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HODGE THEORY AND DEFORMATIONS OF KÄHLER MANIFOLDS

KEFENG LIU, SHENG RAO, AND XIAOKUI YANG

Abstract. We prove several formulas related to Hodge theory and the Kodaira-Spencer-
Kuranishi deformation theory of Kähler manifolds. As applications, we present a con-
struction of globally convergent power series of integrable Beltrami differentials on
Calabi-Yau manifolds, and use an iteration method to construct global canonical families
of holomorphic (n, 0)-forms on the deformation spaces of Kähler manifolds.

1. Introduction

In this paper, we will present several results about Hodge theory and the deformation
theory of Kodaira-Spencer-Kuranishi on compact Kähler manifolds. Our main observa-
tions include a simple L2-quasi-isometry result for bundle valued differential forms, an
explicit formula for the deformed ∂-operator, and an iteration method to construct global
Beltrami differentials on Calabi-Yau (CY) manifolds and holomorphic (n, 0)-forms on the
deformation of compact Kähler manifolds of dimension n. We will present an alternative
simple method to solve the ∂-equation, prove global convergence of the formal power
series of the Beltrami differentials and the holomorphic (n, 0)-forms constructed from the
Kodaira-Spencer-Kuranishi theory. These series previously were only proved to converge
in an arbitrarily small neighborhood. We will discuss more applications to the Torelli
problem and the extension of twisted pluricanonical sections in a sequel to this paper.

Let us first fix some notations to be used throughout this paper. All the manifolds in
this paper are assumed to be compact, though some results still hold for complete Kähler
manifolds. In this paper a Calabi-Yau, or CY manifold X , is a compact projective
manifold with trivial canonical line bundle. By Yau’s solution of Calabi conjecture, there
is a CY metric on X of dimension n such that the holomorphic (n, 0)-form Ω0 on X

is parallel with respect to the metric connection. For a complex manifold (X,ω) and a
Hermitian holomorphic vector bundle (E, h) on X , we denote by Ap,q(X) the space of
smooth (p, q)-forms on X and by Ap,q(E) = Ap,q(X,E) the space of smooth (p, q)-forms
on X with values in E. Similarly, let Hp,q(X) be the space of the harmonic (p, q)-forms
and let Hp,q(X,E) be the space of the harmonic (p, q)-forms with values in E. Let ∇ be
the Chern connection on (E, h) with canonical decomposition ∇ = ∇′

+ ∂, where ∇′ is
the (1, 0) part of the Chern connection ∇. Let G and H denote the Green operator and
harmonic projection in the Hodge decomposition with respect to the operator ∂, that is
I = H+ (∂∂

∗
+ ∂

∗
∂)G. A Beltrami differential is an element in A0,1(X, T 1,0

X ), where T 1,0
X

denotes the holomorphic tangent bundle of X . The L2-norm ‖ · ‖ = ‖ · ‖
1

2

L2 is induced
by the metrics ω and h. The Hölder Ck,α-norm ‖ · ‖k,α will be used on the Beltrami
differentials.

Now we briefly describe the main results in this paper. The following quasi-isometry
on compact Kähler manifolds is obtained in Section 2.
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Theorem 1.1 (Quasi-isometry). Let (E, h) be a Hermitian holomorphic vector bundle
over the compact Kähler manifold (X,ω).

(1) For any g ∈ An,∗(X,E), we have the following estimate

‖∂∗Gg‖2 ≤ 〈g,Gg〉.
(2) If (E, h) is a strictly positive line bundle and ω =

√
−1ΘE, then for any g ∈

An−1,∗(X,E), we obtain

‖∂∗G∇′g‖ ≤ ‖g‖.
(3) If E is the trivial line bundle, for any smooth g ∈ A∗,∗(X),

‖∂∗G∂g‖ ≤ ‖g‖.

In particular, if ∂∂g = 0 and g is ∂∗-exact, we obtain the isometry

‖∂∗G∂g‖ = ‖g‖.

Here the operator ∂
∗
G can be viewed as the “inverse operator” of ∂. More precisely, we

can write down the explicit solutions of some ∂-equations by using ∂
∗
G, which can also be

considered as a bundle-valued version of the very useful ∂∂-lemma in complex geometry.

Proposition 1.2. Let (E, h) be a Hermitian holomorphic vector bundle with semi-Nakano
positive curvature tensor ΘE over the compact Kähler manifold (X,ω). Then, for any
g ∈ An−1,∗(X,E) with ∂∇′g = 0, the ∂-equation ∂s = ∇′g admits a solution

s = ∂
∗
G∇′g,

such that

‖s‖2 ≤ 〈∇′g,G∇′g〉.
Moreover, this solution is unique if we require H(s) = 0 and ∂

∗
s = 0.

Note that the proofs of the above results only need very basic properties of Hodge
theory, so they still hold on general Kähler manifolds as long as Hodge theory can be
applied.

Next we let iφ and φy both denote the contraction operator with φ ∈ A0,1(X, T 1,0
X ).

The Lie derivative can be lifted to bundle valued forms by

Lφ = −∇ ◦ iφ + iφ ◦ ∇.
The following theorem in Section 3 gives explicit formulas for the deformed differential
operators on the deformation spaces of complex structures.

Theorem 1.3. Let φ ∈ A0,1(X, T 1,0
X ). Then on the space A∗,∗(X,E), we have

e−iφ ◦ ∇ ◦ eiφ = ∇− Lφ − i 1
2
[φ,φ] = ∇− L1,0

φ + i∂φ− 1

2
[φ,φ].

In particular, if σ ∈ An,∗(X,E) and φ is integrable, i.e., ∂φ− 1
2
[φ, φ] = 0, then

(
e−iφ ◦ ∇ ◦ eiφ

)
(σ) = ∂σ +∇′(φyσ).

As an application of Theorem 1.1 and Theorem 1.2, we develop a recursive method in
Section 4 to construct Beltrami differentials in Kodaira-Spencer-Kuranishi deformation
theory, which are globally convergent in L2-norm. More precisely we will obtain the
following global convergence result on the deformation space of CY manifolds.
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Theorem 1.4. Let X be a CY manifold and ϕ1 ∈ H0,1(X, T 1,0
X ) with norm ‖ϕ1‖ = 1

2
.

Then there exits a smooth globally convergent power series in L2-norm for |t| ≤ 1,

Φ(t) = ϕ1t
1 + ϕ2t

2 + · · ·+ ϕkt
k + · · · ∈ A0,1(X, T 1,0

X ),

which satisfies:

(1) ∂Φ(t) = 1
2
[Φ(t),Φ(t)];

(2) ∂
∗
ϕk = 0 for each k ≥ 1;

(3) ϕkyΩ0 is ∂-exact for each k ≥ 2, where Ω0 is a holomorphic (n, 0)-form on X;
(4) ‖Φ(t)yΩ0‖L2 <∞ as long as |t| ≤ 1.

The key point in the above result is that the convergent radius of the power series is
at least 1, which was previously proved to be sufficiently small. This power series thus
obtained is called an L2-global canonical family of Beltrami differentials on the CY man-
ifold.

In Section 5, we obtain the following theorem to construct deformations of holomorphic
(n, 0)-forms, which are globally convergent in L2-norm for CY manifolds. Analogous
results for general compact Kähler manifolds are also proved in Section 5.

Theorem 1.5. Let Xt = (Xt, JΦ(t)) be the deformation of the CY manifold X induced by
Φ(t) as constructed in Theorem 1.4. Then for any holomorphic (n, 0)-form Ω0 on X and
|t| < 1, ΩCt := eΦ(t)yΩ0 defines an L2-global canonical family of holomorphic (n, 0)-forms
on Xt.

The proof of this theorem is based on the global construction of Φ(t) in Theorem 1.4 and
an iteration procedure to construct holomorphic sections of the canonical line bundle KXt

of the deformation Xt of a Kähler manifold. As a straightforward corollary of Theorem
1.5, we have the following global expansion of the canonical family of (n, 0)-forms on the
deformation space of CY manifolds in cohomology classes. This expansion has interesting
applications in studying the global Torelli problem.

Corollary 1.6. With the same notations as in Theorem 1.5, there holds the following
global expansion of [ΩCt ] in cohomology classes for |t| < 1

(1.1) [ΩCt ] = [Ω0] +
N∑

i=1

[ϕiyΩ0]ti +O(|t|2),

where O(|t|2) ∈
n⊕

j=2

Hn−j,j(X) denotes the terms of orders at least 2 in t and N =

dimH0,1(X, T 1,0
X ).

Finally we briefly explain the backgrounds and motivations. The main motivation is
the classical Teichmüller theory for Riemann surfaces in [1], where the main result is the
proof of the existence of a solution of the Beltrami differential equation in C

∂

∂z
w(τ ; z, z) = τµ (z, z)

∂

∂z
w(τ ; z, z),

where µ (z, z) is a Beltrami differential with ‖µ (z, z)‖L∞ ≤ c < 1. The solution of
Beltrami differential equation is based on an iteration method due to Bojairski [2], while
it was Morrey [9] who first proved the existence of the solution of Beltrami equation. One
of the main ingredients in the proof of the convergence of the Bojairski iteration method

is the L2-isometry of the inverse ∂
−1

of the ∂ operator in one complex variable. The
iteration method of Bojairski was generalized by Kuranishi, who considered a compact
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Hermitian manifold (X,ω) without global holomorphic vector fields and used an analogue
of the Bojairski method to construct the Kuranishi map

κ : H0,1
(
X, T

1,0
X

)
→ H

0,2
(
X, T

1,0
X

)

as follows. Let {φi}Ni=1 be a basis of H0,1
(
X, T

1,0
X

)
and let us consider a power series

φX (τ) with coefficients in A0,1
(
X,T

1,0
X

)
defined by the recursive relations:

φX (τ) =
N∑

i=1

φiτ
i +

1

2
∂
∗ ◦G [φX(τ), φX(τ)] .

Kuranishi showed that there exists ε > 0 such that φX(τ) ∈ A0,1
(
X, T

1,0
X

)
for |τ | < ε,

and defined the map:

(1.2) κ

(
N∑

i=1

φiτ
i

)

= H ([φX(τ), φX(τ)]) ∈ H
0,2
(
X, T

1,0
X

)
.

He proved that there exists a locally complete family of complex manifold π : X → κ−1(0).
The Kuranishi map (1.2) is the most basic technical tool in various aspects of deformation
theory. For details see [10].

Acknowledgement This paper originated from many discussions with Prof. Andrey
Todorov, who unexpectedly passed away in March 2012 during his visit of Jerusalem.
We dedicate this paper to his memory. The second author would also like to express his
gratitude to Weijun Lu, Quanting Zhao and Shengmao Zhu for their interest and useful
comments.

2. ∂-equations on non-negative vector bundles

In this section, we will prove a quasi-isometry result in L2-norm with respect to the
operator ∂

∗ ◦ G on a compact Kähler manifold. This gives a rather simple and explicit
way to solve vector bundle valued ∂-equations with L2-estimate.

Let (E, h) be a Hermitian holomorphic vector bundle over the compact Kähler manifold
(X,ω) and ∇ = ∇′+∂ be the Chern connection on it. With respect to metrics on E and
X , we set

� = ∂∂
∗
+ ∂

∗
∂,

�′ = ∇′∇′∗ +∇′∗∇′.

Accordingly, we associate the Green operators and harmonic projections G, H and G
′,

H′ in Hodge decomposition to them, respectively. More precisely,

I = H+� ◦G, I = H
′ +�′ ◦G′.

Let {zi}ni=1 be the local holomorphic coordinates on X and {eα}rα=1 be a local frame
of E. The curvature tensor ΘE ∈ Γ(X,Λ2T ∗X ⊗ E∗ ⊗ E) has the form

(2.1) ΘE = R
γ
ij̄α
dzi ∧ dz̄j ⊗ eα ⊗ eγ,

where Rγ
ij̄α

= hγβ̄Rij̄αβ̄ and

(2.2) Rij̄αβ̄ = − ∂2hαβ̄

∂zi∂z̄j
+ hγδ̄

∂hαδ̄
∂zi

∂hγβ̄

∂z̄j
.

Definition 2.1. A Hermitian vector bundle (E, h) is said to be semi-Nakano-positive
(resp. Nakano-positive), if for any nozero vector u = uiα ∂

∂zi
⊗ eα,

(2.3)
∑

i,j,α,β

Rij̄αβ̄u
iαūjβ ≥ 0, (resp. > 0).
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For a line bundle, it is strictly positive if and only if it is Nakano-positive.

Theorem 2.2 (Quasi-isometry). Let (E, h) be a Hermitian holomorphic vector bundle
over the compact Kähler manifold (X,ω).

(1) For any g ∈ An,∗(X,E), we have the following estimate

‖∂∗Gg‖2 ≤ 〈g,Gg〉.

(2) If (E, h) is a strictly positive line bundle and ω =
√
−1ΘE, for any g ∈ An−1,∗(X,E),

‖∂∗G∇′g‖ ≤ ‖g‖.

(3) If E is the trivial line bundle, for any smooth g ∈ A∗,∗(X),

‖∂∗G∂g‖2 = ‖g‖2 − ‖H(g)‖2 − 〈∂∗g,G(∂∗g)〉 − ‖G(∂∂g)‖2 ≤ ‖g‖2.

In particular, if ∂∂g = 0 and g is ∂∗-exact, we obtain the isometry

‖∂∗G∂g‖ = ‖g‖.

Proof. (1). For g ∈ An,∗(X,E),

‖∂∗Gg‖2 = 〈∂∂∗Gg,Gg〉
= 〈g,Gg〉 − 〈∂∗∂Gg,Gg〉 − 〈Hg,Gg〉
= 〈g,G〉 − 〈∂Gg, ∂Gg〉
≤ 〈g,Gg〉

since the Green operator is self-adjoint and zero on the kernel of Laplacian by definition.
(2). For any g ∈ An−1,∗(X,E), by the well-known Bochner-Kodaira-Nakano identity

� = �′ + [
√
−1ΘE,Λω], we have

�(∇′g) = �′(∇′g) + q(∇′g) = (�′ + q)(∇′g).

Hence H(∇′g) = 0 and �G(∇′g) = ∇′g = �′G′(∇′g) since obviously H′(∇′g) = 0 by
Hodge decomposition. Moreover,

〈∇′g,G(∇′g)〉 = 〈∇′g,�−1
(∇′g)〉

= 〈∇′g, (�′ + q)−1(∇′g)〉
≤ 〈∇′g,�′−1(∇′g)〉
= 〈∇′g,G′(∇′g)〉.

Therefore,

‖∂∗G∇′g‖2 ≤ 〈∇′g,G∇′g〉
≤ 〈∇′g,G′∇′g〉
= 〈g,∇′∗∇′

G
′g〉

= 〈g, g −H
′(g)−∇′∇′∗

G
′g〉

= ‖g‖2 − ‖H′(g)‖2 − 〈∇′∗g,G′∇′∗g〉
≤ ‖g‖2.
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(3). If E is the trivial line bundle, for any g ∈ A∗,∗(X), we have

‖∂∗G∂g‖2 =
〈

∂
∗
G∂g, ∂

∗
G∂g

〉

=
〈

∂∂
∗
G∂g,G∂g

〉

=
〈

�G∂g − ∂
∗
∂G∂g,G∂g

〉

= 〈∂g,G∂g〉 −
〈

∂
∗
∂G∂g,G∂g

〉

= 〈g, ∂∗∂Gg〉 −
〈
G∂∂g,G∂∂g

〉

= 〈g,�′
Gg − ∂∂∗Gg〉 − ‖G(∂∂g)‖2

= 〈g, g −H(g)− ∂∂∗Gg〉 − ‖G(∂∂g)‖2

= ‖g‖2 − ‖H(g)‖2 − 〈∂∗g,G(∂∗g)〉 − ‖G(∂∂g)‖2

≤ ‖g‖2,

since the Green operator is nonnegative. In particular, if ∂∂g = 0 and g is ∂∗-exact, we
have H(g) = 0 and ∂∗g = 0. Hence, we obtain the isometry ‖∂∗G∂g‖ = ‖g‖. �

Proposition 2.3 (∂-Inverse formula). Let (E, h) be a Hermitian holomorphic vector
bundle with semi-Nakano positive curvature ΘE over the compact Kähler manifold (X,ω).
Then, for any g ∈ An−1,∗(X,E),

s = ∂
∗
G∇′g

is a solution to the equation ∂s = ∇′g with ∂∇′g = 0, such that

‖s‖2 ≤ 〈∇′g,G∇′g〉.

This solution is unique as long as it satisfies H(s) = 0 and ∂
∗
s = 0.

It is worth noting that unlike Hörmander’s L2-estimate to solve ∂-equation, we do not
need the a priori L2-estimate condition here.

Proof. By the well-known Bochner-Kodaira-Nakano identity � = �′+[
√
−1ΘE ,Λω], one

can see that for any φ ∈ An,∗(X,E),

〈
√
−1[ΘE,Λω]φ, φ〉 ≥ 0

if E is semi-Nakano positive (e.g. [4]). It implies that, for any φ ∈ An,∗(X,E),

〈�φ, φ〉 ≥ 〈�′φ, φ〉.

Thus, on the space An,∗(X,E),

(2.4) ker� ⊆ ker�′.

By Hodge decomposition, we have

∂s = ∂∂
∗
G∇′g = ∇′g −H∇′g − ∂

∗
∂G∇′g = ∇′g −H∇′g = ∇′g,

where the identity H∇′g = 0 is used. Actually, we know ∇′g⊥ ker�′ and obviously
∇′g⊥ ker� by (2.4). The uniqueness of this solution follows easily: If H(s) = 0, ∂

∗
s = 0

and ∂s = 0, then

s = H(s)⊕�G(s) = H(s)⊕ (∂∂
∗
+ ∂

∗
∂)G(s) = 0.

�
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3. Beltrami differentials and deformation theory

In this section we prove several new formulas to construct explicit deformed differen-
tial operators for bundle valued differential forms on the deformation spaces of Kähler
manifolds. These formulas will be applied to the deformation space of CY manifolds in
later sections while more applications to the deformation theory of Kähler manifolds and
holomorphic line bundles will be discussed in the sequel to this paper. Throughout this
section, X is always assumed to be a complex manifold.

For X0 ∈ Γ(X, T 1,0
X ), the contraction operator is defined as

iX0
: Ap,q(X) → Ap−1,q(X)

by

(iX0
ω)(X1, · · · , Xp−1, Y1, · · · , Yq) = ω(X0, X1, · · · , Xp−1, Y1, · · ·Yq)

for X1, · · · , Xp−1 ∈ Γ(X, T 1,0
X ) and Y1, · · · , Yq ∈ Γ(X, T 0,1

X ). We will also use the notation
‘y’ to represent the contraction operator in the sequel, that is, iX0

(ω) = X0yω.
For φ ∈ A0,s(X, T 1,0

X ), the contraction operator can be extended to

iφ : Ap,q(X) → Ap−1,q+s(X).

For example, if φ = η⊗Y with η ∈ A0,q(X) and Y ∈ Γ(X, T 1,0
X ), then for any ω ∈ Ap,q(X),

(iφ)(ω) = η ∧ (iY ω).

The following result follows easily.

Lemma 3.1. Let φ ∈ A0,q(X, T 1,0
X ) and ψ ∈ A0,s(X, T 1,0

X ). Then

(3.1) iφ ◦ iψ = (−1)(q+1)(s+1)iψ ◦ iφ.
For Y ∈ Γ(X, TX), the Lie derivative LY is defined as

(3.2) LY = d ◦ iY + iY ◦ d : As(X) → As(X).

For any φ ∈ A0,q(X, T 1,0
X ), we can define iφ as (3) and thus extend Lφ to be

(3.3) Lφ = (−1)qd ◦ iφ + iφ ◦ d.
According to the types, we can decompose

Lφ = L1,0
φ + L0,1

φ ,

where

L1,0
φ = (−1)q∂ ◦ iφ + iφ ◦ ∂

and

L0,1
φ = (−1)q∂ ◦ iφ + iφ ◦ ∂.

Let

ϕi =
1

p!

∑

ϕij̄1,··· ,j̄pdz̄
j1 ∧ · · · ∧ dz̄jp ⊗ ∂i and ψ

i =
1

q!

∑

ψik̄1,··· ,k̄qdz̄
k1 ∧ · · · ∧ dz̄kq ⊗ ∂i.

Then, we write

(3.4) [ϕ, ψ] =

n∑

i,j=1

(ϕi ∧ ∂iψj − (−1)pqψi ∧ ∂iϕj)⊗ ∂j ,

where

∂iϕ
j =

1

p!

∑

∂iϕ
j
j̄1,··· ,j̄pdz̄

j1 ∧ · · · ∧ dz̄jp

7



and similar for ∂iψ
j. In particular, if ϕ, ψ ∈ A0,1(X, T 1,0

X ),

[ϕ, ψ] =

n∑

i,j=1

(ϕi ∧ ∂iψj + ψi ∧ ∂iϕj)⊗ ∂j .

Let (E, h) be a Hermitian holomorphic vector bundle over X and ∇ be the Chern
connection on (E, h). Then the operators i•,L•, [•, •] can be extended to the E-valued
(p, q) forms in the canonical ways. For example, for any φ ∈ A0,k(X, T 1,0

X ), we can define

(3.5) Lφ = (−1)k∇ ◦ iφ + iφ ◦ ∇.
Then we have the following general commutator formula.

Lemma 3.2 ([7]). For ϕ ∈ A0,k(X, T 1,0
X ), ϕ′ ∈ A0,k′(X, T 1,0

X ) and α ∈ A∗,∗(X,E),

(−1)k
′

ϕyLϕ′α + (−1)k
′k+1Lϕ′(ϕyα) = [ϕ, ϕ′]yα,

or equivalently,
[Lϕ′, iϕ] = i[ϕ′,ϕ].

In particular, if ϕ, ϕ′ ∈ A0,1(X, T 1,0
X ), then

(3.6) [ϕ, ϕ′]yα = −∇′(ϕ′y(ϕyα))− ϕy(ϕ′y∇′α) + ϕy∇′(ϕ′yα) + ϕ′y∇′(ϕyα)
and

(3.7) 0 = −∂(ϕ′y(ϕyα))− ϕy(ϕ′y∂α) + ϕy∂(ϕ′yα) + ϕ′y∂(ϕyα).
Proof. Since the formulas are all local and C-linear, without loss of generality, we can
assume that

ϕ = η ⊗ χ, ϕ′ = η′ ⊗ χ′,

where η ∈ A0,k(X), η′ ∈ A0,k′(X), χ, χ′ ∈ Γ(X, T 1,0
X ) and dη = dη′ = 0. Since dη = dη′ =

0, we have χ′(η) = χ(η′) = 0. Hence, we obtain

[ϕ, ϕ′] = η ∧ η′[χ, χ′].

On the other hand, for any α ∈ A∗,∗(X,E),

Lϕα = η ∧ (χy∇α) + (−1)k∇(η ∧ (χyα))
= η ∧ (χy∇α) + (−1)k(dη ∧ (χyα) + (−1)kη ∧∇(χyα))
= η ∧ (χy∇α +∇(χyα))
= η ∧ Lχα.

Now, we have

ϕyLϕ′α =η ∧ χy(η′ ∧ Lχ′α)

=(−1)k
′

η ∧ η′(χyLχ′α)

=(−1)k
′

η ∧ η′ (Lχ′(χyα)− [χ′, χ]yα)
=(−1)k

′

(η ∧ Lϕ′(χyα)− η ∧ η′ ∧ ([χ′, χ]yα))
=(−1)k

′

[ϕ, ϕ′]yα + (−1)k
′(1+k)Lϕ′(η ∧ (χyα))

=(−1)k
′

[ϕ, ϕ′]yα + (−1)k
′(1+k)Lϕ′(ϕyα),

where we apply the formula

[χ′, χ]yα = Lχ′(χyα)− χyLχ′α,

which is proven in [7], and

Lϕ′(ϕyα) = (−1)k
′kη ∧ Lϕ′(χyα).

8



In fact,

Lϕ′(ϕyα)
=Lϕ′(η ∧ (χyα))
=ϕ′y∇(η ∧ (χyα)) + (−1)k

′∇ ◦ ϕy(η ∧ (χyα))
=ϕ′y(dη ∧ (χyα)) + (−1)kϕ′y(η ∧ ∇(χyα)) + (−1)k

′+k(k′−1)∇(η ∧ (ϕ′y(χyα)))
=(−1)k+k(k

′−1)η ∧ (ϕ′y(∇(χyα))) + (−1)k
′+k(k′−1)+kη ∧∇(ϕ′y(χyα))

=(−1)k
′kη ∧ Lϕ′(χyα).

�
As an easy corollary, we have the following result which was known as Tian-Todorov

lemma.

Lemma 3.3 ([16, 15]). If ϕ, ψ ∈ A0,1(X, T 1,0
X ) and Ω ∈ An,0(X), then one has

(3.8) [ϕ, ψ]yΩ = −∂(ψy(ϕyΩ)) + ϕy∂(ψyΩ) + ψy∂(ϕyΩ).
In particular, if X is a CY manifold and ϕ, ψ ∈ H0,1(X, T 1,0

X ), then

(3.9) [ϕ, ψ]yΩ0 = −∂(ψy(ϕyΩ0)).

Note that here ϕyΩ0 and ψyΩ0 are both harmonic.

Let φ ∈ A0,1(X, T 1,0
X ) and iφ be the contraction operator. Define an operator

eiφ =
∞∑

k=0

1

k!
ikφ,

where ikφ = iφ ◦ · · · ◦ iφ
︸ ︷︷ ︸

k copies

. Since the dimension of X is finite, the summation in the above

formulation is also finite.
The following theorem gives explicit formulas for the deformed differential operators on

the deformation spaces of complex structures. It also explains why it is relatively easy to
construct extension of sections of the bundle KX + E where KX is the canonical bundle
of X . We remark that this result is motivated by [3] where a special case was proved.

Theorem 3.4. Let φ ∈ A0,1(X, T 1,0
X ). Then on the space A∗,∗(E), we have

(3.10) e−iφ ◦ ∇ ◦ eiφ = ∇− Lφ − i 1
2
[φ,φ],

or equivalently

(3.11) e−iφ ◦ ∂ ◦ eiφ = ∂ −L0,1
φ

and

(3.12) e−iφ ◦ ∇′ ◦ eiφ = ∇′ − L1,0
φ − i 1

2
[φ,φ].

Moreover, if ∂φ = 1
2
[φ, φ], then

(3.13) ∂ −L1,0
φ = e−iφ ◦ (∂ − Lφ) ◦ eiφ.

Proof. (3.11) follows from (3.6) and formula

[∂, ikφ] = kik−1
φ ◦ [∂, iφ],

which can be proved by induction by using (3.6). Similarly, (3.12) follows from (3.7) and

(3.14) [∇′, ikφ] = kik−1
φ ◦ [∇′, iφ]−

k(k − 1)

2
ik−2
φ ◦ i[φ,φ], k ≥ 2.

9



Now we prove (3.14) by induction. It is obvious that (3.14) is equivalent to for any k ≥ 2,

(3.15) Fk := −kik−1
φ ◦ ∇′ ◦ iφ + (k − 1)ikφ ◦ ∇′ +∇′ ◦ ikφ +

k(k − 1)

2
ik−2
φ i[φ,φ] = 0.

If k = 2, it is (3.7). As for k = 3,

0 = i[φ,φ] ◦ iφ − iφ ◦ i[φ,φ]
= 3iφ ◦ ∇′ ◦ i2φ −∇′ ◦ i3φ − 3i2φ ◦ ∇′ ◦ iφ + i3φ ◦ ∇′

= 3i2φ ◦ ∇′ ◦ iφ − 2i3φ ◦ ∇′ −∇′ ◦ i3φ − 3iφ ◦ i[φ,φ]
= −F3,

where Lemma 3.1 is applied.
Now we assume that (3.15) is right for all integers less than k ≥ 3. That is,

F2 = F3 = · · · = Fk−1 = 0.

We will show Fk = 0. Now we set

Gk = Fk − iφ ◦ Fk−1

= −ik−1
φ ◦ ∇′ ◦ iφ + ikφ ◦ ∇′ +∇′ ◦ ikφ − iφ ◦ ∇′ ◦ ik−1

φ + (k − 1)ik−2
φ i[φ,φ].

So, by induction, we have

Gk − iφ ◦Gk−1

= ∇′ ◦ ikφ − 2iφ ◦ ∇′ ◦ ik−1
φ + i2φ ◦ ∇′ ◦ ik−2

φ + ik−2
φ ◦ i[φ,φ]

= (∇′ ◦ i2φ + i2φ ◦ ∇′ − 2iφ ◦ ∇′ ◦ iφ) ◦ ik−2
φ + ik−2

φ ◦ i[φ,φ]
= −i[φ,φ] ◦ ik−2

φ + ik−2
φ ◦ i[φ,φ]

= −iφ ◦ i[φ,φ] ◦ ik−3
φ + ik−2

φ ◦ i[φ,φ]
= −i2φ ◦ i[φ,φ] ◦ ik−4

φ + ik−2
φ ◦ i[φ,φ]

= −ik−3
φ ◦ i[φ,φ] ◦ iφ + ik−3

φ ◦ iφ ◦ i[φ,φ]
= −ik−3

φ ◦ (i[φ,φ] ◦ iφ − iφ ◦ i[φ,φ])
= 0

since i[φ,φ]iφ − iφi[φ,φ] = 0. Alternatively, we can also approach this equality directly by

induction on the term Gk−iφ◦Gk−1, i.e., 0 = Gk−1−iφ◦Gk−2 = −i[φ,φ]◦ ik−3
φ + ik−3

φ ◦ i[φ,φ].
Now we finish the proof of (3.14). From (3.14), it follows that

[∇′, eiφ] = eiφ ◦ [∇′, iφ]− eiφ ◦ 1

2
i[φ,φ]

by comparing the degrees. Then, we have

e−iφ ◦ ∇′ ◦ eiφ = e−iφ ◦ [∇′, eiφ ] +∇′

= [∇′, iφ] +∇′ − i 1
2
[φ,φ]

= ∇′ −L1,0
φ − i 1

2
[φ,φ].

Now we finish the proof of (3.12) while the proof of (3.11) is similar.
Finally, when ∂φ = 1

2
[φ, φ], we have [2∂ −Lφ, iφ] = 0 and thus

[2∂ − Lφ, eiφ] = 0,

which implies that

e−iφ ◦ (∂ − Lφ) ◦ eiφ = 2∂ − Lφ − e−iφ ◦ ∂ ◦ eiφ = ∂ −L1,0
φ .

10



�
Corollary 3.5. If σ ∈ An,∗(X,E), we have

(
e−iφ ◦ ∇ ◦ eiφ

)
(σ) = ∂σ − L1,0

φ (σ) + i∂φ− 1

2
[φ,φ](σ)

= ∂σ +∇′(φyσ) +
(

∂φ− 1

2
[φ, φ]

)

yσ.

In particular, if φ is integrable, i.e., ∂φ− 1
2
[φ, φ] = 0, then

(3.16)
(
e−iφ ◦ ∇ ◦ eiφ

)
(σ) = ∂σ +∇′(φyσ).

The above formula gives an explicit recursive formula to construct deformed cohomol-
ogy classes for deformation of Kähler manifolds. When E is a trivial bundle, the above
formula was used in [6] to prove the global Torelli theorem.

4. Global canonical family of Beltrami differentials

In this section, based on the techniques developed in Sections 2 and 3, we shall construct
the following globally convergent power series of Beltrami differentials in L2-norm on a
CY manifold. To avoid the bewildering notations, we just present the details on the
one-parameter case and only give a sketch of the multi-parameter case.

The convergence of the power series in the following lemma is crucial in our proof of
the global convergence and regularity results.

Lemma 4.1. Let {xi}+∞
i=1 be a series given by xk = c

∑k−1
i=1 xi ·xk−i with real initial value

x1. Then the power series S(τ) =

∞∑

i=1

xiτ
i converges as long as |τ | ≤ 1

|4cx1| .

Proof. Setting S := S(τ) =

∞∑

i=1

xiτ
i, we have

(4.1) cS2 = c

( ∞∑

i=1

xiτ
i

)( ∞∑

j=1

xjτ
j

)

=

+∞∑

k≥1

xkτ
k − x1τ = S − x1τ.

It follows from (4.1) that

S =
1±

√
1− 4cx1τ

2c
.

Here we take S(τ) = 1−
√
1−4cx1τ
2c

, since we have S(0) = 0 according to the assumption.
We therefore have the following expansion for S

S =
1

2c

(

1−
(

1 +
∑

n≥1

1
2
(1
2
− 1) · · · (1

2
− n+ 1)

n!
(−4cx1τ)

n

))

=
∑

n≥1

1

2c

( 1
2
(1− 1

2
) · · · ((n− 1)− 1

2
)

n!

)

(4cx1)
n
τn,

which implies that

xn =
1
2
(1− 1

2
) · · · ((n− 1)− 1

2
)

2cn!
(4cx1)

n
.

This is the explicit expression for each xn. Now it is easy to check that the convergence

radius of the power series S =
∞∑

i=1

xiτ
i is 4|cx1|, and that this power series still converges

when τ = ± 1
4|cx1| . �
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Lemma 4.2. Let {xi}+∞
i=1 be a series given by

(4.2) x1 =
1

2
, x2 =

1

2
x1 · x1, · · · , xk =

1

2

k−1∑

i=1

xi · xk−i, · · · .

Then the power series S(τ) =
∞∑

i=1

xiτ
i converges as long as |τ | ≤ 1.

Now we prove the global convergence of the Beltrami differential from the Kodaira-
Spencer-Kuranishi theory. All sub-indices of the Beltrami differentials are at least 1.

The following result is contained in [16, 15], we briefly recall here for reader’s conve-
nience.

Lemma 4.3. Assume that for ϕν ∈ A0,1(X, T 1,0
X ), ν = 2, · · · , K,

(4.3) ∂ϕν =
1

2

∑

α+β=ν

[ϕα, ϕβ] and ∂ϕ1 = 0.

Then one has

(4.4) ∂

(
∑

ν+γ=K+1

[ϕν , ϕγ]

)

= 0.

Proof. By definition formula (3.4), one has

(4.5) [∂ϕ, ϕ′] = −[ϕ′, ∂ϕ].

Then we have

1

2
∂

(
∑

ν+γ=K+1

[ϕν , ϕγ]

)

=
1

2

∑

ν+γ=K+1

([
∂ϕν , ϕγ

]
−
[
ϕν , ∂ϕγ

])

=
∑

ν+γ=K+1

[
∂ϕν , ϕγ

]

=
1

2

∑

ν+γ=K+1

[
∑

α+β=ν

[ϕα, ϕβ] , ϕγ

]

=
1

2

∑

α+β+γ=K+1

[[ϕα, ϕβ] , ϕγ] ,

where the second equality is implied by (4.5) and the third one follows from the assump-
tion (4.3). When α = β = γ, by Jacobi identity one has

3 [[ϕα, ϕβ] , ϕγ] = 0.

Otherwise, Jacobi identity implies that

[[ϕα, ϕβ] , ϕγ] + [[ϕβ , ϕγ] , ϕα] + [[ϕγ, ϕα] , ϕβ] = 0.

�
Theorem 4.4. Let X be a CY manifold and ϕ1 ∈ H

0,1(X, T 1,0
X ) with norm ‖ϕ1‖ = 1

2
.

Then there exits a smooth globally convergent power series in L2-norm for |t| ≤ 1,

(4.6) Φ(t) = ϕ1t
1 + ϕ2t

2 + · · ·+ ϕkt
k + · · · ∈ A0,1(X, T 1,0

X ),

which satisfies:
a) ∂Φ(t) = 1

2
[Φ(t),Φ(t)];

b) ∂
∗
ϕk = 0 for each k ≥ 1;

12



c) ϕkyΩ0 is ∂-exact for each k ≥ 2;
d) ‖Φ(t)yΩ0‖L2 <∞ as long as |t| ≤ 1.

Proof. Let us first review the construction of the power series Φ(t) by induction from [15]
and [16]. Suppose that we have constructed ϕk for 2 ≤ k ≤ j such that:

a) ∂ϕk =
1
2

∑k−1
i=1 [ϕk−i, ϕi];

b) ∂
∗
ϕk = 0;

c) ϕkyΩ0 is ∂-exact and thus ∂(ϕkyΩ0) = 0.
Then we need to construct ϕj+1 such that:

a′) ∂ϕj+1 =
1
2

∑j
i=1[ϕj+1−i, ϕi];

b′) ∂
∗
ϕj+1 = 0;

c′) ϕj+1yΩ0 is ∂-exact and thus ∂(ϕj+1yΩ0) = 0.
Actually, it follows from Lemma 3.3 and the assumption c) that

(4.7)

j
∑

i=1

[ϕj+1−i, ϕi]yΩ0 = −∂
(
∑

i+k=j+1

ϕiyϕkyΩ0

)

.

Then, Lemma 4.3 and the assumption a) imply

(4.8) ∂∂

(
∑

i+k=j+1

ϕiyϕkyΩ0

)

= ∂

(
j
∑

i=1

[ϕj+1−i, ϕi]

)

yΩ0 = 0.

So formula (4.8) and Proposition 1.2 tell us that the equation

∂Ψj+1 = −∂
(
∑

i+k=j+1

ϕiyϕkyΩ0

)

has a solution Ψj+1 = −∂∗
G∂
(
∑

i+k=j+1ϕiyϕkyΩ0

)

. Hence, we define

ϕj+1 =
1

2
Ψj+1yΩ∗

0,

where Ω∗
0 :=

∂
∂z1

∧ · · · ∧ ∂
∂zn

in local coordinates is the dual of Ω0. It is easy to check that

∂
∗
(Ψj+1yΩ∗

0) = ∂
∗
(Ψj+1)yΩ∗

0 +Ψj+1y∂
∗
Ω∗

0 = 0,

since Ω0 is parallel, and also ∂ϕj+1 = 1
2

∑j
i=1[ϕj+1−i, ϕi]. See Lemma 1.2.2 and the

argument on pp. 336 of [16] for more details. Now we have completed the construction of
ϕj+1 =

1
2
Ψj+1yΩ∗

0, which is shown to satisfy Properties a′), b′) and c′). To complete this
induction, it suffices to work out the case j = 2. It is obvious that ϕ2 can be constructed
as

ϕ2 =
1

2
∂
∗
G∂ (ϕ1yϕ1yΩ0)yΩ∗

0,

which satisfies a), b) and c). Moreover, one has the following equality for each k ≥ 2,

(4.9) ϕkyΩ0 =
1

2
∂
∗
G∂

∑

i+j=k≥2

ϕiyϕjyΩ0.
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Next, let us prove the L2-convergence and regularity. In fact, without loss of generality
we can assume that ‖ϕ1yΩ0‖ = ‖ϕ1‖ = 1

2
and thus have for |t| ≤ 1,

‖Φ(t)yΩ0‖L2 =
∥
∥(ϕ1yΩ0)t+ (ϕ2yΩ0)t

2 + · · ·+ (ϕkyΩ0)t
k + · · ·

∥
∥

=

∥
∥
∥
∥
∥
(ϕ1yΩ0)t+

∞∑

j=2

1

2
∂
∗
G∂

(
∑

i+k=j

ϕiyϕkyΩ0

)

tj

∥
∥
∥
∥
∥

≤
∞∑

j=2

1

2

(
∑

i+k=j

‖ϕiyϕkyΩ0‖
)

|t|j + 1

2
|t|

≤
∞∑

j=2

1

2

∑

i+k=j

(‖ϕi‖ · ‖ϕkyΩ0‖) |t|j +
1

2
|t|

≤
∞∑

j=2

xj |t|j + x1|t|

<∞,

by Lemma 4.2 and quasi-isometry Theorem 1.1. Here we use the same notations for the
series xj as in Lemma 4.2.

As for the regularity of Φ(t), we can obtain it directly by the elliptic regularity the-
orem, which tells us that every fundamental solution of an elliptic operator is infinitely
differentiable in any neighborhood not containing 0. Then it is obvious that ∂Φ(t) = 0
by the ∂-exactness of ϕkyΩ0 for each k ≥ 2 and the harmonicity of ϕ1yΩ0, and that the
operator ∂ is elliptic. For more details, see pp. 8 of [13]. �

In fact we have a more intrinsic approach to obtain the regularity by G̊arding’s inequal-
ity and Sobolev lemma. G̊arding’s inequality states that for ω ∈ Ap,q(X) on a compact

n-dimensional Hermitian manifold X , there holds ‖ω‖21 ≤ C(‖ω‖2 + ‖∂ω‖2 + ‖∂∗ω‖2),
where ‖ · ‖2s denotes the Sobolev s-norm and C > 0 (always) denotes the constants. Note
that the G̊arding’s inequality also holds on Sobolev space of complex differential forms.

Let Φj =
1
2
∂
∗
G∂
(
∑

i+k=j ϕiyϕkyΩ0

)

for j ≥ 2. Then by G̊arding’s inequality, one has

‖Φj‖21 ≤ C(‖∂∗Φj‖+ ‖∂Φj‖+ ‖Φj‖)

= C

(

1

2

∥
∥
∥
∥
∥
∂
∑

i+k=j

ϕiyϕkyΩ0

∥
∥
∥
∥
∥
+ ‖Φj‖

)

≤ C

∥
∥
∥
∥
∥

∑

i+k=j

ϕiyϕkyΩ0

∥
∥
∥
∥
∥

2

1

.

Here we also apply Lemma 2.3 and quasi-isometry Theorem 1.1 and the definition of
Sobolev norm. By the iteration construction of Φ∗’s and also ϕ∗’s, we know that

∥
∥
∥
∥
∥

∑

i+k=j

ϕiyϕkyΩ0

∥
∥
∥
∥
∥

2

1

≤
∑

i+k=j

‖ϕi‖21 · ‖ϕkyΩ0‖21 ≤ C
∑

i+k=j

‖Φi‖21 · ‖Φk‖
2
1 .

From these and Lemma 4.1, it follows that for some large valued t,

‖Φ(t)yΩ0‖21 <∞.

This argument still works for all the Sobolev norms. Here we only need a generalized
G̊arding’s inequality such as Theorem 1.1 in Chapter IV of the book [13]. It is easy
to choose the constant C to work uniformly for all norms and thus obtain an identical
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convergence radius for all ‖Φ(t)yΩ0‖2s. Then from the classical global Sobolev lemma,
the completion of C∞(X) in Sobolev s-norm H[n/2]+1+s(X) ⊂ Cs(X) and ∩sHs(X) =
C∞(X), it follows that

Φ(t)yΩ0 ∈ C∞(X).

See Section 6 of Chapter 0 in [5] for more details.
Now we state the following multi-parameter result, while we just sketch its proof since

it is essentially the same as the one-parameter case.

Theorem 4.5. Let X be a CY manifold and {ϕ1, · · · , ϕN} ∈ H0,1(X, T 1,0
X ) be a basis with

norm ‖ϕi‖ = 1
2N

. Then for |t| ≤ 1, we can construct a smooth power series of Beltrami
differentials on X as follows

(4.10) Φ(t) =
∑

|I|≥1

ϕIt
I =

∑

ν1+···+νN≥1,
each νi ≥ 0, i = 1, 2, · · ·

ϕν1···νN t
ν1
1 · · · tνNN ∈ A0,1(X, T 1,0

X ),

where ϕ0···νi···0 = ϕi. This power series has the following properties:
a) ∂Φ(t) = 1

2
[Φ(t),Φ(t)], the integrability condition;

b) ∂
∗
ϕI = 0 for each multi-index I with |I| ≥ 1;

c) ϕIyΩ0 is ∂-exact for each I with |I| ≥ 2. Here Ω0 is a holomorphic (n, 0)-form on
X; and more importantly,
d) global convergence: ‖Φ(t)yΩ0‖ ≤∑I ‖ϕIyΩ0‖ · |t||I| <∞ as long as |t| ≤ 1.

Proof. Let us construct the power series Φ(t) in multi-parameters by induction. Write

BTK = {ϕν1···νN ∈ A0,1(M,T
1,0
M ) | each integer νi ≥ 0 and ν1 + · · ·+ νN T K, K ≥ 1}.

It is easy to see that Φ(t) should satisfy:
a) ∂ϕν1···νN = 1

2

∑

αi+βi=νi

[ϕα1···αN
, ϕβ1···βN ] for ϕν1···νN ∈ B≥2;

b) ∂
∗
ϕν1···νN = 0 for ϕν1···νN ∈ B≥1;

c) ϕν1···νNyΩ0 is ∂-exact and thus ∂(ϕν1···νNyΩ0) = 0 for each ϕν1···νN ∈ B≥2.
Assuming that the above three assumptions hold for ϕν1···νN ∈ B≥2 ∩ B≤K , then one

can construct ϕν1···νN ∈ BK+1 such that it also satisfies these three assumptions. In fact,
Lemma 3.3 and the assumption c) for ϕν1···νN ∈ B≥2 ∩ B≤K imply that

(4.11) [ϕα1···αN
, ϕβ1···βN ]yΩ0 = −∂ (ϕα1···αN

yϕβ1···βNyΩ0) ,

where
∑

i αi +
∑

j βj = K + 1. Then, by multi-index Lemma 4.3 and the assumption a)
for ϕν1···νN ∈ B≥2 ∩ B≤K , we have

(4.12) ∂∂

(
∑

αi+βi=νi

ϕα1···αN
yϕβ1···βNyΩ0

)

= ∂

(
∑

αi+βi=νi

[ϕα1···αN
, ϕβ1···βN ]

)

yΩ0 = 0,

for any ϕν1···νN ∈ BK+1. Therefore, one can construct Ψν1···νN directly by ∂-Inverse formula
2.3 and (4.12) as

Ψν1···νN = −∂∗G∂
(

∑

αi+βi=νi

ϕα1···αN
yϕβ1···βNyΩ0

)

.

Hence we define

ϕν1···νN =
1

2
Ψν1···νNyΩ∗

0 ∈ BK+1,

where Ω∗
0 :=

∂
∂z1

∧ · · · ∧ ∂
∂zn

is the dual of Ω0. Then it is easy to check that

∂
∗
(Ψν1···νNyΩ∗

0) = ∂
∗
(Ψν1···νN )yΩ∗

0 +Ψν1···νNy∂
∗
Ω∗

0 = 0

15



since Ω0 is parallel, and also ∂ϕν1···νN = 1
2

∑

αi+βi=νi

[ϕα1···αN
, ϕβ1···βN ]. To complete this

induction, we construct ϕν1···νN ∈ B2 as

(4.13) ϕν1···νN =

{

−∂∗G∂ (ϕiyϕjyΩ0)yΩ∗
0, if νi = νj = 1, i 6= j,

−1
2
∂
∗
G∂ (ϕiyϕiyΩ0)yΩ∗

0, if νi = 2, for some i ∈ {1, · · · , N},

which obviously satisfies a), b) and c).
Up to now we have completed the construction of the power series Φ(t) satisfying a),

b) and c) as in Theorem 4.4. It now suffices to check the global convergence in L2-norm
and regularity of Φ(t).

We may choose ‖ϕiyΩ0‖ = ‖ϕi‖ = 1
2N

. Thus by Lemma 4.2 and our quasi-isometry,
we have the following estimates for |t| ≤ 1,

‖Φ(t)yΩ0‖L2

=

∥
∥
∥
∥
∥
∥
∥
∥

N∑

i=1

(ϕiyΩ0)ti +
1

2

∑

K:=Σiνi≥2

∂
∗
G∂

∑

J+L=K,J,L≥1
ϕα1···αN

∈BJ ,ϕβ1···βN
∈BL

(ϕα1···αN
yϕβ1···βNyΩ0) t

ν1
1 · · · tνNN

∥
∥
∥
∥
∥
∥
∥
∥

≤
N∑

i=1

‖ϕiyΩ0‖ · |t|+
1

2

∑

J+L=K≥2,J,L≥1
ϕα1···αN

∈BJ ,ϕβ1···βN
∈BL

‖ϕα1···αN
‖ · ‖ϕβ1···βNyΩ0‖ · |t|K

≤
∞∑

K=2

xK |t|K + x1|t|

<+∞,

where the series {xj}+∞
j=1 is just the one as in the Lemma 4.2.

As for the regularity of Φ(t), we can follow the argument in the proof of Theorem 4.4
word by word. Hence the proof of this theorem is completed. �

5. Global canonical family of holomorphic (n, 0)-forms

Based on the construction of L2-global canonical family Φ(t) of Beltrami differentials
of Theorem 4.4 in Subsection 5.1, we obtain an L2-global canonical family of holomorphic
(n, 0)-forms on the deformation space of CY manifold in Subsection 5.2.

5.1. Iteration on Kähler manifold. The iteration procedure is to construct holomor-
phic sections of the canonical line bundle KXt

of the deformation Xt of a Kähler man-
ifold X induced by the Beltrami differential Φ(t) satisfying the integrability condition.
More precisely, our goal is to find a convergent power series for any holomorphic section
Ω0 ∈ H0(X,KX),

Ωt = Ω0 +
∑

|I|≥1

tIΩI

such that eΦ(t)yΩt ∈ H0(Xt, KXt
) is holomorphic with respect to the induced com-

plex structure JΦ(t) by Φ(t). It is easy to check that the map eΦ(t)y : A0(X,KX) →
A0(Xt, KXt

) is a well-defined linear isomorphism. Then Proposition 5.1 is used to deter-
mine the holomorphy of the section eΦ(t)yΩt, and our goal of the iteration procedure is
thus reduced to solving the ∂-equation (5.1) by ∂-Inverse Lemma 2.3. See also Lemma
10.2 of [8].
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Proposition 5.1. For any Ω ∈ An,0(X), the section eΦ(t)yΩ ∈ An,0(Xt) is holomorphic
with respect to the complex structure JΦ(t) induced by Φ(t) on Xt if and only if

(5.1) ∂Ω+ ∂(Φ(t)yΩ) = 0.

Proof. This is a direct consequence of Corollary 3.5. In fact,
(
e−iΦ ◦ d ◦ eiΦ

)
(Ω) = ∂Ω+ ∂(ΦyΩ),

if the vector bundle E is trivial and Φ(t) satisfies the integrability condition. The operator
d, which is independent of the complex structures, can be decomposed as d = ∂t + ∂t,
where ∂t and ∂t denote the (0, 1)-part and (1, 0)-part of d, with respect to the complex
structure JΦ(t) induced by Φ(t) onXt. Notice that e

Φ(t)yΩ ∈ An,0(Xt) and thus, comparing
types, we get

(
e−iΦ ◦ ∂t ◦ eiΦ

)
(Ω) = ∂Ω+ ∂(ΦyΩ),

which implies the assertion. �

Let X be an n-dimensional compact Kähler manifold and {ϕ1, · · · , ϕN} ∈ H0,1(X, T 1,0
X )

a basis with the norm ‖ϕi‖ = C(N), N = dimH0,1(X, T 1,0
X ) for each i = 1, 2, · · · . A power

series of Beltrami differentials in the following form

Φ(t) =
N∑

i=1

ϕiti +
∑

|I|≥2

ϕIt
I =

∑

ν1+···+νN≥1

ϕν1···νN t
ν1
1 · · · tνNN ∈ A0,1(X, T 1,0

X )

with ϕ0···νi···0 = ϕi, is called an L2-global canonical family of Beltrami differentials on the
Kähler manifold X if it satisfies:
i) the integrability condition: ∂Φ(t) = 1

2
[Φ(t),Φ(t)];

ii) global convergence in the sense that

‖Φ(t)yΩ0‖L2 ≤
∑

|I|≥1

‖ϕI‖‖Ω0‖ · t|I| <∞

as long as |t| < R, where the convergence radius R is a constant only dependent on C(N)
and Ω0 is a non-vanishing (n, 0)-form.

Proposition 5.2. If there exists an L2-global canonical family Φ(t) of Beltrami differ-
entials on the Kähler manifold X with convergence radius R, let Xt = (Xt, JΦ(t)) be the
deformation of X induced by Φ(t). Then for any holomorphic (n, 0)-form Ω ∈ An,0(X),
we can construct a smooth power series

(5.2) Ωt = Ω0 +

∞∑

|I|≥1

ΩIt
I ∈ An,0(X)

such that Ω0 = Ω with the following properties:
a) ΩCt := eΦ(t)yΩt ∈ H0(Xt, KXt

) is holomorphic with respect to JΦ(t);

b) ΩI ∈ An,0(X) is ∂-exact and also ∂
∗
-exact for all |I| ≥ 1;

c) it converges in L2-norm with convergence radius R.

We call ΩCt an L2-global canonical family of holomorphic (n, 0)-forms on the deforma-
tion space of Kähler manifold X and R as its convergence radius.

Proof. By Proposition 5.1, we know that Ωt must satisfy the equation

(5.3) ∂Ωt = −∂(Φ(t)yΩt).
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By comparing the coefficients of tν11 · · · tνNN of both sides of (5.3), one knows that Equation
(5.3) is equivalent to

(5.4)







∂Ω0 = 0,

∂Ων1···νN = −∂
(

∑

αi+βi=νi,αi≥0

ϕα1···αN
yΩβ1···βN

)

,

where each νi ≥ 0 and Σνi ≥ 1.
We first prove that the equation (5.4) has a ∂-exact solution by induction. Set

ην1···νN = −∂
(

∑

αi+βi=νi,αi≥0

ϕα1···αN
yΩβ1···βN

)

,

which is clearly ∂-exact and thus H∂(η) = 0 by the Kähler identity �∂ = �∂. So by
∂-Inverse Lemma 2.3 it suffices to show that ∂ην1···νN = 0.

For the initial case Σνi = 1, one has

∂ην1···νN = −∂∂(ϕν1···νNyΩ0) = ∂(∂ϕν1···νNyΩ0 + ϕν1···νNy∂Ω0) = 0

since ∂ϕν1···νN = 0 and ∂Ω0 = 0. Thus we have

(5.5) Ων1···νN = ∂
∗
Gην1···νN = −∂∗

∂G(ϕν1···νNyΩ0) = ∂∂
∗
G(ϕν1···νNyΩ0)

by ∂-Inverse Lemma 2.3 and Kähler identity.
Supposing that the (n, 0)-forms Ων1···νN with Σνi = K are constructed, we can also

prove

∂ην1···νN = 0

for Σνi = K + 1 by induction and the commutator formula Lemma 3.3. This calculation
is routine and left to the interested readers. Similar to the initial case, we can construct
the (n, 0)-forms Ων1···νN with Σνi = K + 1 as

Ων1···νN = −∂∗
∂G

(
∑

αi+βi=νi,αi≥0

ϕα1···αN
yΩβ1···βN

)

= ∂∂
∗
G

(
∑

αi+βi=νi,αi≥0

ϕα1···αN
yΩβ1···βN

)

.

Hence we have completed the construction of the power series Ωt of (n, 0)-forms.
Finally, let us prove the global convergence of the formal power series. By the global

convergence of the canonical family of Beltrami differentials, we know that there exists a
small constant ξ > 0 and a constant R1 ∈ (0, R] such that

∑

|I|=i
‖ϕI‖Ri

1 ≤ ξ

for all large i > 0. We may assume that this fact holds for all i > 0. Then we have the
following estimate for each i > 0

(5.6)
∑

|I|=i
‖ΩI‖ ≤ ξ(ξ + 1)i−1R−i

1 ,

which follows by induction and implies the convergence of power series (5.2) as long as
|t| < R1. We set ‖Ω0‖ = 1 for convenience. First for the initial case i = 1, one has

∑

|I|=1

‖ΩI‖ ≤ ‖Ω0‖
∑

|I|=1

‖ϕI‖ ≤ R−1
1 ξ,
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where the quasi-isometry Theorem 1.1 is applied. Then, we assume that the estimate
(5.6) is true for l = 1, · · · , i− 1 and try to prove the case l = i as follows.

∑

|I|=i
‖ΩI‖ ≤

∑

|I|=i,|I2|≥1,
I1+I2=I

‖ΩI1‖ · ‖ϕI2‖

≤ ξR−1
1 ξ(ξ + 1)i−2R

−(i−1)
1 + · · ·+ ξR−i

1 ξ + ξR−i
1

= (ξR−i
1 )ξ

1− (ξ + 1)i−1

1− (ξ + 1)
+ ξR−i

1

= ξ(ξ + 1)i−1R−i
1 ,

where the first inequality is also due to Theorem 1.1. Yet it is easy to check that the
convergence domain for |t| of ∑i=1 ξ(ξ + 1)i−1R−i

1 |t|i is obviously [0, R1).
The regularity of Ωt follows directly by the argument in the proof of Theorem 4.4. This

completes our proof. �
5.2. Global canonical family. Now let us state our main result of this section in the
CY case, i.e., the central fiber of the family is a CY manifold. In our case, all the fibers
of this family are CY; while in infinitesimal deformation theory this is a standard result.
See Lemma 1.4 of [14].

Theorem 5.3. Let Xt = (Xt, JΦ(t)) be the deformation of the CY manifold X induced
by the L2-global canonical family Φ(t) of Beltrami differentials on X as constructed in
Theorem 4.5. Then for any holomorphic (n, 0)-form Ω0 on X and |t| < 1, ΩCt := eΦ(t)yΩt
defines an L2-global canonical family of holomorphic (n, 0)-forms on Xt and depends on
t holomorphically.

Proof. We first construct the so-called canonical family of holomorphic (n, 0)-forms on
the deformation space of CY manifolds. Actually according to the construction of the
power series Ωt, we have ΩI = 0 for each |I| ≥ 1 by Equality (5.5) and c) of Theorem 4.4,
that is, Ωt has only one term Ω0. The holomorphic dependence of Φ(t) on t implies that
ΩCt depends on t holomorphically. Now the proof of Theorem 5.3 is a direct corollary of
Proposition 5.2 and Theorem 4.5. �

The local version of this theorem is just Proposition 3.4 in [6], first proved in [16], which
states that if furthermore, Ω0 is nowhere vanishing, then ΩCt gives rise to a well-defined
nowhere vanishing holomorphic (n, 0)-form on Xt as t is small.

Moreover, we can also obtain a global expansion formula of the canonical family of of
holomorphic (n, 0)-forms for general Kähler manifold case.

Proposition 5.4. Let ΩCt := eΦ(t)yΩt be the L2-global canonical family of holomorphic
(n, 0)-forms as constructed in Proposition 5.2. Then for |t| < R, there holds the following
global expansion of the de Rham cohomology classes of it

[ΩCt ] = [Ω0] +
∑

|I|≥1

[H(ϕIyΩ0)]t
I +O(|t|2),

where O(|t|2) denotes the terms in

n⊕

j=2

Hn−j,j(X) of orders at least 2 in t. In particular,

if X is a CY manifold, then for |t| < 1,

[ΩCt ] = [Ω0] +

N∑

i=1

[ϕiyΩ0]ti +O(|t|2).
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Proof. This corollary can be regarded as a global version of Theorem 3.5 in [6]. Here
note that ΩCt converges in L2-norm as a formal power series, and is a holomorphic (and
thus harmonic) (n, 0)-form on Xt as long as |t| < R. Then from Theorem 5.3 and Hodge
theory we can see that for |t| < R,

[ΩCt ] = [Ω0] +
N∑

i=1

[H(ϕiyΩ0)]ti +
∑

|I|≥2

[H(ϕIyΩ0)]t
I +

∑

k≥2

1

k!
[H
( k∧

Φ(t)yΩ0

)

]

= [Ω0] +
N∑

i=1

[H(ϕiyΩ0)]ti +
∑

|I|≥2

[H(ϕIyΩ0)]t
I +O(|t|2).

Note that the facts that ϕiyΩ0 is harmonic and that ϕIyΩ0 is ∂-exact for each |I| ≥ 2
may not hold here. While for CY case we know that ϕiyΩ0 is harmonic and that ϕIyΩ0

is ∂-exact for each |I| ≥ 2. For the first fact, see Lemma 3.3 or the proof of Proposition
3.4 of [6]. The remaining terms in the right-hand side of the expression formula are all

of orders at least 2 in t and belong to O(|t|2) ∈
n⊕

j=2

Hn−j,j(X). �
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