4.

e 1 /1 [ 4r/
/ v H(m o, 0, ¢)do = - /_/ JM(M) h(t)t it
0 cV nm J_ c cosht
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Proof.
/ v H(m v, n v, ¢)dv
0

B 0o . 0o 0o E 1 B . ,
(3.37)—/0 v /_Oo /_Ook(w+lm’c2(x’(ar’+ivn*1))e(mm nz')dxdx'dv.

Making the substitution,

1 1 vV
x:—,/ﬁ(u-l-t), o=y B, = Yy
m

c

then the above integral becomes

1 e(mt)v(t)dt

c2

where

/ / —(u+t+iv) 1 )dudv’
V Toy/Z(u+ i)/
m n . —n \dxdy
. = —_ k — _t
(3.38) c,/n/H (z+c,/m ,chZ) ”

with z = z + iy.
The next two paragraphs are devoted to computing the integral V (¢) :
Let a = %,/%,ﬂ = % and

V*(a,ﬁ):/H (z—l—a %ﬂ) dz;ly.

a_j /g—a2 .
o If |a| < 283, making the substitutaion z — w = re’ which maps
2+ +iy/B—F
H to the unit disc, we have

/ a2 [T 6(8 — C'T)r2 1 rdrdf
) =4 B__/ / B(r2 —1)2 )1—27‘cos9+r21—r2
a2 16 (B- )2\ rdr
_8”\/6__/ B(r2 41)2 )(1—r2)2

a2
By changing variable z = QA}f:Z, with A =4/ BiBT’ we have

(3.39) V(e B) = m/B /A 7 k(a? — 44)dz.
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a_ [fa2
e If |a| > 28, by changing variable, z — ﬁ = ( + in mapping the
Sy -

upper half plane to itself, setting

©_B
B=4/4 "
B
we have
[, o2 NS 1 d(dn
pr2 ﬂ—21ék@3 n? h1—02+ﬁ 7
(3.40) = g\/é / k(z? + 46%)dx

From (3.39) and (3.40), we conclude that
2 foiposa k@2 —4)deif |t <2

(3.41) V()= { T2 k(a? + 12— 4)de if |t > 2.

In the second case, || > 2,, assuming ¢ = 2 cosh §, then

V(t) = E/ k(x? + 4sinh? %)dl‘

— 00

= ZQ(sink” ) = Zg(a)

1 oo
(3.42) = —/ h(r) cosradr
4 —o0

< 2, by changing variable, we have

Ty

where ¢(t) = 4 — t2. According to Proposition 3.3, the above is
dtdQ(w)

_1/ \/T/ T = _1/ / N T OICED)

by partial differential, it is equal to

i) awi( /w¢t++w_t))

—c(t)

/ Qw +M$m5+dﬂ)
/ Q(uw

In the first case, |t| <

Velt)
Ji(w + ot ))dw.
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In terms of g(u) and h(r), the above equals
1 o ez +e 2
—/c(t = = d
4 c()/o g(u)(ei—675)2+ct) “

= @ - h(r) /OO cf fe+ (ﬂ)dudr.

167 oo (67 —e7E)2 4 c(t)e 27

— 00

The inner integral above can be computed by the residue theorem, we obtain

1 [ e—2ar —(27=2lm)r
/ ¢ te h(r)dr

1 + 67271'7‘

—00

a

with —c(t) = ("™ — e™"™)%. Writing t = 2cos &, ie, t? —4 = (e2" — e 5%)2, we
have

(3.43) V()= 1 / h h(r)%dr.

From the above we have

o0 .
/ V(t)e®tdt
—00
1 oo ey . -
=1 / h(r) cosh™* 7rr( - / cosh(m — a)re?™ 5 2 gin %da
oofoo . | ) -7 .
(3.44) + / cosh et +2iw cosh 5 ginh §da) dr

by (4.4), the following integral representation of J— Bessel function,

1 T : S .
Ju(z) = 2—/ cos(zsinf — vf)dd — s v / ez sinhu—vu g,
T T o

-7

and the recurrence formula
J,1(2) + Joq1(2) = 20271, (2),

the lemma follows easily. O
We arrive at the Kuznetsov formula which is stated in terms of the Selberg
transform h(t) of k(u) :

Theorem 3.5. (Kuznetsov’s formula) Let h(r) be an even function of a com-
plex variable v which is holomorphic in the strip |Sr| < % + 4 for some 6 >0
which is holomorphic in the strip |Sr| < % + & for some § > 0 and h(r) <.
(|r| +1)727=, in the above strip, then for any positive integers m,n, we have

pimps(m) L[ myir oy h(r)dr
;Wh(r])+7r/_oo(n) 2ir (M —2ir (M) [ o e

(3.45) = (S:T—Qm /00 rtanh(7r)h(r)dr + Z %S(n,m; )bt (4”\?%)

e c>1
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where

M@:%/wh@)r h(r)dr

T J_ o " coshar '

Remarks: 1. Actually we derived the above formula assuming k(u) € C°(R),
but one can easily justify the proof for h(t) satisfying the conditions in the the-
orem.

2. The constant function in the spectrum doesn’t show up in Kuznetsov’s for-
mula because the m,n — th Fourier coefficient with m,n > 1 is 0.

If we take a special function

cosh r
cosh(t —r)coshn(t + )

(3.46) h(r) = H(r,t) =

where t is a free parameter, one can show

> t
4 tanh H(r, t)dr =
(3.47) /7007“ anh(mr)H (r,t)dr Shl
and
2 [ r T
iy 2t ) - 2n..
(3.48) h(@_ﬁxmbﬂmmmeMﬂw Do)
where
24t dv

(349) Dgit(.’L' s1nh7rt/ KZzt l"U

then we have

Corollary 3.3. For m,n > 1, we have

P;j 1 [ rmyir H(r,t)dr
Z Jcoshﬂ'r H (k1) + ;/,Oo (E) U2ir(n)a_2ir(m)|(f(l + 2ir)|?

(3.50) _ Onm n Z 47r\/2mn5(n, m: ) Do (47r\c/mn)-

w2 sinh 7t

c21

In applications, we multiply H (r,t) by a function f(¢), then integrating with
respect to the free variable ¢ gives us our favorable test functions on the spectral
side.

3.6 Kuznetsov’s inversion formula

Kloosterman sums as special kind of exponential sums have important applica-
tions in number theory. To study sums of Kloosterman sums using Kuznetsov
type formula, we need flexibility on the choice of the test functions on the Kloost-
erman sum side. For that purpose, Kuznetsov derived an inversion formula. It
is interesting that Petersson’s formula also comes into the picture. Let ¢;; with
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j = 1 be an orthonormal basis of the space of holomorphic forms of weight &
and

ak 3.
(3.51) o0 = (Tgeee) )

be the normalized Fourier coefficients, recall that p; () and p(l, s) are defined in
(3.29) and (3.14), we have the following

Theorem 3.6. (Kuznetsov’s inversion formula) Let f(x) € C?[0,00) which
satisfies

FO =50)=0, fP <5 (e +1)77°, 0<j <2, >0,
then for any positive integers m,n, we have
4d7y/mn 47/mn
Z CQ S(manac)f(f)

c>1

=

Z pJCOShﬂ-T (tj) + % /OO ﬁ(mat)p(nat) Tf(t)dt

oo cCoshmt

(3.52) + Y D ik m)di ()N (k= 1),

0<k=0(mod 2) j>1

where
(3.53) T (t) = / "t (2) Bon ()2 di
0
with Boji(x) = m(J_24t(z) — Joie(x))(2i sinh 7t) ~; we also have
47 47
Z \C/Q_ (ma n)c)f(@)
c>1
1 [ p(m,t)p(n,t
(3:54) B Z p]cosh T Kp(ti) + 47 /,Oo p(nZos)hpi? )Kf(t)dt
where
(3.55) Kj(t) = 2 coshmt / " Kou (@) f(z)z-".
™ 0

The main lemma we are going to use is the following Bessel expansion of a
function f :

Lemma 3.5. Suppose that f(z) € C?[0,00), f(0) =0, f9)(z) <p (|z| + 1) B
for 0 < j < 2, we have

flz) = Z 2(2k + 1)N¢(2k + 1) Jopta (z)
k>0

o0
(3.56) +/ Ty (t)Bait () tanh wttdt.
0
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Sketch of the proof: Let

i = | " ) Jolay)da

be the Hankel transform of f, then it has an inversion formula
o0
flz) = / Hy(y)Jo(zy)zydy
0

(3.57) - / Hy (y) Jo(ay)aydy + / " Hy () Jo(ay)aydy.

The fact

1

[ H ) Iy = 322K+ DN 2k + 1) T (0
0 k>0

and ) .

/ H () Jo () dy = / T () Bou () tanh it tdt

0 0
follow from the recurrence formulas of the J— Bessel function:
(ZVJV(Z)), =2"Jy-1(2),

Jy_1(2) 4+ Jppr (2) = 2v27 1, (2),
and
(277 T, (2)) = =27V Jyy1(2).

We are done. O
Be the above lemma and discontinuous integrals of Weber-schatheitbin ([Er, vol.
2], 7.74), one can verify that

2

(3.58) - /00 Ty (t) tanh 7t tdt = % /OO f(z)Jo(z)dz

which we call f°.
On the other hand, by the recurrence relation for J— Bessel function we have

> (@mif) AN

1<I=1(mod 2)

L[ r — T 2z~ tdx
-/ (-0 = Das e~
(3.59) = Om Jo(@)f (2)da = —

Taking h(t) = T¢(t) in the Kuznetsov formula, applying Petersson’s formula
for each space Sai11(T) and then adding up all the k, the § symbol parts are
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cancelled out because of (3.58) and (3.59), the other terms contribute exactly
as those in the Kuznetsov inversion formula. This finishes the proof of the
Kuznetsov inversion formula.

Remarks 1. By choosing a suitable test function on the Kloosterman sum side
in the Kuznetsov formula and estimating the other side by mean value theo-
rems of Fourier coefficients of Maass cusp forms and holomorphic forms using
Kuznetsov’s formula, Petersson’s formula and Weil’s bound for Kloosterman
sums:

(3.60) S(m,n;c) < ¢ (m,n,c)>7(c),

Kuznetsov [Ku] proved the following

S .
(3.61) Z M Lemm cite
e<c €

[N

for any € > 0.
2. By a clever control of the growth rate of the Kloosterman zeta function

Zm,n(s) — Z S(man) C)

2s
C
c>0

on the vertical lines, Goldfeld and Sarnak [GS] was also able to prove (3.61)
without using Kuznetsov’s formula and the inversion formula.
3. Recently Foury and Michel [FM] showed

co(k) loz . (loglog z)* < Z w,

v

so indeed (3.61) shows that cancellations in the sums of Kloosterman sums due
to the variation of the signs of Kloosterman sums not simply due to the varia-
tion of the absoute values of Kloosterman sums exist.

3. Similar cancellations in the sums of Kloosterman sums with arithmetic pro-
gressions was recently proved by Luo-Rudnick-Sarnak [LRS] as a result of their
bounds towards the Selberg eigenvalue conjecture.

4 Applications of Kuznetsov’s formula

4.1 The multiplicity of the spectrum

It is believed from numerical experiments that the cuspidal spectrum of the
modular surface is simple. This is an important conjecture because of the Pillips-
Sarnak spectral deformation theory (see [PS]). However the progress on this
problem is elusive and the avalible tools are very restrictive. In this section
using Kuznetsov’s formula we are going to obtain a bound (best up to now) on
the multiplicity of the cuspidal spectrum. This section is taken from [Sa3] and
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[LS].

Fix h a Schwartz class function, even, nonegative on R with ffooo h(z)dz =1
and the support of its Fourier transform h(¢) = 25 h(z)e(—z()dr in (—1,1),
we use this h to define a smoothed count of the Laplacian eigenvalues in the
cuspidal spectrum. of the modular surface. For 1 < L < t17¢, set

Nu(t, L) =Y h(L(t — t))),

jz1

where the summing runs through the cuspidal spectrum. Thus N (¢, L) counts
the number of the Laplacian eigenvalues within L' of ¢ and the larger we can
take L the more information about the local distribution of the spectrum can
be determined. A simple application of the Selberg trace formula shows that
for 1 < L < lest

T ?

t
4.1 Np(t,L) ~ —
( ) h(7 ) 6L°
for1 < L < lngt. While by using the Kuznetsov formula we can extend the
range suitably:

Theorem 4.1. For 1 < L < 212gt, we have

(4.2) Na(t, L) ~ 6iL

as t — oo.

Corollary 4.1. Let m(t) be the multiplicity of the eigenvalue § + t*, then

t)logt
(4.3) lim sup m(t) logt < =
t—o0 t 12

While from (4.1), one can only obtain

t)logt
Jim sup 108
t—o00 t

=N

The bound (4.1) is embarrasingly far from the believed m(t) < 1, but it is the
best bound that we know.

The Kuznetsov formula involves sums over the spectrum weighted by Fourier
coefficients of Maass cusp forms. These weights need to be removed (which
is nontrivial) since the count N, (¢, L) involves no weights. The gain in using
Kuznetsov’s formula comes from Weil’s bound of the Kloosterman sums. The
idea of introducing these weights and then removing them was first used by
Iwaniec [Iw] in connection with improving the error term in counting closed
geodesics on the modular surface.
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We need to introduce the Rankin-Selberg L— functions. Since the Hecke oper-
ators similarly defined as in the theory of holomorphic forms commute with the
Laplacian, we can choose a common basis on the cuspidal spectrum for both.
Assuming {u;} is such a basis with normalized Fourier coefficients v;(n) such
that

vy = (=) i)

cosh mt;
Then forn > 1,
vj(n) = vj(1)A;(n)
where \;(n) is u;’s eigenvalue for T),. In particular, they satisfy
mn
Nmxm) = > A (-
d|(m,n)
For s > 1, we define the Rankin-Selberg L— functions R;(s) by
Ri(s) =Y vj(n)In".
n<l

One can obatin the meromorphic continuation and functional equation of R;(s)
by the corresponding properties of Eisensten series F(z, s) due to the following

w—l—sr(s)—lr(g)Zr(g + itj)r(g ~ it; ) cosh 7t R, (s)

(4.4) = 8/1“\H luj(2)|?E(z, s)dpz.

The above integral representation of the rankin-Selberg L— function is proved
by the following standard unfolding technique: The right side of (4.4) is equal
to

/ (s (=) (S72) sz
\H

YEL o \I'

o] 1
_ / / i (2) Py dpsz
0 0

=S P [

ly? Kie; (2mny)Py*~*dy,
n>1 0
(4.4) follows from the above calculations and the following formula
- s—1 7. _ 953 —1 stptv
/0 K, (@)K, (z)e* 'de = 22°T(s) " ] r( : )

for s > |Rp| + |Rv|. By Theorem 3.3, it is easy to prove the following:
L;(s) =: ((2s)R;(s) has meromorphic continuation to the whole complex plane
with a simple pole at s = 1 and residue 2. Set

Aj(s) = Lj(o0,5)Lj(s)
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with 2 s .
Lj(c0,s) = f‘“r(i) 1“(5 + z't]-)r(5 - itj),
we have the functional equation
Aj(s) = Aj(1 —s).
In the critical strip 0 < Rs < 1, we have the convexity bound:
Proposition 4.1. For 0 < f < 1 and Rs = 3, we have
|Rj(8)] <z |t;]' 04|20 70F).
Proof. By a bound due to Iwaniec ([Iw4], pp. 130),
(4.5) S )P < 2N
0<n<z

and the bound [v;(1)] < A5 of Hoffstein and Lockhart we have R;(s) <. A on
the line s = 1 + . Hence on Rs = 1 + ¢, we have

1L (s)| < [R;j(s)] << [5]°
Now applying the functional equation (..) and Stirling’s formula we get
Lj(s)] < [t[F5¢]s|*

on Rs = —e. The conclusion therefore follows from the Phragmen-Lindelof prin-
ciple. O

We will also make use of Luo’s zero density theorem for the family L;(s) as a
replacement of Lindelof hypothesis:

Proposition 4.2. ([Lu/) Let n > 0 be a sufficiently small constant, then at
most t5 of the R;. (s) with |tj] <t have a zero in the rectangle

(4.6) 1-n<Rs <1, |Ss] <log?t.
Furthermore, all but at most t5 of these R’js with |t;| < t satisfy
(s = ) R;(s)| <& (|st])°

for
n
1- 42
2
The proof needs Hadamard three circle theorem and classical techniques in
the large sieve theory.
Now . the proofs of Theorem 4.1 and corollary 4.1. Let h(z) satisfy the condi-
tions stated before (4.1)and let

<RNs <1, |Ss] < log?t.

(4.7) hi, . = h(L(t — z)) + h(L(t + x))
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where ¢ is large and L < t°. It is easy to see that h; j, can serve as a test function
in the Kuznetsov formula. Note that

(4.8) Nu(t,L) =3 b 1(t5) + O(1).

jz1

e Removing the weights:

In using Kuznetsov’s formula for the test function h; 1, we introduce the weights
v;(n)|? and then remove them by averaging over n < N (with N to be chosen.)
According to Luo’s zero density theorem with 2t instead of ¢, we split the set of
|t;] < 2t into two sets G1 and G». G contains those ¢; for which R;(s) ha sno
zeroes in the rectangle (4.6) and G contains the rest, by his result, |G| < (2t)5.
Now consider

=Y lwmPe ¥ = [ TE)R;s)Nds.
n=1

T Jo=2

Shifting the contour to ®s = f = 1 —§ with § < § and 7 as in Luo’s theorem
and picking up a pole at s = 1, we have

12N
0;(N) = = + (V)
with )
I;(N) = 5 s ['(s)R;(s)N%ds.

For t; € G1 we apply Luo’s theorem which gives
I;(N) <. NPt.
For t; € G2, we simply apply the convexity bound and find thta
Lj(N) < NP|t| =0,

Hence, combing all of the above, we have
1
=N Z b, (t5)$25 (N)
12

= —Nu(t. L) +—th,; N) + O(1)

= 2N + 5 A 3 +0)

JEG1 JjEG2

1
(4.9) = 5 Vu(t, L) + O.(N=%t'*= 1+ 1).

e Estimation of the continuous spectrum:
In using Kuznetsov’s formula, the contribution of the continuous spectrum after
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summing over n is

1
47N

n>1

NE/ |he.1 ()| log? (1 + 2|z|)dz

— 00

e / he (@)l (n, @) de

< N°L™ " log(1 + 2|t])

by the bounds (1 + 2iz) > log(l + 2|z|) ! and 7(n) < n®, where 7(n) is the
divisor function.

Now we are going to estimate the contribution of each term on the spectrum
side of the Kuznetsov formula still for the test function hy r, :

e Contribution of the diagonal term:

1 o0
—/ ztanhwzhy 1 (z)dx
T

— 00

1 /oo (W(L(t = 2)) + h(L(t + 2)))dz ~ %E(O)

T J -

with a negligable error term.

Recall that to remove the arithmetic weights v;(n) in the Kuznetsov formula,
we sum over n smoothly. It follows from the above, the contribution from the
diagonal term after summing over n is:

e Contribution from sums of Kloosterman sums:
First, we need the behavior of Jy;y(22) for y > x. Let 2z = /22 + y2, then for
y > z, we have the following asymptotic expansion (]..]):

Jaiy(22) = (212) 2" ze Fleap(ry)e(zr ! — yr Mlog((z — y)z "))
A4y 'piyz D+ vy palyz ) +0a(y 24}

where p;(z) are polynomials of degree i.
Appealing the above expansion of the Bessel function and setting h.(y) =
h(L(t —y)) we have

Lemma 4.1. For xz < 2t,

W) ~ im b (22) R (R

1 pemy 2t _ 1y (o8 i
+L 1t2(4t) ;m 1)’“m22:0am(L L hh ( e )

where ., (L=, t~1) are polynomials in L™ and t=' and the asymptotic expan-
sion when terminated at say k < B, leaves a remainder of O(zBt= ).
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From now on, in the case of x very small comparing to ¢, we will only
examine the leading term in the above series, the higher order terms can be
handled similarly. we always terminate at some fixed order B which is large
enough so that the remainder is negligible for our purpose.

Suppose our original test function h satifies the support of h C [—b,b] C (—1,1).
Let 6; be small with 0 < d; <1 —bandlet N =t and 1 < L < %g—t, then

1 n S(n,n; 4
DM

n>1 c>1

1 t2 (n,c)2 . log <
N A , h ( emn)‘
<<N Z ZL b 7(e) |1 L
n<Nte c21
t
(4.10) <. LOINEF = o(z).

where we have invoked Weil’s bound for the Kloosterman sum
S(n,n;c) K ¢ (n,c)%T(c).

Combining all of the above, we end up with

My(t,L) = f—z +o(%).

This toghether with (4.9) ( of N) yields that for 1 < L < (2logt)m !,

Nu(t, L) = 6LL +o(%).

This completes the proof of Theorem 4.1.00
To deduce Corollary 4.1 from this

MOm(t) < At = HL) ~ 5-h(0).

taking L = %ﬁ (that is as large as allowed):

. m(t)logt _ m h(0)
1 < ———.
ST S 12h(0)

As shown in[ILS, pp. 115],

mn o) T
supphC[—1,1]
So t)logt
lim sup T 18 T
t—o0 ].2

Corollary 4.1 is proved.[]
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4.2 The Poisson distribution of the Laplacian eigenvalues

This section is closely related to the last section which is also taken from [Sa3]
and [LS]. The techniques is too complicated to include here, so we simply state
the results, the interested reader is suggested to read the paper [LS]. We con-
tinue to use the notations in the last section.
There have been many conjectural and related numerical developments concern-
ing the spectrum of the modualr surface (see [Sal], [St]). Except the one that
the spectrum is simple, there is another important one that the local scaled
spacing distributions are ”Poissonian”rather than the Gaussian orthogonal dis-
tribution which is expected for the generic hyperbolic surface.
In thi section, we study the smoothed number variance. As in the last section
we take test functions h satisfying the same conditions , define the smoothed
counting function Ny (t,L) for 1 < L < t'7¢ as we showed in the last section,
for 1< LK %ﬁ,

t

Na(t,L) ~ o=

We set . )
Vi(T, L) := %/0 w(%)(Nh(t,L)—GiL) dt

to be the smoothed number varlance with ¢ > 0 be a fixed smooth function
with support in (1,2) such that [, ¢(z)dz = 1, our main result is the determi-

nation of V4 (T, L) in a small window L € [@ log T, % log T] . The result

indicates a Poissonian number variance which emerges from a detailed analysis
of the off-diagonal terms whose contribution turns out to be significant. The
following is our main theorem:

Theorem 4.2. For ) stated above, (1:5) logT < L < (H_ﬁ) log T, we have

Vi(T, L)
o c5 ¢T
f L2 Z:

(4.11) +OE(%),

(e

o9 S(u,u;v)
2\—2 s Uy
Z Hl—p ) w2n2
u,v)=1 plv

1(

where S(u,u;v) is the classical Kloosterman sum.

Note that the series on the right side above consists of positive terms. Thus
its asymptotic behavior depends on the average sizes of Kloosterman sums. This
is a quite subtle issue and it has been addressed recently by Fouvry and Michel
[FM]. They show that

Z 5’(1,@#) > emp(loglogm)%)

v
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and

S(u,u;v)? .
Z % < uf(loglog z)® log .

v
From this, we deduce that if the support of h is close enough to =1 then the
first term on the right in Theorem .... satisfies

T N T ;
ﬁemp((loglogT)”) <R« f(logL) .

In particular, it is the main term! As a consequence, we have for such h

Corollary 4.2. Fiz 6 > 0, then for

1+46 1+ o7
LlongLg — 12l JogT
™ m

we have
T 5 T 5
ﬁe:np((log logT)N) LKW (T, L) < f(log L)°.
It seems reasonable to conjecture that as x — oo,
) S(u,u;v)?
Conjecture A: Z — 2~ Alogx

v

for a nonzero constant A. This combines with Theorem 4.2 would lead to
Vi(T,L) ~ ¢, for a nonzero constant ¢ (and L restricted as Theorem 4.2).
That is to say that at least for L in this window the number variance is Poissio-
nian. The extension of the range of L to the window specified in Theorem... is
the analogue of extending the range in Montgomery’s pair correlation conjecture
for the zeroes of the Riemann zeta function [Mo2] to the region o > 1 (see [Pe2]
for the analogue of Montgomery’s analysis in the context of the eigenvalues of
a hyperbolic surface). In the case of the zeroes of zeta such an extension would
follow from a quantitative version of the Hardy-Littlkewood prime 2-tuple con-
jecture. In our case of the eigenvalues of the modular surface we handle similar
off-diagonal shifted sums. We briefly say some words about the proof of the the-
orem. As the last section, instead of using Selberg’s trace formula, we use the
Kuznetsov formula. As we noted earlier, Theorem... involves extending L to be
large enough to see the Poissonian number variance. Not surprisingly this analy-
sis requires understanding the contributions from the off-diagonal terms. These
do in fact contribute to the main term and certain cancellations among these
are crucia. we handle these off-diagonal terms emerging from the Kuznetsov
formula using the circle method and in particular the smooth ‘¢’ method devel-
oped by Duke, Friedlander and Iwaniec [DFI].

There is another related important problem: let A\; = i + t?, 0 <A1 € As... be
the eigenvalues of the Laplacian on the cuspidal subspace of L*(T' \ H). Using
his trace formula Selberg [He] showed that thses obey a Weyl law:

NT)= Y, 1~75

0<t; <T
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as T'— oo. In fact he showed more. Define the remainder term S(7°) by
T2
(4.12) N(T) := E+k1TlogT+k2T+k3—w( )+ S(T)

where ki, ko and k3 are the constants given in [He, pp. 466],

(4.13) W(T) = / bel ( +zt> dt
and
(1.14) o) = 2= o) = w81 (3) )

A simple application of the Selberg trace formula (to the modualr surface X)
shows that

T
4.15 S(T)=0 .
(4.15) =0 (g )
On the other hand Selberg established the lower bound (see Hejhal [He])
2T
T
4.1 = dt > ———
(+10) / Dt > (log T)°

in particular it follows that

T3
(4.17) S(T) = Q (logT) .

(4.16) and (4.17) are all that were known concerning S(T').
One of the consequences of our analysis of the number variance below is the
following modest improvement of

Theorem 4.3.
2T
T 5
(4.18) —/ T)|%dt > o gT)2e:Up ((log logT)N)
and correspondingly
4.19 S(T) =0 T loglog T) 17
= 17
(119) (T) = opean  logloz )
If we assume the conjecture A we will have
I T
— t)2dt > ——
T )1 S dt > logT

which could well be the true order of the magnitude for the mean square of S(t).
This is a difficult problem, any improvements of (4.16) and (4.17) are impressive.
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4.3 Orthognality of Fourier coefficients of Maass cusp forms

This section is based on Deshouillers and Iwaniec [DI]. In this section we use
Kuznetsov’s formula to derive some large sieve inequalities of Fourier coefficients
of Maass cusp forms which is a preparation for the nxet section. First we need
some bounds on bilinear forms of Kloosterman sums:

Lemma 4.2. For b, any complex numbers, 8 > 0, ¢ a positive integer, let

B(#,c,N) = Z bml_)nS(m,n;c)e(%/cm_nQ),

N<m,n<2N
then we have

1)B(6,¢,N) < c27(c)*N|]bl]>
2)B(8,¢,N) <= (c+ N+ VNDIPJ* if N'<e
3)B(#,¢,N) < 07" ENTE[b” if 2<e< NI o<

Proof. 1) Obviously,

B,e,N)< Y bl D IS(m,n;0)l.

N<m<2N N<n<2N

By Weil’s bound for the Kloosterman sum S(m,n;c) < c2(m,n;c)27(c), the
above is N
1 1
@b ([ 7] +1)
<o L (7] +

which is bounded by Nez7(e)2|b|)2.

2) Tt is harmless to attach B(#, ¢, N) a smooth function 17( V}Vn") such that

n(z) =1for 1 < z < 2and 0 for —3 < z < 3, while keeping the condition
N < m,n < 2N. Now we use the Mellin inversion to separate variables m and
n. Assume

2Nx0 1
* ) = — M(s)z"%ds
2mi Rs=1

n@e(

to be the Mellin inversion of M (s), then

M(s) = /000 n(a?)e(2Nx9)xsflda:

c

= [ n@ets@)as

where

__ 4nNzf

flz) +tlogz.
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If || > u“—cNe, then there is no stationary phase in the integral M (s), by partial
integration twice, M(s) < (1 + |t])72. If |t| < 12“N9 + 1 =: T, by stationary
phase integral,
Ve ¢
M — —.
) < Ng <\ ~g

Exanding out the Kloosterman sum and using the hybrid large sieve inequlity
for Farey points,

[5]5 wl

T d(mod c) N<n<2N

(T + N)|[b]I?,

we have
B(f,c,N)
s g, (Ymny = m,n; c)ds
<[ NS b (57 St il
(4.20) < (VNch + N+ ¢)||b]|>.

3) Since N is large than ¢, we must employ the summation of N nontrivially.
By Cauchy’s inequality,

Ble,b,e,N)? < 012 321 3 baSm,ms e (2X00) 2 ()

= [|]]? ij:bnlbn2 ZS (m,ni;c m,n2;0)6(2\/m(\/T_ \/11_29)9(%)

ny N2

4
< [Jbl n;guxZwml,mn
na

where g(z) =1if 1 <z <2and 0if -3 <z < 3. Set
2Vm( /AT = )\ (m
e (ST —0)o ()

TLl,TLQ § Sm ,N; C m,nQ;C
meEZ

Expanding out the Kloosterman sum,

F(nl,ng)
* * n1d1 —n2d2
= e
22 ) Een(y)
with
Fay = Pl =) + 2V — ),
C

Since |f'(z)| < 1, by the Poisson summation formula

S elfma(5) = [ ett@na(5 ) o+ 0.
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If dy # ds, by partial integration [é] + 1 times, we have

[ et@na () e < vA0

for any large number A due to the fact ¢ < N'~¢.
If dy = ds,ny # no, by partial integration once, we have

. VN ¢
/Re(f(:v))g(ﬁ)dw < 0|\/n—1 _]V\/n_2| < 9|n1 — Ny

hence
B(f,c,N)
1
< |B[*(eN + ) + ||b]|*c?0~ ! max _—
e L P Yl e
N<na<2N

< ||bl[*eNtFEp L,

This finishes the proof. O
Let v;j(n) be the normalized Fourier coefficients of Maass cusp forms of type
% + Z'Ii? , we have the following large sieve inequality for Maass cusp forms:

Theorem 4.4. For any complex numbers a,, we have

S 1 any()P <o (K? + N)N*|al|>.
0<k; KT n<N

Remark. By Weyl ’s law,

T2

DR
12
0<k<T

the bound in the above theorem is sharp in the sense of classical large sieve
inequalities, recall section 1.5.
Proof of the theorem. \gVe make use of corollary 3.3. We multiply both sides
of (3.50) by tsinhwte™ () a,,a, and sum over m,n € (N,2N] and integrate
over t on R. By positivity, we can remove the continuous spectrum part, we get

Z K Zan’/j(n) ?

0<r; <K
<<Z/ts1nh7rte R H (kj,t) dt|z:anyJ
j>1
< —/ e~ atflal? + Y ¢ B(e)

c21

where

B(c) = 4mc™ 1ZZ(Lman\/_S(m n;c)o (471-\/_)
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with )
+2 v d
o(x) :/t2e_ﬁ Km(:nv)—v.
R —i v

For Ry > 0, K»;:(y) has the integral representation ([EMOT], pp.82)

Koii(y) :/0 eV cos(2t¢)d(

_v

2t e ¥ Csinh ( sin(2t¢)d(¢

(4.21)

by partial integration once. Moreover, we have ([GR], pp. 214)

oo i2
/ te™ %7 sin 2t(dt = /T K3Ce K.

— 00

Hence
(4.22) () = VTiK? /OO e*CQKQCtanthin(a: cosh ()d¢ <« 1,
0

by partial integration,

d¢
cosh ¢

px) = mizT'K3 /00 e_<2K2(1 — (tanh ¢ — 2¢2K?) cos(x tanh ()
0
(4.23) < 2 'K?

By 1) and (422), 5 ¢ 'B(c) < N [al|
c>N?

By 2) and (4.22), 3 ¢ 'B(c) < N'*[lall%;
N<c<N2

By3)and (422, S ' B(e) < KN|jall*
K-2<e<N

By 3) and (4.23), > ¢ 'B(c) < KN'*=|ja|*.
c<NK—2

By partial summation to remove r;, the conclusion follows.O]

4.4 Mean value theorem of the Riemann zeta function

The famous Riemann zeta function ((s) is defined as ((s) = ), n~*® for ®s > 1.
n>1

It has meromorphic continuation to the whole complex plane and has a pole at

s = 1 with residue 1. It satisfies the following functional equation:

s

far(g)c(s) - w*l?r(l S 5)((1 —3).

On the criticle line s = %, the Lindelof hypothesis predicts that ((1/2+1it) <.
|t|°. By playing with functional equation, one can obtain the convexity bound
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C(1/2 +it) < t3. In this section we are going to see how Iwaniec achieved the
subconvexity bound ¢(1/2 + it) < ¢5+° using Kuznetsov’s formulas as a result
of the 4th moment of the zeta function over a short interval. Precisely, we are
going to sketch the proof of the following theorem of Iwaniec:

Theorem 4.5.

T+7% ,
/ |C(1/2 +it)|*dt <. T3+,
T

A direct consequence of the above theorem is the subconvexity bound {(1/2+
it) < t+ for t € R due to the following lemma:

Lemma 4.3. ([Iv, pp.9]) For any positive integers k,0 < § < %, we have

é
1C(1/2 +it)|* <5 logT/ 1C(1/2 + it +iu)[Fdu + (jt| + 1)4
-5

wher A is any large number.

Proof. Let r be a parameter which will be chosen later and X = exp(u1 +us2 +
... + u;). By the residue theorem, we have

B B
(4.24) QWiBTC(s)k:/O /0 /||_6C(3+w)kX“Jw1dwdu1...dur.

Let A = fis |¢(1/2 + it + iu)|*du, on the half circle Rw < 0,

B B
/ / [m:a C(s + w)* XYw ™ dwdu, ...du,
0 0 Rw<0

Yt < i (2)

= /w‘:(; C(s +w)k (ewi—l

Rw<0
(4.25)

by the convexity bound ((s + w) < ([t| + 1)2.
On the other half circle, Rw > 0, due to

correspondingly the integral in (4.24) splits into two parts. for the same reason

as the above, the part of z=“w™! contribute to the integral (4.24) O(t%QUS—’"),
Since (2% —z~)w ™! is regular for Rw > 0, we can move the line of the inte-
gration to the segment [—id,id], then

B B _
Xv-_X—w
/ / ‘/ C(s + w) ——————dwdu, ...du,
0 o IJlwi=o w
Rw<0

B B
< |/ / log Xduy...du,|A < AB™ "y
0 0
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hence .
|C(1/2 4+ it)|F < ABr+ B™"67"tz.

Taking B = ed ! and r = Alog(|t| + 1) with A a large number, we finish the
proof. O

Proposition 4.3. (Approzimate functional equation)
Let G(u) be any even function which is holomorphic and bounded in the strip
—4 < R < 4 normalized such that G(0) = 1. Then for Rs = 1 we have

() =D 0 Van) +(s) Y_n Vi (n)+ R

n>1 n>1
where .
1 —EIT (st g
‘/s - —uG(u)Tr 22 (s 2 )_U
210 J () m2[(5) u
and )
a2 D(552)
V(s) = —=5s
7T2F(§)

s

Proof. Let A(s) = 77 2T'(5)((s), consider

1) = 5 /( Ao )G .

Moving the integration to the line Ru = —3, applying the functional equation
A(s) = A(1 — s) picking uo the pole at u = 0,1 — s and —s, we get

A(s) =I(s)+I(1—s)+ Rw*ﬂ‘(g)

where

A(s +u) G(u)

m720(8) u

Introducing the Dirichlet series for {(s) and integrating termwise, we have

I(s) = w—%r(g) Y 0 Vi(n).

n>1

R = (Resy=1—s + Resy=_5)

Do the same step for I(1 — s) and insert them into A, the proposition follows at
once.
Now we fix a special test function G(u)

G(u) = (cos %)7“,

then by Stirling’s formula, one can prove that derivatives of V;(y) on s = 1

2
satisfy
—A
V) < (1+ —==)

Vis|+1
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for a > 0. For this choice of G(u, R = O(exp(—7%|s|)). In this case, the above
proposition says that on the criticle line {(s) can be well approximated by two
Dirichlet polynormials each of which has length +/|s| + 1.

Applying a smooth partition of unity, we derive by proposition 4.3 that

N —A
S) < ;GN(t)(l + \/ﬁ)

where

=3 7 g(n)

with g(z) a smooth function supported on [N,2N] for N = 2% v > —1, such
that ¢(® () <, 4 N~° for every a > 0. By Cauchy’s inequality,

’k Z |G N (1)]? (1 + L)7214 log 3A.
N

Vis|+1

We have
GyOF = 32 (mna) 712 (1) g(mn)g(na)
= Y So@G(d)
d
where

Z Z (n1m2) E( ;)itg(nld)g(rud)_

ni (n2 ,nl) 1

In order to prove theorem 4.5, it is sufficient to prove
T+Ty 1
(4.26) / |<(5 +it) 2|Gn(t)|?dt <. ToT*
T
for N < Tzte.
Furthermore we smooth out the interval by attaching a smooth truncation func-

tion f(z) which is supported on (=2T,T 1, 2757 1) and is 1 on [0, ToT 1], we
are led to prove

(4.27) /OOO I+ inPenoP (L <. T

Let f = [z f()e(yx)dy, then flz) < %(W) for any p > 0, it follows

by Fourler inversion
e _ome 1 g (t—=T
| e F G inrien R (S )
(4.28) - / F@)W (2)da,
R
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where
T+

W) = [ + inPiowoPe(*

t)dt.
By [Ti, pp. 141], we have the following formula for the Laplace transform of
(3 +it)

Lemma 4.4. For s > 0, we have

/00 |(_,“(1 + it) |Pestdt = 2me’® S T(De(lexp(is)) + p(s)
0 2 =1

where p(s) is reqular when |s| is sufficiently small.

Using the above lemma,

W(x) = Zd_lg(d)z Z ny tg(n1d)g(nad)2mexp(m(z +4)T 1)
d ni

(nz,nl):1

Vz(n17n2) + O(N)a

where
Ve(ni,ma) = Zr(l)e(lnlnglemp@w(a:+i)T_1))
121
= Zr(l)e(lnlngl)Fl(nl,m,x)
121
with

Fi(ni,na,z) = e(=Ininy ' (1 — exp(2r(z + 1) T™1))).

In W(z) we split the ny sum into residue classes modulo ns, for each class n; = u
modulo ns, we apply Poisson summation, we end up with

W) = Y d'g(d)Y ny'gnad)2rexp(r(z+i)T")
d

* 7l 1 k
;T(l)u(m%;ne)(n—Z) o~ %Z;e(n—Z)V}(k,nQ,d, x) + O(N)

where

‘/t(kan%dam) = /

k
-z d)F, dy.
Re( my)g(y VFi(y, n2, x)dy

Next we execute the summation over [ by means of the following Poisson type
formula ([Ju], Theorem 1.7):
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Lemma 4.5. Let h(t) be a smooth, Schwartz function on Rt and (u,ns) = 1,
then we have

lu 1
S e )i = /RJr(logt + 2y — 2logna)h(t)dt

I>1 N2 N2
2T ul 47
il d Y,
S re() /0 o (o Vi)

o0

nQZT(z)e(Z—i)/O Ko(i”\/ﬁ)h(t)dt

1 2

| e

where Yy (z) and Ko(x) are Bessel functions of order 0.

Taking h(t) = Vi(k, n2,d) and inserting the above into W(z) and (4.28) we
get from the summation in u(modns) with (u,ns) = 1 complete Kloosterman
sums. we obtain

W (z) = 2wexp(w(z + )T Zd g(d (d) + H2(d) + H3(d)],
where
d) = 27”639("2‘1) Zs(k,();w)fl(k,n%d)
n2 k
with
I (k. no, d) :/ (log t + 27 — 21og n2)Vi (I, na, d)dt;
0
= —27r2n2 g(n2d) > N " 7(1)S(k, —1;n2) Lo (k, 1,02, d)
keZ 121
with
© 4
Bk Lnzyd) = [ o (VI Vilk o, i
0 n2
—4Zn2 g(n2d) Y N " T (1)S(k, 1;n2)I5 (K, 1, na, d)
keZ 1>1
with

4

Lk, 1, na, d) = / KO( W\/l_t)%(k,ng,d)dt.
0 n2

For the Ramanujan sum, we apply the bound S(k,0;n2) < (k,ns). For the

weighted sums of Kloosterman sums we use Kuznetsov’s inversion formula. The

last step is to apply the large sieve inequalities of Fourier coefficients of Maass

cusp forms in the last section. This finishes the sketch of the proof. O
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5 Appendix: Selberg’s trace formula

In this appendix, we will state Selberg’s trace formula for I' = SL(2,R) and
sketch its proof.

The grouip SL(2,R) acts on H by Mobilis transformation. Namely, vz =
gjis for y € T and z € H. We first classify these motions (except the identity
motion) into three classes invariant under conjugation. These three conjugacy
classes are characterized by their fixed points on R U {oo} : R.

1) Parabolic class whose elements have only one fixed points on R.

2) Hyperbolic class whose elements have two distinct fixed points on R.

3) Elliptic class whose elements have one fixed point in H and the other one
is its conjugate parabolic motions move points by translation. Elliptic motions
move points by rotation and hyperbolic motions move points by dilation, the
dilation factor p is called the norm of hyperbolic motions which is independent
on the choice of representatives.

As the derivatation of Kuzuetsov’s formula, we take a kernel function k(z,w)
which is point-pair invariant and compactly supported on R as a function of the
distance between k and w. we define the automorphic kernel

w) = k(z,yw)

yer

The Selberg trace formula is obtained on the one hand, by integrating the
spectral decomposition of k(z,w) on the diagonal. i.e.

1)
TrK, := k(z,w)duz = / )hj(2)|?duz
T\H F\H]>O
(5.1) = > _hlt))
j=20

On the other hand,
2)

(5.2) TrK, ::/ k(z,z)duz = Z/ (z,7v2)duz
I\H o /r\m

comparing 1) and 2), we can get a trace formula, but it is not quite useful. The
integral in 2) is still hard to compute. To go further, we split I into conjugacy
class [, so

TrK, = Z TrK,
L

with

TrK, = Z/ k(z,vz)duz
T\H

veL

= / k(z,vz)duz
Z(y)\H
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where Z(v) is the contrlizer of v € L. It is easy to check that the above
computations don’t depend on the choice of representatives of 7 in the class L.
It turns out the computation of TrK depends on the type of the conjugacy
classes:

Furthermore, the set of conjugacy classes which have the same fixed points
has a generator in the sense that all the other conjugacy classes are powers of
it, we henceforth call it a primitive conjugacy class. The fundamental domains
Z(y) \ H for these primitive conjugacy classes are strips or sectors, so all the
integrals in 2) then can be computed explicitly in terms of the Selberg transform
of k. At this moment, we compare 1) and 2) and end up with the Selberg trace
formula with k& hiding.

Now in our case, I' being the modular group, so I' \ H is noncompact. Diffi-
culties occur due to the fact Einsenstein series is not square integrable. Selberg’s
trick is to use a truncated domain F(Y) which approaches the fundamental do-
main F of I as Y — oo. We end up with a pre-trace formula with Y on both
sides. Comparing the main terms of the identity as ¥ — oo, we obtain the
Selberg trace formula. For more details, see [Se2], [Iw4] or [He].

Now we simply state the result in the case of I' = SL(2,R).

Let h be an even function of a complex variable r which is holomorphic in
the strip |Sr| < § + 4 for some § > 0 and satifies the following estimate in the
above strip:

h(r) <. (|r| +1)72¢

h(z) = J5 h(t)e(—xt)dt being its Fourier transform and

7= (79D (1 — 5)¢(2(1 — 5))

9(s) = 7=5T(5)((25)

Theorem 5.1. (Selberg’s trace formula)

S h(ty) + ﬁ _(fl (% + it)h(t)dt
Jj=0

1 1 log N Py |
= — [ h(t) tanh(rt)tdt + — h(=—log NP
i3 J, ) tanh(xt) +27r2P:NP1/2—NP—1/2 (3 s N P)
sinzly —1 e
2 (mF) /Rmh(t)dt

R 0<I<m

1 - 1 (1 + it)
——1log?2 - — —d
5 og 2h(0) 5 /Rh(t) (1 + i) t

where P runs through the hyperbolic conjugacy classes of T' and R runs through
the elliptic conjugacy classes of T'.

Remark]. On the left or say the spectral side of the trace formula, the first term
comes from the discrete spectrum and the second term is from the contribution
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of the continuous spectrum, i.e., the Eisenstein series. One should notice that
we have the constant function which corresponds to the term j = 0 in the
trace formula, while in the Kuzuetsov formula the constant function doesn’t
contribute which is a nice feature of Kuzuetsov’s formula.

2. On the right or say the geometric side of the trace formula, the first term
comes from the identity matrices. The second term is from the hyperbolic
classes. The third term is from the elliptic classes and the last two terms come
from the parabolic classes. One of the immediate results from the trace formula
is Weyl’s law: Let

N() = #{j: T > t; > 0}

be the counting function of the cuspidal spectrum and

T Y
M(T):i[T— (f(l-l—it)dt

be the corresponding analogy of the continuous spectrum. Weyl’s law says

Corollary 5.1. As T — oo, we have

T2

N(T)+M(T) ~ 35

For the modular group, or in general congruence subgroups, one can estimate
the contribution from the continuous spectrum M (T) since ¢(s) can be explicitly
given and show

M(T) < TlogT

so it follows
Corollary 5.2. As T — oo, we have

T2

+2

Proof of Corollary. In the trace formula, take a test function h(t) = e~ 72,
then the identity motion contributes

1 ° 2 T2

2 ), e~ 72 tanh witdt = EE) +0(1)
the hyperbolic and the elliptic motions contribute a bouinded quantity. Using
the Stirling formula, one can estimate the contribution from the parabolic mo-
tions by O(T'logT).
The corollary follows at once by the classical Tauberian theorem. O
Using the Selberg zeta function, one can get a more precise Weyl’s law for the
modular surface ([He]).

N(T)

B T? _ 2T'logT n (2+10g7r—10g2

=3 - )T+O(T/logT).

™
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Note they did it for a general surface "\ H.

Remark 1. Selberg showed the abundance of Maass cusp forms for congruence
subgroups simply by the above counting, pradoxically, none of one Maass cusp
form form on the modular surface was constructed up to now!

2. It is not true for general Fuschian groups, the cuspidal spectrum is larger
than the continuous spectrum. Actually, the famous work of Philippe and Sar-
nak [PS] shows the abundance of Maass cusp forms is a special phenomena for
congruence subgroups.
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