ON f-BI-HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS

WEI-JUN LU

ABsTRACT. Both bi-harmonic map and f-harmonic map have nice physical motivation
and applications. In this paper, by combination of these two harmonic maps, we intro-
duce and study f-bi-harmonic maps as the critical points of the f-bi-energy functional
% fM f |T(¢)|2dvg. This class of maps generalizes both concepts of harmonic maps and bi-
harmonic maps. We first derive the f-biharmonic map equation and then use it to study
f-bi-harmonicity of some special maps, including conformal maps between manifolds of
same dimensions, some product maps between direct product manifold and singly warped
product manifold, some projection maps from and some inclusion maps into a warped
product manifold.

1. INTRODUCTION

First motivated by the physical interpretation of f-harmonic map (see [Oull],[LWI]],
[RV]]), we borrowed from the method for studying bi-harmonic maps in [PK| BMO] to
investigate the behaviors of f-harmonic maps from or into doubly warped product man-
ifold (WPM). We derived some characteristic equations for f-harmonicity and also con-
structed some examples [Lull]. Subsequently, we found that f-tension field don’t involve
the Riemannian curvature tensor R on WPM unlike [PK]| and [BMO].

To make amends for this shortcoming, we wanted to formulate a new type of tension
field which contains the Rimannian curvature component like bi-tension field. Naturally,
we focused on constructing a field so-called bi-f-tension field or f-bi-tension field via
combining f-tension field and bi-tension field. Thus we attempted to derive the Euler-
Lagrangian equation by the first variation for corresponding energy functional % f Wy |T(¢)|2dvg

or % fM |T_;~(¢)|2dvg according to the canonical methods as same as bi-energy functional and
f-energy functional.

At that time,since the deduction is very complicated, together with our poor processing
techniques, we had attacked this problem vainly for two weeks. At the very moment, Ou
sent us the scan PDF file of Ouakkas-Nasri-Djaa’s article [OND]. Although the terminol-
ogy about f-bi-tension field in [OND] is not the terminology we expected (from now on,
we change it as bi- f-tension field), we could directly use the already bi- f-tension field de-
duced by them to discuss bi- f-harmonic maps whose domain or codomain is doubly WPM
(see [Lu2]). With much more complicated and tedious computations, together without any
non-trivial example for bi- f-harmonic map, the referee gave an unfavorable review of the
paper [Lu2| and so far we dared not submit it to the Journal.

During on writing our Ph.D thesis ([Lu3]]) recently, we rearranged the the paper [Lu2].
In order to obtain some simpler and interesting results, we made a modification by ex-
changing doubly WPM to singly WPM. Thus we arrived at our original goal. Based on
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this work, we again developed another new tension field so-called f-bi-tension field (dif-
ferent from the terminology in [ONDI]) which comes from the first variation of energy

functional
1
ifm@w%
M

Subsequently, we employed the method of [BMO, [Lull] to discuss the behaviors of f-bi-
harmonic maps from or into singly WPM.

Just noted that the progress in the topic on bi- f-harmonic map such as [CET, |Ch1}|Ch2],
together with [BFOI, we further consider f-bi-harmonic maps with conformal dilation.

In this paper, our main results are listed below:

(i) f-B i-tension field 7, s(¢) by the first variation of f-bi-energy functional % f " f |‘r(¢)|2dvg,
attached to Propositions .2]and [4.3}

(ii) Results on f-bi-harmonic maps with conformal dilation, attached to Propositions
[.gand@.1T;

(iii) Characteristic behaviors of bi- f-harmonic maps from or into singly WPM, attached

to Theorem[5.1] Corollaries [5.4]and [5.3] Propositions [5.9]and [5.10}

(iv) Characteristic behaviors of f-bi-harmonic maps from or into singly WPM, attached
to Corollaries [6.2]and Proposition Propositions|[6.7]and Propositions[6.10]and
6.11]

The organization of this paper is as follows. In the second section is preliminary, which
reviews some basic definitions on biharmonic maps, f-harmonic maps, also gives the def-
inition of doubly/singly WPMs and the more explicit expressions of the connection V and
curvature tensor R on singly WPM. Section 3 is devoted to briefly recall the first varia-
tion of bi- f-harmonic map, the formula of bi- f-tension field and bi- f-harmonic map, also
includes the results for bi- f-harmonic maps with conformal dilation and some examples.
In section 4, we deduce f-bi-tension field from the corresponding energy functional and
discuss f-bi-harmonic maps with conformal dilation. In Section 5, we discuss the behav-
iors of bi- f-harmonic maps whose domain or codomain is singly WPM and also construct
some non-trivial example. Section 6 is devoted to discuss the behaviors of f-bi-harmonic
maps from or into singly WPM and also construct some non-trivial example. In the last
section, we make some comparisons on f-bi-harmonic map and bi- f-harmonic map, also
present a prising expectation.

2. PRELIMINARIES

2.1. Harmonic, bi-harmonic and f-harmonic maps. Recall that the energy of a smooth
map ¢ : (M, g) — (N, h) between two Riemannian manifolds is defined by integral E(¢) =
fQ e(¢)dv,, for every compact domain Q C M where e(¢) = %Id(}&l2 is energy density and
¢ is called harmonic if it’s a critical point of energy. From the first variation formula
for the energy, the Euler-Lagrange equation is given by the vanishing of the fension field
7(¢) = TryVde (see [ES]]). As the generalizations of harmonic maps, we now recall the
concepts of bi-harmonic maps and f-harmonic maps.

Definition 2.1. (i) Bi-harmonic maps ¢ : (M, g) — (N, h) between Riemannian manifolds
are critical points of the bienergy functional

1
&@=§me%@

for any compact domain Q c M.
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(i) An f-harmonic map with a positive function f € C*(M) is a critical point of
f—energy

1
2.1) Ef¢) =5 fg ., fld(@)Pdv,.

The Euler-Lagrange equations give the bitension field 7,(¢)( [J1]) and the f-tension field
equation 7¢(¢) (see [Col, [ONDI,[[Oull]), respectively,
72(9) = ~Trg(V/V?7(9) - Vi 7(9)) — Try RN(Ag, 7(9))d9)) = O,
74(@) = f1(¢) + d¢(grad f) = 0.

2.2. Connection and Riemannian curvature tensor on singly WPM. First we refer to
[Unl] and give the definition of doubly/singly WPM.

(2.2)

Definition 2.2. Let (M, g) and (N, h) be Riemannian manifolds of dimensions m and n
respectively and let A : M — (0, +o0) and  : N — (0, +00) be smooth functions. A doubly
warped product manifold (WPM) G = M X, » N is the product manifold M x N endowed
with the doubly warped product metric g = u>g ® A%k defined by

(X, Y) = (uom) g(dni(X),drmi(Y)) + (A o m)*h(dra(X), dma(Y))

forall X,Y € T, (M xN), where r; : MXN — M and nr; : M XN — N are the canonical
projections. The functions A and u are called the warping functions.

If either u = 1 or 4 = 1 but not both we obtain a singly WPM.If bothy = 1and 1 =1
then we have a direct product manifold. If neither u nor A is constant, then we have a
non-trivial doubly WPM.

We have known that preciously the formulas about Riemann curvature and Ricci curva-
ture are spilt into several parts according to the horizontal lift or vertical lift of the tangent
vectors attached to the initial space M or target space N. For this we first introduce the uni-
fied connection and unified Riemannian curvature on a general warped product manifold
G (cf. [BG], [BMQ]) by introducing a new notation of lift vector.

Proposition 2.3. Let X = (X, X,), Y = (Y1, Y2) € Z(G), where X,Y, € Z (M) and
X3,Y, € Z(N). Denote V by the Levi-Civita connection on the Riemannian product M X N
with respect to the direct product metric g = g ® h and by R its curvature tensor field. Then
the Levi-Civita connection ¥V of G is given by

VxY = VxY + 55 X,(4%)(0, Y2)

+55 Y1(0)(0, X2) — Lh(Xa, Ya)(grad A2, 0)
= (M, Y| - h(Xy, Y2)grad A%,0)

+(0, Wy, Ys + 55 X1(ADY, + 35 Y1(ADX,),

(2.3)

and the relation between the curvature tensor fields of G and M X N is

_ 1 1
Ryy —Ryy = 272{(ny1 grad,A* - oy (A)grad, A%, 0) Ag (0, X,)
1
(2.4) - ("Vx,grad,A* - S X (A)grad,A®, 0) Ag (0, Y2)
1

- 5 pl8rad RO Xo) A5 0. V)

where the wedge product (X A Y)Z = (Y, Z)X — (X, 2)Y, for all X,Y,Z € Z (G).
The detail proof see [Lu3|] From (2.4), we easily obtain
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Proposition 2.4.

R(lexz)(ylsz)(Zlv 7))

= (MRy,v,Z1, "Rx,v,22)

1
212

1 My 2 2 2
- Eh(Yg,Zg)( Vx, grad A~ — 2—/12X1(/l )grad 17, 0)

1 1
+ (0, S8V grad X - o Xi()grad 2%, Z)Y2)

1 2 1 2 2
- (O, 2_/12g( MVy] grad A° = 2—/12Y1(). )grad A . Zl)Xz)

1
+ Eh(xz, 2,)("Wy, grad 2> — — Y (1*)grad A%, 0)

2.5)

+(0, =5 | grad * | h(X,, Z,)Y>)

1
422
1

~O5e

| grad * [ h(Y2, Z2)Xa).
Corollary 2.5.

Rex, xo)0.v0)(Z1 Z2)
= ("Rx,v.Z1, "Ry,v,22)
2.6) + (X, Zo)( "Wy, grad A,0) — Ah(Y>, Z)( "Wy, grad 4,0)
1 1
+ /_lHeSS(/D(Xl,Zl)(Os Yy) - /_lHeSS(/l)(Yl,Zl)(O, X2)
+ | grad A |* h(X2, Z,)(0, Y2)— | grad A > h(Y2, Z5)(0, X).

Proof. Note that
1
MVXI grad /12 - 2—/12X] (/lz)grad /12

1
= "y (2Agrad 1) — ﬁZ/le (1)2Agrad A
= 21"y grad A

and

1 1
ﬁg (MVX, grad > — ﬁxl (A)grad A%, Z,

= /llg ( MVX] grad 4, Zl)

1
= ZHess(/l)(Xl, Zy).

Exchanging X; with Y;, we obtain

1
My v, grad 22— ¥ Y, (/lz)grad 22 =2My v,grad 4,

1 1 1
ﬁg(MVyI grad - ﬁYl (/lz)grad /12, Z1| = zHess(/l)(Yl,Zl).
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Putting these facts together, (2.5) can reduce to
Rex, xon. 0021, Z2)
= ("Rx,v,Z1, "Rx,v,2»)
+ A(X, Zo)( MWy, grad A, 0) — Ah(Ys, Zy)( MV, grad A,0)

+ %Hess(/l)(Xl,Zl)(O, Y)) - %Hess(/l)(Yl,Zl)(O, X5)

+ | grad A * (X2, Z2)(0, Y2)— | grad A |* 1(Y2, Z5)(0, X»),
as claimed (2.6). m]

3. THE FIRST VARIATION OF BI-f-ENERGY FUNCTIONAL AND PROPERTIES OF BI-f-HARMONICITY
WITH CONFORMAL DILATION

A more natural generalization of f-harmonic maps and bi-harmonic maps is given by
integrating the square of the norm of the f-tension field, introduced recently in [OND].
The authors of [OND] give the first and second variations of bi-f-energy functional. But
they cannot give any example about bi- f-harmonic maps. Here, we have exchanged the ter-
minology “f-bi-harmonic” in [OND] for “bi- f-harmonic”, which the reasons see Remark
3.2

3.1. Bi-f-tension field and the first variation. The precise definitions of bi- f-tension

field and bi- f-harmonic map are as follows [OND].
Definition 3.1. Bi-f-energy functional of smooth map ¢ : (M, g) — (N, h) is defined by

1
(3.1 EM@ziLW@W%

for every compact domain Q ¢ M. A map ¢ is called bi- f-harmonic map if it the critical
point of bi- f-energy functional.

Remark 3.2. Here we have changed the terminology “f—bi-energy functional” and “f-bi-
harmonic map” in [OND] into “bi- f—energy functional” and “bi- f-harmonic map”. Since
we think it is suitable for the constructing models of bi-harmonic map and f—harmonic
map. “f—Bi-energy functional” is weighted too heavily toward “f—energy functional E”
with factor f in the integrand while bi-f—energy functional ” toward “bi—energy func-
tional” without factor f. Based on above views, f-bi-energy functional seems to be the
form

1
(3.2) zﬁymw%w
not the form (3.1).

Now we are to briefly derive the Euler-Lagrange equation which gives the bi- f-harmonic
map equation by using the first variation (c.f.[OND])

Proposition 3.3. Let ¢ : (M, g) — (N, h) be a smooth map. Then bi- f-tension field of ¢ is
(3.3) 712(9) = AjT(9) — fTrgR™ (71(9), dp)dgp = 0

where

NT1(¢) = ~Trg(V/EV71(9) — £VY, 7e(6).
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For an orthonormal frame {e;}" |, we have
Tro(VVPri(9) =V 7/9) = 2 (Ve SVers(@) = Vi T/(9)

(34) m
= 2 (VaVerr(@® = V%, T10) + Vit s71(9))

Here we only give the outline proof of Proposition[3.3] for detailed, refer to Proposition
6 in [ONDJ|]. We mainly stress on the key points in the proof.

Proof. Let {¢;}ie; is a smooth variation of ¢ and I = (—¢, ) for some small sufficiently
positive number £. Denote ®(¢, p) = ¢,(p) and the variation vector field V € I' (@°'TN)
associated to {¢;}e; by

d 9
VP - E‘t:0¢t(p) - d@(o,p)(&), vP c M'
Taking a normal orthonormal frame {e;}<;<,» at p, we have

d _ 0]
GE@) = [ (Verie

(3.5) = fM <Z (V‘iﬁ’, V2 fd®(e;) — Vj;/ deD(Veie,-)) L:O, Tf(¢)> dv,

i

o Tf(¢)> dvg

1=

- f <Z VEFVEV, + | D RNV, dplen)daley), rf(¢>> dv,
M AT i
Now we manage to isolate V,, from < RV(V,, d¢(e;))d¢(e;), T7(¢) > and < Tro(V/EV?V,), 7¢(¢) >.
On one hand, by the symmetric properties of Riemann-Christoffel tensor field, we have

< f D RV (V,dg(e)da(en, T(®) >=< fTrRN(x((9), dg)de, V > .

On the other hand, noting that the following fact
(Trg(VEVOV), 76()) = (Tro(V/EV97e()), V) — d? < fV11(9), V > +d? < 74(¢), fVV > .
by using the Divergence Theorem, (3.5) yields

d
EEf,Z (&) o

= f (Trg(V£V?7(¢)), V)dv,y — f d? < fV7¢(¢),V > dv,
M M

+ f d® < T/(@), fVV > dv, + f (FTreRN(71(9), dg)dg, V)dv,
(3.6) M M
= f (Trg(V£V?76(¢)), V)dvy — f < fV,7:($), V > dvi-g
M oM

+ fa < T4(B), [V > dvipg + fM (FTrgRN(16(¢). dp)de, V )dv,

= f (Tro(VEV? — £V )7(8)) + FTrgRY (7(¢), dd)deb, V)dvg
M
where v is the outward unit normal vector of M in M and i : dM — M is the canonical
inclusion. Hence, we obtain
Tra(¢) = —Trg(VHV? — fVuy )71(9) — FTr,RN(7¢()

3.7)
= A7T4(9)) — fTrgR™ (11(9), dg)do,
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as claimed. O

From and (3.4), 772(¢) can simplified as the expression
(3.8) 72(¢) = —fTrg(V9)*14(¢)) — fTrRN (7(9) — Vgrad (TE())-

Remark 3.4. From (3.8), we can easily see that f—harmonic map must be bi- f-harmonic
map. Conversely, it is not true. From the right hand side in we argue that there exist at
least a non-zero f—tension field 7(¢) such that 775(¢) = 0.

3.2. Properties of bi-f-harmonic maps with dilation. In order to increase some sense
of bi-f-harmonic map, we character some properties on conformal map between equi-
dimensional manifolds.

Proposition 3.5. ([OND]) Let ¢ : (M", g) — (N", h) be a conformal maps with dilation A,
i.e., ¢*h = A%g. Then phi is a bi- f-harmonic map if and only if

0= (” - 2)f2d¢(gradg(A IOg /l)) - (n - 2)Zfzvgradg log/ld‘p(gradg 10g /l)
+4(n — 2)ngmdgqu’)(gradg log ) + (n — 2)fd¢(gradg/l)Af
—fd¢(grad,(Af)) +2(n — 2)f2(Vde, Vdlog 1)

—-2(Vde¢,Vdf) + (n— 2)|grad$b,f|2d¢(g1radg log 1)

+2(n - 2) f2dp(MRic(grad, log 1))

~Varaa sl (gradf) - fdg(MRic(grad, D),

(3.9)

n
where for a local orthonormal frame {e;}i= ., on M, MRic(X) = _Z RM(X, e)e;,

..... =

(Vde,Vdlog A) = Z Vdd(ei, e))Vd log Ae;, e;)

i,j=1

(3.10) = Z Vdg(ei, e))g(*V.,grad, log 4, ¢))

ij=1
- Z Vdg(e, "V, grad, log A).
i=1

similar to (Vd¢, Vdf).

Proof. By the assumption of ¢ and (2.2)), the f—tension field of ¢ is given by
(3.1D () = (2 - n)fdzf)(gradg log ) + d¢(gradgf).

Using (3.3), a long deduction (for detail, see [OND], pp.22-24 ) gives

T12(9) = (n = 2)f>d¢(grad,(Alog ) — (0 = 2)*f*V g, 10g 1d(grad, log )
+4(n - 2) ngradgfd¢(gradg log A) + (n — 2)fd¢(grad, A)Af
—fd¢(grad,(Af)) + 2(n — 2)f* (Vdg, Vdlog 1)

G2 5(Vdg, Vdf) + (n - 2)larad, fRde(arad, log 1)
+2(n - 2) f2d¢("Ric(grad, log 1))
~Vraa,rd(grad,f) — fd¢(MRic(gradg/l)).
Thus the necessary and sufficient condition for bi-f-harmonic map of ¢ is clear. O

In particular, if we consider identity map ¢ = Id,,, then from A = 1 we have
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Corollary 3.6. ([ONDI) Identity map Idy : (M",g) — (M", g) is a bi-f-harmonic map
if and only if
2d¢("Ric(grad, log 1)) + grad,(Alog )
+%gradg(|gradgf|§) + 2|gradgf|§gradg logf = 0.

Observe that if f = A, then (3.11) is of the form
() = (3 - n)quﬁ(gradg log ).

Hence, when n > 4, we obtain

Corollary 3.7. (JOND]) Let¢: (M",g) — (N*,g) (n = 4) be a conformal map with
dilation A = f. Then ¢ is a bi-A-harmonic map if and only if

de(*Ric(grad, log 1)) + grad,(log 1) — (Alog A)grad, log 1

(3.13) +%gradg(|gradgf|§) + (7 - n)lgradgflégradg logf=0.

3.3. Examples. Following the method of Examples A and B in [CET, P107], and noting
that the function f : M X N — (0,+o) and f; : M — (0, +oo0) which differs from our
discussing function f : M — N in this paper, we give two relatively simple examples.

Example 3.8. Let ¢ : R — (N?,h) be a conformal map with constant dilation 1. If
fs = fvo¢ =7 :R* > Rbe asmooth function, where, at (x,y) € R%, fy : N — (0, +0)
defined by fy(y) = f(x,y) for all y € N, then ¢ is bi- f-harmonic if and only if

dx 0x2 ' By oxdy
niy, 0oy g
dy 0y? dx dxdy —

dy Py | oy &y _
(3.14) {

Example 3.9. Let ¢ : (M?,g) — (N?, h) be a conformal map with constant dilation A. If
Jo = fv o ¢ = log A be a smooth function, then ¢ is bi- f-harmonic if and only if A satisfies

(3.15) grad(|grad, log A") = 0.

4. DEFINITION AND CONFORMAL PROPERTIES OF f-BI-HARMONIC MAPS

4.1. The first variation of f-bi-energy functional. Another more natural generalization
of combining f-harmonic maps and bi-harmonic maps is given by integrating the square
of the norm of the tension field times f. The precise definition is follows.

Definition 4.1. f-Bi-energy functional of smooth map ¢ : (M, g) — (N, h) is defined by

1
4.1 Exp(@®) =5 fg fle@)Pdv

for every compact domain Q ¢ M. A map ¢ is called f-bi-harmonic map if it the critical
point of f-bi-energy functional.

Now we are to derive the Euler-Lagrange equation gives the f-bi-harmonic map equa-
tion by using the first variation.

Proposition 4.2. Let ¢ : (M, g) — (N, h) be a smooth map. Then f-bi-tension field of ¢ is
72,1(9) = ~Trg(V))*f1(¢) — fTryRN(7(9), dg)dgs
= —J*(f1(¢)),

where J? is the Jacobi operator along the map ¢.

4.2)
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Proof. Let® : I X M — M be a smooth map satisfying
(D(t»p):¢t(p)’ (D(O’p):¢(p)9 VIEI’PGM’

where {¢,},e; is a smooth variation of ¢ and I = (—¢, &) for some small sufficiently positive
number &.
The variation vector field V € T(®~! T N) associated to {¢,},; is given by

d ;
Vp = ELQ‘P:(}’) = dq)(O,p)(E), \{p eM.

We have

d 1 0

GE| =5 [ Gr o Ton] av,
(43) = [ {vir@nco)| v,

, T(¢)> dv,.

1=

= [ #{v8re

Now let {e;}1<;<;» be a normal orthonormal frame at p € M. Then calculating at p gives

V9 1(¢,) = V Tr,Vdd
at at
_ v .
= vy Z Vdd(e;, e;)
(@4) =72 N (VPdd)e;
Z_]( £dD)(er)
-y (Vfg VedD(e) -V dCD(Veiei)) .
For a given X € I'(T M), note that [%, X] =0, we get
V2 ao(X) = V‘I’d@(é) +dO [2 X]
b TNy or’
3
= V2dd(=).
X (6t)
Thus at p, (#.4) becomes
9
o _ (o viul N — 7@ _
V%T((ﬁt) = Z (V;Veidd)(el) Vvqe,-dq)( (9t))
= ViVidd(e)
T ar
(0 w10 D D 6
= > |VEVEdd(e) + VE, | dD(e;) + R (o, e)dd(e;)
7 ! ot [ﬁr’e’] 31‘

(4.5) s
= Z (ijv‘{; d®(e;) + R(D(a—t, €i)d‘1)(€i))

= Z (vgjvjjd@((%) + RN(ch(%), dd(ey))) fd(D(ei))

d d
= Z vjjvjjdcb(a—t) + Z RN(d(I)(E), dd(e;))dD(e;).
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Noticing the symmetric properties of Riemann-Christoffel tensor field, from (4.5), we
have

d
EEz,f((bt) o

1

= fM ! [( D VEVEViT@) +( D RV (V.de(en)dg(e, r(¢)>] dvg
(4.6) ’
= fM f[(Trg(V“’WV),T(@)—<ZRN(d¢(ei>,r(¢))d¢(ei),V>]dvg

= f ((Tro(VOVOV), f2(g)) + (FTr,RN(x(¢), do)dg, V) v,
M
where

Try(V/V?V) = Z (VIVIV - Vﬁve_ V)= Trg(V)*V.
i 1

Denote by v the outward unit normal vector of M in M and by i : M — M the canonical
inclusion. Note that

(Trg(V¢V¢V), fr(¢)) = (V, Trg(V¢V¢fT(¢))) +d?(VPV, fr(¢))y — d(V, V*f1(¢)),

where
AUV, fr(@)) = (Trg(VVOV), fr(@)) + ) (VEV, Vifr(g),

AV, fr(g)) = (V. Trg(VOV* (@) + > (VEV, Vifr(g)).

By using the Divergence Theorem, (.6) gives

d
EEZ,f(th) i

= f (Trg(V£V97(4)), V) + f d(VOV, fr(¢))dv, — f d?(V, V/fr(¢))dv,
M M M
+ f (FTr,RN(71(9), dg)dg, V)dv,
4.7 M
= f (Tro(VOVF1(9)) + fTrgRN (7(0), dg)dgp, V)dv,
M
+ f (VOV, fr())dvig — f (V. V3 fr(¢))dvieg
oM oM
= f (Trg(V?V91(8)) + fTrgRN(1(¢), dg)dgp, V)dvg.
M
Thus, reduces to

d
— E2r(¢0)

. f ( - Try(VOVof2(g) - Vi )fT(9)
y .

— fTe,RN(x(¢), dp)dg, V)dv,,
from which, the Euler-Lagrange operator associated with ¢ is given by
T2.4(9) = —Try(VIV? = Vi )fT() — fTr,RN(1(9), dp)dep
= —Try(V*)*f7(¢) — fTr,RN(7(¢), dp)d.

(4.8) =0
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Next, we give the relation between f-bi-tension field 7, y(¢) and bi-tension field 72(¢).

Proposition 4.3. Let ¢ : (M,g) — (N, h) be a smooth map. Then the relation between
f-bi-tension field T, ;(¢) and bi-tension field T(¢) is

(4.9) 12,4(9) = f72(9) = A7) = V5 T(H).
where T5(¢p) = —Trg(fo’)zT(qﬁ) - TrgRN(T((zS), d¢)de.

Proof. Under a local orthonormal basis {e;};=1.._, over M, we have

,,,,,

Tro(V?)*7(¢)
= Try(VOV/t1(9) - Vi £7(6))

= D (VeVEfT@) = Vi, fr(@)
(4-10) = f ) (VeViT@) = Vi, 7(@)
+ ) (eteif) = "Weei )T(@) +2 3 e HVET(@)
= [Trg(VOV? = Vi )1(@) + Au(DT(®) + 2V, 7(@).
Combining and (#2), we obtain
72,(9) = F12(9) = A)T(B) = 2V (T(H).

as claimed. O

Remark 4.4. In fact, the proof of Proposition (4.3) can also follow from Equation (7) in
[Ou2]].

Now we give an equivalent definition of f-bi-harmonic maps.

Definition 4.5. A map ¢ : M — N is called f-bi-harmonic map if its f-bi-tension field
T, vanishes on M, that is, ¢ satisfies the Euler-Lagrange equation

@.11) 72.4(#) = 0.

Remark 4.6. From (.9), we can easily see that the notion of f-bi-harmonic maps general-
izes the notion of harmonic maps and that of bi-harmonic maps because a harmonic map
is always an f-bi-harmonic map for any function f > 0. Also, an f-bi-harmonic map with
constant f is nothing but a bi-harmonic map.

Remark 4.7. Proposition provides a simple path to find a non-trivial f-bi-harmonic
map. As long as let 7,(¢) = 0 and test whether there exist a suitable map ¢ and a non-
constant positive function f such that they are a solution to

An(F)T(@) + 2Vp (7(9) = 0.

4.2. f-Bi-harmonic maps with conformal dilation. In order to increase some sense
of f-bi-harmonic map, we character some properties on conformal map between equi-
dimensional manifolds by borrowing from the idea in [BFO,|OND. [CET].
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Proposition 4.8. Let ¢ : (M",g) — (N",h) be a conformal maps with dilation 4, i.e.,
¢*h = A%g. Then under an assumption that n > 3, phi is a f-bi-harmonic map if and only
if

(2 - n)fvgradg log ﬂd¢(gradg 10g /l) + fd¢(gradg(A 1Og /l))
(4.12) +2d¢(*Ric(grad, log 2) + 2 (Vd¢, Vd log 1)

+A(f)d¢(grad, log 1) + 2V? _ dé(grad, log 1) = 0,

grad, f
where (Vd¢,Vdlog A) is defined by .

Proof. Note that the fundamental equation for the tension field of horizontally conformal
submersion to the mean curvature p” of its fibres and the horizontal gradient of its dilation
A1is given by

(4.13) 7(¢) = (2 — n)d¢(grad, log 1) — (m — n)dg(u"),

(see Proposition 4.5.3 in [BW]]). By the assumption of equiv-dimension, i.e., m = n, the
tension field of ¢ is given by

(4.14) 7(9) = (2 — n)dg(grad, log A).
Using and (2.2)), we have
T2,1(¢) = (n = 2) fTry(V*)*dg(grad, log )

(4.15) +(n - 2) fTr,RN(dg(grad, log 2), dp)d¢
+(n - DA(f)d(grad, log A) +2(n - 2)V%_| dg(grad, log A).

By Lemma B in [CET] or Corollary 2.2 in [BFEO], we have

Try(V#)*d¢(grad, log A) + Tr,RN(d¢(grad, log 1), d)d¢
(4.16) =Q2- n)Vgradg 10g,1d¢(gradg log 1) + dq)(gradg(A log )
+2d(1§(1‘4Ric(gradg log A) + 2({Vd¢, Vdlog 1) .

Substituting (#.16) into (@.15), we obtain
TZ,f(¢) =—-(n- 2)2fvgrac1g logﬁd¢(gradg IOg A

+(n — 2) fdg(grad,(Alog 1)) + 2(n — 2)dp(VRic(grad, log )
+2(n —2) (Vdg, Vd log ) + (n - DA(f)de(grad, log )

+2(n - 2)V§ra 149 (grad, log ),

4.17)

from which, ¢ is a f-bi-harmonic map (n > 2) if and only if
2-nf ngdg logad¢(grad, log ) + fd(f)(gradg(A log 1))
+2d¢(*Ric(grad, log ) + 2 (Vdg, Vd log 1)

+A(f)d¢(grad, log 1) + ZVZmdgfd¢(gradg log ) = 0,

as claimed.

In particular, if we consider identity map ¢ = Id),, then from A = 1 we have
Corollary 4.9.  Identity map Idy : (M",g) — (M", g) is a f-bi-harmonic map

Remark 4.10. By Remark[4.6] Corollary [d.9]indeed is a trivial conclusion. More generally,
any isometry is harmonic and hence an f-bi-harmonic map for any f.

Observe that (4.14) contains such two terms V:md ¢
g

and ngmdg log Ad¢)(gradg log 1), when f = A, we have

d¢(grad, log 1)
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Proposition4.11.  Let¢ : (M",g) = (N",g) (n = 3) be a conformal map with dilation
A = f. Then ¢ is a f-bi-harmonic map if and only if
((5 - m)Algrad, log A* + (1 - 2)(Alog A))grad, log A
(4.18) + ((4 —-n)A+ 2))MVgr;wlg logagrad, log A + grad, (|grad, log A*)
+ Agrad,(Alog 1) + 2"Ric(grad, log 1) = 0,
Proof. From @.T4), it is clear that if n = 2, then a conformal map ¢ is harmonic so A-bi-

harmonic.
Now, we consider n > 3 and calculate the A-bi-tension field. By (4.17)), we have

T2(¢) = (n - 2)(4 - n)/lvgradg logﬁd¢(gradg log )
(4.19) +(n — 2)Ad¢(grad,(Alog 1)) +2(n - 2)d<,f)(l"IRic(gratdg log 1)
+2(n —2)(Vdp,Vdlog A) + (n — 2)A(Ddp(grad, log ).

In order to use the relation ¢*h = A%g, we consider the equivalence of 751 = 0 to

h(t2,2(¢),d¢) = 0.

From (4.19), we conclude that ¢ is A-bi-harmonic if and only if for any X € T'(TM), we
have

4 - n)/lh(vgradg log /ld¢(gradg log 4), d¢(X))
(4.20) +Ah(d¢(grad,(Alog 1)), dp(X)) + 2h(dp(*Ric(grad, log 1), d¢(X))
+2h((Vdg, Vd log ), d¢(X)) + h(A(Dd¢(grad, log 1), d¢(X)) = 0.

We will study term by term of (4.20).
On one hand, note that Equation (i) of Lemma 4.5.1 in [BW] is stated by

Vdg(X, Y) = X(log Ddg(Y) + Y(log Vdd(X) — g(X, Y)d¢(grad, log 1)

“.21) = d¢(X(log DY + Y(log )X — g(X, Y)grad, log 1), VX,Y € [(TM),

we have
Verad, log 1dé(grad,, log A)

(4.22) = Vdg(grad, log A, grad, 10g ) + d$(MV gruq, 10g 1grad, log 1)
= d¢(|grad, log /1|2gradg log 1) + dq}(Mngdg log 8rad, log 1)

and
(Vdp,Vdlogd) = 3, Vdg(e;, V. grad, log )
i=1

= i (ei(log ))de(V,,grad, log 1)
i=1
+(V,,grad, log A)(log )dé(e;)
(4.23) —g(e;, V., grad, log D)dé(grad, log )
= dQS(Mvgradg log Agradg log 1))
+d(5 grad,(Igrad, log A1) — A(log A)d¢(grad, log 1)
= d¢<Mvgradg log Agradg log 1)
+%gra\dg(|gradg log A1) — A(log A)grad, log /l),
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From (4.22)) and (#.23)),respectively, we get
h(vgradg log Ad¢(gradg log /l), d¢(X))

= /lzg(lgradg log /llzgradg log A + MVgradg 10g4gradg log A, X),

424) h((Vdg,Vdlog A), dp(X))

= /lzg(Mngdg log agrad,, log )
1 2
+ Egradg(|gradg log AI°) — A(log A)grad, log 4, X)
On the other hand, we have
h(dg(grad,(Alog 1)), d¢(X)) = A’g(grad,(A log 1), X),
(4.25) h(d¢("Ric(grad, log 1), dg(X) = 2*g(MRic(grad, log 1), X)

h((ADd¢(grad, log 2), dp(X)) = A g((Adgrad, log 2, X).

Substituting (@.24) and (#.23)) into (@.20), we obtain

“4- n)/llgradg log /llzgradg logd+ (4 - n)/lMngdg log Agradg log A
+ Agrad,(Alog 2) + 21\/[Ric(gradg log 1)

(4.26)
+ ZMVgradg log 18rad, log 1) + gradg(|g1radg log )

— 2A(log A)grad, log A + (/l|gr;’:1dg log A? + A(Alog /l))gradg logd =0,
which implies
((5 — n)Algrad, log AP + (1 =2)(Alog /l))gradg log A
+ ((4 -+ 2))Mngdg log 1grad, log A + grad, (|grad, log A[*)

+ Agrad,(Alog ) + 21\"Ric(gradg logd) =0,

as claimed.

Furthermore, applying the following identity

1
4.27) Mngdg log18rad, log A = zgradg(|gradg log %)
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since
Mvgradg log18rad, log A = Z 8"V e 10z e, grad, log 4, e;)e;
ij=1
= 3 e(log )Hess(log A)(ej. ene;
ij=1
m m
= Z Hess(log 1) (ei, Z ej(log /l)ej] €
i=1 i
(4.28)

m
= Z Hess(log A)(ei, grad, log A)e;
=1

8(V,,grad, log 4, grad, log )e;
=1

E&

—_

e,'(g(gradg log 4, grad, log /l))ei

1 2
= Egradg(lgradg log A|%),
we have the following consequence.

Corollary 4.12. Let ¢ : (M",g) = (N",g) (n > 3) be a conformal map with dilation
A = f. Then ¢ is a f-bi-harmonic map if and only if

((5 — n)Algrad, log AP + (1 =2)(Alog /l))gradg log A
4-n
(4.29) + (T/l + Z)gradg(|gradg log %)
+ Agrad,(Alog 4) + ZMRic(gradg logd) = 0.

5. THE BEHAVIOR OF BI- f-HARMONIC MAPS FROM OR INTO SINGLY WPM

In this section, we will use several special maps from or into WPM to study bi-f-
harmonicity like the method in [PK| BMO| [Lul].

However, if we consider the doubly WPM to discuss the bi- f-harmonic maps by follow-
ing the method of [Lull] , then we will encounter a dreadful trouble [Lu2l]. For example,
we consider the inclusion map

Iy, : (M, 8) = M Xy N, iy, (%) = (x, y0),

since by Equations (7) and (8) in [Lul], we know that

. m
(5.1 7(iy,) = —3(01, grad, i)

iYU ’
. m
(5.2) 74(in) = =5 (01, grad,p®) + (grad, £, 02).

Since 7(iy,) contains f = f(x), in order to calculus 75(iy,), we must compute the term
“Vie;00Vie; 001, gradh,uz)” ( see ). By using li we first obtain

— 1
Vie,0f 01, grad,u®) = —e;(f)(0y, gradu*) + mgradmg f(ej, 02).
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If again, we will fall into exponential growth terms. A way to avoid this trouble is that
we should restrict the term with f to occur and let 4 = 1. This implies that we’d better
consider singly WPM but not doubly WPM.

Under the assumption that there exist some non-trivial bi- f-harmonic maps, we derive
some behavior characteristics on bi- f-harmonic maps.

5.1. f-Bi-harmonicity of the inclusion maps. We present some non-existence results for
bi- f-harmonicity of inclusion maps iy, of M and i,, of N under the singly warped product
case. Firstly, we consider the inclusion map iy, : (M,g) - M X3 N, i, (x) = (x,yo) for
any yo € N.

Theorem 5.1. The inclusion map
iy, : (M,g) = M X, N
is a non-trivial bi- f-harmonic map if and only if A and f simultaneously satisfy
(5.3) 2f(Try "2 grad,f + MRic(grad,f) + grad,(|grad,f[*) = 0,
where f : M — R is a smooth positive and non-constant function.
Proof. Let {e j}']’?:1 be an orthonormal frame on M. Then from bi- f-harmonic map of
Iy, 18
Traliy)) = —=fITre(V50) 1 4(iy,) + TroR(diy,, Tf(iy,) )iy, ] — VZBa dq £Triy)
(54) - —fé{[V?}? Ve = Vi, i)
+R(7(iy,), (€}, 02))(€j 02)} = Vigrad, £0) 71 iy ).
Since (5.1) and (5.2)) with u = 1 give
(i) =0, 7/(iy,) = (grad, f,0,),
using and (2.5)), we have
Ve 5(iyy) = Vie,0n(erad,f, 05) = (MW grad, f, 0,),
VOV T 1(iyy) = Vie0( MV, gradyf,0,) = (M, MV grad, f, 0,),

_ _ 1
Vigrad, £.0)Tf(iy,) = (Mvgradgfgradgf’ 0y) = (ngadgﬂgfadgflz), 02),

Vl;fveje/ (T1(iy)) = Vg, 00 (gradyF, 02) = (MW, o grad, £, 0),

D R (i), (e, 00))(e; 02) = (D R (grad,f, e)e;, 02) = (MRic(grad,f), 0,).

j=1 J=1
Thus we obtain
(5.5 Tra(iy,) = —f(Trg ¥W2grad, f + MRic(grad,f) — §grad,(|grad,f?), 0,),

from which, we conclude that iy, is a non-trivial bi- f-harmonic map (77,(i,,) = 0) if and
only if

(5.6) 2f(Try "W2grad,f + MRic(grad,f) + grad,(|grad,f[*) = 0.
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Remark 5.2. If PDE (5.3) has a solution besides f = const, then we really find a non-trivial
bi- f-harmonic map which is usual harmonic (7(iy,) = 0) but not f-harmonic (7¢2(iy,) # 0).
This is a very interesting phenomenon that bi-f-harmonic map is only an extension to
f-harmonic map but not harmonic map.

For inclusion map iy, : (N,h) = M X, N, i,,(y) = (xo,y) for any xo € M. Note that i,, is
no longer harmonic like iy,, we first give the bi- f-tension field of i, .

Theorem 5.3. Let f : (N, h) — (0, +00) be a smooth function. The bi- f-tension field of the
inclusion map iy, : (N,h) = M X, N is given by
(5.7)
Traliy) = ((B2fGANS) + S lgrad, f(y)P)grad, 42 — L f2(y)grad,(grad, 222, 0, )
+(01, 35 FO)lgrad 2 Perady f(y) — fy) Ric(grad, fy), -

Proof. Let {e,};,_, be an orthonormal frame on N. Then from @, bi- f-harmonic map of
iy, 18

n Ly, iy iy .
Tralin) =-f 3 ((Vervee = Voo, (i)

@  Ca

(5.8) \ B
+R(74(ix,), (01, 24))(01, éa)) = Vigraa, 1,0 Tf(ix,)-

Since

n

7(ixy) = TraVdxy, = D {(V0,,(01,Ea) = (01, NV, &,))
(5.9) a=1

n .
= (—Egradg/lz, 0) 0iy,,  (by 1i )

[2.2) gives

(5.10) 7yliy) = =3 FO)(grad,2>,0,) o iy, + (01, grady f(y)) o i,.
Thus by (2.3) we have
iy . n- . = .
Ve, Trlix) = =5 Ve,00f )(grad,4*,0) o iy, + Ve, 0,)(01, gradyf(y)) o iy,
n+1 n
= — (O grad 4, 02) — =5 f(y)lgrad, (01, &)

+ (01, Vs, grad, f),

iy . n+1 _
Vi e, D) = =——"Va,2(f())(grad 4%, 02)],
éqCa X0

n
= 1/ Olerad P01, NV 80) + (01, Wiy, 5, grady ),
i . n+1 2
Vgradhf(y)Tf(lx()) == gradhf(}/)(f(y))(gradg/l 702)
n 22 Ny
— 2 fOlerad P01, gradyf(y) + 01, Viyrag, iy rady i)

5.11)

n+1 1
= ———lgrad, f() (grad, A%, 05) + (01, 5 grad; (jgrad, f(y)I*)

n
= 1 Olerad AP (01, & grady ()%,
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i i 1 1
VOV T4 (iy,) = (— e (@a(F)) - —NHess<f(y>)<éa,éa))<grad 22,0,)

f(y)lgrad A’ (grad,4%,0,) — |g rad, °[*(01, & (f(y))&a)

) 12 — f()lgrad, *[*(01,"Vz, &) + (01, Nvéa grady £, ,

512 Tro(V™0)*7¢(ix,) = —”—(ANf(y)(grad 2,00+ 2 f(y)|grad [ (grad A, 0,)
— frac2n + 142%|grad, *| (Ol,gradhf(y))L )
X0

On the other hand, by (2.5)) we have

2 R(7(ix,), (01,24))(01, €4)
=7 =f ()’)( grad 22 gradg/lz 3 /12 grad, A2(A)grad A 02)
(5.13) +(01, 3, RV (grad,f(y), éa)éa)|A

=z f(y)(grad (Igrad A7), 0) — & f(v)lgrad A% (grad A2, 02)
+(0y, MRic(grad f(y)))l

Substituting (5.11)), (5.12) and (5.13)) into @ we obtain

Traliy) = (B2 FOIANS) + 25 lgrad, f(y)P)grad A — % 2(y)grad (Igrad, 2, 0,)
+(01, 5t £()lgrad, 4% grady f(y) - f(y)NRw(gradgf(y))Lm,

422

as claimed. O

Corollary 5.4. Let f : (N,h) — (0,+00) be a smooth function. The inclusion map iy, :
(N,h) > M X, N is bi- f-harmonic map if and only if A and f satisfy
(5.14)
(4(n +2)fANF() + 4(n + 1)|grad, f(y)]? )grad A2 - n2f2(y)grad (lgrad, /12|2|
(Bn+1) f(y)lgrad /12|2gradhf(y) 4f(y)/12NRlc(grad f(y))| =0.

Corollary 5.5. If xy is a critical point of gradg/l2 but not a critical point of A* and,
NRic(gradgf(y)) = 0 but grad, f(y) # O, then the inclusion map iy, : (N,h) —» M X3 N
is non-trivial bi- f-harmonic map.

5.2. Bi-f-harmonicity of the projection maps. In this subsection, we attempt two meth-
ods so-called projection maps related to singly WPM to discuss bi-f-harmonic maps. We
first give two lemmas.

Lemma 5.6. For given projection map
T MXaN—->M, ri(xy=x,
let f: M X3 N — (0, +00) be smooth function. Then bi- f-bitension field of | is

Ta(@) = —fTr (MY - grad, log(fA") — f™Ric(grad,f log(fA"))

5.15
(5.15) — 1" grad, 10g 1.f - grad, 10g(fA") = MV graq f - grad, log(fA™).
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Proof. Let {e J} ", and {&,}_, be local orthonormal frame fields on (M, g) and (N, h), re-

spectively. Then {(e;, 0,), (01, 1 @)} j=1,...ma=1...n 1s alocal orthonormal frame on M™ x; N".
By a similar calculation as (]3;9[) and (5.10), we have

() =TrVdm = _Zl ("W s, (e,.00d71 (€, 02) — dity(Vie,0,)(€,02)))
=

(5.16) +4 2‘1 (MY 4200,,2,)d71 (01, 84) — dRt1( V0, 2,)(01,8,) ) )
= ﬁgradg/l2 | 7y
= ngrad, log A | 7,

5.17) (@) = fngradg,log Aoy +d7i(grad,f, %gradhf)
’ = fgradg log(A™) | 7.

Thus we have

V(e 0T = MVdm(e, oTr(@) = "W, f - grad, log(fa"),
Vﬂ f(ﬂl) Mv o T,(m) = Wiy, e;f - grad, log(fa"),
02)(6“02) ( o ) j
Vie 00 VeronTr@) = (e o Ve, f - grad ¢ log(fa")

e MVej f - grad, log(f/l“)

Vgrad (Trm) = (grdd £.02)+(01. 4 grad, ) 74(m)

= Mvgradg’rf grad log(fﬂn)’

V](T(; 1, )Tf(ffl) = W 1/@)=0

vzl (@) =5V Tp(71)
011w O 12q) I (01, M5, 80)— 3 (grad,42,0,) !

== MVgradg log 1S - grad, log(fa"),

T

o, ;En) (0] 15, 7@ =0
which imply that
Try(Vi)?1p(m) = Tre(MW?)f - grad, log(fA")
(5.18) - g )
+n Mvgradg log /lf : gradg IOg(f/l ).

On the other hand, since
TrsRM(dry, tp(m))dRy = Zl RM(dni(e;,02), T7(71))dmi(e;, 02)
j=

(5.19) + El RM(dny(01, 12,), 74(1))dm (04, 12, )
= Y RM(ej, grad,f log(fA))e
=1

= —MRic(grad,f log(fa™),
we get

Tp2(@) = —f(Trg(V)?7e(7y) + FTrgRM(d7y, 7e(7))d7y ) — V;adngf(ﬁ'l)

= —fTry(MV2)f - grad, log(f2") — fMRic(grad,f log(fA"))
—fn Mvgrmg logaf - grad, log(fA") — MVgradgff - grad, log(fA").

Thus we complete the proof. O
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For another projection map 1, : M X; N — N, note that at this time there are some
differences between 77, and 7, that is 7(7r2) and 7(7T,) respectively satisfy

() = 0,
1
Tf(7_1'2) = ﬁgradhf | 72,
we have

Lemma 5.7. Given a projection map 7w, : (MX;N — (N, h), T(x,y) =y, let f : MX;N —
(0, +00) be smooth function. Then bi- f-tension field of 7, is

Tro(m) = —%Trh M2grad, f — £ Ric(grad, f)

5.20
(5-20) — 54> grad, f(|grad, f|?).

From Lemmas[5.6|and[5.7] we easily conclude that

Corollary 5.8. (i) If X and f are non-constant function and grad, log(fA") o @, = 0, then

7y is a non-trivial bi- f-harmonic map.

(ii) Suppose A and f are non-constant function. If grad, is non-zero constant and *Ric(grad, f) =
0, then 7, is a non-trivial bi- f-harmonic map.

5.3. Bi-f-harmonicity of the product maps with harmonic factor. Now, we turn to
consider a type of product map such as

(DZ(pMX(pNZMXAN—)(MXN,g@/’l)
defined by

om X on(x,y) = (eu(x), on (),

where ¢y : M — M and ¢y : N — N are smooth maps. In order to get some interesting
results, we usually make some restrictions for ¢, and ¢y. Since in advance we observe
that 7(®) contains 7(¢y) and 7(py) (see , typically, ¢y and ¢y should be chosen as
harmonic maps so that 7(®,,) has a simpler form. Thus we have

Proposition 5.9. Suppose that ¢y : (M, g) — M, ¢n : N — N are two harmonic maps.
Let the product map ® = @y X ¢y : M X; N = (M X N, g ® h) be defined by ®(x,y) =
(em(¥), on(y)) and f : M X3 N — R smooth positive function . Then the bi- f-tension field
of ®is

(5.21) TH(®) = (dpm (T 12(T1)), don(T72(T2)))
under some conventions below:

der(*V.) ="V, L=M,N,
(5.22) der(*V?) = "V ) Vg, )»
dor("R(t(@), ) = "R(ty@), der(Dder (), i=1,2.
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Proof. Since ¢y, and ¢y are harmonic, we have 7(py) = T(py) = 0. As the trick of [Lull],
we have

(@) = ) (V e, 0 AD(e, 02) = dD( V0, (e, 02)))
=

n
+ 21 %(Vd‘prdw(ol,za)dsDM x don(01, 84)
-

(5:23) —dpu X dpy(V0,2,)(01,2)))
= (t(em), 02) + n(dpy(grad,p, log 1), 0)
+2(01, 7(ew)))
= (n dpy(grad, log 2),0,).

So

rf@) = fn(dgoM(gradg log 1),05) + dem X dgoN(gradgf, %gradhﬂ
(5.24) = (fndeu(grad, log 1) + dsoM(gr ad,f), --den(grad,f))
= (f dou(gradglog(2"h)), & dtpN(gradhf))

Next we process T f,2(6). To this end, we need to tackle two intricate terms by two steps:
Step 1 Consider Tr;(V®)*7/(®). Since

Ve oy Tr @) = (Wagyiep f dem(grad, log(A"), 0),

0,) (e, oz)Tf(q)) = (MvdsaM(e,) MVdsoM(e,)f dgoM(grad log(4™)), 0,),

(6,

(0] T _ pd =
va-%)(e/vOz)Tf @ = V(MV”/’OZ)Tf((D)
= (MvdgoM(MVeje »Jdeu(grad, log(1'1)), 02)

Ve, o T ®) = Vo, dgnenTr(®) = (01, Wy, 1depy(gradyf),

V?())l e )V(Ol e )Tf((i)) = (01, NVd‘PN(Ea) NVdcpN(én)%deON( grad, f))

v (@) =V® G}
V(0,.20)(O01,8a) f( ) (01, M, 24)— § (grad, 22,0,) f( )

= (04, NVd«pN(NVgue[,)/lz don(grad,f))
(A" gy graa, 0 f dpum(grad, log(a"D), 02),
we have
Trz(VO) (@) = (Trg(MVgg,)? fdpm(grad, log(2™))
(5.25) +n Mvd«pM(gradg 1og 0.fdem(grad, log(2"f)), 02)
+(01, 3 Trn( NV deon( grad f)).

Step 2 Consider TrzR(d®, 7¢(®)d®. Since
Z R(dpu(e;),02), 7(D))(dpm(e)), 02)

=( Z YR(dewm(e)), dop(f grad, log(fa™))dgm(e;), 02)
- (TrgMR(mpM, dew(f grad, log(fA") )dey, 0,),

21 +R((01,d¢n(E0)), Tp(P))(01, ddn(Es))
= (01, % TryRN(dgn, grad, Nden ),
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we obtain
(5.26) TrsR(dD, 7:(P)dD = —(Tr,"R(dewm(fgrad, log(fA"), dgm) Ydgy, 02)
' —(01, % TryRN(d¢n(grad, f), dgn)den ),

Finally, note that

Vot T ® = (Vg0 f dpm(grad, log(f1"), 02)
+(01, %5 MV 44, eraa, ndepon ( grad, D).

Putting (5.23), (5.23) and (5.23)) together, we have

(5.28) 772(®) = (A, B),

(5.27)

where A and B denote by

A =—f Try(MVg,, ) dem(grad, log(2™))
—f TrgMR(dcpM(f gradg log(fA™)), dem )dem

5.29
2 - Mvdw(gradgf)f dey(grad, log(fa™)
~1f "W gy (araa, tog 0 f dpm(grad, log(fa")
and
B = LT, ("W, )2d 4 — £Tr RN 4D, ddm )d
(5.30) 2 Th(“Vagy)“den(gradyf) — 5 TraR™ (d¢n(grad,f), dgn, )den

— 5 "W gy eraa, ndon( grady ).
Connecting Lemmas[5.6|and [5.7)above, under the notation conventions (5.28)) can be
singly written as
Tr2(P) = (dou(tr2(m1)), den(T12(T2))),
as claimed. O

When ¢y = Idy; or ¢y = Idy, we easily obtain the following propositions.

Proposition 5.10. (i) ® with ¢y = Idy is a bi- f-harmonic map if and only if the projection
map 1 is bi-f-harmonic and dey(t75(2)) = 0.

(ii) © with oy = Idy is a bi-f-harmonic map if and only if the projection map 7, is also
and dgy(x2(7)) = 0.

(iii) © with ¢y = Idy and oy = Idy is a bi- f-harmonic map if and only if both 7w, and 7,
are also.

Remark 5.11. In above propositions, neither doy(t52(m2)) = 0 nor dpy(tra(m)) = 0
implies 77,(72) € Ker(¢,) or 772(71)) € Ker(¢,). Because don(772(m2)) and doy(75,(m1))
don’t have the usual sense for differential map but only a kind of special notation, see

already stipulations (5.22).

If we interchange the roles between the domain and codomain of 5, we will obtain
another type of product map such as

Y= Xoy:(MXN,g®h) —» Mx, N

defined by ¥ (x, y) = (em(x), n). . )

Under this case, although we finally expect that the operators V and R will be fully
applied more than previous cases, it is pity that T fyz(@) is hard to work out. More precisely,
we hardly find a simple form for like the previous cases. For instance, let ¢y, = Id)y, then
we can quickly get

(%) = —e(en)(grad,d?, 0y),
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and
Tf(@) = (- elen)f gradg/12 + grad,f, den(grad,f),

where e(py) is the energy density of ¢y, e(Idy) = 5. Next, we involve to tackle the terms

such as
m

Z (v(e,'soz)v(ejyoz) - v1‘4Veje_,-)‘[-f(lp)’

J=1

n
Z (V01 din@) V01 don(@n) = V¥ dion@))Tr (P

a=1

D R(O1, ), 7(F))O1,¢))
j=1

D TR, (@), T (B))(O1, dipy(@a).

a=1
This produces much more sub-terms which are not good to integral. Based on the disad-
vantage, we omit investigating the product map V.

6. THE BEHAVIORS OF f-BI-HARMONIC MAPS FROM OR INTO SINGLY WPM

In this section, we will discuss the behavior of f-bi-harmonicity combining with singly
WPM like the previous section.

6.1. f-Bi-harmonicity of the inclusion maps. The goal of this subsection is to charac-
terize the f-bi-harmonicity of the inclusion map iy, : (N,h) = M X, N (xo € M) in terms
of warping function A. As for the inclusion iy, : (M,g) — (M X, N (yo € N), since it is
always a totally geodesic map, it is harmonic and f-bi-harmonic for any warping function
A. We have

Proposition 6.1. Let f : N — (0,+00) be a smooth function. For the inclusion map
iy, : (N,h) = M X, N, its f-bi-tension fields is given by

60 Tralin) = (= % () (grad,(grad A1) + 2(Ay f(3))grad, A%, 0;)
’ +(01, 2n|gradg/l|2gradhf(y))|ix0 .
Proof. Refer to [BMOQ]. Let {e.};_, be an orthonormal frame N. From @p we have
T(iy,) = —%(gradg/lz,oz) liy, -

It is clear that iy, is harmonic if and only if grad,u? | iy=0-

Further similar to (3.11)), (5.12)) and (3.13)), we have

6.2) (V;gadhf(y)rf(ixo) = —nlgrad A*(0;, gradhf(y))iixu,
(6.3) Trp(Vho )ZTf(iXO) = fracn22|gradg/1|2(gradg/12, O2)|ix0’

Z] R(T(ixa)’ (01 ) ECZ))(OI ’ éa)
a=
= %a (M graa grad, A2 — 5z grad, A%(A%)grad 22, 0,)

= % (grad,(Igrad A°%), 02) — % |grad, A% (grad A2, 0,).

6.4)
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Combining these equations with (#.9), we obtain
Tralin) = —%f()’)(gradg(|gradg/12|2), 02) + 5(Anf())(grad, 4%, 0;)
+2n|gradg/1|2(01, gradhf(y))on

= (= % f(y)(grad,(grad, °P) + 2(Ay f())grad, 4, 05)
+(01. 2nlgrad, APgrad f(y), .

(6.5)

as claimed. O

Corollary 6.2. Let f : (N,h) — (0,+00) be a smooth function. The inclusion map iy, :
(N,h) > M X, N is a f-bi-harmonic map if and only if A and f satisfy

{ nf(y)(grad(Igrad ) - 8(Axf(7)grad A2, =0,

6.6
6.6) |gradg/l|2gradhf(y))|ixo =0.

From the second equation in (6.6), we easily observe that it holds if and only if either
Aoy or foiy, is constat. This implies that

Corollary 6.3. Let f : N — (0,+0) be a smooth function. The inclusion map iy, :
(N,h) > M x, N admits no a non-trivial f-bi-harmonic map.

Remark 6.4. If in , 79,7(iy,) only contains the first term on the right-hand side, then
when X is a critical point of Igradg/lzl2 but not a critical point of A2, the inclusion map
iy, 1S @ non-trivial f-bi-harmonic map. For example (c.f. [CMOIl[CMOZ2]), let S” be a
unit Euclidean sphere with dimension n. Then for p € S™*!, the space S"*! — {+p} can be
viewed as the SWPM

(0, 7) Xgin S™.

Consider the inclusion map
i,,/4(resp. i3,,/4) 8" > 0, ) Xgin+ S".

Since grad, sin? t|ﬂ/4 = grad, sin’ t|3”/4 = 0 but sin®*(r/4) = 1/2 = sin*(37/4), by Corol-
lary [6;3'], we know that i;j4 and iz,/4 are non-trivial f-bi-harmonic map with non-constant
positive function f(y)|g».

6.2. f-Bi-harmonicity of the projection maps. From Subsection [5.2] we have known
that the second factor projection map 7, : M X; N — N satisfies 7(77;) = 0, whereas the
first factor projection map 1y : M X, N — M satisfies 7(7;) # 0 with non-constant positive
function f. Thus 7, is a trivial case since it automatically becomes a f-bi-harmonic map.
Now, we only need to consider the projection map 7;.

Lemma 6.5. Let f : M xX; N — (0, +0c0) be smooth function. The f-bi-tension field of
T M Xy N — M is given by

Tr2(@) = —nf(x,y)Try(MV)*grad, log 1) — %f(x, y) Mgrad, (lgrad, log A]*)
6.7) —nf(x,y)"Ric(grad, log 1) — n(Aux nf(x, y))grad, log 4
-2n Mngdgfgradg log /l)|7"r1 )
Proof. Similar to the proof of Lemmal[5.6] we have
7(71) = ngrad, log A | 7y,

\% (M) =n MVgradgfgradg log A) o 7y,

T
gradgf(x,y)
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Try(Vi)?*1(7t)) = nTry("W)*grad, log(d)
+”—22 Mgrad,(|grad, log ) o 71,

TrgRM(t(7y), d7y)dm, = n"Ric(grad, log ) o 7y,
from which, we get
Tra(@) = —f(Trg(V*)*1(7) — fTrgRM (2(7y), d7ty )d7y )
_(AMXANf(x, y))T(ﬁ-l) - 2V7grrladgf(x,y2)T(7_r] )
= —nf(x,y)Try(MV)*grad, log 1) — S-f(x, y) Mgrad,(|grad, log 1)
—-nf(x, y)I"’Ric(gradg log 1) — n(Amx NI(X, y))gradg log A
—2n " grq rgrad, log |7

Thus we complete the proof. O

As a consequence, we have

Proposition 6.6. The projection map 7ty is a non-trivial f-bi-harmonic map if and only if
Adand f satisfy
S, Y)Trg(MV)*grad, log 2) + 5f(x, y) Mgrad,(Igrad, log A*)
(6.8) +f(x, )))1"’Ric(gr21dg log 1) + (Amx,nf(x, y))grad, log 4
+2 M 4roq rgrad, log )| = 0.

6.3. f-Bi-harmonicity of the product maps with harmonic factor. Now, we turn to
consider two types of product map such as

VY=1Idyxy:Mx; N—> (MXN,goh)

0 P(x,y) = (x, ¥ (y))
and
(6.10) T =Tdy < : (MXN,g@h) — M, N

P(x,y) = (x, ¥(y))

where ¢y : N — N is a harmonic map.
For the first case (6.9), we have

Proposition 6.7. Suppose that y : N — N is a harmonic map and f € C®(M X, N) is a
positive function. For the product map V¥V = Idy X : M X, N — (M X N, g ® h), we have

(6.11) T r(¥) = (12,0(71),0).
Proof. Similar to the proof of Proposition[5.9] by using 7(y) = 0 we have

(¥) = TrgVd¥
(6.12) = > (grad, 4%, 0;) + (01, T())
= 3 (grad, A%, 0,).

222

Further, we get

V;adng((i)) =n V(gradgf,/liz erad, p(grad, log 4, 0)

(6.13)
=n (Mvgradgfgradg log 4,0,),
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Trg(Vcb)2Tf((i)) = 2 (V(e 02)V(6 02)7'(‘1") Vd‘{-’(V(E ope 02)) (\I’))

j=1

~.

(6.14) 1
5 (V(o, V0, T(P) — Vd\v(v(o] )T (\P))

a=1

= nTrg(MV)zgradg log(A) + % gradg(lgradg log A%,0,),

TrgR(r;(F, dP)dY = n f R(grad, 1og(4), 02), (i, 0))(ei, 05)

6.15) 2 R(grad, log 4,0,), (01, dy(@,)) 01, d(&,))

= n(MRlc(grad log 1)), 0,).

Putting (6.13), (6.14) and (6.13) together, we have
7 (¥) = —f(Trg(V ) 7(¥) — fTr;RM (7(P), d7t) )dP)
—(Amx v f e, yNT(Y) - ZV;ad ooy TP
(6.16) = —n(f(x, Y Trg(MV)*grad, log A) + 5f(x, y)grad,(|grad, log A*)
+£(x, y)MRic(gradg log ) + (Anix,Nf(x, y))grad, log A
+ MV graqrgrad, log 1), 02)-

Finally, by using Lemma(6.5] (6.25) can be written as

T2 (¥) = (12,7(71), 02),

as claimed. O

As a consequence, we have

Proposition 6.8. Suppose that  : N — N is a harmonic map and f € C*(M X, N) is a
positive function. The product map ¥ = Ildy Xy : MX, N — (M XN, g®h) is a non-trivial
[f-bi-harmonic if and only if the warping function A is a non-constant solution to

0 = f(x, y)Try(MV)*grad, log A + 5f(x, y)grad, (|grad, log A1*)
(6.17) +f(x, y)MRic(gradg log A) + (Amx NE(X, y))grad, log A
+ MV gra rgrad, log A.

Remark 6.9. Itis easy to see that besides its harmonicity, the map y gives no other contri-
bution to the f-bi-tension field of ¥. This enables us to construct a wide range of examples
of non-trivial f-bi-harmonic maps of product type (6.9).

Next, we consider the second case (@]) which just interchanges the domain and
codomain in the first case (@]) In this case, as we shall see, the information of ¥ in-
creases, involving its energy density e(¢). The difficulties are due to the contribution of
the curvature tensor field R (see previous or ) of M X, N in the expression of the
f-bi-tension field. We have

Proposition 6.10. Suppose that ¢y : N — N is a harmonic map and f € C*(M X N) is
a positive function. For the product map ¥ = Idy Xy : (M X N,g ® h) — M X, N, its
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[f-bi-tension field is given by

T /(P) = (eW)f(x.y)(TryMV)?grad 2% — 1e2(W)f(x, y)grad,|grad, 2%
+2e(W) f(x,y) M Ric(gradg/lz) + dy(Ane(W))f(x, y)gradg/l2
(6.18) +(Apsn (X, ¥))e(y )gradg/lz +e(y) Mvgradgf(x,y)gr adgﬂz
+2grad, f(x, y)( e(¥) )grad, %, 0,)
+(0y, @I grad, A*[*grad, f(x, y) + = gradg/12|2f(x, y)dy(grad,e() ),
where dy(Aye()) and dy(grad e(y) ) are defined by @ and @) respectively.

Proof. Let {e_,~}’j?’:1 and {e,}_, be orthonormal basises on (M, g) on (N, h). Then
{(ej,02),(01, 4} il is a local orthonormal basis on the direct product manifold M x N.

Note that () = 0 and () = § = 2 h(dy(e,), dy(2,)), we have

7(¥) = TreenVd¥
= '21 (Vie,00(€j,02) = (Vie,0,)(€, 02))
=

(6.19) + i (V0@ 01, (@) = 01, d(Ve, 20 )

=01, 7)) — 5 Z h(d(2,), dir(e,) )(grad, 4%, 02) + (01, Ve, 24))
= —e(¥)¥) (grad /12 02).
Further, we get

(W) = Vigua,fgraq,n — eW))(grad,4%,0,)
= — grad, f( e(¥)(y) )(grad, A%, 0,)
(620) _e(d/)(y)ﬁ(gradgf,gradgf)(gradg/lzs 02)
= - grad,f( () )(grad, 42, 0,)
—e(W)( Mv(gradgfgfadg/lz, 0y) — %)Igradg/lzﬂ( 0y, grad,f)

P
Vgradg@hf(x,y)

Treon(VF)?1(P) = ; (V000 V.00 T®) = V.00 TP)

(V(ol @y V0 aue) = 90,2 0120) TCF)

= _e(¢) (Z (MveiMVei - MVMVeiei)gradg/lz, 02)
©621) = 3 (dutn), Jdw(e) = din(Vs, 20)(ew) erady .02
%ngrad 2204, z (Vi) d0(Ea) — AWV, E,))

+lgrad, 2*(0;, Z dy(8a)(ey) )dy (&) )

= —e<w><Trg(M>2grad 22,0, > — dy(Ane(¥))(grad, 2, 0,)
— 9 |erad, (01, T(¥) ) — :|grad, 42|2(01,dw<grad e()))

2/1°
+21 arad 2Pe()(grad 12, 0,).

where

n

(6.22) dy(Ave)) = )" (dp(@n), du(@,) — dp(Vz,2,) (W),

a=1
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(6.23) dy(grade(¥)) = Z dy(8o)(e() )dy(Ea),

a=1
TranR(r(F dPF = —e(y) 3, R((grad, . 00). (1, 02))(e.02)
P!

—e(y) gl R((grad,4%,0,), (01, dyr(8,))(0;, dy(&o),)
= —e(tZ)( MRic(grad,4%),0;)
+5e*(y)(grad,|grad, %%, 0,)
— 5=’ (Y)lgrad A% (grad 4%, 0,)
Putting (6.20), (6-21) and (6.24) together, we have
T2(W) = —f(Trgen(VF)*1(¥) — fTrgenR(r(¥), d¥)d¥)
~Banan [T = 2V ()
= e() f (x, y)( Trg(MV)*grad, 4%, 0, ) + dy(Ane()f(x, y)(grad, 4>, 0,)
+lgrad, 2 Pf(x, y)(0;, dy(grad,e(y) )
+e() f(x, y)(MRic(grad,4%), 0;)
—3€° () f(x, y)(grad,lgrad, A, 0,)
+(Apxn f(x, )e()(grad, 42, 0,)
(6.25) + 2grad, f( () )(grad,4?, 0,)
+2e()( Mngdgfgradg/lz, 0y) + %’”)|gradg/12|2( 0y, grad,f)
= (e(.p) FCey)(TrgMV)?grad, 4% — 12 ()f(x, y)grad,|grad, 472
+2e(¥) f(x, y) Ric(grad %) + dy(Ane())f(x, y)grad, 4°
+HAuxn (x5, y)e)grad, A + e(¥) "Vgraq rgrad, 4>
+2grad, f( e(y) )grad, A2, 0)
+(0y, %’”) | gradg/lzl2 grad, f(x,y) + | gradg/12|2f(x, y)dy(grad,e() ),

(6.24)

as claimed. O
As a consequence, we have

Proposition 6.11. Suppose that : N — N is a harmonic map and f € C*(M X N) is a
positive function. The product map ¥ = Idy X : (M XN, g®h) — M X, N is a non-trivial
f-bi-harmonic if and only if the warping function A is a non-constant solution to

e f(x, y)( Try(MV)2grad, A2 — Le(W)f(x, y)grad,|grad, A%
+2e() f(x,y) MRic(grad,4?) + dy(Ane(W))f(x, y)grad, 1>

(6-:26) Aoy F 5 1)eW)grad, 2 + () WV gag 10y grady A2
+2grad, f(x, y)( e(¥) )grad, 4> = 0,

and

(6.27) e(y)Agrad, f(x,y) + f(x, y)dt//(gradge(t//)) =0.

7. COMPARISONS ON BI- f~-HARMONIC MAPS AND f-BI-HARMONIC MAPS

From the previous sections, we know that bi- f-harmonic map and f-bi-harmonic map
are two wider generalizations via mixing bi-harmonic map and f-harmonic map. More
precisely, according to their tension fields, there are some following relations:

(1) f-harmonic map must be bi- f-harmonic map, but the usual harmonic map is not bi- f-
harmonic map. In particular, bi- f-harmonic has nothing to do with bi-harmonic map.
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(2) The usual harmonic map must be f-bi-harmonic, but bi-harmonic map is not be f-
bi-harmonic except f = const.. In particular, f-bi-harmonic has nothing to do with f-
harmonic map. Under the conformal dilation, from Corollaries @ and @ we find that
Idy; is f-bi-harmonic map but not bi- f-harmonic map. The most difference between them
is in that for the product map ¥ = Idy x¢ : (M x N,g ® h) — M x, N, since the
difficulties are due to the contribution of the curvature tensor field R (see previous or
(2:6)) of M x; N in the expression of the f-bi-tension field and bi- f-tension field, unlike
Proposition [6.10} we have to give up acquiring the bi- f-tension field (see the analysis in
the last paragraph of subsection 5.3.

So far, although bi- f-harmonic maps has some progress, see [CET, [Chl} (Ch2], f-bi-
harmonic map is just an up-and-coming thing. Do they contain inspired anticipations of
the shape of things to come? Or are there any promising outlook? We shall look forward
to their evolution in the future.

REFERENCES

[BFO] P. Baird, A. Fardoun And S. Ouakkas, Conformal and semi-conformal biharmonic maps, annals of global
analysis and geometry, 34(2008), 403-414.

[BG] JKBeem, TG Powell. Geodesic completeness and maximality in Lorentzian warped products, Ten-
sor (N S), 1982, 39:31-36.

[BMO] A. Balmus, S. Montaldo and C. Oniciuc, Biharmonic maps between warped product manifolds, J. Geom.
Phys. 57(2007), 449-466.

[BW] P. Baird and T. C. Wood, Harmonic Morphisms Between Riemannian Manifolds, Lond. Math. Soc.
Monogr., New Series 29, Oxford University Press, 2003

[CET] A. M. Cherif, H. Elhendi AND M. Terbeche, On generalized conformal maps, Bulletin of Mathematical
Analysis and Applications, 4(4)(2012), 99-108.

[Chl1] Yuan-Jen Chiang, f-biharmonic maps between Riemannian manifolds, Journal of Geometry and Symmetry
in Physics, 27(2012), 45-58.

[Ch2] Yuan-Jen Chiang, Transversally f-harmonic and transversally f-biharmonic maps between foliated man-
ifolds, JP Journal of Geometry and topology, 13(1)(2012), 93-117. (can’t loadown)

[CMO1] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of S3, Internat. J. Math., 12(2001),
867-876.

[CMO2] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds in spheres, Israel. J. Math.,
130(2002), 109-123.

[Co] N. Course, f~harmonic maps, Ph.D.Thesis, University of Warwick, Coventry, CV4 7AL, UK, 2004.

[ES] J. Eells and J. H. Sampson,Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-
160.

[Jil G. Y. Jiang, 2-harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A,
7(1986), 389-402.

[L] A.Lichnerowicz, Applications harmoniques et varietes kahleriennes, Symposia Mathematica III, Academic
Press, London, 1970, 341-402.

[Lul] Wei-Jun Lu, f-Harmonic maps of doubly warped product manifolds, Applied Mathematics —A Journal
of Chinese Universities, 28(2)2013, 240-252

[Lu2] Wei-Jun Lu, Bi-f-Harmonic maps between doubly warped product manifolds, July 2011,
http://www.cms.zju.edu.cn/news.asp?id=1588&ColumnName=pdfbook& Version=english, N0.11015

[Lu3] Wei-Jun Lu, Geometry of warped product manifolds and its five applications, Ph.D. thesis, Zhejiang Uni-
versity, 2013.

[LW] Y. X. Li and Y. D. Wang, Bubbling location for f-harmonic maps and inhomogeneous Landau-Lifshitz
equations, Comment. Math. Helv., 81(2)(2006), 433-448.

[OND] S. Ouakkas, R. Nasri, and M. Djaa, On the f-harmonic and f-biharmonic maps, JP J. Geom. Topol.
10(1)(2010), 11-27.

[Oul] Ye-Lin Ou, On f-harmonic morphisms between Riemannian manifolds, arXiv:1103.5687v1, 2011.

[Ou2] Ye-Lin Ou, On conformal bi-harmonic immersions, Ann. Glob. Anal. Geom., 36(2009),133-142.

[PK] S. Y. Perktas and E. Kili¢, Biharmonic maps between doubly warped product manifolds, Balkan Journal of
Geometry and Its Applications, (2)15(2010), 151-162.



30 WEI-JUN LU

[RV] M. Rimoldi and G. Veronelli, f-Harmonic maps and applications to gradient Ricci solitons, arXiv:
1112.3637v1, 2011.
[Un] B. Unal, Doubly Warped Products, Difterential Geometry and Its Applications, 15(3)(2001), 253-263.

CENTER OF MATHEMATICAL SCIENCES, ZHEJIANG UNIVERSITY,

HaNGzHOU, ZHEJIANG, 310027, P. R. CHINA;

COLLEGE OF MATHEMATICS AND COMPUTER SCIENCE, GUANGXI UNIVERSITY FOR NATIONALITIES,
NAaNING, Guanaxi, 530006, P. R. CHINA.,

E-mam: wenunLu2008 @ 126.com



	1. Introduction
	2. Preliminaries
	2.1. Harmonic, bi-harmonic and f-harmonic maps
	2.2. Connection and Riemannian curvature tensor on singly WPM

	3.  The first variation of Bi-f-energy functional and properties of bi-f-harmonicity with conformal dilation
	3.1. Bi-f-tension field and the first variation 
	3.2. Properties of bi-f-harmonic maps with dilation
	3.3. Examples

	4. Definition and conformal properties of f-Bi-harmonic maps 
	4.1. The first variation of f-bi-energy functional
	4.2.  f-Bi-harmonic maps with conformal dilation

	5. The behavior of bi-f-harmonic maps from or into singly WPM 
	5.1. f-Bi-harmonicity of the inclusion maps
	5.2. Bi-f-harmonicity of the projection maps
	5.3. Bi-f-harmonicity of the product maps with harmonic factor

	6. The behaviors of f-bi-harmonic maps from or into singly WPM 
	6.1. f-Bi-harmonicity of the inclusion maps
	6.2. f-Bi-harmonicity of the projection maps
	6.3. f-Bi-harmonicity of the product maps with harmonic factor

	7. Comparisons on bi-f-harmonic maps and f-bi-harmonic maps
	References

