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HODGE METRIC COMPLETION OF THE TEICHMÜLLER SPACE OF

CALABI–YAU MANIFOLDS

XIAOJING CHEN, FENG GUAN, AND KEFENG LIU

Abstract. We prove that the Hodge metric completion of the Teichmüller space of
polarized and marked Calabi–Yau manifolds is a complex affine manifold. We also show
that the extended period map from the completion space is injective into the period
domain, and that the completion space is a domain of holomorphy and admits a complete
Kähler-Einstein metric.
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1. Introduction

A compact projective manifold M of complex dimension n with n ≥ 3 is called Calabi–
Yau in this paper, if it has a trivial canonical bundle and satisfies H i(M,OM) = 0 for
0 < i < n. A polarized and marked Calabi–Yau manifold is a triple consisting of a
Calabi–Yau manifold M , an ample line bundle L over M , and a basis of the integral
middle homology group modulo torsion, Hn(M,Z)/Tor.

We will denote by T the Teichmüller space for the deformation of the complex structure
on the polarized and marked Calabi–Yau manifold M . Actually the Teichmüller space
is precisely the universal cover of the smooth moduli space Zm of polarized Calabi–Yau
manifolds with level m structure with m ≥ 3, which is constructed by Popp, Viehweg, and
Szendröi, for example in Section 2 of [13]. The versal family U → T of the polarized and
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marked Calabi–Yau manifolds is the pull-back of the versal family XZm
→ Zm, which is

also introduced in [13]. Therefore T is a connected and simply connected smooth complex
manifold with dimC T = hn−1,1(M) = N, where hn−1,1(M) = dimCH

n−1,1(M).
Let D be the period domain of polarized Hodge structures of the n-th primitive coho-

mology of M . The period map Φ : T → D is defined by assigning to each point in T the
Hodge structure of the corresponding fiber. Let us denote the period map on the smooth
moduli space by ΦZm

: Zm → D/Γ, where Γ denotes the global monodromy group which
acts properly and discontinuously on D. Then Φ : T → D is the lifting of ΦZm

◦ πm,
where πm : T → Zm is the universal covering map. There is Hodge metric h on D,
which is a complete homogeneous metric and is studied in [4]. By local Torelli theorem of
Calabi–Yau manifolds, both ΦZm

and Φ are locally injective. Thus the pull-backs of h on
Zm and T are both well-defined Kähler metrics, and they are still called Hodge metrics.

In this paper, one of our essential constructions is the global holomorphic affine struc-
ture on the Teichmüller space, which can be outlined as follows: by using the local Ku-
ranishi deformation theory of Calabi–Yau manifolds, we construct Kuranishi coordinate
cover on T . We then verify that the transition maps between any two local Kuranishi
coordinate charts are holomorphic affine maps. The computation of transition maps is
based the local Torelli theorem for Calabi–Yau manifolds and the Griffiths transversality
for variations of Hodge structures. We point out that the construction of the holomorphic
affine structure on the Teichmüller space of Calabi–Yau type manifolds in [1] is similar
to this construction. However, one may notice that such construction is algebraically
using local Torelli Theorem for the Calabi–Yau manifolds and the Griffiths transversality,
while the construction of holomorphic affine structure on T in [5] is analytically using the
canonical (n, 0)-forms on the local Kuranishi family of Calabi–Yau manifolds.

As a consequence, we get that Φ is a map from T to N+∩D, where N+ is identified with
its unipotent orbit in Ď by fixing a base point Φ(p) ∈ D with p ∈ T . Based on this result,
we first define a holomorphic map Ψ from T to CN by composing the period map with a
projection P : N+ → CN and then show that Ψ is a holomorphic affine local embedding
with respect to the holomorphic affine structure on T . One will see the property that Ψ
is a local embedding is crucial in our further constructions.

Let ZH
m

be the Hodge metric completion of the smooth moduli space Zm and let T H
m

be the universal cover of ZH
m

with the universal covering map πH
m
: T H

m
→ ZH

m
. It is easy

to see that ZH
m

is a connected and complete smooth complex manifold, and thus T H
m

is a
connected and simply connected complete smooth complex manifold. We also obtain the
following commutative diagram:

T im
//

πm

��

T H
m

πH
m

��

ΦH
m

// D

πD

��

Zm
i

// ZH
m

ΦH

Zm
// D/Γ,

(1)

where ΦH
Zm

is the continuous extension map of the period map ΦZm
: Zm → D/Γ, i is

the inclusion map, im is a lifting of i ◦ πm, and ΦH
m

is a lifting of ΦH
Zm

◦ πH
m
. We prove in

Lemma A.1 that there is a suitable choice of im and ΦH
m
such that Φ = ΦH

m
◦ im. It is not
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hard to see that ΦH
m
is actually a holomorphic map from T H

m
to N+ ∩D, where N+ is also

identified with its unipotent orbit in Ď by fixing the base point Φ(p) ∈ D with p ∈ T .

Proposition 1.1. For any m ≥ 3, the complete complex manifold T H
m

is a complex

affine manifold, which can be embedded into CN . Moreover, the holomorphic map ΦH
m

:
T H

m
→ N+ ∩D is a injection. As a consequence, the complex manifolds T H

m
and T H

m′ are

biholomorphic to each other for any m,m′ ≥ 3.

This proposition allows us to define the complete complex manifold T H by T H = T H
m
,

the holomorphic map iT : T → T H by iT = im, and the extended period map ΦH :
T H → D by ΦH = ΦH

m
for any m ≥ 3. By these definitions, Proposition 1.1 implies that

T H is a complex affine manifold and that ΦH : T H → N+∩D is a holomorphic injection.
The main result of this paper is the following.

Theorem 1.2. The complete complex affine manifold T H is the completion space of T
with respect to the Hodge metric, and it can be embedded into CN . Moreover, the extended

period map ΦH : T H → N+ ∩D is a holomorphic injection.

Here we remark that one technical difficulty of our arguments is to directly prove that
T H is the smooth Hodge metric completion space of T , which is to prove that T H is
smooth and that the map iT : T → T H is an embedding.

To show the smoothness of T H , we need to show that the definition T H = T H
m

does not
depend on the choice of the level structure m. Therefore, we first have to introduce the
smooth complete manifold T H

m
. Then by realizing the fact that the image of the period

map in D is independent of the level structure and that the metric completion space is
unique, this independence of level structure can be reduced to show that ΦH

m
: T H

m
→

N+∩D is injective. To achieve this, we first define the map ΨH
m
: T H

m
→ CN by composing

the map ΦH
m

with the projection P as above. Then by crucially using the property that
Ψ is local embedding, we show that ΨH

m
is a local embedding as well. Thus we conclude

that there exists a holomorphic affine structure on T H
m

such that ΨH
m

is a holomorphic
affine map. Finally, the affineness of ΨH

m
and completeness of T H

m
gives the injectivity of

ΨH
m
, which implies the injectivity of ΦH

m
.

To overcome the difficulty of showing iT : T → T H is embedding, we first note that
T0 = Tm := im(T ) is also well-defined. Then it is not hard to show that iT : T → T0

is a covering map. Moreover, we prove that iT : T → T0 is actually one-to-one by
showing that the fundamental group of T0 is trivial. Here the markings of the Calabi–Yau
manifolds and the simply connectedness of T come into play substantially. Therefore,
we can conclude that iT : T → T H is an embedding. It would substantially simplify
our arguments if one can directly prove that the Hodge metric completion space of T is
smooth without using Tm and T H

m .
As a direct corollary of this theorem, we easily deduce that the period map Φ =

ΦH ◦ iT : T → D is also injective since it is a composition of two injective maps. This is
the global Torelli theorem for the period map from the Teichmüller space to the period
domain. In the case that the period domain D is Hermitian symmetric and that it has
the same dimension as T , the above theorem implies that the extended period map ΦH is
biholomorphic, in particular it is surjective. Moreover, we prove another important result
as follows.
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Theorem 1.3. The completion space T H is a domain of holomorphy in CN ; thus there

exists a complete Kähler-Einstein metric on T H .

To prove this theorem, we construct a plurisubharmonic exhaustion function on T H

by using Proposition 5.9, the completeness of T H , and the injectivity of ΦH . This shows
that T H is a domain of holomorphy in CN . The existence of the Kähler-Einstein metric
follows directly from the well-known theorem of Cheng–Yau in [2].

This paper is organized as follows. In Section 2, we review the definition of the pe-
riod domain of polarized Hodge structures and briefly describe the construction of the
Teichmüller space of polarized and marked Calabi–Yau manifolds, the definition of the
period map and the Hodge metrics on the moduli space and the Teichmüller space re-
spectively. In Section 3, we construct a holomorphic affine structure on the Teichmüller
space and show that the image of the period map is in N+ ∩ D. Then we define the
map Ψ from T to CN and show it is a holomorphic affine local embedding. In Section
4, we prove that there exists a global holomorphic affine structure on T H

m
and that the

map ΦH
m

: T H
m

→ D is an injective map. In Section 5, we define the completion space
T H and the extended period map ΦH . We then show our main result that T H is the
Hodge metric completion space of T , which is also a complex affine manifold, and that
ΦH is a holomorphic injection, which extends the period map Φ : T → D. Therefore, the
global Torelli theorem for Calabi–Yau manifolds on the Teichmüller space follows directly.
Finally, we prove T H is a domain of holomorphy in CN , and thus it admits a complete
Kähler-Einstein metric. In the appendix, we include two topological lemmas: a lemma
shows the existence of the choices of ΦH

m
and im satisfying Φ = ΦH

m
◦ im and a lemma that

relates the fundamental group of the moduli space Zm to that of its completion space ZH
m

with respect to the Hodge metric.
Acknowledgement: We would like to thank Professors Mark Green, Wilfried Schmid,

Andrey Todorov, Veeravalli Varadarajan and Shing-Tung Yau for sharing many of their
ideas.

2. Teichmüller space and the period map of Calabi–Yau manifolds

In Section 2.1, we recall the definition and some basic properties of the period domain.
In Section 2.2, we discuss the construction of the Teichmülller space of Calabi–Yau man-
ifolds based on the works of Popp [10], Viehweg [14] and Szendröi [13] on the moduli
spaces of Calabi–Yau manifolds. In Section 2.3, we define the period map from the Te-
ichmüller space to the period domain. We remark that most of the results in this section
are standard and can be found from the literature in the subjects.

2.1. Period domain of polarized Hodge structures. We first review the construction
of the period domain of polarized Hodge structures. We refer the reader to Section 3 in
[11] for more details.

A pair (M,L) consisting of a Calabi–Yau manifold M of complex dimension n with
n ≥ 3 and an ample line bundle L over M is called a polarized Calabi–Yau manifold. By
abuse of notation, the Chern class of L will also be denoted by L and thus L ∈ H2(M,Z).
Let {γ1, · · · , γhn} be a basis of the integral homology group modulo torsion, Hn(M,Z)/Tor
with dimHn(M,Z)/Tor = hn.



HODGE METRIC COMPLETION OF THE TEICHMÜLLER SPACE OF CALABI–YAU MANIFOLDS 5

Definition 2.1. Let the pair (M,L) be a polarized Calabi–Yau manifold, we call the triple

(M,L, {γ1, · · · , γhn}) a polarized and marked Calabi–Yau manifold.

For a polarized and marked Calabi–Yau manifoldM with background smooth manifold
X , we identify the basis of Hn(M,Z)/Tor to a lattice Λ as in [13]. This gives us a
canonical identification of the middle dimensional de Rahm cohomology of M to that of
the background manifold X , that is,

Hn(M) ∼= Hn(X)

where the coefficient ring can be Q, R or C. Since the polarization L is an integer class,
it defines a map

L : Hn(X,Q) → Hn+2(X,Q), A 7→ L ∧ A.
We denote by Hn

pr(X) = ker(L) the primitive cohomology groups where, the coefficient

ring can also be Q, R or C. We let Hk,n−k
pr (M) = Hk,n−k(M) ∩Hn

pr(M,C) and denote its

dimension by hk,n−k. We have the Hodge decomposition

Hn
pr(M,C) = Hn,0

pr (M)⊕ · · · ⊕H0,n
pr (M).(2)

It is easy to see that for a polarized Calabi–Yau manifold, since H2(M,OM) = 0, we have

Hn,0
pr (M) = Hn,0(M), Hn−1,1

pr (M) = Hn−1,1(M).

The Poincaré bilinear form Q on Hn
pr(X,Q) is defined by

Q(u, v) = (−1)
n(n−1)

2

∫

X

u ∧ v

for any d-closed n-forms u, v on X . The bilinear form Q is symmetric if n is even and
is skew-symmetric if n is odd. Furthermore, Q is nondegenerate and can be extended to
Hn

pr(X,C) bilinearly. Moreover, it also satisfies the Hodge-Riemann relations

Q
(
Hk,n−k

pr (M), H l,n−l
pr (M)

)
= 0 unless k + l = n, and(3)

(√
−1
)2k−n

Q (v, v) > 0 for v ∈ Hk,n−k
pr (M) \ {0}.(4)

Let fk =
∑n

i=k h
i,n−i, f 0 = m, and F k = F k(M) = Hn,0

pr (M) ⊕ · · · ⊕Hk,n−k
pr (M), from

which we have the decreasing filtration Hn
pr(M,C) = F 0 ⊃ · · · ⊃ F n. We know that

dimC F
k = fk,(5)

Hn
pr(X,C) = F k ⊕ F n−k+1, and Hk,n−k

pr (M) = F k ∩ F n−k.(6)

In terms of the Hodge filtration, the Hodge-Riemann relations (3) and (4) are

Q
(
F k, F n−k+1

)
= 0, and(7)

Q (Cv, v) > 0 if v 6= 0,(8)

where C is the Weil operator given by Cv =
(√

−1
)2k−n

v for v ∈ Hk,n−k
pr (M). The period

domain D for polarized Hodge structures with data (5) is the space of all such Hodge
filtrations

D =
{
F n ⊂ · · · ⊂ F 0 = Hn

pr(X,C) | (5), (7) and (8) hold
}
.

The compact dual Ď of D is

Ď =
{
F n ⊂ · · · ⊂ F 0 = Hn

pr(X,C) | (5) and (7) hold
}
.
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The period domain D ⊆ Ď is an open subset. We note that the conditions (7) and (8)
imply the identities in (6). From the definition of period domain we naturally get the
Hodge bundles on Ď by associating to each point in Ď the vector spaces {F k}nk=0 in the
Hodge filtration of that point. Without confusion we will also denote by F k the bundle
with F k as the fiber for each 0 ≤ k ≤ n.

Remark 2.2. We remark the notation change for the primitive cohomology groups. As
mentioned above that for a polarized Calabi–Yau manifold,

Hn,0
pr (M) = Hn,0(M), Hn−1,1

pr (M) = Hn−1,1(M).

For the reason that we mainly consider these two types of primitive cohomology group of a
Calabi–Yau manifold, by abuse of notation, we will simply use Hn(M,C) and Hk,n−k(M)
to denote the primitive cohomology groups Hn

pr(M,C) and Hk,n−k
pr (M) respectively. More-

over, we will use cohomology to mean primitive cohomology in the rest of the paper.

2.2. Construction of the Teichmuller space. We first recall the concept of Kuranishi
family of compact complex manifolds. We refer to page 8-10 in [12], page 94 in [10] or
page 19 in [14] for equivalent definitions and more details.

A family of compact complex manifolds π : W → B is versal at a point p ∈ B if it
satisfies the following conditions:

(1) If given a complex analytic family ι : V → S of compact complex manifolds with
a point s ∈ S and a biholomorphic map f0 : V = ι−1(s) → U = π−1(p), then
there exists a holomorphic map g from a neighbourhood N ⊆ S of the point s
to T and a holomorphic map f : ι−1(N ) → W with ι−1(N ) ⊆ V such that they
satisfy that g(s) = p and f |ι−1(s) = f0, with the following commutative diagram

ι−1(N )
f

//

ι

��

W
π

��

N g
// B.

(2) For all g satisfying the above condition, the tangent map (dg)s is uniquely deter-
mined.

If a family π : W → B is versal at every point p ∈ B, then it is a versal family on B.
If a complex analytic family satisfies the above condition (1), then the family is called
complete at p. If a complex analytic family π : W → B of compact complex manifolds is
complete at each point of B and versal at the point p ∈ B, then the family π : W → B
is called the Kuranishi family of the complex manifold V = π−1(p). The base space B is
called the Kuranishi space. If the family is complete at each point in a neighbourhood of
p ∈ B and versal at p, then the family is called a local Kuranishi family at p ∈ B.

Let (M,L) be a polarized Calabi–Yau manifold. We call a basis of the quotient space
(Hn(M,Z)/Tor)/m(Hn(M,Z)/Tor) a level m structure on the polarized Calabi–Yau man-
ifold with m ≥ 3. For deformation of polarized Calabi–Yau manifold with level m struc-
ture, we have the following theorem, which is a reformulation of Theorem 2.2 in [13]. We
just take the statement we need in this paper. One can also look at [10] and [14] for more
details about the construction of moduli spaces of Calabi–Yau manifolds.
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Theorem 2.3. Let m ≥ 3 and M be a polarized Calabi–Yau manifold with level m
structure. Then there exists a connected quasi-projective complex manifold Zm with a

versal family of Calabi–Yau manifolds,

XZm
→ Zm,(9)

containing M as a fiber, and polarized by an ample line bundle LZm
on XZm

.

We define the Teichmüller space T to be the universal cover of Zm with the covering
map πm : T → Zm. We denote by the family ϕ : U → T the pull-back of the family (9)
via the projection πm.

Proposition 2.4. The Teichmüller space T is a connected and simply connected smooth

complex manifold and the family

ϕ : U → T ,(10)

which contains M as a fiber, is local Kuranishi at each point of T .

Proof. For the first part, because Zm is a connected and smooth complex manifold, its
universal cover T is thus a connected and simply connected smooth complex manifold.
For the second part, we know that the family (9) is a versal family at each point of Zm

and that πm is locally biholomorphic, therefore the pull-back family via πm is also versal
at each point of T . By the definition of local Kuranishi family, we get that U → T is
local Kuranishi at each point of T . �

Remark 2.5. We remark that the family ϕ : U → T being local Kuranishi at each point
is essentially due to the local Torelli theorem for Calabi–Yau manifolds. In fact, we know
that for the family U → T , the Kodaira-Spencer map

κ : T 1,0
p T → H0,1(Mp, T

1,0Mp),

is an isomorphism for each p ∈ T . Then by theorems in page 9 of [12], we conclude that
U → T is versal at each p ∈ T . We refer the reader to Chapter 4 in [8] for more details
about deformation of complex structures and the Kodaira-Spencer map. In particular,
by Lemma 3.3 in the next section, it is easy to see that dimC T = dimCH

n−1,1(Mp) = N .
We also remark that the Teichmüller space T does not depend on the choice of m.

In fact, let m1 and m2 be two different integers, and U1 → T1, U2 → T2 be two versal
families constructed via level m1 and level m2 structures respectively as above, and both
of which contain M as a fiber. By using the fact that T1 and T2 are simply connected and
the definition of versal family, we have a biholomorphic map f : T1 → T2, such that the
versal family U1 → T1 is the pull back of the versal family U2 → T2 by f . Thus these two
families are biholomorphic to each other.

In the rest of the paper, we will simply use “level m structure” to mean “level m
structure with m ≥ 3”.

2.3. The period map and the Hodge metric on the Teichmüller space. For any
point p ∈ T , let Mp be the fiber of family ϕ : U → T , which is a polarized and marked
Calabi–Yau manifold. Since the Teichmüller space is simply connected and we have
fixed the basis of the middle homology group modulo torsions, we identify the basis of
Hn(M,Z)/Tor to a lattice Λ as in [13]. This gives us a canonical identification of the
middle dimensional cohomology of M to that of the background manifold X , that is,
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Hn(M,C) ≃ Hn(X,C). Therefore, we can use this to identify Hn(Mp, C) for all fibers
on T . Thus we get a canonical trivial bundle Hn(Mp,C)× T .

The period map from T to D is defined by assigning each point p ∈ T the Hodge
structure on Mp, that is

Φ : T → D, p 7→ Φ(p) = {F n(Mp) ⊂ · · · ⊂ F 0(Mp)}
We denote F k(Mp) by F

k
p for simplicity.

The period map has several good properties, and we refer the reader to Chapter 10
in [15] for details. Among them, one of the most important is the following Griffiths
transversality: the period map Φ is a holomorphic map and its tangent map satisfies that

Φ∗(v) ∈
n⊕

k=1

Hom
(
F k
p /F

k+1
p , F k−1

p /F k
p

)
, for any p ∈ T and v ∈ T 1,0

p T

with F n+1 = 0, or equivalently, Φ∗(v) ∈
⊕n

k=0Hom(F k
p , F

k−1
p ).

In [4], Griffiths and Schmid studied the so-called Hodge metric on the period domain
D. We denote it by h. In particular, this Hodge metric is a complete homogeneous
metric. Let us denote the period map on the moduli space by ΦZm

: Zm → D/Γ, where
Γ denotes the global monodromy group which acts properly and discontinuously on the
period domain D. Since πm : T → Zm is the universal covering map, the period map
Φ : T → D is the lifting of ΦZm

◦πm. By local Torelli theorem for Calabi–Yau manifolds,
we know that ΦZm

,Φ are both locally injective. Thus it follows from [4] that the pull-
backs of h by ΦZm

and Φ on Zm and T respectively are both well-defined Kähler metrics.
By abuse of notation, we still call these pull-back metrics the Hodge metrics, and they
are both denoted by h.

3. Holomorphic affine structure on the Teichmüller space

In Section 3.1, we will give a brief review on definitions and some basic properties of
affine manifolds and affine maps. In Section 3.2, we construct the Kuranishi coordinate
cover on T and prove that this coordinate cover gives a global holomorphic affine structure
on T . In Section 3.3, we define the map Ψ from T to CN by composing the period map
with a projection map. We then show that Ψ is a holomorphic affine local embedding by
using the affine structure and simply connectedness of T as well as the local property of
the period map Φ.

3.1. Affine manifolds and affine maps. We first review the definition of complex affine
manifolds. One may refer to page 215 of [9] for more details.

Definition 3.1. Let M be a complex manifold of complex dimension n. If there is a

coordinate cover {(Ui, ϕi); i ∈ I} of M such that ϕik = ϕi ◦ ϕ−1
k is a holomorphic affine

transformation on Cn whenever Ui ∩ Uk is not empty, then {(Ui, ϕi); i ∈ I} is called a

complex affine coordinate cover on M and it defines a holomorphic affine structure on M .

A differentiable map f : M → M ′ between two holomorphic affine manifolds is called
holomorpic affine, if f is holomorphic affine when restricted to the complex affine coor-
dinate cover. We also recall an extension theorem of holomorphic affine maps on affine
manifolds, which is the holomorphic analogue of Theorem 6.1 in [7]. We refer the reader
to page 252-255 of [7] for more details.
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Theorem 3.2. Let M be a connected and simply connected complex affine manifold. Let

M ′ be a complete complex affine manifold. Then any holomorphic affine map fU on a

connected open subset U of M to M ′ can be uniquely extended to a holomorphic affine

map f on M to M ′.

Proof. Because both M and M ′ are complex affine manifolds, they are naturally real
affine manifolds. The map fU is automatically a real affine map. Then Theorem 6.1 in
[7] implies that there exists a global real affine map

f : M →M ′

which is an extension of fU onM . We know that f is real analytic onM and holomorphic
on U , so f is globally holomorphic on M . If there is another holomorphic affine extension
g : M →M ′ of fU , then g is holomorphic and g = f on U . This implies g = f on M . �

3.2. Holomorphic affine structure on the Teichmüller space. We know that there
is the pull-back bundle of the Hodge bundle F n → D on T via the period map Φ. Notice
that as Hn,0 is isomorphic F n as holomorphic bundles, we denote the restriction of the
pull-back bundle on Up by Hn,0 → Up. Then there exists a local holomorphic section,

[Ωp] : Up → Hn,0, with [Ωp](q) ∈ Hn,0
q , for each q ∈ Up.

Let us choose orthonormal bases {η0} and {η1, · · · , ηN} of Hn,0
p and Hn−1,1

p respectively.
Without loss of generality we assume [Ωp](p) = η0. As vector spaces, Hn(Mq,C) are the
same for all q ∈ Up. Therefore, using P

n−j,j
p to denote projection

P n−j,j
p :

n⊕

k=0

Hn−k,k
p → Hn−j,j

p , for any 0 ≤ j ≤ n,(11)

we then have the decomposition of the holomorphic section [Ωp](q) for any q ∈ Up, and

P n,0
p ([Ωp](q)) = a0(q)η0, P n−1,1

p ([Ωp](q)) = a1(q)η1 + · · ·+ aN (q)ηN ,

with holomorphic coefficient functions {ai(q)}Ni=0. We may assume a0(q) 6= 0 for any
q ∈ Up on a small enough neighborhood Up since a0 is a continuous function with a0(p) = 1.
This gives us a collection of local holomorphic functions on Up as follows,

τi : Up → C, τi(q) = ai(q)/a0(q), for 1 ≤ i ≤ N.(12)

In particular, τi(p) = 0 for 1 ≤ i ≤ N . In order to show that (τ1, · · · , τN ) gives a local
holomorphic coordinate system, we first show the following two lemmas.

Let us denote by (Mp, L) the corresponding polarized and marked Calabi–Yau manifold
as the fiber over p ∈ T . Yau’s solution of the Calabi conjecture implies that there exists
a unique Calabi–Yau metric hp on Mp, and the imaginary part ωp =Imhp ∈ L is the
corresponding Kähler form. We denote by A0,1 (M,T 1,0M) the space of T 1,0M-valued
smooth (0, 1)-forms, H0,1(M, T 1,0M) the space of harmonic (0, 1)-forms with values in a
holomorphic tangent bundle T 1,0M , and An−1,1(M) the space of smooth (n− 1, 1)-forms
on M . By using the Calabi–Yau metric we have the following lemma,

Lemma 3.3. Let Ωp be a nowhere vanishing holomorphic (n, 0)-form on Mp such that
(√

−1

2

)n

(−1)
n(n−1)

2 Ωp ∧ Ωp = ωn
p .(13)
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Then the map ι : A0,1 (M,T 1,0M) → An−1,1(M) given by ι(ϕ) = ϕyΩp is an isometry with

respect to the natural Hermitian inner product on both spaces induced by ωp. Furthermore,

ι preserves the Hodge decomposition.

Recall that we can always pick local coordinates z1, · · · , zn on M such that the (n, 0)-

form Ωp = dz1∧· · ·∧dzn locally and ωp =
√
−1
2
gijdzi∧dzj, then the condition (13) implies

that det[gij] = 1. Then the lemma follows from direct computations.
Let us denote the following projection map for any point p ∈ T ,

P j
p :

n−1⊕

k=1

Hom(F k
p /F

k+1
p , F k−1

p /F k
p ) → Hom(F j

p/F
j+1
p , F j−1

p /F j
p ), for any 0 ≤ j ≤ n

where F n+1
p = 0. We then have the following lemma.

Lemma 3.4. For any p ∈ T and any generator [Ωp] of F
n
p , the map

P n
p ◦ Φ∗ : T

1,0
p T ∼= H0,1(Mp, T

1,0Mp) → Hom(F n
p , F

n−1
p /F n

p )
∼= Hn−1,1

p

is an isomorphism, where Φ∗ is the tangent map of Φ.

Proof. The first isomorphism T 1,0
p T ∼= H0,1(Mp, T

1,0Mp) follows from that Kodaira-Spencer
map is an isomorphism. The second isomorphism

Hom(F n
p , F

n−1
p /F n

p )
∼= Hn−1,1

p

follows from the property that dimF n
p = 1 for Calabi–Yau manifolds, where this iso-

morphism is determined by the choice of the generator [Ωp]. It is clear now that the
map

P n
p ◦ Φ∗ : H

0,1(Mp, T
1,0Mp) → Hn−1,1

p

is given by contraction P n
p ◦ Φ∗(v) = [κ(v)yΩp]. This contraction map is an isomorphism

by Lemma 3.3. �

Lemma 3.5. The holomorphic map (τ1, · · · , τN ) : Up → CN is a local embedding.

Proof. The proof follows directly from Lemma 3.4, which states that the map

P n
p ◦ Φ∗ : T

1,0
p T → Hn−1,1

p

is an isomorphism. Letting {t1, · · · , tN} be an arbitrary local holomorphic coordinate

system around p, then the Jacobian matrix [∂ai/∂tj ]
N
i,j=0 is nonsingular at p. This means

that {a1, · · · , aN} gives a local holomorphic coordinate system around p. Since τi = ai/a0,
we have

∂τi
∂tj

=
(

∂ai
∂tj
a0 − ∂a0

∂tj
ai

)
/a20, for any 1 ≤ i ≤ N.

As a0(p) = 1, and ai(p) = 0 for i > 0, we have ∂τi
∂tj

(p) = ∂ai
∂tj

(p). Thus the Jacobian matrix

[∂τi/∂tj ]
N
i,j=0 is nonsingular at p. This proves that the map (τ1, · · · , τN) : Up → CN is a

local embedding. Therefore (τ1, · · · , τN) also gives a local holomorphic coordinate system
around p. �
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In general, for any point q ∈ T , by choosing bases of Hn,0
q and Hn−1,1

q , we can define
a local holomorphic coordinate (Uq, (σ1, · · · , σN)) around q in the same way. Thus the
collection {(Uq, (σ1, · · · , σN)), q ∈ T } forms a holomorphic coordinate system on T , which
we call the Kuranishi coordinate cover over T . The local holomorphic coordinate system
(Uq, (σ1, · · · , σN)) a local Kuranishi coordinate chart around q.

For any p ∈ T , by using the coordinate chart (Up, (τ1, · · · , τN)), we can express a
holomorphic class in Hn,0

q at each point q ∈ Up by the following Taylor expansion,

(14) [Ωc
p,τ ](q) = [Ωp](q)/a0(q) = η0 + τ1(q)η1 + · · ·+ τN(q)ηN + g(q),

with g(q) ∈ ⊕n
k=2H

n−k,k
p . This gives us a local holomorphic section of F n on Up, and

thus a holomorphic section of F n on Up,

[Ωc
p,τ ] : Up → F n, q 7→ [Ωc

p,τ ](q).

We call [Ωc
p,τ ] the local canonical section of F n around the point p in the local Kuranishi

coordinate chart (Up, (τ1, · · · , τN)).
Let us introduce the notion of an adapted basis for the given Hodge decomposition.

For any p ∈ T and fk = dimF k
p for any 0 ≤ k ≤ n, we call a basis

ξ =
{
ξ0, ξ1, · · · , ξN , · · · , ξfk+1, · · · , ξfk−1, · · · , ξf2 , · · · , ξf1−1, ξf0−1

}

of Hn(Mp,C) an adapted basis for the given Hodge decomposition

Hn(Mp,C) = Hn,0
p ⊕Hn−1,1

p ⊕ · · · ⊕H1,n−1
p ⊕H0,n

p ,

if it satisfies Hk,n−k
p = SpanC

{
ξfk+1, · · · , ξfk−1

}
with dimHk,n−k

p = fk − fk+1.
Moreover, unless otherwise pointed out, the matrices in this paper are m×m matrices,

where m = f 0. The blocks of the m ×m matrix T is set in the following way: for each
0 ≤ α, β ≤ n, the (α, β)-th block T α,β is

T α,β = [Tij(τ)]f−α+n+1≤i≤f−α+n−1, f−β+n+1≤j≤f−β+n−1 ,(15)

where Tij is the entries of the matrix T , and fn+1 is defined to be zero. In particular,
T = [T α,β] is called a block lower triangular matrix if T α,β = 0 whenever α < β.

Remark 3.6. Let Ωk denote the sheaf of holomorphic k-forms on complex manifolds for
each 0 ≤ k ≤ n, especially Ω0 is the sheaf of holomorphic functions. We use Hn−k(Mq,Ω

k)
to denote the (n− k)-th sheaf cohomology group of Ωk on the Calabi–Yau manifold Mq.
For the local Kuranishi family ϕ : U → T introduced in Proposition 2.4, let Ωk

U/T be
the sheaf of relative holomorphic k-forms on U . It is well-known that the push-forward
sheaf Rn−kϕ∗Ω

k
U/T , which is a sheaf of free OT - modules of finite rank with fiber at q, is

isomorphic to Hn−k(Mq,Ω
k). By abuse of notation, the holomorphic vector bundle over

T corresponding to Rn−kϕ∗Ω
k
U/T is also denoted by Rn−kϕ∗Ω

k
U/T .

For any point p ∈ T , each Dolbeault cohomology group Hk,n−k
p is identified with the

sheaf cohomology groupHn−k(Mp,Ω
k) for 0 ≤ k ≤ n, which is defined byHn−k(Mp,Ω

k) =
Rn−kϕ∗Ω

k
U/T . See Chapter 8 in [15]. Globally, on the Teichmüller space T , we can identify

each quotient F k/F k+1 with Rn−kϕ∗Ω
k
U/T as holomorphic vector bundles. Therefore we

will be able to choose local holomorphic sections {ξ0, · · · , ξm−1} of Rn−kϕ∗Ω
k
U/T such that,

when restricted to each point p, these holomorphic sections form an adapted basis of the
Hodge decomposition of Φ(p).
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Lemma 3.7. For any p, q ∈ T , suppose (η0, · · · , ηm−1) and (ζ0, · · · , ζm−1) are adapted

bases for the Hodge decompositions of the Hodge structures Φ(p) and Φ(q) respectively.

Then there exists a nonsingular block lower triangular matrix T such that

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T.

Proof. This lemma is a direct corollary of the Griffiths transversality for the period map.
Let (Up, (τ1, · · · , τN )) be the local Kuranishi coordinate chart around the point p. We use
the same notation for a point τ ∈ Up and its coordinate in the coordinate chart.

We first consider the case when q ∈ Up. As Up is contractible, the holomorphic Hodge
bundles F n ∼= R0ϕ∗Ω

n
U/T , F

n−1/F n ∼= R1ϕ∗Ω
n−1
U/T , · · · , F 0/F 1 ∼= Rnϕ∗Ω

0
U/T are trivial

bundles on Up. Therefore for each τ ∈ Up, there exist holomorphic frames {ξ0(τ)},
{ξ1(τ), · · · , ξN(τ)}, · · · , {ξm−1(τ)} of R0ϕ∗Ω

n
U/T , R

1ϕ∗Ω
n−1
U/T , · · · , Rnϕ∗Ω

0
U/T respectively,

that is,

SpanC{ξj(τ)}fk+1≤j≤fk−1 = Hn−k(Mτ ,Ω
k) for each 0 ≤ k ≤ n.

According to Remark 3.6, we have the linear space isomorphism

Hn−k(Mτ ,Ω
k) ∼= Hk,n−k

τ for each 0 ≤ k ≤ n and each τ ∈ Up,

and the evaluation (ξ0(τ), · · · , ξm−1(τ)) of the family at τ forms an adapted basis for the
Hodge decomposition ⊕n

k=0H
k,n−k
τ of Φ(τ). In particular, we can choose the family such

that ξj(p) = ηj at p for all 0 ≤ j ≤ m− 1.
Now for each 0 ≤ k ≤ n, we look at the holomorphic families {ξj(τ)}fk+1≤j≤fk−1 ⊆

Hn−k(Mτ ,Ω
k). Using the Griffiths transversality, we have

∂
∂τ
ξj(τ) ∈ Hn−k(Mτ ,Ω

k)⊕Hn−k+1(Mτ ,Ω
k−1).

More generally, by taking higher order derivatives, we get

∂|I|

∂τ I
ξj(τ) ∈ Hn−k(Mτ ,Ω

k)⊕ · · · ⊕Hn−k+|I|(Mτ ,Ω
k−|I|),

with I = (i1, · · · , iN), |I| = i1 + · · ·+ iN . Therefore, we can write

∂|I|

∂τ I
ξj(τ) =

∑

fk+1≤i≤fk−|I|−1

JI
ij(τ)ξi(τ) for each |I| ≥ 0,

where JI
ij(τ) are holomorphic functions of τ . Let us look at the Taylor expansion of ξj(τ)

at p. For Up small enough, we get for each fk+1 ≤ j ≤ fk − 1 that

ξj(τ) =
∑

|I|≥0

1

I!

∂|I|

∂τ I
ξj(p)τ

I =
∑

|I|≥0




∑

fk+1≤i≤fk−|I|−1

1

I!
JI
ij(p)ξi(p)


 τ I ,

where ξi(τ) ∈ Hn−k(Mp,Ω
n−k) ⊕ · · · ⊕H0(Mp,Ω

n) and I! = i1! · · · iN !. Thus, combining
the coefficients for each ξi(p), we can write

ξj(τ) =
∑

fk+1≤i≤m−1

Jij(τ)ξi(p) =
∑

fk+1≤i≤m−1

Jij(τ)ηi, for each fk+1 ≤ j ≤ fk − 1.(16)

By considering all 0 ≤ k ≤ n, (16) gives us an m×m matrix J(τ), such that

(ξ0(τ), · · · , ξm−1(τ)) = (η0, · · · , ηm−1)J(τ).
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From (16), we also get that given any 0 ≤ α ≤ n and fn−α+1 ≤ j ≤ fn−α − 1, if
i ≤ fn−α+1 − 1, then Jij(τ) = 0. Recalling the definition of matrix blocks given by (15),
we may rephrase this as follows: if fn−α+1 < fn−β+1, then Jα,β = 0. As fk is decreasing
with respect to k, we then have that for α < β, Jα,β = 0. Thus we conclude that J(τ) is
a block lower triangular matrix. In particular, for the point q ∈ Up, we have

(ξ0(q), · · · , ξm−1(q)) = (η0, · · · , ηm−1)J(q).(17)

Moreover, since (ξ0(q), · · · , ξm−1(q)) and (η0, · · · , ηm−1) are both bases for Hn(M,C), the
matrix J(q) is nonsingular. As both (ξ0(q), · · · , ξm−1(q)) and (ζ0, · · · , ζm−1) are adapted
bases of the Hodge decomposition ⊕n

k=0H
k,n−k
q of Φ(q), they differ from each other by a

nonsingular block diagonal matrix A, that is,

(ζ0, · · · , ζm−1) = (ξ0(q), · · · , ξm−1(q))A.(18)

Combining (17) and (18), we get (ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)J(q)A. Let T (q) =
J(q)A. Then T (q) is a nonsingular block lower triangular matrix such that

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T (q).

For the general case, since T is a connected complex manifold, it is path-connected.
Therefore, for any q ∈ T , there exists a path γ : [0, 1] → T connecting p and q, that
is, γ(0) = p and γ(1) = q. We choose a partition 0 = s0 < s1 < · · · < sl = 1 of [0, 1]

so that γ(sk+1) ∈ Uγ(sk) with (Uγ(sk+1), (τ
(k+1)
1 , · · · , τ (k+1)

N )) a local Kuranishi coordinate

chart for each k. Therefore for any adapted bases (ξ
(k)
0 , · · · , ξ(k)m−1) and (ξ

(k+1)
0 , · · · , ξ(k+1)

m−1 )
and the Hodge decomposition of the Hodge decompositions of Φ(γ(sk)) and Φ(γ(sk+1)),
respectively, we can apply the argument above repeatedly to all 0 ≤ k ≤ l−1 to conclude
that there exists some nonsingular block lower triangular matrix Tk such that

(ξ
(k+1)
0 , · · · , ξ(k+1)

m−1 ) = (ξ
(k)
0 , · · · , ξ(k)m−1)Tk, for 0 ≤ k ≤ l − 1.

In particular, we may assume (ξ
(0)
0 , · · · , ξ(n−1)

m−1 ) = (η0, · · · , ηm−1) and (ξ
(l)
0 , · · · , ξ(l)m−1) =

(ζ0, · · · , ζm−1). Thus we have

(ζ0, · · · , ζm−1) = (ξ
(l)
0 , · · · , ξ(l)m−1) = (ξ

(0)
0 , · · · , ξ(0)m−1)

l−1∏

k=0

Tk = (η0, · · · , ηm−1)
l−1∏

k=0

Tk.

Let T (q) =
∏l−1

k=0 Tk, which is a product of nonsingular block lower triangular matrices.
Therefore T (q) is a nonsingular block lower triangular matrix such that (ζ0, · · · , ζm−1) =
(η0, · · · , ηm−1)T (q). �

Theorem 3.8. The Kuranishi coordinate cover gives a global holomorphic affine structure

on T .

Proof. Let p, q ∈ T . Let (Up, (τ1, · · · , τN )) and (Uq, (σ1, · · · , σN)) be the local Kuranishi
coordinate charts around p and q, respectively with Up ∩ Uq 6= ∅. To prove the theorem,
we need to show that given r ∈ Up ∩ Uq, the transition map between (τ1(r), · · · , τN(r))
and (σ1(r), · · · , σN (r)) is holomorphic affine.

Suppose (Up, (τ1, · · · , τN)) and (Uq, (σ1, · · · , σN)) are defined by choosing the bases
(η0, · · · , ηN) ofHn

p⊕Hn−1,1
p and (ζ0, · · · , ζN) ofHn

q ⊕Hn−1,1
q respectively. We then complete

them to adapted bases (η0, · · · , ηm−1) and (ζ0, · · · , ζm−1) for the Hodge decompositions
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of the Hodge structures Φ(p) and Φ(q) respectively. Let [Ωc
p,τ ](r) ∈ Hn,0

r be the local
canonical (n, 0)-class defined by (14) in the local coordinate chart (Up, (τ1, · · · , τN )). Then

[Ωc
p,τ ](r) = η0 +

N∑

i=1

τi(r)ηi +
∑

l≥N+1

gl(τ(r))ηl.

Similarly, letting [Ωc
q,σ](r) ∈ Hn,0

r be the local canonical (n, 0) class in the local coordinate
chart (Uq, (σ1, · · · , σN)), we have

[Ωc
q,σ](r) = ζ0 +

N∑

i=1

σi(r)ζi +
∑

l≥N+1

fl(σ(r))ζl.

Since [Ωc
p,τ ](r), [Ω

c
q,σ](r) ∈ Hn,0

r , with dimHn,0
r = 1, there exists λ ∈ C such that

η0 +

N∑

i=1

τi(r)ηi +
∑

l≥N+1

gl(τ(r))ηl = λ

(
ζ0 +

N∑

i=1

σi(r)ζi +
∑

l≥N+1

fl(σ(r))ζl

)
.(19)

On the other hand, by Lemma 3.7, there exists a nonsingular block lower triangular matrix
T such that

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T.(20)

We can write (20) explicitly as follows,

ζj =
∑

i≥fk+1

Tijηi for each fk+1 ≤ j ≤ fk − 1 and for each 0 ≤ k ≤ n.

Substituting ζj in (19) by using (20), then we get

η0 +

N∑

i=1

τi(r)ηi +
∑

l≥N+1

gl(τ(r))ηl

= λ

(
∑

j≥0

Tj0ηj +

N∑

i=1

(
σi(r)

∑

j≥1

Tjiηj

)
+
∑

l≥N+1

(
fl(σ(r))

∑

j≥N+1

Tjlηj

))
.

By considering the coefficient of η0, we get λ = T−1
00 . Projecting both sides of the above

equation to Hn−1,1
p , we get

N∑

i=1

τi(r)ηi = λ

(
N∑

i≥1

(
Ti0 +

N∑

j=1

σj(r)Tij

)
ηi

)
.

By considering the coefficient of each ηi, and substituting λ = T−1
00 , we get

T00τi(r) = Ti0 +
N∑

j=1

σj(r)Tij, for any 1 ≤ i ≤ N.(21)

Since for each 0 ≤ i, j ≤ N , Tij is a constant depending only on p and q, the equality
(21) implies that the transition map between (τ1(r), · · · , τN(r)) and (σ1(r), · · · , σN(r)) is
a holomorphic affine map. �
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Remark 3.9. We can not expect the existence of such holomorphic affine structure on the
moduli space Zm. In fact, we crucially used Lemma 3.7 in the computation of transition
maps in the proof of Theorem 3.8. Let (ζ0, · · · ζm−1) and (η0, · · · , ηm−1) be adapted bases
for Hodge decomposition of Φ(p) and Φ(p′), respectively, which are both bases of the same
trivialized space Hn(M,C). Then we can relate them by (ζ0, · · · ζm−1) = (η0, · · · , ηm−1)T
using a nonsingular block lower triangular matrix T as was proved in Lemma 3.7. However,
for any q, q′ ∈ Zm, the corresponding Hodge decompositions of ΦZm

(q) and ΦZm
(q′) are

both in D/Γ. In this case, we don’t have the concepts adapted bases for the Hodge
decomposition of Hn(M,C), as elements in D/Γ can no longer be identified with Hodge
decompositions of Hn(M,C). Thus, we have neither the concept of adapted bases nor the
trivialization of space Hn(M,C). Therefore, our construction of the holomorphic affine
structure on T dose not apply to Zm.

3.3. The local embedding Ψ on the Teichmüller space. In this section, we first
give a general review about Hodge structures and period domain from Lie group point
of view. One may refer to [11] for more details. In particular, we describe in detail the
identification of the unipotent group N+ with its unipotent orbit in Ď.

The orthogonal group of the bilinear form Q in the definition of Hodge structure is
a linear algebraic group, defined over Q. Let us simply denote HC = Hn(M,C) and
HR = Hn(M,R). The group of the C-rational points is

GC = {g ∈ GL(HC)| Q(gu, gv) = Q(u, v) for all u, v ∈ HC},

which acts on Ď transitively. The group of real points in GC is

GR = {g ∈ GL(HR)| Q(gu, gv) = Q(u, v) for all u, v ∈ HR},
which acts transitively on D as well.

Consider the period map Φ : T → D. Fix a point p ∈ T , with the image o := Φ(p) =
{F n

p ⊂ · · · ⊂ F 0
p } ∈ D. The points p ∈ T and o ∈ D may be referred as the base points

or the reference points. A linear transformation g ∈ GC preserves the base point if and
only if gF k

p = F k
p for each k. Thus it gives the identification

Ď ≃ GC/B, with B = {g ∈ GC| gF k
p = F k

p , for any k}.
Similarly, one obtains an analogous identification

D ≃ GR/V →֒ Ď, with V = GR ∩ B,
where the embedding corresponds to the inclusion GR/V = GR/GR ∩ B ⊆ GC/B. The
Lie algebra g of the complex Lie group GC can be described as

g = {X ∈ End(HC)| Q(Xu, v) +Q(u,Xv) = 0, for all u, v ∈ HC}.
It is a simple complex Lie algebra, which contains g0 = {X ∈ g| XHR ⊆ HR} as a real
form, i.e. g = g0 ⊕ ig0. With the inclusion GR ⊆ GC, g0 becomes Lie algebra of GR. One
observes that the reference Hodge structure {Hk,n−k

p }nk=0 of Hn(M,C) induces a Hodge
structure of weight zero on End(Hn(M,C)), namely,

g =
⊕

k∈Z
gk,−k, with gk,−k = {X ∈ g|XHr,n−r

p ⊆ Hr+k,n−r−k
p }.
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Since the Lie algebra b of B consists of those X ∈ g that preserves the reference Hodge
filtration {F n

p ⊂ · · · ⊂ F 0
p }, one thus has

b =
⊕

k≥0

gk,−k.

The Lie algebra v of V is v = g0∩b = g0∩b∩b = g0∩g0,0.With the above isomorphisms,
the holomorphic tangent space of Ď at the base point is naturally isomorphic to g/b.

Let us consider the nilpotent Lie subalgebra n+ := ⊕k≥1g
−k,k. Then one gets the

holomorphic isomorphism g/b ∼= n+. We take the unipotent group N+ = exp(n+).
As Ad(g)(gk,−k) is in

⊕
i≥k g

i,−i for each g ∈ B, the sub-Lie algebra b⊕ g−1,1/b ⊆ g/b

defines an Ad(B)-invariant subspace. By left translation via GC, b ⊕ g−1,1/b gives rise
to a GC-invariant holomorphic subbundle of the holomorphic tangent bundle at the base
point. It will be denoted by T 1,0

o,h Ď, and will be referred to as the holomorphic horizontal
tangent bundle at the base point. One can check that this construction does not depend
on the choice of the base point. The horizontal tangent subbundle at the base point o,
restricted to D, determines a subbundle T 1,0

o,hD of the holomorphic tangent bundle T 1,0
o D

of D at the base point. The GC-invariace of T
1,0
o,h Ď implies the GR-invariance of T

1,0
o,hD. As

another interpretation of this holomorphic horizontal bundle at the base point, one has

T 1,0
o,h Ď ≃ T 1,0

o Ď ∩
n⊕

k=1

Hom(F k
p /F

k+1
p , F k−1

p /F k
p ).

It is easy to see that the Griffiths transversality of the period map Φ : T → D is equivalent
to Φ∗(T

1,0
p T ) ⊆ T 1,0

o,hD for any p ∈ T . Since D is an open set in Ď, we have the following
relation:

T 1,0
o,hD = T 1,0

o,h Ď
∼= b⊕ g−1,1/b →֒ g/b ∼= n+.(22)

We remark that the Lie algebras n+, g
−1,1 are originally defined to be subsets in g, and

that the Lie group N+ is defined to be a subgroup of GC. However, by fixing a base point,
we can identify them with their orbits in the corresponding quotient Lie algebras or Lie
groups. For example, n+ ∼= g/b, g−1,1 ∼= b⊕ g−1,1/b, and N+

∼= N+B/B ⊆ Ď.

Remark 3.10. With a fixed base point, we can identify N+ with its unipotent orbit in Ď
by dentifying an element c ∈ N+ with [c] = cB in Ď; that is, N+ = N+( base point ) ∼=
N+B/B ⊆ Ď. In particular, when the base point o is in D, we have N+ ∩ D ⊆ D. In
the rest of the paper, the base point is always chosen to be in D; thus we can view
N+ ∩D = N+( base point ) ∩D as a subset of D.

Recall that we can identify a point Φ(p) = {F n
p ⊂ F n−1

p ⊂ · · · ⊂ F 0
p } ∈ D with its Hodge

decomposition
⊕n

k=0H
k,n−k
p , and thus with any fixed adapted basis of the corresponding

Hodge decomposition. With a fixed adapted basis for the base point, we will matrix
representations of elements in the above Lie groups and Lie algebras. Moreover, we have
the following remark regarding the forms of matrix representation of elements in some of
the Lie groups or Lie algebras mentioned above.

Remark 3.11. If we fix an adapted basis for the Hodge decomposition of the base point,
and we identify the following quotient Lie groups or quotient Lie algebras with their orbits,
then we have the following descriptions of matrix representation of elements: elements in
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V are nonsingular block diagonal matrix and elements in N+ will be nonsingular block
lower triangular matrices whose diagonal blocks are all identity submatrix.

Let us fix a base point Φ(p) ∈ D with p ∈ T . Then N+ can be identified with its
unipotent orbit in Ď as in Remark 3.10. We also fix an adapted basis (η0, · · · , ηm−1) for
the Hodge decomposition at the base point Φ(p) ∈ D. Then according to Remark 3.11,
we can identify elements in D with its matrix representation under the fixed adapted
basis of the base point. In particular, the base point Φ(p) is identified with the identity
matrix and elements in N+ ∩D can be represented by nonsingular block lower triangular
matrices whose diagonal blocks are all identity matrix. With these assumptions, we have
the following lemma.

Lemma 3.12. The image of the period map Φ : T → D is in N+ ∩D.

Proof. For any q ∈ T , according to Lemma 3.7, there exists a nonsingular block lower
triangular matrix T such that (η0, · · · ηm−1)T gives an adapted basis for the Hodge de-
composition of Φ(q). Thus the matrix T represents the point Φ(q) ∈ D. Let A be the
nonsingular block diagonal matrix which consists of the diagonal blocks of T . Then TA−1

is a nonsingular block lower triangular matrix with identies on the diagonal blocks. Thus
the matrix TA−1 represents an element in N+. As A

−1 is a matrix in V and D ∼= GR/V ,
(η0, · · · , ηm−1)TA

−1 still represents the point Φ(q) ∈ D. Therefore, the matrix TA−1 rep-
resents the point Φ(q) as well as a point in N+. Thus we conclude that Φ(q) ∈ N+. �

Let p be the fixed base point in T , then the isomorphism Hom(Hn,0
p , Hn−1,1

p ) ∼= Hn−1,1
p

∼=
CN follows from dimHn,0

p = 1. We now define the following projection map

P : N+ ∩D → Hom(Hn,0
p , Hn−1,1

p ) ∼= Hn−1,1
p

∼= CN ,(23)

F 7→ (η1, · · · , ηN )F (1,0) = F10η1 + · · ·FN0ηN ,(24)

where F (1,0) is the (1, 0)-block of the unipotent matrix F , according to our convention
about block matrices in (15). Based on Lemma 3.12, we can define the map:

Ψ := P ◦ Φ : T → CN .

Therefore the map Ψ can also be describe as Ψ(q) = P n−1,1
p (P n,0

q ((η0, · · · , ηm−1)TA
−1)),

for any q ∈ T , where Φ(q) = (η0, · · · , ηm−1)TA
−1 according to Lemma 3.12 and P n−1,1

p

and P n,0
q are the projections defined in (11).

We recall that in Section 3.2, fixing the basis (η0, · · · , ηN) of Hn,0
p ⊕ Hn−1,1

p at the
reference point p, we defined the Kuranishi coordinate map in (12) as follows:

(τ1, · · · , τN) : Up → CN , q 7→ (τ1(q), · · · , τN (q)).
Moreover, we have the Taylor expansion of the local canonical section of Hodge bundle
F n over Up as given in (14),

[Ωc
p,τ ](q) = [Ωp](q)/a0(q) = η0 + (η1, · · · , ηN)(τ1(q), · · · , τN (q))T + g(q),

where η0 has constant coefficient 1 and g(q) ∈⊕n
k=2H

n−k,k
p .

On the other hand, let us denote by [Ω̃c
p,τ ](q) ∈ Hn,0

q the first element of the adapted ba-

sis (η0, · · · , ηm−1)TA
−1. Let us set (TA−1)(1,0) = ((TA−1)10, (TA

−1)20, · · · , (TA−1)N0)
T ,
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which is the (1, 0)-block of the matrix TA−1. Since all the diagonal blocks of TA−1 are
identity submatrix, we have

[Ω̃c
p,τ ](q) = η0 + (η1, · · · , ηN)(TA−1)(1,0) + f(q), with f(q) ∈

n⊕

k=2

Hn−k,k
p .(25)

However, the fact dimHn,0
q = 1 implies that there exists λ ∈ C such that [Ωc

p,τ ](q) =

λ[Ω̃c
p,τ ](q). Then by comparing the coefficient of η0 in the expression of [Ωc

p,τ ](q) and

[Ω̃c
p,τ ](q), we get λ = 1. Thus we have

[Ω̃c
p,τ ](q) = [Ωc

p,τ ](q) = η0 + (η1, · · · , ηN)(τ1(q), · · · , τN (q))T + g(q),(26)

with g(q) ∈ ⊕n
k=2H

n−k,k
p . Now by comparing the coefficients of (η1, · · · , ηN) in (25) and

(26), we get that

(TA−1)(1,0) = (τ1(q), · · · , τN(q))T .(27)

Let us denote the restriction map ψ := Ψ|Up
: Up → CN ∼= Hom(Hn,0, Hn−1,1) ∼= Hn−1,1

p .

Then ψ(q) = (η1, · · · , ηN)(TA−1)(1,0) = τ1(q)η1 + · · ·+ τN(q)ηN . Therefore, with respect
to the affine structure on Up given by the Kuranishi coordinate cover, the restriction map
ψ is a holomorphic affine map. In particular, the tangent map of ψ at p

(ψ∗)p = P n
p ◦ Φ∗ : T

1,0
p Up

∼= H0,1(Mp, T
1,0Mp) → Hom(F n

p , F
n−1
p /F n

p )
∼= Hn−1,1

p .

is an isomorphism, since P n
p ◦Φ∗ is an isomorphism according to Lemma 3.3. In particular,

(ψ∗)p is nondegenerate. We now apply Theorem 3.2 to prove the following proposition.

Proposition 3.13. The holomorphic map Ψ : T → CN is an affine map with respect to

the affine structure on T given by the Kuranishi coordinate cover. Moreover, the map Ψ
is a local embedding.

Proof. As was shown above, we have that ψ : Up → CN is a holomorphic affine map with
respect to the holomorphic affine structure on Up given by the Kuranishi coordinate cover.
Since T is a simply connected complex affine manifold and that CN is a complete manifold,
there exists a holomorphic affine extension map Ψ′ : T → CN with respect to the affine
structure on T given by the Kuranishi coordinate cover such that Ψ′|Up

= ψ : Up → CN .
Since both Ψ and Ψ′ are holomorphic maps from T to CN , and they agree on the open
set Up, they must be the same map on the whole set of T , that is, Ψ = Ψ′ : T → CN .
Thus we conclude that Ψ is a holomorphic affine map.

We recall that the tangent map of the restriction ψ : Up → CN is nondegenerate at
p ∈ T . Then the tangent map of Ψ is also nondegerate at p. Therefore, since Ψ : T → CN

is a holomorphic affine map, the tangent map of Ψ is actually nondegenerate at any point
of T . This shows that Ψ is a local embedding. �

4. Hodge metric completion of the Teichmüller space with level

structure

In Section 4.1, we introduce the Hodge metric completion of the Teichmüller space with
level m structure T H

m
, which is the universal cover of ZH

m
, where ZH

m
is the completion

space of the smooth moduli space Zm with respect to the Hodge metric. We denote the
lifting maps im : T → T H

m
and ΦH

m
: T H

m
→ D and take Tm := im(T ) and Φm := ΦH

m
|Tm.
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We prove that ΦH
m

is a holomorphic map from T H
m

to N+ ∩ D. In Section 4.2, we first
define the map ΨH

m
from T H

m
to CN and its restriction Ψm on the submanifold Tm. We

then use the local embeddedness of Ψ to show that Ψm is also a local embedding and
conclude that there is a holomorphic affine structure on Tm with Ψm natually being affine
on Tm. Then the affineness of Ψm shows that the the extension map ΨH

m
is also a local

embedding. We then analogously conclude the affineness of T H
m

and ΨH
m
. In Section 4.3,

we prove that ΨH
m

is an injection and it can be embedded into CN by using the Hodge
metric completeness and the global holomorphic affine structure on T H

m
as well as the

affineness of ΨH
m
. As a corollary, we show that the holomorphic map ΦH

m
is an injection.

4.1. Definitions and basic properties. Recall in Section 2.2, Zm is the smooth moduli
space of polarized Calabi–Yau manifolds with level m structure, which is introduced in
[13]. We then defined the Teichmüller space T to be the universal cover of Zm.

By the work of Viehweg in [14], we know that Zm is quasi-projective and that we
can find a smooth projective compactification Zm such that Zm is open in Zm and the
complement Zm\Zm is a divisor of normal crossing. Therefore, Zm is dense and open in
Zm with the complex codimension of the complement Zm\Zm at least one. Moreover, as
Zm a compact space, it is a complete space.

Recall at the end of Section 2.3, we pointed out that there is induced Hodge metric on
Zm. Let us now take ZH

m
to be the completion of Zm with respect to the Hodge metric.

Then ZH
m is the smallest complete space with respect to the Hodge metric that contains

Zm. Although the compact space Zm may not be unique, the Hodge metric completion
space ZH

m
is unique up to isometry. In particular, ZH

m
⊆ Zm and thus the complex

codimension of the complement ZH
m
\Zm is at least one. Given a fixed base point p, then

any point in ZH
m

that is of Hodge finite distance from p has a neighborhood U ⊆ Zm,

which is also at finite Hodge distance from the reference point p. As Zm\Zm is at least of
complex codimension one in Zm and that any two points in U have finite Hodge distance,
we have U ⊆ ZH

m
. This implies that ZH

m
is an open submanifold of Zm. In particular,

any two points in ZH
m

are of Hodge finite distance. We summarize the above observations
in the following lemma.

Lemma 4.1. The Hodge metric completion ZH
m

is a dense and open smooth submanifold

in Zm and the complex codimenison of ZH
m
\Zm is at least one.

Remark 4.2. We recall some basic properties about metric completion space we are using
in this paper. We know that the metric completion space of a connected space is still
connected. Therefore, ZH

m
is connected since Zm is connected. In particular, the universal

cover T H
m

of the completion space ZH
m
, T H

m
is also connected.

Suppose (X, d) is a metric space with the metric d. Then the metric completion space
of (X, d) is unique in the following sense: if X1 and X2 are complete metric spaces that
both contain X as a dense set, then there exists an isometry f : X1 → X2 such that
f |X is the identity map on X . Moreover, as mentioned above that the metric completion
space X of X is the smallest complete metric space containing X in the sense that any
other complete space that contains X as a subspace must also contains X as a subspace.
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Moreover, suppose X is the metric completion space of the metric space (X, d). If there
is a continuous map f : X → Y which is a local isometry with Y a complete space, then
there exists a continuous extension f : X → Y such that f |X = f .

In the rest of the paper, unless otherwise pointed out, when we mention a complete
space, the completeness is always with respect to the Hodge metric.

Let T H
m

be the universal cover of ZH
m

with the universal covering map πH
m
: T H

m
→ ZH

m .
Thus T H

m
is a connected and simply connected complete smooth complex manifold with

respect to the Hodge metric. We will call T H
m

the Hodge metric completion space with

level m structure of T . Since ZH
m is the Hodge metric completion of Zm, there exists

the continuous extension map ΦH
Zm

: ZH
m → D/Γ. Moreover, recall that the Teichmüller

space T is the universal cover of the moduli space Zm with the universal covering denoted
by πm : T → Zm. Thus we have the following commutative diagram

T im
//

πm

��

T H
m

πH
m

��

ΦH
m

// D

πD

��

Zm
i

// ZH
m

ΦH

Zm
// D/Γ,

(28)

where i is the inclusion map, i
m

is a lifting map of i ◦ πm, πD is the covering map and
ΦH

m
is a lifting map of ΦH

Zm
◦ πH

m
. In particular, ΦH

m
is a continuous map from T H

m
to D.

We notice that the lifting maps i
T
and ΦH

m
are not unique, but Lemma A.1 implies that

there exists a suitable choice of im and ΦH
m
such that Φ = ΦH

m
◦ im. We will fix the choice

of im and ΦH
m such that Φ = ΦH

m
◦ im in the rest of the paper. Let us denote Tm := im(T )

and the restriction map Φm = ΦH
m
|Tm. Then we also have Φ = Φm ◦ im.

Proposition 4.3. The image Tm equals to the preimage (πH
m
)−1(Zm).

Proof. Because of the commutativity of diagram (28), we have that πH
m
(im(T )) = i(πm(T )) =

Zm. Therefore, Tm = im(T ) ⊆ (πH
m
)−1(Zm). For the other direction, we need to show

that for any point q ∈ (πH
m
)−1(Zm) ⊆ T H

m
, then q ∈ im(T ) = Tm.

Let p = πH
m
(q) ∈ i(Zm), Let x1 ∈ π−1

m (i−1(p)) ⊆ T be an arbitrary point, then
πH

m
(im(x1)) = i(πm(x1)) = p and im(x1) ∈ (πH

m
)−1(p) ⊆ T H

m
.

As T H
m

is a connected smooth complex manifold, T H
m

is path connected. Therefore, for
im(x1), q ∈ T H

m
, there exists a curve γ : [0, 1] → T H

m
with γ(0) = im(x1) and γ(1) = q.

Then the composition πH
m
◦ γ gives a loop on ZH

m
with πH

m
◦ γ(0) = πH

m
◦ γ(1) = p. Lemma

A.2 implies that there is a loop Γ on Zm with Γ(0) = Γ(1) = i−1(p) such that

[i ◦ Γ] = [πH
m
◦ γ] ∈ π1(ZH

m
),

where π1(ZH
m
) denotes the fundamental group of ZH

m
. Because T is universal cover of Zm,

there is a unique lifting map Γ̃ : [0, 1] → T with Γ̃(0) = x1 and πm ◦ Γ̃ = Γ. Again since
πH

m
◦ im = i ◦ πm, we have

πH
m
◦ im ◦ Γ̃ = i ◦ πm ◦ Γ̃ = i ◦ Γ : [0, 1] → Zm.
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Therefore [πH
m
◦ im ◦ Γ̃] = [i ◦Γ] ∈ π1(Zm), and the two curves im ◦ Γ̃ and γ have the same

starting points im ◦ Γ̃(0) = γ(0) = im(x1). Then the homotopy lifting property of the

covering map πH
m

implies that im ◦ Γ̃(1) = γ(1) = q. Therefore, q ∈ im(T ), as needed. �

Since Zm is an open submanifold of ZH
m

and πH
m

is a holomorphic covering map, the
preimage Tm = (πH

m
)−1(Zm) is a connected open submanifold of T H

m
. Furthermore, be-

cause the complex codimension of ZH
m \Zm is as least one in ZH

m
, the complex codimension

of T H
m
\Tm is also as least one in T H

m
.

We recall in Remark 3.10 that we fix a base point Φ(p) ∈ D with p ∈ T and identify
the affine group N+ with its unipotent orbit in Ď. In the following proposition, let us
still view N+ in this way by fixing the base point. First, it is not hard to see that the
restriction map Φm is holomorphic. Indeed, we know that im : T → Tm is the lifting of
i ◦πm and πH

m
|Tm : Tm → Zm is a holomorphic covering map, thus im is also holomorphic.

Since Φ = Φm ◦ im with both Φ, im holomorphic and im locally invertible, we can conclude
that Φm : Tm → D is a holomorphic map. Moreover, we have Φm(Tm) = Φm(im(T )) =
Φ(T ) ⊆ N+∩D as Φ = im ◦Φm. Therefore, Φm is a holomorphic map from Tm to N+∩D.
Then by applying the Riemann extension theorem to Φm : Tm → N+, we conclude the
following result.

Proposition 4.4. The map ΦH
m

is a holomorphic map from T H
m

to N+ ∩D.

Proof. According to the above discussion, we know that the complex codimension of
the complement T H

m
\Tm is at least one, and Φm : Tm → N+ ∩ D is a locally bounded

holomorphic map. Therefore, simply applying the Riemman extension theorem to the
holomorphic map Φm : Tm → N+ ∩ D, we conclude that there exists a holomorphic
map Φ′

m : T H
m

→ N+ ∩ D such that Φ′
m|Tm = Φm. We know that both ΦH

m
and Φ′

m are
continuous maps defined on T H

m
that agree on the dense subset Tm. Therefore, they must

agree on the whole T H
m
, that is, ΦH

m
= Φ′

m on T H
m
. Therefore, ΦH

m
is a holomorphic map

from T H
m

to N+ ∩D. �

4.2. Holomorphic affine structure on the Hodge metric completion space. In
this section, we fix the base point Φ(p) ∈ D with p ∈ T and an adapted basis (η0, · · · , ηm−1)
for the Hodge decomposition of Φ(p). Based on Proposition 4.4, we can analogously define
the holomorphic map

ΨH
m
= P ◦ ΦH

m
: T H

m
→ CN ,(29)

where P is the projection map given by (23) in Section 3.3 with the same the fixed base
point Φ(p) ∈ D and the fixed adapted basis (η0, · · · , ηm−1) for the Hodge decomposition
of Φ(p). Moreover, we also have Ψ = P ◦ Φ = P ◦ ΦH

m ◦ im = ΨH
m
◦ im. Let us denote

the restriction map Ψm = ΨH
m
|Tm : Tm → CN in the following context. Then ΨH

m
is the

continuous extension of Ψm and Ψ = Ψm ◦ im. By the definition of ΨH
m
, we can easily

conclude the following lemma.

Lemma 4.5. If the holomorphic map ΨH
m

is injective, then ΦH
m

: T H
m

→ N+ ∩D is also

injective.

In the following lemma, we will crucially use the fact that the holomorphic map Ψ :
T → CN ∼= Hn−1,1

p is a local embedding, which is based on the holomorphic affine structure
on T .
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Lemma 4.6. For any m ≥ 3, the holomorphic map Ψm : T → CN is a local embedding.

Therefore, there exists a holomorphic affine structure on Tm and that the holomorphic

map Ψm is an affine map with respect to this holomorphic affine structure on Tm.

Proof. Since i ◦ πm = πH
m

◦ im with i : Zm → ZH
m

the natural inclusion map and πm,
πH

m
both universal covering maps, im is a lifting of the inclusion map. Thus im is locally

biholomorphic. On the other hand, we showed in Proposition 3.13 that Ψ is a local
embedding. We may choose an open cover {Uα}α∈Λ of Tm such that for each Uα ⊆ Tm, im
is biholomorphic on Uα and thus the inverse (im)

−1 is also an embedding on Uα. Obviously
we may also assume that Ψ is an embedding on (im)

−1(Uα). In particular, the relation
Ψ = Ψm ◦ im implies that Ψm|Uα

= Ψ◦ (im)−1|Uα
is also an embedding on Uα. In this way,

we showed Ψm is a local embedding on Tm.
Let z = (z1, · · · , zN ) be the standard linear coordinate functions on CN . Since Ψm is an

embedding on each Uα and dim Tm = N , the composition map (z1◦Ψm, · · · , zN ◦Ψm) gives
a bijection from each Uα onto an open subset of CN . Thus this gives a local coordinate
chart on each Uα. Therefore, we obtain a coordinate cover on Tm with trivial transition
maps and this coordinate cover determines the desired holomorphic affine structure on Tm.
In particular, with respect to this holomorphic affine structure on Tm, the holomorphic
map Ψm : Tm → CN is naturally an affine map. �

Lemma 4.7. The holomorphic map ΨH
m
: T H

m
→ CN ∼= Hn−1,1

p is a local embedding.

Proof. The proof uses mainly the affineness of Ψm : Tm → CN ∼= Hn−1,1
p , where p ∈ T is

the base point in the definition of the projection map P . By Proposition 4.3, we know that
Tm is dense and open in T H

m
. Thus for any point q ∈ T H

m
, there exists {qk}∞k=1 ⊆ Tm such

that limk→∞ qk = q. Because ΨH
m
(q) ∈ Hn−1,1

p , we can take a neighborhood W ⊆ Hn−1,1
p

of ΨH
m
(q) with W ⊆ ΨH

m
(T H

m
).

Consider the projection map P : N+ → CN with P (F ) = F (1,0) the (1, 0) block of the
matrix F , and the decomposition of the holomorphic tangent bundle

T 1,0N+ =
⊕

0≤l≤k≤n

Hom(F k/F k+1, F l/F l+1).

In particular, the subtangent bundle Hom(F n, F n−1/F n) overN+ is isomorphic to the pull-
back bundle P ∗(T 1,0CN ) of the holomorphic tangent bundle of CN through the projection
P . On the other hand, the holomorphic tangent bundle of Tm is also isomorphic to the
holomorphic bundle Hom(F n, F n−1/F n), where F n and F n−1 are pull-back bundles on
Tm via Φm from N+ ∩ D. Since the holomorphic map Ψm = P ◦ Φm is a composition of
P and Φm, the pull-back bundle of T 1,0W through Ψm is also isomorphic to the tangent
bundle of Tm.

Now with the fixed adapted basis {η1, · · · , ηN}, one has a standard coordinate (z1, · · · , zN)
on CN ∼= Hn−1,1

p such that each point in CN ∼= Hn−1,1
p is of the form z1η1 + · · · + zNηN .

Let us choose one special trivialization of

T 1,0W ∼= Hom(F n
p , F

n−1
p /F n

p )×W

by the standard global holomorphic frame (Λ1, · · · ,ΛN) = (∂/∂z1, · · · , ∂/∂zN ) on T 1,0W .
Under this trivialization, we can identify T 1,0

o W with Hom(F n
p , F

n−1
p /F n

p ) for any o ∈ W .
Then (Λ1, · · · ,ΛN) are parallel sections with respect to the trivial affine connection on
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T 1,0W . Let Uq ⊆ (ΨH
m
)−1(W ) be a neighborhood of q and let U = Uq ∩ Tm. Then the

pull back sections (ΨH
m
)∗(Λ1, · · · ,ΛN) : Uq → T 1,0Uq are tangent vectors of Uq, we denote

them by (µH
1 , · · · , µH

N) for convenience.
According to the proof of Lemma 4.6, we know that the restriction map Ψm is a local

embedding. Therefore the tangent map (Ψm)∗ : T 1,0
q′ U → T 1,0

o W is an isomorphism,
for any q′ ∈ U and o = Ψm(q

′). Moreover, since Ψm is a holomorphic affine map,
the holomorphic sections (µ1, · · · , µN) := (µH

1 , · · · , µH
N)|U form a holomorphic parallel

frame for T 1,0U . Under the parallel frames (µ1, · · · , µN) and (Λ1, · · · ,ΛN), there exists
a nonsingular matrix function A(q′) = (aij(q

′))1≤i≤N,1≤j≤N , such that the tangent map
(Ψm)∗ is given by

(Ψm)∗(µ1, · · · , µN)(q
′) = (Λ1(o), · · · ,ΛN(o))A(q

′), with q′ ∈ U and o = Ψm(q
′) ∈ D.

Moreover, since (Λ1, · · · ,ΛN) and (µ1, · · · , µN) are parallel frames for T 1,0W and T 1,0U
respectively and Ψm is a holomorphic affine map, the matrix A(q′) = A is actually a
constant nonsingular matrix for all q′ ∈ U . In particular, for each qk ∈ U , we have
((Ψm)∗µ1, · · · , (Ψm)∗µN)(qk) = (Λ1(ok), · · · ,ΛN(ok))A, where ok = Ψm(qk). Because the
tangent map (ΨH

m
)∗ : T

1,0Uq → T 1,0W is a continuous map, we have that

(ΨH
m
)∗(µ

H
1 (q), · · · , µH

N(q)) = lim
k→∞

(Ψm)∗(µ1(qk), · · · , µN(qk)) = lim
k→∞

(Λ1(ok), · · · ,ΛN(ok))A

= (Λ1(o), · · · ,ΛN(o))A, where ok = Ψm(qk) and o = ΨH
m
(q).

As (Λ1(o), · · · ,ΛN(o)) forms a basis for T 1,0
o W = Hom(F n

p , F
n−1
p /F n

p ) and A is nonsingu-

lar, we can conclude that (ΨH
m
)∗ is an isomorphism from T 1,0

q Uq to T 1,0
o W . This shows

that ΨH
m
: T H

m
→ CN ∼= Hn−1,1

p is a local embedding. �

Theorem 4.8. There exists a holomorphic affine structure on T H
m
. Moreover, the holo-

morphic map ΨH
m
: T H

m
→ CN is a holomorphic affine map with respect to this holomorphic

affine structure on T H
m
.

Proof. Since ΨH
m

: T H
m

→ CN is a local embedding and dim T H
m

= N , thus the same
arguments as the proof of Lemma 4.6 can be applied to conclude that there exists an
induced holomorphic affine structure on T H

m
from the affine structure on CN via the local

embedding ΨH
m
. In particular, with respect to this affine structure on T H

m
, the holomorphic

map ΨH
m
is also an affine map. �

It is important to note that the flat connections which correspond to the global holo-
morphic affine structures on T , on Tm or on T H

m
are in general not compatible with respect

to the corresponding Hodge metric on them.

4.3. Injectivity of the period map on the Hodge metric completion space.

Theorem 4.9. For any m ≥ 3, the holomorphic map ΨH
m

: T H
m

→ CN is an injection.

In particular, the completion space T H
m

can be embedded into CN via ΨH
m
.

To prove this theorem, we will first prove the following lemma, where we mainly use the
completeness and the holomorphic affine structure on T H

m
as well as the affineness of ΨH

m
.

Lemma 4.10. For any two points in T H
m
, there is a straight line in T H

m
connecting them.
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We remark that as T H
m

is a complex affine manifold, we have the notion of straight lines
in it with respect to the affine structure.

Proof. Let p be an arbitrary point in T H
m
, and let S ⊆ T H

m
be the collection of points that

can be connected to p by straight lines in T H
m
. We need to show that S = T H

m
.

We first show that S is a closed set. Let {qi}∞i=1 ⊆ S be a Cauchy sequence with respect
to the Hodge metric. Then for each i we have the straight line li connecting p and qi such
that li(0) = p, li(Ti) = qi for some Ti ≥ 0 and vi :=

∂
∂t
li(0) a unit vector. We can view

these straight lines li : [0, Ti] → T H
m

as the solutions of the affine geodesic equations

l′′i (t) = 0 with initial conditions vi :=
∂
∂t
li(0) and li(0) = p. It is well-known that solutions

of these geodesic equations analytically depend on their initial data.
Let di denote the distance between qi and p, for each i. As {qi}∞i=1 is a Cauchy sequence,

limi→∞ di = d∞ for some d∞. Since li is a straight line and vi is a unit vector, we know
that di = Ti for each i. Indeed, since l

′
i(t) = l′i(0) = vi, we have

di =

∫ Ti

0

||l′i(t)|| dt =
∫ Ti

0

||vi|| dt = Ti,

where the norm is the Hodge norm. Thus, as the set {di}∞i=1 is bounded, the set {Ti}∞i=1

is also bounded. Passing to a subsequence, we may therefore assume that {Ti} and {vi}
converge, with limi→∞ Ti = T∞ and limi→∞ vi = v∞, respectively. Let l∞(t) be the local
solution of the affine geodesic equation with initial conditions ∂

∂t
l∞(0) = v∞ and l∞(0) = p.

We claim that the solution l∞(t) exists for t ∈ [0, T∞]. Consider the set

E∞ := {a : l∞(t) exists for t ∈ [0, a)}.
If E∞ is unbounded above, then the claim clearly holds. Otherwise, we let a∞ = supE∞,
and our goal is to show a∞ > T∞. Suppose towards a contradiction that a∞ ≤ T∞.
We then define the sequence {ak}∞k=1 so that ak/Tk = a∞/T∞. We have ak ≤ Tk and
limk→∞ ak = a∞. Using the continuous dependence of solutions of the geodesic equation
on initial data, we conclude that the sequence {lk(ak)}∞k=1 is a Cauchy sequence. As T H

m

is a complete space, the sequence {lk(ak)}∞k=1 converges to some q′ ∈ T H
m
. Let us define

l∞(a∞) := q′. Then the solution l∞(t) exists for t ∈ [0, a∞]. On the other hand, as T H
m

is a smooth manifold, we have that q′ is an inner point of T H
m
. Thus the affine geodesic

equation has a local solution at q′ which extends the geodesic l∞. That is, there exists
ǫ > 0 such that the solution l∞(t) exists for t ∈ [0, a∞ + ǫ). This contradicts the fact that
a∞ is an upper bound of E∞. We have therefore proven that l∞(t) exists for t ∈ [0, T∞].

Using the continuous dependence of solutions of the affine geodesic equations on the
initial data again, we get

l∞(T∞) = lim
k→∞

lk(Tk) = lim
k→∞

qk = q∞.

This means the limit point q∞ ∈ S, and hence S is a closed set.
Let us now show that S is an open set. Let q ∈ S. Then there exists a straight line

l connecting p and q. For each point x ∈ l there exists an open neighborhood Ux ⊆ T H
m

with diameter 2rx. The collection of {Ux}x∈l forms an open cover of l. But l is a compact
set, so there is a finite subcover {Uxi

}Ki=1 of l. Then the straight line l is covered by a
cylinder Cr in T H

m
of radius r = min{rxi

: 1 ≤ i ≤ K}. As Cr is a convex set, each
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point in Cr can be connected to p by a straight line. Therefore we have found an open
neighborhood Cr of q ∈ S such that Cr ⊆ S, which implies that S is an open set.

As S is a non-empty, open and closed subset in the connected space T H
m
, we conclude

that S = T H
m
, as we desired. �

Proof of Theorem 4.9. Let p, q ∈ T H
m

be two different points. Then Lemma 4.10 implies
that there is a straight line l ⊆ T H

m
connecting p and q. Since ΨH

m
: T H

m
→ CN is affine, the

restriction ΨH
m
|l is a linear map. Suppose towards a contradiction that ΨH

m
(p) = ΨH

m
(q) ∈

CN . Then the restriction of ΨH
m
to the straight line l is a constant map as ΨH

m
|l is linear.

By Lemma 4.7, we know that ΨH
m

: T H
m

→ CN is locally injective. Therefore, we may
take Up to be a neighborhood of p in T H

m
such that ΨH

m
: Up → CN is injective. However,

the intersection of Up and l contains infinitely many points, but the restriction of ΨH
m

to
Up ∩ l is a constant map. This contradicts the fact that when we restrict ΨH

m
to Up ∩ l,

ΨH
m

is an injective map. Thus ΨH
m
(p) 6= ΨH

m
(q) if p 6= q ∈ T H

m
. �

By Lemma 4.5, Theorem 4.9 implies the following corollary.

Corollary 4.11. The holomorphic map ΦH
m
: T H

m
→ N+ ∩D is also an injection.

5. Domain of holomorphy

In this section, we define the completion space T H by T H = T H
m
, and the extended

period map ΦH by ΦH = ΦH
m
for any m ≥ 3 after proving that T H

m
doesn’t depend on the

choice of the level structure. Therefore T H is a complex affine manifold and that ΦH is a
holomorphic injection. We then prove the main result, which is Theorem 5.3: T H is the
completion space of T with respect to the Hodge metric and it is a domain of holomorphy
in CN . As a direct corollary, we get the global Torelli theorem of the period map from
the Teichmüller space to the period domain.

For any two integers m,m′ ≥ 3, let Zm and Zm′ be the smooth quasi-projective man-
ifolds as in Theorem 2.3 and ZH

m
and ZH

m′ their completions with respect to the Hodge
metric. Let T H

m
and T H

m′ be the universal cover spaces of ZH
m

and ZH
m′ respectively, then

we have the following.

Proposition 5.1. The complete complex manifolds T H
m and T H

m′ are biholomorphic to

each other.

Proof. By defintion, Tm = im(T ), Tm′ = im′(T ) and Φm = ΦH
m
|Tm, Φm′ = ΦH

m′ |Tm′ . Because
ΦH

m and ΦH
m′ are embeddings, Tm

∼= ΦH
m
(Tm) and Tm′ ∼= ΦH

m
(Tm). Since the composition

maps ΦH
m

◦ im = Φ and ΦH
m′ ◦ im′ = Φ, we get ΦH

m
(im(T )) = Φ(T ) = ΦH

m′(im′(T )).
Since Φ and T are both independent of the choice of the level structures, so is the image
Φ(T ). Then Tm

∼= Φ(T ) ∼= Tm′ biholomorphically, and they don’t depend on the choice
of the level structures. Moreover, Proposition 4.3 implies that T H

m and T H
m′ are Hodge

metric completion spaces of Tm and Tm′ , respectively. Thus the uniqueness of the metric
completion spaces implies that T H

m is biholomorphic to T H
m′ . �

Proposition 5.1 shows that T H
m

is independent of the choice of the level m structure,
and it allows us to give the following definitions.
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Definition 5.2. We define the complete complex manifold T H = T H
m
, the holomorphic

map iT : T → T H by iT = im, and the extended period map ΦH : T H → D by ΦH = ΦH
m

for any m ≥ 3. In particular, with these new notations, we have the commutative diagram

T iT
//

πm

��

T H

πH
m

��

ΦH
// D

πD

��

Zm
i

// ZH
m

ΦH

Zm
// D/Γ.

Theorem 5.3. The complex manifold T H , which is a complex affine manifold and can

be embedded into CN , is the completion space of T with respect to the Hodge metric.

Moreover, the extended period map ΦH : T H → N+ ∩D is a holomorphic injection.

Proof. By the definition of T H and Theorem 4.8, it is easy to see that T H
m

is a complex
affine manifold, which can be embedded into CN . It is also not hard to see that the
injectivity of ΦH follows from Corollary 4.11 by the definition of ΦH . Now we only need
to show that T H is the Hodge metric completion space of T . This suffices to prove the
following lemma. �

Lemma 5.4. The map iT : T → T H is an embedding.

Proof. On one hand, define T0 to be T0 = Tm for any m ≥ 3, as Tm doesn’t depend on
the choice of level m structure according to the proof of Proposition 5.1. Since T0 =
(πH

m
)−1(Zm), π

H
m : T0 → Zm is a covering map. Thus the fundamental group of T0 is

a subgroup of the fundamental group of Zm, that is, π1(T0) ⊆ π1(Zm), for any m ≥ 3.
Moreover, the universal property of the universal covering map πm : T → Zm with
πm = πH

m
|T0 ◦ iT implies that iT : T → T0 is also a covering map.

On the other hand, let {mk}∞k=1 be a sequence of positive integers such that mk < mk+1

and mk|mk+1 for each k ≥ 1. Then there is a natural covering map from Zmk+1
to

Zmk
for each k. In fact, because each point in Zmk+1

is a polarized Calabi–Yau mani-
fold with a basis γ

mk+1
for the space (Hn(M,Z)/Tor)/mk+1(Hn(M,Z)/Tor) and mk|mk+1,

then the basis γ
mk+1

induces a basis for the space (Hn(M,Z)/Tor)/mk(Hn(M,Z)/Tor).

Therefore we get a well-defined map Zmk+1
→ Zmk

by assigning to a polarized Calabi–
Yau manifold with the basis γmk+1

the same polarized Calabi–Yau manifold with the
basis (γmk+1

(mod mk)) ∈ (Hn(M,Z)/Tor)/mk(Hn(M,Z)/Tor). Moreover, using the ver-
sal properties of both the families Xmk+1

→ Zmk+1
and Xmk

→ Zmk
, we can conclude that

the map Zmk+1
→ Zmk

is locally biholomorphic. Therefore, Zmk+1
→ Zmk

is actually a
covering map. Thus the fundamental group π1(Zmk+1

) is a subgroup of π1(Zmk
) for each

k. Hence, the inverse system of fundamental groups

π1(Zm1) π1(Zm2)oo · · · · · ·oo π1(Zmk
)oo · · ·oo

has an inverse limit, which is the fundamental group of T . Because π1(T0) ⊆ π1(Zmk
) for

any k, we have the inclusion π1(T0) ⊆ π1(T ). But π1(T ) is a trivial group since T is simply
connected, thus π1(T0) is also a trivial group. Therefore the covering map iT : T → T0 is
a one-to-one covering. This shows that iT : T → T H is an embedding. �

Remark 5.5. There is another approach to Lemma 5.4, which is a proof by contradiction.
Suppose towards a contradiction that there were two points p 6= q ∈ T such that iT (p) =
iT (q) ∈ T H .



HODGE METRIC COMPLETION OF THE TEICHMÜLLER SPACE OF CALABI–YAU MANIFOLDS27

On one hand, since each point in T represents a polarized and marked Calabi–Yau
manifold, p and q are actually triples (Mp, Lp, γp) and (Mq, Lq, γq) respectively, where γp
and γq are two bases of Hn(M,Z)/Tor. On the one hand, each point in Zm represents
a triple (M,L, γm) with γm a basis of (Hn(M,Z)/Tor)/m(Hn(M,Z)Tor) for any m ≥ 3.
By the assumption that iT (p) = iT (q) and the relation that i ◦ πm = πH

m
◦ iT , we have

i ◦ πm(p) = i ◦ πm(q) ∈ Zm for any m ≥ 3. In particular, for any m ≥ 3, the image of
(Mp, Lp, γp) and (Mq, Lq, γq) under πm are the same in Zm. This implies that there exists
a biholomorphic map fpq : Mp → Mq such that f ∗

pq(Lq) = Lp and f ∗
pq(γq) = γp · A, where

A is an integer matrix satisfying

A = (Aij) ≡ Id (mod m) for any m ≥ 3.(30)

Let |Aij| be the absolute value of the ij-th entry of the matrix (Aij). Since (30) holds for
any m ≥ 3, we can choose an integer m0 greater than any |Aij | such that

A = (Aij) ≡ Id (mod m0).

Since each Aij < m0 and A = (Aij) ≡ Id (mod m0), we have A = Id. Therefore, we
found a biholomorphic map fpq : Mp → Mq such that f ∗

pq(Lq) = Lp and f ∗
pq(γq) = γp.

This implies that the two triples (Mp, Lp, γp) and (Mq, Lq, γq) are equivalent to each other.
Therefore, p and q in T are actually the same point. This contradicts with our assumption
that p 6= q.

Since Φ = ΦH ◦ iT with both ΦH and iT embeddings, we get the global Torelli theorem
for the period map from the Teichmüller space to the period domain as follows.

Corollary 5.6 (Global Torelli theorem). The period map Φ : T → D is injective.

As another important result of this paper, we prove the following property of T H .

Theorem 5.7. The completion space T H is a domain of holomorphy in CN ; thus there

exists a complete Kähler-Einstein metric on T H .

We recall that a C2 function ρ : Ω → R on a domain Ω ⊆ Cn is plurisubharmornic

if and only if its Levi form is positive definite at each point in Ω. Given a domain
Ω ⊆ Cn, a function f : Ω → R is called an exhaustion function if for any c ∈ R, the set
{z ∈ Ω | f(z) < c} is relatively compact in Ω. The following well-known theorem provides
a definition for domains of holomorphy. For example, one may refer to [6] for details.

Proposition 5.8. An open set Ω ∈ Cn is a domain of holomorphy if and only if there

exists a continuous plurisubharmonic function f : Ω → R such that f is also an exhaustion

function.

The following theorem from [4] gives us the basic ingredients to construct a plurisub-
harmoic exhaustion function on T H .

Proposition 5.9. On every manifold D, which is dual to a Kähler C-space, there exists

an exhaustion function f : D → R, whose Levi form, restricted to T 1,0
h (D), is positive

definite at every point of D.

We remark that in this proposition, in order to show f is an exhaustion function on D,
Griffiths and Schmid showed that the set f−1(−∞, c] is compact in D for any c ∈ R.
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Lemma 5.10. The extended period map ΦH : T H → D still satisfies the Griffiths

transversality.

Proof. Let us consider T 1,0T H and T 1,0D as two differential manifolds, and the tangent
map

(ΦH)∗ : T
1,0T H → T 1,0D

as a continuous map. We only need to show that the image of (ΦH)∗ is contained in the
horizontal tangent bundle T 1,0

h D.

The horizontal subbundle T 1,0
h D is a close set in T 1,0D, so the preimage of T 1,0

h D under
(ΦH)∗ is a close set in T 1,0T H . On the other hand, because the period map Φ satisfies
the Griffiths transversality, the image of Φ∗ is in the horizontal subbundle T 1,0

h D. This

means that the preimage of T 1,0
h D under (ΦH)∗ contains both T 1,0T and the closure of

T 1,0T , which is T 1,0T H . This finishes the proof. �

Proof of Theorem 5.7. By Theorem 5.3, we can view the completion space T H as a domain
in CN . Hence, in order to show that T H is a domain of holomorphy in CN , it is enough
to construct a plurisubharmonic exhaustion function on T H .

Let f be the exhaustion function on D constructed in Proposition 5.9, whose Levi form,
when restricted to the horizontal tangent bundle T 1,0

h D of D, is positive definite at each
point of D. By the Griffiths transversality of ΦH , the composition function f ◦ ΦH :
T H → R is a plurisubharmonic function on T H . We claim that the composition function
f ◦ ΦH is the demanded plurisubharmonic exhaustion function on T H . Thus it suffices
to show that the function f ◦ΦH is an exhaustion function on T H , and this is enough to
show that to that for any constant c ∈ R, (f ◦ ΦH)−1(−∞, c] = (ΦH)−1 (f−1(−∞, c]) is a
compact set in T H .

Indeed, it has already been shown in [4] that the set f−1(−∞, c] is a compact set in D.
Now for any sequence {pk}∞k=1 ⊆ (f ◦ΦH)−1(−∞, c], we have {ΦH(pk)}∞k=1 ⊆ f−1(−∞, c].
Since f−1(−∞, c] is compact in D, the sequence {ΦH(pk)}∞k=1 has a convergent subse-
quence. We denote this convergent subsequence by {ΦH(pkn)}∞n=1 ⊆ {ΦH(pk)}∞k=1 with
kn < kn+1, and denote limk→∞ΦH(pk) = o∞ ∈ D. On the other hand, since the map
ΦH is injective and the Hodge metric on T H is induced from the Hodge metric on D,
the extended period map ΦH is actually a global isometry onto its image. Therefore the
sequence {pkn}∞n=1 is also a Cauchy sequence that converges to (ΦH)−1(o∞) with respect
to the Hodge metric in (f ◦ ΦH)−1(−∞, c] ⊆ T H . In this way, we showed that any se-
quence in (f ◦ΦH)−1(−∞, c] has a convergent subsequence. Therefore (f ◦ΦH)−1(−∞, c]
is compact in T H , as was needed to show.

Because T H is a domain of holomorphy in CN , the existence of a complete Kähler-
Einstein metric on T H follows directly from [2], which asserts the existence of such metric
on any pseudo-convex domain. �

Appendix A. Two topological lemmas

In this appendix we first prove the existence of the choice of im and ΦH
m

in diagram
(28) such that Φ = ΦH

m ◦ im. Then we show a lemma that relates the fundamental group
of the moduli space of Calabi–Yau manifolds to that of completion space with respect to
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the Hodge metric on Zm. The arguments only use elementary topology and the results
may be well-known. We include their proofs here for the sake of completeness.

Lemma A.1. There exists a suitable choice of im and ΦH
m

such that ΦH
m
◦ im = Φ.

Proof. Recall the following commutative diagram:

T im
//

πm

��

T H
m

πH
m

��

ΦH
m

// D

πD

��

Zm
i

// ZH
m

ΦH

Zm
// D/Γ.

Fix a reference point p ∈ T . The relations i◦πm = πH
m
◦ im and ΦH

Zm
◦πH

m
= πD ◦ΦH

m
imply

that πD ◦ΦH
m
◦ im = ΦH

Zm
◦ i ◦ πm = ΦZm

◦ πm. Therefore ΦH
m
◦ im is a lifting map of ΦZm

.
On the other hand Φ : T → D is also a lifting of ΦZm

. In order to make ΦH
m
◦ im = Φ,

one only needs to choose the suitable im and ΦH
m

such that these two maps agree on the
reference point, i.e. ΦH

m
◦ im(p) = Φ(p).

For an arbitrary choice of im, we have im(p) ∈ T H
m and πH

m
(im(p)) = i(πm(p)). Con-

sidering the point im(p) as a reference point in T H
m , we can choose ΦH

m
(im(p)) to be any

point from π−1
D (ΦH

Zm
(i(πm(p)))) = π−1

D (ΦZm
(πm(p))). Moreover the relation πD(Φ(p)) =

ΦZm
(πm(p)) implies that Φ(p) ∈ π−1

D (ΦZm
(πm(p))). Therefore we can choose ΦH

m
such

that ΦH
m
(im(p)) = Φ(p). With this choice, we have ΦH

m
◦ im = Φ. �

Lemma A.2. Let π1(Zm) and π1(ZH
m ) be the fundamental groups of Zm and ZH

m respec-

tively, and suppose the group morphism

i∗ : π1(Zm) → π1(ZH
m )

is induced by the inclusion i : Zm → ZH
m . Then i∗ is surjective.

Proof. First notice that Zm and ZH
m are both smooth manifolds, and Zm ⊆ ZH

m is open.
Thus for each point q ∈ ZH

m \ Zm there is a disc Dq ⊆ ZH
m with q ∈ Dq. Then the union

of these discs ⋃

q∈ZH
m\Zm

Dq

forms a manifold with open cover {Dq : q ∈ ∪qDq}. Because both Zm and ZH
m are second

countable spaces, there is a countable subcover {Di}∞i=1 such that ZH
m = Zm ∪

∞⋃
i=1

Di,

where the Di are open discs in ZH
m for each i. Therefore, we have π1(Di) = 0 for all i ≥ 1.

Letting Zm,k = Zm ∪
k⋃

i=1

Di, we get

π1(Zm,k) ∗ π1(Dk+1) = π1(Zm,k) = π1(Zm,k−1 ∪Dk), for any k.

We know that codimC(ZH
m\Zm) ≥ 1. Therefore since Dk+1\Zm,k ⊆ Dk+1\Zm, we have

codimC[Dk+1\(Dk+1\Zm,k)] ≥ 1 for any k. As a consequence we can conclude that Dk+1∩
Zm,k is path-connected. Hence we can apply the Van Kampen Theorem on Xk = Dk+1 ∪
Zm,k to conclude that for every k, the following group homomorphism is surjective:

π1(Zm,k) = π1(Zm,k) ∗ π1(Dk+1) // // π1(Zm,k ∪Dk+1) = π1(Zm,k+1).
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Thus we get the directed system:

π1(Zm) // // π1(Zm,1) // // · · · · · · // // π1(Zm,k) // // · · · · · ·
By taking the direct limit of this directed system, we get the surjectivity of the group
homomorphism π1(Zm) → π1(ZH

m ). �
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