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Effective vanishing theorems for ample and globally generated

vector bundles

Kefeng Liu†, Xiaokui Yang‡

Abstract

By proving an integral formula of the curvature tensor of E⊗detE, we observe that
the curvature of E⊗detE is very similar to that of a line bundle and obtain certain new
Kodaira-Akizuki-Nakano type vanishing theorems for vector bundles. As special cases,
we deduce vanishing theorems for ample, nef and globally generated vector bundles by
analytic method instead of the Leray-Borel-Le Potier spectral sequence.

1 Introduction

Many vanishing theorems have been obtained for the Dolbeault cohomology of ample and
globally generated vector bundles on smooth projective manifolds, mainly due to the efforts
of J. Le Potier, M. Schneider, T. Peternell, A.J. Sommese, J-P. Demailly, L. Ein and R.
Lazasfeld, L. Manivel, F. Laytimi and W. Nahm([4], [7], [12], [13],[14],[15], [18], [20], [21]).
The Le Potier vanishing theorem says that if E is an ample vector bundle over a smooth
projective manifold X, then Hp,q(X,E) = 0 for any p + q ≥ n + r where n = dimC X

and r = rank(E). When r ≤ n, the vanishing pairs (p, q) are contained in a triangle

enclosed by three lines p+ q = n+ r, p = n and q = n. By using the Leray-Borel-Le Potier
spectral sequence, many interesting generalizations are obtained for products of symmetric
and skew-symmetric powers of an ample vector bundle, twisted by a suitable power of its
determinant line bundle, see for examples, [4], [18], [12], [13] and [14]. The common feature
of their results is that the vanishing theorems hold for (p, q) lying inside or on certain
triangles.

As is well-known, except Nakano’s vanishing theorem, few vanishing theorems for vector
bundles are proved by analytic method. In this paper, we use analytic method to prove
vanishing theorems for certain Dolbeault cohomology groups of the bounded vector bundles.
The new vanishing theorems have quite different features and they hold for (p, q) lying inside
or on certain symmetric quadrilaterals.

Definition 1.1. Let E be an arbitrary holomorphic vector bundle with rank r, L an ample
line bundle and ε1, ε2 ∈ R. E is said to be (ε1, ε2)-bounded by L if there exists a Hermitian
metric h on E and a positive Hermitian metric hL on L such that the curvature of E is
bounded by the curvatures of Lε1 and Lε2 , i.e.

ε1ωL ⊗ IdE ≤ ΘE,h ≤ ε2ωL ⊗ IdE (1.1)

in the sense of Griffiths. E is called strictly (ε1, ε2)-bounded by L if at least one of ΘE,h −
ε1ωL ⊗ IdE and ΘE,h − ε2ωL ⊗ IdE is not identically zero.
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It is easy to see that, if E is (ε1, ε2)-bounded by L, then

E ⊗ L−ε1 and E∗ ⊗ Lε2

are semi-positive in the sense of Griffiths. In particular, if detE is ample, one can choose
L = detE as a natural bound for E. Hence, Definition 1.1 works naturally for many vector
bundles in algebraic geometry. We list some examples as follows. See Proposition 3.2 for
more details.

(1) If E is globally generated, E is strictly (0, 1)-bounded by L⊗ detE for any ample line
bundle L;

(2) If E is an ample vector bundle with rank r, then E is strictly (−1, r)-bounded by detE;

(3) If E is nef with rank r, then E is strictly (−1, r)-bounded by L ⊗ detE for arbitrary
ample line bundle L;

(4) If E is Griffiths-positive, E is strictly (0, 1)-bounded by detE.

Now we describe our main results briefly.

Theorem 1.2. If E is strictly (ε1, ε2)-bounded by L and m+ (r + k)ε1 > 0, then

Hp,q(X,SkE ⊗ detE ⊗ Lm) = Hq,p(X,SkE ⊗ detE ⊗ Lm) = 0, (1.2)

if p ≥ 1, q ≥ 1 satisfy

min

{

n− q

p
,
n− p

q

}

≤ m+ (r + k)ε1
m+ (r + k)ε2

. (1.3)

In particular, SkE ⊗ detE ⊗ Lm is both Nakano-positive and dual-Nakano-positive. Hence

Hn,q(X,SkE ⊗ detE ⊗ Lm) = Hq,n(X,SkE ⊗ detE ⊗ Lm) = 0

for q ≥ 1.

Remark 1.3. (1) (p, q) satisfies condition (1.3) if only if it lies inside or on the following
quadrilateral Q = A0A1A2A3. See Figure 1 with A0 and A2 removed. Here

A0 = (0, n), A1 = (n, n), A2 = (n, 0), A3 = (c0, c0)

and
c0 =

n

1 + m+(r+k)ε1
m+(r+k)ε2

. (1.4)

It is obvious that Q is symmetric with respect to the line p = q.

❆
❆

❆
❆

❆
❆

❆❆

❍❍❍❍❍❍❍❍

A1A0

A2

A3

Figure 1

❆
❆
❆

❆
❆

❆
❆❆

❍❍❍❍❍❍❍❍

A0 A1

A2

A3❅
❅
❅
❅❅

❅
❅

❅
❅❅

Figure 2

p+ q = n+ s0
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(2) The condition m+ (r + k)ε1 > 0 is necessary, which guarantees that the vector bundle
SkE ⊗ detE ⊗ Lm is Griffiths-positive. In fact, in terms of Hermitian metrics,

SkE ⊗ detE ⊗ Lm = Sk(E ⊗ L−ε1)⊗ det(E ⊗ L−ε1)⊗ Lm+(r+k)ε1 ≥ Lm+(r+k)ε1

and similarly SkE⊗ detE⊗Lm ≤ Lm+(r+k)ε2 . On the other hand, we will see that the
bundle SkE⊗ detE⊗Lm has a nice metric h such that (SkE⊗ detE⊗Lm, h) behaves
very similarly to a positive Hermitian “line bundle” (L, h0). Moreover, m + (r + k)ε1
and m+ (r+ k)ε2 are the minimal and maximal eigenvalues of the curvature of (L, h0)
respectively. From these one can see that Theorem 1.2 is optimal.

(3) When ε1 is very close to ε2, E is approximate Hermitian-Einstein([10, Chapter IV, §5])
and so it is semi-stable with respect to L ([10, Chapter V, Theorem 8.6]). Moreover,
Hp,q(X,SkE ⊗ detE ⊗ Lm) = 0 for any p+ q ≥ n+ 1.

(4) If ε1 ≤ 0, ε2 ≥ 0, and F is an arbitrary nef line bundle, Theorem 1.2 also holds for
SkE ⊗ detE ⊗ Lm ⊗ F .

As applications, we obtain

Theorem 1.4. If E is a globally generated vector bundle with rank r and L is an ample
line bundle, then for any k ≥ 1,m ≥ 1,

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = Hq,p(X,SkE ⊗ (detE)m ⊗ L) = 0

if p ≥ 1, q ≥ 1 satisfy

min

{

n− q

p
,
n− p

q

}

≤ m− 1

m− 1 + (r + k)
. (1.5)

In particular, SkE ⊗ (detE)m ⊗ L is both Nakan-positive and dual-Nakano-positive and

Hn,q(X,SkE ⊗ (detE)m ⊗ L) = Hq,n(X,SkE ⊗ (detE)m ⊗ L) = 0

for any q ≥ 1.

The right hand side of (1.5) depends only on the ratios and it makes Theorem 1.4 quite
different from the results in [4], [18], [12] and [13]. More precisely, for some specific vanishing
pair (p, q), the power of detE may be independent of the dimension of X. For example,
let n = 3n0 + 2, k = 1 and m = r + 2. By (1.5), we can choose two different pairs
(p, q) = (2, n − 1) and (p, q) = (2n0 + 2, 2n0 + 1), and obtain

H2,n−1(X,E ⊗ (detE)r+2 ⊗ L) = 0 = H2n0+2,2n0+1(X,E ⊗ (detE)r+2 ⊗ L) (1.6)

for any globally generated E and ample L. In general, we do not have Hp,q(X,E ⊗
(detE)r+2 ⊗ L) = 0 for all p + q ≥ n + 1, if 1 < r ≪ n( cf. [18], Corollary B and
[13], Corollary 1.5). On the other hand, for fixed (k,m), the quadrilateral Q contains a
triangle p+ q ≥ n+ s0 for some s0 ∈ (0, n]. See Figure 2. Moreover, if the power m of detE
is large enough, we obtain Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0 for p + q ≥ n + 1. Examples
in [20] and [4] indicate that a sufficient large power of detE is necessary in this case. For
more details, see Corollary 3.8, Corollary 3.10 and Example 4.2.
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Theorem 1.5. Let r = rank(E). If E is ample (resp. nef) and L is nef (resp. ample),
then for any k ≥ 1 and m ≥ k + r + 1,

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = Hq,p(X,SkE ⊗ (detE)m ⊗ L) = 0,

if p ≥ 1, q ≥ 1 satisfy

min

{

n− q

p
,
n− p

q

}

≤ (m− 1)− (r + k)

(m− 1) + r(r + k)
. (1.7)

By a similar setting as (1.6), it is easy to see that the result in Theorem 1.5 is different
from the results of [4], [18], [12] and [13].
Remark: Our method is a generalization of the analytic proof of the Kodaira-Akizuki-
Nakano vanishing Theorem for line bundles. We have obtained similar results for “partially”
positive vector bundles.

2 Background material

Let E be a holomorphic vector bundle over a compact Kähler manifold X and h a Hermitian
metric on E. There exists a unique connection ∇ which is compatible with the metric h

and complex structure on E. It is called the Chern connection of (E, h). Let {zi}ni=1 be
the local holomorphic coordinates on X and {eα}rα=1 be a local frame of E. The curvature
tensor R ∈ Γ(X,Λ2T ∗X ⊗ E∗ ⊗ E) has the form

R =

√
−1

2π
R

γ

ijα
dzi ∧ dzj ⊗ eα ⊗ eγ (2.1)

where R
γ

ijα
= hγβRijαβ and

Rijαβ = −
∂2hαβ

∂zi∂zj
+ hγδ

∂hαδ
∂zi

∂hγβ

∂zj
(2.2)

Here and henceforth we adopt the Einstein convention for summation.

Definition 2.1. A Hermitian vector bundle (E, h) is said to be Griffiths-positive, if for any
nonzero vectors u = ui ∂

∂zi
and v = vαeα,

∑

i,j,α,β

Rijαβu
iujvαvβ > 0 (2.3)

(E, h) is said to be Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi

⊗ eα,

∑

i,j,α,β

Rijαβu
iαujβ > 0 (2.4)

(E, h) is said to be dual-Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi

⊗ eα,

∑

i,j,α,β

Rijαβu
iβujα > 0 (2.5)
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It is easy to see that (E, h) is dual-Nakano-positive if and only if (E∗, h∗) is Nakano-negative.
The notions of semi-positivity, negativity and semi-negativity can be defined similarly. We
say E is Nakano-positive (resp. Griffiths-positive, dual-Nakano-positive, · · · ), if it admits a
Nakano-positive(resp. Griffiths-positive, dual-Nakano-positive, · · · ) metric.

The following analytic definition of nefness is due to [6].

Definition 2.2. Let (X,ω0) be a compact Kähler manifold. A line bundle L over X is said
to be nef, if for any ε > 0, there exists a smooth Hermitian metric hε on L such that the
curvature of (L, hε) satisfies

R = −
√
−1

2π
∂∂ log hε ≥ −εω0 (2.6)

This means that the curvature of L can have an arbitrarily small negative part. Clearly a
nef line bundle L satisfies

∫

C

c1(L) ≥ 0

for all irreducible curves C ⊂ X. For projective algebraic S both notions coincide.

By the Kodaira embedding theorem, we have the following analytic definition of ampleness.

Definition 2.3. Let (X,ω0) be a compact Kähler manifold. A line bundle L over X is said
to be ample, if there exists a smooth Hermitian metric h on L such that the curvature R

of (L, h) satisfies

R = −
√
−1

2π
∂∂ log h > 0 (2.7)

Definition 2.4. Let E be a Hermitian vector bundle of rank r over a compact Kähler
manifold X, L = OP(E∗)(1) be the tautological line bundle on the projective bundle P(E∗)
and π the canonical projection P(E∗) → X. By definition([9]), E is an ample vector bundle
over X if OP(E∗)(1) is an ample line bundle over P(E∗). E is said to be nef, if OP(E∗)(1) is
nef.

For comprehensive descriptions of positivity, nefness, ampleness and related topics, see [2],
[6], [11].

In the following, we will describe the idea of proving vanishing theorems by using an
analytic method. Let (ϕij)n×n be a Hermitian positive matrix with eigenvalues

λ1 ≤ · · · ≤ λn (2.8)

Let u =
∑

uIJdz
I ∧ dzJ be a (p, q) form on C

n where uIJ is alternate in the indices
I = (i1, · · · , ip) and J = (j1, · · · , jq). We define

T (u, u) = 〈[ϕ,Λω ]u, u〉 (2.9)

where ϕ =
√
−1ϕijdz

i ∧ dzj and Λω is the contraction operator of the standard Kähler
metric on C

n. The following linear algebraic result is obivous([2], p. 334):
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Lemma 2.5. We have the following estimate

T (u, u) ≥ max{pλ1 − (n− q)λn, qλ1 − (n− p)λn}|u|2 (2.10)

The following result is well-known.

Corollary 2.6. Let (L, h) be a Hermitian line bundle over a compact Kähler manifold
(X,ω0). Let λ1 and λn be the smallest and largest eigenvalue functions of RL with respect
to ω0 respectively. If

max{pλ1 − (n− q)λn, qλ1 − (n− p)λn}
is positive everywhere, then

Hp,q(M,L) = Hq,p(M,L) = 0 (2.11)

Proof. By a well-known Bochner formula for L,

∆′′ = ∆′ + [RL,Λω0 ]

for any u ∈ Ωp,q(M,L),
〈∆′′u, u〉 = 〈∆′u, u〉+ T (u, u) (2.12)

If ∆′′u = 0, we get u = 0 since T (u, u) ≥ 0.

Remark 2.7. The condition in Corollary 2.6 can be satisfied if and only if (L, h) is Griffiths
positive or Griffiths-negative. If (L, h) is a positive line bundle over a compact complex
manifold X, we can define a Kähler metric on X

ω0 = RL = −
√
−1

2π
∂∂ log h (2.13)

In this case, ϕ = RL in Lemma 2.6 and λ1 = λn = 1. Hence, if p+q ≥ n+1, Hp,q(X,L) = 0.
This is the Kodaira-Akizuki-Nakano vanishing theorem. But in general, if RL is not related
to ω0, we can only get a part of vanishing cohomology groups by this method. More
precisely, we can only obtain a vanishing quadrilateral as Figure 1.

Let (E, h) be a Hermitian holomorphic vector bundle with rank r over a compact Kähler
manifold (X,ωg). For any fixed point p ∈ X, there exist local holomorphic coordinates
{zi}ni=1 and local holomorphic frames {eα}rα=1 such that

gij(p) = δij , hαβ(p) = δαβ (2.14)

The curvature term in the formula ∆′′ = ∆′ + [RE ,Λg] can be written as

T (u, u) = 〈[RE ,Λg]u, u〉
=

∑

RijαβuI,iS,αuI,jSβ +
∑

RijαβujR,J,αuiR,J,β −
∑

RiiαβuIJαuIJβ(2.15)

for any u =
∑

uIJαdz
I ∧ dzJ ⊗ eα. For more details, see ([2], p. 341). From formula (2.15),

it is very difficult to obtain vanishing theorems for vector bundles. If the curvature RE has
a nice expression, for example

Rijαβ = ϕijτατβ (2.16)
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then E behaviors as a line bundle with curvature (ϕij). Unfortunately, few examples with
property (2.16) can be found( Note also that the curvature formulation here is stronger than
the curvature of projectively flat vector bundles). However, an integral version of (2.16)
exists on vector bundles of type E ⊗ detE,

RE⊗detE
ijαβ

(s) = Rijαβ(s) + δαβ ·
∑

γ

Rijγγ(s) = r! ·
∫

Pr−1

ϕijWαW β

|W |2
ωr−1
FS

(r − 1)!
(2.17)

where [W1, · · · ,Wr] are the homogeneous coordinates on P
r−1, ωFS is the Fubini-Study

metric and

ϕij = (r + 1)
∑

γ,δ

Rijγδ(s)
WδW γ

|W |2 (2.18)

It is obvious that if E is Griffiths-positive, then E ⊗ detE is both Nakano-positive and
dual-Nakano-positive. With the help of the nice formulation (2.17), we obtain vanishing
theorems similar to Corollary 2.6 for vector bundles.

3 Vanishing theorems for bounded vector bundles

Firstly, we would like to recall the following

Definition 3.1. Let E be an arbitrary holomorphic vector bundle with rank r, L an ample
line bundle and ε1, ε2 ∈ R. E is said to be (ε1, ε2)-bounded by L if there exists a Hermitian
metric h on E and a positive Hermitian metric hL on L such that the curvature of E is
bounded by the curvatures of Lε1 and Lε2 , i.e.

ε1ωL ⊗ IdE ≤ ΘE,h ≤ ε2ωL ⊗ IdE (3.1)

in the sense of Griffiths. E is called strictly (ε1, ε2)-bounded by L if at least one of ΘE,h −
ε1ωL ⊗ IdE and ΘE,h − ε2ωL ⊗ IdE is not identically zero.

It is easy to see that E is (ε1, ε2)-bounded by L if and only if E ⊗ L−ε1 and E∗ ⊗ Lε2 are
Griffiths-semi-positive. Similarly, if E is strictly (ε1, ε2)-bounded by L, then at least one of
the Griffiths-semi-positive vector bundles E ⊗ L−ε1 and E∗ ⊗ Lε2 is not trivial.

Proposition 3.2. Let E be a holomorphic vector bundle with rank r over a projective
manifold.

(1) If E is globally generated, E is strictly (0, 1)-bounded by L⊗ detE for any ample line
bundle L;

(2) If E ample, E is strictly (−1, r)-bounded by detE;

(3) If E is nef, E is strictly (−1, r)-bounded by L⊗ detE for any ample line bundle L;

(4) If E is Griffiths-positive, E is strictly (0, 1)-bounded by detE.

7



Proof. (1) As is well-known, if E is globally generated, there exists a Hermitian metric h

on E such that ΘE,h is Griffiths-semi-positive and E ⊗ detE∗ = Λr−1E∗ is Griffiths-semi-
negative. If L is an ample line bundle, E ⊗ detE∗ ⊗ L∗ is Griffiths-negative, i.e.

ΘE,h < ωL⊗detE ⊗ IdE

Hence, E is strictly (0, 1)-bounded by L⊗ detE.
(2) We assume r > 1. By a result of [1], [19] and [16], if E is ample, E ⊗ detE is Griffiths-
positive. On the other hand, E∗ ⊗ detE = Λr−1E is ample and so (E∗ ⊗ detE)⊗ det(E∗ ⊗
detE) = E∗ ⊗ (detE)r is Griffiths-positive.
(3) If E is nef, Sr+1E ⊗ L is ample and by a result of [16], E ⊗ detE ⊗ L is Griffiths-
positive. Similarly, we know Sr+1(E∗ ⊗ detE) ⊗ L is ample and so E∗ ⊗ (detE)r ⊗ L is
Griffiths-positive.
(4) It is obvious.

Remark 3.3. In general, if E is (−1, r)-bounded by detE, E is not necessarily ample. For
example, let E = L3 ⊕ L−1 for some ample line bundle L, then E is (−1, 2) bounded by
detE = L2.

Let ωFS be the standard Fubini-Study metric on P
r−1 with

∫

Pr−1 ω
r−1
FS = 1 and [W1, · · ·Wr]

the homogeneous coordinates on P
r−1. If A = (α1, · · · , αk) and B = (β1, β2, · · · , βk), we

define the generalized Kronecker-δ for multi-index by the following formula

δAB =
∑

σ∈Sk

k
∏

j=1

δασ(j)βσ(j)
(3.2)

where Sk is the permutation group in k symbols. The following linear algebraic lemma is
obvious (see also [16]).

Lemma 3.4. If VA = Wα1 · · ·Wαk
and VB = Wβ1 · · ·Wβk

, then

∫

Pr−1

VAV B

|W |2k
ωr−1
FS

(r − 1)!
=

δAB

(r + k − 1)!
(3.3)

For simple-index notations,

∫

Pr−1

WαW β

|W |2
ωr−1
FS

(r − 1)!
=

δαβ

r!
,

∫

Pr−1

WαWβWγWδ

|W |4
ωr−1
FS

(r − 1)!
=

δαβδγδ + δαδδβγ

(r + 1)!
(3.4)

Let h be a Hermitian metric on the vector bundle E. At a fixed point p ∈ X, if we
assume hαβ = δαβ , then the naturally induced bundle (E ⊗ (detE)m, h ⊗ (det h)m) has
curvature components

R
E⊗(detE)m

ijαβ
= Rijαβ + δαβ ·m

∑

δ

Rijδδ (3.5)

where Rijαβ is the curvature component of (E, h). It is obvious that SkE has basis

{eA = eα1
1 ⊗ · · · ⊗ eαr

r } (3.6)

8



if A = (α1, · · · , αr) with α1 + · · · + αr = k and αj are nonnegative integers. Similarly,
(SkE ⊗ (detE)m, Skh⊗ (det h)m) has curvature components

R
SkE⊗(detE)m

ijAB
= RijAB + δAB ·m

∑

δ

Rijδδ . (3.7)

Lemma 3.5. If (E, h) is a Hermitian vector bundle, the curvature of (SkE⊗(detE)m, Skh⊗
(det h)m) can be written as

R
SkE⊗(detE)m

ijAB
(p) = (r + k − 1)! ·

∫

Pr−1

VAV B

|W |2k ϕij

ωr−1
FS

(r − 1)!
(3.8)

where

ϕij = (r + k)
∑

γ,δ

Rijγδ(p)
WδW γ

|W |2 + (m− 1)
∑

δ

Rijδδ. (3.9)

Proof. It follows from Lemma 3.4.

Now we prove Theorem 1.2.

Theorem 3.6. If E is strictly (ε1, ε2)-bounded by L and m+ (r + k)ε1 > 0, then

Hp,q(X,SkE ⊗ detE ⊗ Lm) = Hq,p(X,SkE ⊗ detE ⊗ Lm) = 0 (3.10)

if p ≥ 1, q ≥ 1 satisfy

min

{

n− q

p
,
n− p

q

}

≤ m+ (r + k)ε1
m+ (r + k)ε2

. (3.11)

In particular, if m + (r + k)ε1 > 0, SkE ⊗ detE ⊗ Lm is both Nakano-positive and dual-
Nakano-positive and

Hn,q(X,SkE ⊗ detE ⊗ Lm) = Hq,n(X,SkE ⊗ detE ⊗ Lm) = 0

for q ≥ 1.

Proof. Let h be a Hermitian metric on E and hL a positive Hermitian metric on L such
that

ε1ωL ⊗ IdE ≤ ΘE,h ≤ ε2ωL ⊗ IdE .

We can polarize X by

ωg = ωL = −
√
−1

2π
∂∂ log hL. (3.12)

At a fixed point p ∈ X, we can assume

gij(p) = δij and hαβ(p) = δαβ.

Therefore,
gij(p) = RhL

ij
(p) = δij . (3.13)

9



Let

ϕij = (r + k)





∑

γ,δ

Rh
ijγδ

(p)
WδW γ

|W |2



+mRhL

ij
, (3.14)

then by Lemma 3.5, the curvature tensor of SkE ⊗ detE ⊗ Lm can be written as

RSkE⊗detE⊗Lm

ijAB
(p) = (r + k − 1)! ·

∫

Pr−1

VAV B

|W |2k ϕij

ωr−1
FS

(r − 1)!
. (3.15)

By formula (3.14), it is easy to see that, if E is (ε1, ε2)-bounded by L, then for any v =
(v1, · · · , vn) ∈ C

n \ {0},

(m+ (r + k)ε1) |v|2 ≤ ϕijv
ivj ≤ (m+ (r + k)ε2) |v|2. (3.16)

Since m + (r + k)ε1 > 0, it is obvious that SkE ⊗ detE ⊗ Lm is both Nakano-positive
and dual-Nakano-positive by (3.15). Let λ1 be the smallest eigenvalue of (ϕij) and λn the
largest one, then

m+ (r + k)ε1 ≤ λ1 ≤ λn ≤ m+ (r + k)ε2. (3.17)

Let ϕ =
√
−1
2π ϕijdz

i ∧ dzj. We consider the curvature term in the Bochner formula

∆′′ = ∆′ + [R,Λg]

for vector bundle SkE ⊗ detE ⊗ Lm. For any nonzero

u = uIJAdz
I ∧ dzJ ⊗ eA ∈ Ωp,q(X,SkE ⊗ detE ⊗ Lm),

we set
U =

∑

A

uIJAVAdz
I ∧ dzJ ,

then the curvature term can be written as

T (u, u) = 〈[R,Λg]u, u〉

= (r + k − 1)!

∫

Pr−1

〈[ϕ,Λg]U,U〉 · 1

|W |2k · ωr−1
FS

(r − 1)!

≥ (r + k − 1)!

∫

Pr−1

max{pλ1 − (n− q)λn, qλ1 − (n− p)λn}|U |2 · 1

|W |2k · ωr−1
FS

(r − 1)!

= max{pK1 − (n− q)Kn, qK1 − (n− p)Kn}

where

Ki = (r + k − 1)! ·
∫

Pr−1

|U |2
|W |2k λi

ωr−1
FS

(r − 1)!
, i = 1, n.

By (3.17), if m+ (r + k)ε1 > 0,

m+ (r + k)ε1
m+ (r + k)ε2

<
K1

Kn
(3.18)
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since E is strictly (ε1, ε2)-bounded by L. Note that we use the “strictly (ε1, ε2)-bounded”
property to obtain the strict inequality in (3.18). If p ≥ 1, q ≥ 1 satisfy

min

{

n− q

p
,
n− p

q

}

≤ m+ (r + k)ε1
m+ (r + k)ε2

(3.19)

we obtain

min

{

n− q

p
,
n− p

q

}

<
K1

Kn
. (3.20)

By standard Bochner formulas(e.g. Corollary 2.6), we deduce that

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0

if (p, q) satisfies (3.19). The proof of Theorem 3.6 is complete.

Proof of Theorem 1.4. When m = 1, the conclusion is obvious. In this case, the only
vanishing pair is (p, q) = (n, n) and it follows from the fact that Hn,n(X, E) = 0 if E is
Griffiths-positive. Now we consider m ≥ 2. If E is a globally generated vector bundle with
rank r and L is an ample line bundle, by Proposition 3.2, E is strictly (0, 1)-bounded by

L
1

m−1 ⊗ detE. Theorem 1.4 follows from Theorem 1.2 for (ε1, ε2) = (0, 1) and the relation

SkE ⊗ (detE)m ⊗ L = SkE ⊗ detE ⊗
(

L
1

m−1 ⊗ detE
)m−1

.

Proof of Theorem 1.5. Similarly, assume m ≥ 2. If E is ample (resp. nef) and L is nef

(resp. ample), by Proposition 3.2, E is strictly (−1, r)-bounded by L
1

m−1 ⊗detE. Theorem
1.5 follows from Theorem 1.2 for (ε1, ε2) = (−1, r).

Similarly, we have,

Theorem 3.7. Let (E, h) be a Hermitian vector bundle with semi-Griffiths positive (resp.
Griffiths positive) curvature and L is an ample (resp. nef) line bundle L, we have

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = Hq,p(X,SkE ⊗ (detE)m ⊗ L) = 0

if p ≥ 1, q ≥ 1 satisfy

min

{

n− q

p
,
n− p

q

}

≤ m− 1

r + k +m− 1
.

Proof. It follows from part (4) of Proposition 3.2 and Theorem 1.2.

Now we want to analyze the condition

min

{

n− q

p
,
n− p

q

}

≤ λ0 (3.21)

for some λ0 ∈ [0, 1]. Without loss of generality, we assume p ≥ q ≥ 1, then (3.21) is
equivalent to

p+ λ0q ≥ n. (3.22)
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When p = q, we obtain

c0 =
n

1 + λ0
. (3.23)

(p, q) satisfies (3.21) if and only if (p, q) lies in the quadrilateral Q = A0A1A2A3 where

A0 = (0, n), A1 = (n, n), A2 = (n, 0), A3 = (c0, c0) (3.24)

In the following, we consider the vanishing triangle shown in Figure 2.

Corollary 3.8. Let E be globally generated and L be ample.

(1) If the pair (k,m, s) satisfies

m ≥ 1

s

[

n− s

2

]

(r + k) + 1 (3.25)

where [•] is the integer part of •, then

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0

for any p+ q ≥ n+ s.

(2) For fixed (k,m), we have

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0

for any (p, q) satisfies

p+ q ≥ n+

(

2n

1 + m−1
r+k+m−1

− n

)

. (3.26)

Proof. If m ≥ 1
s

[

n−s
2

]

(r + k) + 1, we get

m− 1

r + k +m− 1
≥

[

n−s
2

]

[

n−s
2

]

+ s
. (3.27)

If p+ q ≥ n+ s,

max
p+q≥n+s

min

{

n− q

p
,
n− p

q

}

=

[

n−s
2

]

[

n−s
2

]

+ s
. (3.28)

Part (1) follows from Theorem 1.4. For part (2), if

p+ q ≥ n+

(

2n

1 + m−1
r+k+m−1

− n

)

=
2n

1 + m−1
r+k+m−1

then
max{p, q} ≥ n

1 + m−1
r+k+m−1

. (3.29)

That is
m− 1

r + k +m− 1
≥ min

{

n− q

p
,
n− p

q

}

.

Hence part (2) follows.
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Remark 3.9. Theorem 1.4 and Corollary 3.8 are also valid for semi-Griffiths positive E.
Consider the example E = TP2 ⊗OP2(−1) with the canonical metric. Since r = n = 2, by
Corollary 3.8, we obtain

Hp,q(X,E ⊗ (detE)m ⊗ L) = 0 (3.30)

for any p+ q ≥ n+ 1 if m ≥ 1. It is obvious that the lower bound 1 is sharp since

Hn,n−1(X,E ⊗ L) ∼= H1,1(Pn,C) = C (3.31)

if we choose L = OPn(1) and m = 1. So the lower bound

1

s

[

n− s

2

]

(r + k) + 1

can not be improved by a universal constant, i.e., a constant independent on r, s, n, k. Hence
the lower bound is optimal in that sense.

Similarly, we obtain

Corollary 3.10. Let E be ample (resp.) and L be nef (resp. ample). Suppose k ≥ 1 and
m ≥ r + k + 1.

(1) If the pair (k,m, s) satisfies

m ≥ 1

s

[

n− s

2

]

(r + k)(r + 1) + (r + 1) + k,

then
Hp,q(X,SkE ⊗ (detE)m) = 0

for any p+ q ≥ n+ s.

(2) For fixed (k,m), we have

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0

for any (p, q) satisfies

p+ q ≥ n+





2n

1 + (m−1)−(r+k)
(m−1)+r(r+k)

− n



 .

4 Examples

It is well-known that globally generated vector bundles are Griffiths semi-positive. On the
other hand, any globally generated vector bundle has a quotient metric induced from the
trivial vector bundle and so it is semi-dual-Nakano-positive([2]).

Corollary 4.1. Let E be a globally generated vector bundle and L an ample line bundle over
a projective manifold X, then SkE ⊗ L is dual-Nakano-positive for any k ≥ 1. Moreover,

Hp,n(X,SkE ⊗ L) = 0 (4.1)

for any p ≥ 1.
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However, in general, we can not obtain a vanishing quadrilateral for SkE ⊗ L as Figure 1.
It is easy to see that the result in Corollary 4.1 is a vertical line on the boundary of the
quadrilateral in Figure 1. In [20], the authors found more vanishing elements close to that
vertical line. More precisely, they proved that

Hp,n−1(X,SkE ⊗ L) = 0, for any p ≥ r + 1 (4.2)

But in general, they proved that there exists some 1 ≤ q ≤ n such that Hn,q(X,SkE⊗L) 6=
0. In particular, SkE ⊗ L is not necessarily Nakano-positive. For example, E = TPn ⊗
OPn(−1) and L = OPn(1). It is obvious E is globally generated. When n ≥ 2, E⊗L = TPn

is dual-Nakano-positive but not Nakano-positive. More generally, we have

Example 4.2 (Demailly, [4]). Let X = G(r, V ) be the Grassmannian of subspaces of
codimension r of a vector space V , dimC V = d, and E the tautological quotient vector
bundle of rank r over X. Then E is globally generated and L := detE is very ample.

Hn,q(X,SkE ⊗ detE) =

{

0, q 6= (r − 1)(d− r);

Sk+r−dV ⊗ detV, q = (r − 1)(d − r)
(4.3)

where n = dimC X = r(d− r). If r = d− 1, then X = P
n = P

d−1 and E = TPn ⊗OPn(−1),
detE = OPn(1). That is

Hn,q(Pn, SkTPn ⊗OPn(1− k)) =

{

0, q 6= n− 1;

Sk−1V ⊗ detV, q = n− 1
(4.4)

Therefore, if n ≥ 2, SkTPn ⊗OPn(1− k) can not be Nakano-positive by the non-vanishing.
However, we shall see that for any ℓ ≥ 2− k, SkTPn ⊗OPn(ℓ) is both Nakano-positive and
dual-Nakano-positive. Moreover, we can obtain more vanishing results about it.

Let hFS be the Fubini-Study metric on P
n and it also induces a metric on L = OPn(1).

It is easy to see that
ωL ⊗ Id ≤ ΘTPn ≤ 2ωL ⊗ Id. (4.5)

So TPn is strictly (1, 2)-bounded by L. Similarly, H = TPn ⊗ OPn(−1) is strictly (0, 1)-
bounded by L.

Proposition 4.3. If ℓ ≥ 2−k, SkTPn⊗OPn(ℓ) is Nakano-positive and dual-Nakano-positive
and

Hp,q(Pn, SkTPn ⊗OPn(ℓ)) = Hq,p(Pn, SkTPn ⊗OPn(ℓ)) = 0 (4.6)

for any p ≥ 1, q ≥ 1 satisfy

min

{

n− p

q
,
n− q

p

}

≤ ℓ+ k − 1

ℓ+ n+ 2k − 1
. (4.7)

Proof. Since det(TPn) = OPn(n+ 1), we see det(H) = OPn(1). It follows from the relation

SkH ⊗ detH ⊗OPn(ℓ+ k − 1) = SkTPn ⊗OPn(ℓ) (4.8)

and Theorem 1.2 with (ε1, ε2) = (0, 1) and m = r+ k− 1. Here ℓ+ k− 1 ≥ 1, i.e., ℓ ≥ 2− k

is necessary and optimal by Example 4.2.
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Remark 4.4. Although TPn is not Nakano-positive when n ≥ 2, SkTPn is both Nakano-
positive and dual-Nakano-positive for any k ≥ 2 (see [16]). It is also easy to see that similar
results as Proposition 4.3 hold on general flag manifolds.
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at the University of California at Los Angeles.
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