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NEW PROOFS OF THE TORELLI THEOREMS FOR RIEMANN

SURFACES

KEFENG LIU, QUANTING ZHAO, AND SHENG RAO

Abstract. In this paper, by using the Kuranishi coordinates on the Teichmüller space
and the explicit deformation formula of holomorphic one-forms on Riemann surface, we
give an explicit expression of the period map and derive new differential geometric proofs
of the Torelli theorems, both local and global, for Riemann surfaces.

1. Introduction

The theme of this paper is to present a new differential geometric understanding of
the Torelli problems of Riemann surfaces, which is a central topic in the study of the
complex structures of Riemann surface. The Torelli problems are usually divided into
two types: local Torelli and global Torelli. These two problems are about the immersion
and injectivity of the period map from the moduli space of Riemann surfaces to the moduli
space of principally polarized abelian varieties, respectively.
Two key points of this paper are the use of the Kuranishi coordinates on the Teichmüler

space Tg of Riemann surface of genus g and the explicit deformation formula of holomor-
phic one-forms in Section 2. Roughly speaking, the Kuranishi coordinate chart of Tg is
given by

(B, b0) → Tg
t → [Xt, [Ft]],

where the triple (̟,ϕ, F ) is the Kuranishi family of Riemann surface with the Teichmüller
structure of (X0, [F0]). Let us write (B, b0) as ∆p,ǫ, where p denotes the point [X0, [F0]] ∈
Tg. Then, given a global holomorphic one-form θ ∈ H0(Xp,Ω

1
Xp
) on Xp, we have the

following deformation formula θ(t) of θ for small t on Xt:

θ(t) = θ +
n∑

i=1

ti (H(µiyθ) + dfi) +
∑

|I|≥2

tI

(
n∑

j=1

H(µjyη(i1,··· ,ij−1,··· ,in)) + dfj,(i1,··· ,ij−1,··· ,in)

)
,

where η(i1,··· ,in) is a sequence of (1, 0)-forms on Xp and fj,(i1,··· ,ij−1,··· ,in) ∈ C∞(Xp). Here
and henceforth H denotes the harmonic projection on (Xp, ωp), where ωp is the Poincáre
metric on Xp, and n = 3g − 3. An application of this to the canonical basis {θαp }gα=1 of

H0(Xp,Ω
1
Xp
) with respect to the symplectic basis {Aγ, Bγ}gγ=1 for ∆p,ǫ tells us that

θαp (t) = θαp+

n∑

i=1

ti
(
H(µiyθ

α
p ) + dfαi

)
+
∑

|I|≥2

tI

(
n∑

j=1

H(µjyη
α
(i1,··· ,ij−1,··· ,in)) + dfαj,(i1,··· ,ij−1,··· ,in)

)
.
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The g × g matrix A(t) is naturally defined as:

∑

|I|≥1

tI

(
n∑

j=1

H(µjyη
α
(i1,··· ,ij−1,··· ,in)

)
= A(t)αβ θ̄

β
p .

Meanwhile, let πp be the B period matrix of {θαp }gα=1. Then the period map Π : Tg → Hg

to the Siegel upper half space can be written down explicitly:

Π(t) =

(
π̄p πp
1g 1g

)
y A(t)T ,

where the action y is given by
(
C1 C2

C3 C4

)

2g×2g

y Z = (C1Z + C2)(C3Z + C4)
−1;

The transition formula between Π(t) and Π(τ) of two adjacent Kuranishi coordinates is

Π(t) = Lpq y Π(τ),

where Lpq is defined at the end of the proof of Theorem 2.5.
Let Γg be the mapping class group of Riemann surface of genus g, which has a natural

representation in the symplectic group Sp(g,Z) with integral coefficients, written as ρ :
Γg → Sp(g,Z). The moduli space Mg of Riemann surfaces of genus g is the quotient space
of Tg by Γg, while Ag = Hg/Sp(g,Z) is known as the moduli space of principally polarized
abelian varieties. In Section 3, we first give a proof of the following two well-known local
Torelli theorems by our deformation method.

Theorem 1.1. a) (Local Torelli Theorem 1) The period map Π : Tg → Hg is an immer-

sion on the non-hyperelliptic locus and also when restricted to the hyperelliptic locus for

g ≥ 3; while for g = 2, Π is an immersion on the whole Tg .

b) (Local Torelli Theorem 2) For g ≥ 2, the period map J : Mg → Ag is an immersion.

Write the quotient space of the Teichmüller space Tg by the Torelli group Tg as T org,
which has a natural Z2 action. Recall that the Torelli group Tg is the kernel of the
representation ρ : Γg → Sp(g,Z). Then we will present a new proof of the following
global Torelli theorem in Section 4:

Theorem 1.2. J tor : T org/Z2 → Hg is an embedding for g ≥ 3.

We also prove that the period map Π maps the Γg orbit of ∆p,ǫ onto the Sp(g,Z) orbit
of its image in Hg. More precisely, let ∆p,ǫ be a Kuranishi coordinate chart on Tg and

∆
[φ]
p,ǫ := [φ]∆p,ǫ for [φ] ∈ Γg. Set

ρ([φ]) =

(
U V
R S

)
∈ Sp(g,Z).

Then on ∆
[φ]
p,ǫ, the period map Π̃(t) has the following relation with Π(t):

Π̃(t) =

(
S R
V U

)
y Π(t).

Based on these, we prove that two Γg orbits of Mg, if mapped to the same Sp(g,Z) orbit
by J , must coincide, and thus prove the main result of this paper:

Theorem 1.3 (Torelli Theorem). The period map J : Mg → Ag is injective for g ≥ 2.
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The maps considered in this paper can be summarized in the following diagram:

Tg

Γg

��✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰
✰

Π

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲

Tg
❈❈

❈

!!❈
❈❈

T org

Z2 %%❏❏
❏❏

❏❏
❏❏

❏

��

J tor

// Hg

Sp(g,Z)

��

T org/Z2

,

� J tor

::✉✉✉✉✉✉✉✉✉✉

Mg
�

� J // Ag.

It is well-known that global Torelli theorem holds by R. Torelli’s result [22] and also
the modern proofs [1, 23] while the local Torelli holds due to the work of [19]. A more
complete list of the history about Torelli problems are contained in the bibliographical
notes on Page 261 of [4].

Acknowledgement The authors dedicate this paper to Prof. Andrey Todorov, who
unexpectedly passed away in March 2012 during his visit of Jerusalem. He had taught
graduate courses at the Center of Mathematical Sciences of Zhejiang University on de-
formation theory and Hodge structures during every summer of the recent years. The
last two authors would also like to express their gratitude to Dr. Fangliang Yin, Prof.
Fangyang Zheng, and Dr. Shengmao Zhu for many inspirational discussions at CMS of
Zhejiang University, and also to Prof. Richard Hain for communications.

2. Kuranishi Coordinates On Tg
We first recall some basics of the construction of Kuranishi coordinate charts, which is

based on [2]. Fix a compact topological surface Σ of genus g with g ≥ 2. The pair (C, [f ])
is a Riemann surface C with the Teichmüller structure [f ], where f is an orientation-
preserving homeomorphism from C to Σ and [f ] denotes the isotopic class represented by
f . An isomorphism between Riemann surfaces with the Teichmüller structures, (C, [f ])
and (C ′, [f ′]), is a biholomorphic map φ from C to C ′ such that [f ] = [f ′φ]. The equiva-
lence classes of all compact Riemann surfaces of genus g with the Teichmüller structure,
modulo the isomorphism equivalences, is actually Tg, the Teichmüler space of Riemann
surfaces of genus g. Thus an isomorphism class of [C, [f ]] is a point in Tg.
From the construction of Hilbert scheme, the existence of the Kuranishi family of Rie-

mann surfaces follows. To be more precise, for every Riemann surface C, there exists a
holomorphic deformation (̟,ϕ)

̟ : X → B, ϕ : C
≃→ Xb0

of C parametrized by a pointed base (B, b0), a complex manifold with dimCB = 3g − 3,
and this deformation is universal at b0, actually universal at every point b of B. The pair
(̟,ϕ) is called the Kuranishi family of C. For any other deformation (ι, ψ)

ι : X ′ → B′, ψ : C
≃→ X ′

b′0
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of C, there exists a unique map (φ,Φ) in a small neighborhood of b′0 such that the following
diagram commutes

X ′ Φ //

ι
��

X
̟
��

(B′, b′0)
φ // (B, b0),

where ϕ−1Φb′0ψ = 1C and X ′ is isomorphic to the pullback family Φ∗X on the small
neighborhood of b′0. Accordingly, we also have a family of Riemann surfaces with the
Teichmüller structure (Xb, [fb]), i.e., ̟ : X → B together with local topological trivial-
ization F α : X |Uα

→ Σ×Uα, where
⋃
α Uα is an open covering of B such that [F α

b ] = [fb]
with b ∈ Uα. For any Riemann surface with the Teichmüller structure (C, [f ]), Kuranishi
family also exists and satisfies exactly analogous universal properties to the one without
the Teichmüller structure above. Possibly shrinking B, we can describe the Kuranishi
family of (C, [f ]) as a triple (̟,ϕ, F ) given by

̟ : X → B, ϕ : C
≃→ Cb0 , F : X → Σ×B,

where F is a topological trivialization such that Fb0ϕ = f .
A Kuranishi coordinate chart of Tg is given by

(B, b0) → Tg
t → [Xt, [Ft]],

where the triple (̟,ϕ, F ) is the Kuranishi family of (C, [f ]). From the classical Ehres-
mann’s theorem, there is a natural diffeomorphism Ψ : Xb0 × B → X ; all the fibers of
̟ : X → B

Σ× B

X
F

OO

Ψ // Xb0 × B

share the same differential structure as Xb0 . From this point of view, for every b ∈ B,
the map FbΨ

−1
b can be deformed to Fb0Ψ

−1
b0
, i.e., [FbΨ

−1
b ] = [Fb0Ψ

−1
b0
]. Let ω : H1(Σ,Z)×

H1(Σ,Z) → Z be the intersection pairing on Σ. The symplectic basis of H1(Σ,Z) on
(Σ, ω) gives, from the map ΨF−1, one such basis on Xb0 , which is enjoyed by the whole
Kuranishi family X over the Kuranishi coordinate chart B. Later on we will write (B, b0)
as ∆p,ǫ, where p denotes the point [C, [f ]] in Tg, and ∆p,ǫ = {t ∈ C

n
∣∣‖t‖ < ǫ, t(p) = 0}

with n = 3g − 3.
Fix the representation ρ : Γg → Sp(g,Z), where Γg is the mapping class group, namely

the isotopic classes of orientation preserving homeomorphisms of Σ and Sp(g,Z) is actually
Aut(Σ, ω). Now we have two Kuranishi coordinate charts ∆p,ǫ and ∆q,ǫ′ with ∆p,ǫ∩∆q,ǫ′ 6=
∅. Let (X , F ) and (Y , G) denote the two Kuranishi families with Teichmüler structure over
∆p,ǫ and ∆q,ǫ′, respectively. Let r ∈ ∆p,ǫ ∩∆q,ǫ′. The definition of Kuranishi coordinates
tells us that [Xt(r), Ft(r)] = [Yτ(r), Gτ(r)]. Then we have a biholomorphic map φ : Xt(r) →
Yτ(r) such that [Ft(r)] = [Gτ(r)φ]. It is described in the following picture

Σ Σ

Xp

F0

OO

diffeoΨX// Xt(r)
φ // Yτ(r)

diffeoΨY// Yq

G0

OO
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that [G0ΨY φΨXF
−1
0 ] gives us an element of Γg, which is obtained by a matrix in Sp(g,Z)

from the representation ρ, linking the two symplectic bases of the two Kuranishi coordi-
nates.

2.1. Small Deformation Of Holomorphic One-Forms. Let ∆p,ǫ be a Kuranishi co-
ordinate chart centered at p ∈ Tg as above. Denote the corresponding Kuranishi family
on ∆p,ǫ by ̟ : X → ∆p,ǫ with the central fiber ̟−1(p) = Xp. Let θ ∈ H0(Xp,Ω

1
Xp
)

be a global holomorphic one-form on Xp. We will construct an explicit formula θ(t) ∈
H0(Xt,Ω

1
Xt
), the holomorphic deformation of θ.

Denote the Poincaré metric on Xp by ωp. Fix {µi}ni=1 as a basis of harmonic T
(1,0)
Xp

-

valued (0, 1)-form on (Xp, ωp), namely H
0,1

∂
(Xp, T

(1,0)
Xp

). And let µ(t) =
∑n

i=1 tiµi denote
the Beltrami differential of the Kuranishi family ̟ : X → ∆p,ǫ.

Theorem 2.1. Given θ ∈ H0(Xp,Ω
1
Xp
), there exists a unique (1, 0)-form η(t) on Xp,

which is holomorphic in t for sufficiently small t, satisfying

(1) H (η(t)) = θ, where H is the harmonic projection on (Xp, ωp),
(2) θ(t) = (1+ µ(t))yη(t) ∈ H0(Xt,Ω

1
Xt
)

and θ(t) is the desired deformation of θ.

Proof. The formal power series of η(t) ∈ A1,0(Xp) can be written out as

η(t) = θ +
n∑

i=1

tiηi +
∑

|I|≥2

tIηI ,

where I = (i1, · · · , in), tI = ti11 t
i2
2 · · · tinn and |I| =∑n

j=1 ij.

Condition (1) implies

(2.1)

{
H(ηi) = 0,

H(ηI) = 0, |I| ≥ 2.

Then, one has

θ(t) = (1+ µ(t))yη(t)

=

(
1+

n∑

i=1

tiµi

)
y


θ +

n∑

j=1

tjηj +
∑

|J |≥2

tJηJ




= θ +

n∑

i=1

ti(ηi + µiyθ) +
∑

|I|≥2

tI

(
η(i1,··· ,in) +

n∑

k=1

µkyη(i1,··· ,ik−1,··· ,in)

)
.

Since θ(t) is a holomorphic one-form on Xt from condition (2), i.e., dθ(t) = 0, which
implies {

d(ηi + µiyθ) = 0,

d(η(i1,··· ,in) +
∑n

k=1 µkyη(i1,··· ,ik−1,··· ,in)) = 0,

we see that

(2.2)

{
∂ηi + ∂(µiyθ) = 0,

∂η(i1,··· ,in) + ∂(
∑n

k=1 µkyη(i1,··· ,ik−1,··· ,in)) = 0.

Combining with (2.1) and solving the ∂-equation, we get

(2.3)

{
ηi = −G∂

∗
∂(µiyθ),

η(i1,··· ,in) = −G∂
∗
∂(
∑n

k=1 µkyη(i1,··· ,ik−1,··· ,in)).
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Here G denotes the Green operator in the Hodge decomposition with respect to the
operator ∂, and 1 = H + (∂∂

∗
+ ∂

∗
∂)G. Thus we have proved the uniqueness of η(t),

which is fixed by conditions (1) and (2).
Now let us discuss the convergence of the power series constructed above. By the

standard estimates of elliptic operators G, ∂
∗
and ∂, such as in [17], we easily have

‖ηI‖m+α ≤ C |I|‖θ‖m+α,

where the constant C depends on m, α and Xp, and ‖ · ‖m+α is the Hölder norm. Conse-
quently the estimates of η(t) yield

‖η(t)‖m+α ≤ ‖θ‖m+α + ‖θ‖m+α

∑

‖I‖≥1

C |I|ǫ|I|

= ‖θ‖m+α + ‖θ‖m+α

∑

k≥1

∑

‖I‖≥k
C |I|ǫ|I|

= ‖θ‖m+α + ‖θ‖m+α

∑

k≥1

CkǫkCk
n+k−1

≤ ‖θ‖m+α + ‖θ‖m+α

∑

k≥1

Ckǫknk,

where Ck
n+k−1 is the common combinatorial number. By taking ǫ smaller than 1

2nC
, we

are done. �

Corollary 2.2. The deformation formula of θ, with t small, is given by

θ(t) = θ +
n∑

i=1

ti (H(µiyθ) + dfi) +
∑

|I|≥2

tI

(
n∑

j=1

H(µjyη(i1,··· ,ij−1,··· ,in)) + dfj,(i1,··· ,ij−1,··· ,in)

)

where fj,(i1,··· ,ij−1,··· ,in) ∈ C∞(Xp).

Proof. From Theorem 2.1, we can easily write out

θ(t) = (1+ µ(t))yη(t)

=
(
1+

n∑

i=1

tiηi

)
y

(
θ −

n∑

j=1

tj

(
G∂

∗
∂(µjyθ)

)
+
∑

|J |≥2

tJηJ

)

= θ +
∑

|I|≥1

tI
(
1−G∂

∗
∂
)( n∑

j=1

µjyη(i1,··· ,ij−1,··· ,in)

)

= θ +
∑

|I|≥1

tI
(
1−G∂

∗
∂
)( n∑

j=1

H(µjyη(i1,··· ,ij−1,··· ,in)) + ∂fj,(i1,··· ,ij−1,··· ,in)

)

= θ +
∑

|I|≥1

tI

(
n∑

j=1

H(µjyη(i1,··· ,ij−1,··· ,in)) + ∂fj,(i1,··· ,ij−1,··· ,in) + ∂G�∂fj,(i1,··· ,ij−1,··· ,in)

)

= θ +
∑

|I|≥1

tI

(
n∑

j=1

H(µjyη(i1,··· ,ij−1,··· ,in)) + dfj,(i1,··· ,ij−1,··· ,in)

)
.

The convergence follows from Theorem 2.1. �

Remark 2.3. The iteration method to construct canonical forms on the deformation

space of Riemann surfaces is essentially contained in [16] and [24, Theorem 2.1]. For
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more generalization to Kähler manifolds, see [15], while our proof emphasizes on the

uniqueness of the construction.

Denote the canonical basis 1 of H0(Xp,Ω
1
Xp
) by {θαp }gα=1 with respect to the symplectic

basis {Aγ , Bγ}gγ=1 on the Kuranishi coordinate chart ∆p,ǫ. Let σp and πp be the A and
B period matrices of {θαp }gα=1, respectively, and Mp = Im(πp). Applying the deformation
formula above, we get the holomorphic one-forms θαp (t) on Xt, starting with θαp , given by

θαp (t) = θαp +
n∑

i=1

ti
(
H(µiyθ

α
p ) + dfαi

)
+
∑

|I|≥2

tI

(
n∑

j=1

H(µjyη
α
(i1,··· ,ij−1,··· ,in)) + dfαj,(i1,··· ,ij−1,··· ,in)

)
.

(2.4)

Definition 2.4. Let A(t) be a g × g matrix and E(t) a g × 1 vector given by:
{∑

|I|≥1 t
I
(∑n

j=1H(µjyη
α
(i1,··· ,ij−1,··· ,in)

)
= A(t)αβ θ̄

β
p ,∑

|I|≥1 t
I(
∑n

j=1 df
α
j,(i1,··· ,ij−1,··· ,in)) = Eα(t).

Also the homogeneous part of order N of A(t) is written as AN(t) =
∑

|I|=N t
IAI ,

n∑

j=1

(
H(µjyη

α
(i1,··· ,ij−1,··· ,in))

)
= AI ,

α
β θ̄

β
p .

In particular, H(µiyθ
α
p ) = Ai,

α
β θ̄

β
p .

Set

Θp(t) =



θ1p(t)
...

θgp(t)


 and Θp =



θ1p
...
θgp


 .

Thus by use of A(t) and E(t), we rewrite (2.4) as

(2.5) Θp(t) =
(
1g A(t)

)(Θp

Θ̄p

)
+ E(t).

Since a holomorphic one-form on Riemann surfaces is uniquely determined by its inte-
gration on A cycles, it is clear that {θαp (t)}gα=1 being a frame of H0(Xt,Ω

1
Xt
) on Xt, is

equivalent to non-degeneration of the A period matrix σαβ(t) on Xt , i.e.,

(2.6) det (σαβ(t)) = det
(∫

Aα
θβp (t)

)
6= 0 ⇐⇒ det

(
1g + A(t)T

)
6= 0,

where A(t)T is the transpose of A(t). And when {θαp (t)}gα=1 becomes a frame, we have
the Hodge-Riemann bilinear relations on Xt

{
0 =

√
−1
2

∫
Xt
θαp (t) ∧ θβp (t),

0 <
√
−1
2

∫
Xt
θαp (t) ∧ θ̄βp (t),

which and also (2.5) imply that



0 =

√
−1
2

∫
Xp

(
θαp + A(t)αγ θ̄

γ + Eα(t)
)
∧
(
θβp + A(t)βλ θ̄

λ + Eβ(t)
)
,

0 <
√
−1
2

∫
Xp

(
θαp + A(t)αγ θ̄

γ
p + Eα(t)

)
∧
(
θ̄βp + A(t)

β

λθ
λ
p + Ēβ(t)

)
,

1A canonical basis means the unique basis of H0(Xp,Ω
1

Xp
) such that its A period matrix is 1g.
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and thus {
0 =Mp,αγ A(t)

β
γ −Mp,βγ A(t)

α
γ ,

0 < Mp,αβ −Mp,λγ A(t)
α
γA(t)

β

λ.

The matrix forms of these are given by

(2.7)

{
A(t)Mp = (A(t)Mp)

T ,

Mp −A(t)MpA(t)
T
> 0.

As our deformation formula is local, {θαp (t)}gα=1 is always a frame when t ∈ ∆p,ǫ with ǫ
sufficiently small. Therefore, (2.6) and (2.7) hold.

2.2. Transition Formulas Between the Kuranishi Coordinates.

Theorem 2.5. Assume that the two Kuranishi coordinate charts ∆p,ǫ and ∆q,ǫ′ have a

non-empty intersection containing those two centers p and q, and let t and τ denote the

corresponding Kuranishi coordinates. Then A(t) and A(τ) are related by the following

equality:

A(t)T =

(
π̄p πp
1g 1g

)−1

Lpq

(
π̄q πq
1g 1g

)
y A(τ)T ,(2.8)

where Lpq ∈ Sp(g,Z) denotes the transition matrix between the symplectic bases of the

two Kuranishi coordinates in terms of transformations in Sp(g,Z) of Hg, and the action

y is given by (
C1 C2

C3 C4

)
y Z = (C1Z + C2)(C3Z + C4)

−1.

Observe that the transition matrix linking A(t) and A(τ) depends only on p and q, but
not the coordinates t and τ .

Proof. From (2.5), it yields

[Θp(q)] =
(
1g A (t(q))

)( [Θp][
Θ̄p

]
)
,(2.9)

where [Θp(q)] denotes the cohomology class represented by Θp(q). The frames given by
the deformation formula [Θp(q)] and the canonical one [Θq] at q are different by a multiple
of a nonsingular matrix C:

[Θq] = C [Θp(q)] .(2.10)

Let {Aγ , Bγ}gγ=1 and {A′
γ, B

′
γ}gγ=1 be the symplectic bases on ∆p,ǫ and ∆q,ǫ′, respectively.

Set

(
A
B

)
=




A1
...
Ag
B1
...
Bg




and

(
A′

B′

)
=




A′
1
...
A′
g

B′
1
...
B′
g




.

Denote the matrix linking these two bases by

(
U V
R S

)
∈ Sp(g,Z), i.e.,

(2.11)

(
A
B

)
=

(
U V
R S

)(
A′

B′

)
.
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By (2.11), we integrate over A cycles and B cycles on (2.10) to get



U + V πq =

(
1g + A (t(q))T

)
CT ,

R + Sπq =
(
πp + π̄pA (t(q))T

)
CT ,

which imply that

(2.12)




CT =

(
1g + A (t(q))T

)−1

(U + V πq) ,(
πp + π̄pA (t(q))T

)(
1g + A (t(q))T

)−1

= (R + Sπq) (U + V πq)
−1 .

By (2.9) and (2.10), we have

[Θq] = C
(
1g A (t(q))

)( [Θp][
Θ̄p

]
)

=
(
C CA (t(q))

)( [Θp][
Θ̄p

]
)
.

(2.13)

Let r ∈ ∆p,ǫ ∩∆q,ǫ′. Then one has

[Θp(r)] =
(
1g A(t)

)( [Θp][
Θ̄p

]
)
;

while by (2.13), one also has

[Θp(r)] = Cr [Θq(r)] = Cr
(
1g A(τ)

)( [Θq][
Θ̄q

]
)

= Cr
(
1g A(τ)

)( C CA (t(q))

CA (t(q)) C

)(
[Θp][
Θ̄p

]
)
,

where the two frames [Θp(r)] and [Θq(r)] at the point r are related by a nonsingular
matrix Cr. These give us the following identities:




1g = Cr

(
C + A(τ)CA (t(q))

)
,

A(t) = Cr

(
CA (t(q)) + A(τ)C

)
.

Combine with (2.12) to simplify the computation as follows:

A(t)T =

(
π̄p πp
1g 1g

)−1
((

π̄p + πpA
(
t(q)

)T )
C̄T

(
πp + π̄pA

(
t(q)

)T )
CT

(
1g + A

(
t(q))

T )
C̄T

(
1g + A

(
t(q)

)T )
CT

)
y A(τ)T

=

(
π̄p πp
1g 1g

)−1(
S R
V U

)(
π̄q πq
1g 1g

)
y A(τ)T ,

where

(
S R
V U

)
also belongs to Sp(g,Z), denoted by Lpq. �

On our Kuranishi coordinate chart ∆p,ǫ, the period map Π : Tg → Hg can be written
out quite explicitly:

Π(t)αβ =

∫

Bα

σ(t)γβθγp (t)

=

∫

Bα

σ(t)γβ
(
θγp + A(t)γδ θ̄

δ
p

)

= πp,αγ σ(t)
γβ + π̄p,αδ A(t)

γ
δσ(t)

γβ ,
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where σ(t)αβ is the inverse matrix of σ(t)αβ. (2.6) gives us

σαβ(t) =

∫

Aα

θβp (t) =
(
1g + A(t)T

)
αβ
.

Now we can formulate these into the matrix form:

Π(t) =
(
πp + π̄pA(t)

T
) (

1g + A(t)T
)−1

=

(
π̄p πp
1g 1g

)
y A(t)T .

(2.14)

Corollary 2.6. The period maps Π(t) and Π(τ) on the intersection of the two Kuranishi

coordinate charts ∆p,ǫ and ∆q,ǫ′ have the following transition formula

Π(t) = Lpq y Π(τ).(2.15)

Proof. By (2.14) and Theorem 2.5, we have

Π(t) =

(
π̄p πp
1g 1g

)
y A(t)T

=

(
π̄p πp
1g 1g

)(
π̄p πp
1g 1g

)−1

Lpq

(
π̄q πq
1g 1g

)(
π̄q πq
1g 1g

)−1

y Π(τ)

= Lpq y Π(τ).

�

3. Local Torelli Theorems and Matrix Model

Theorem 3.1. (Local Torelli Theorem 1) For g ≥ 3, the period map Π : Tg → Hg is an

immersion on the non-hyperelliptic locus Tg − HETg and also on the hyperelliptic locus

HETg. In the case g = 2, Π is an immersion on the whole Tg.

Proof. From (2.14), the period map can be written as Π(t) =
(
π̄pA(t)

T + πp
) (
A(t)T + 1g

)−1

via Kuranishi coordinates. By use of A(t), we expand it to obtain the first order part
Π(1)(t) of Π(t):

Π(1)(t) = π̄pA
T
1 (t)− πpA

T
1 (t)

= −2
√
−1MpA

T
1 (t)

= −2
√
−1

n∑

i=1

tiMp,αγ Ai,
β
γ

=

n∑

i=1

ti

∫

Xp

θαp ∧H(µiyθ
β
p )

=
n∑

i=1

ti

∫

Xp

θαp ∧ (µiyθ
β
p ).

(3.1)

It is a well-known fact that the pairing H
(0,1)

∂
(Xp, T

(1,0)
Xp

) × H0(Xp, 2KXp
) → C is non-

degenerate. The matrices {
∫
Xp
θαp ∧ (µiyθ

β
p )}ni=1 are linearly dependent if and only if there

exists a nonzero vector t = (t1, · · · , tn) such that the matrix

∫

Xp

θα ∧
(

n∑

i=1

tiµi

)
yθβ ≡ 0.
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This is equivalent to that the multiplication mapH0(Xp, KXp
)×H0(Xp, KXp

) → H0(Xp, 2KXp
)

is not surjective.
A well-known theorem by Max Noether in [4, P. 117] tells us the multiplication map

H0(Xp, KXp
) × H0(Xp, KXp

) → H0(Xp, 2KXp
) is always surjective when Xp is non-

hyperelliptic. Thus the period map Π is an immersion when restricted to Tg − HETg
for g ≥ 3. As to the hyperelliptic case which is described in [7, P. 104], the dimension of

the image of the multiplication map is exactly the vector space
(
H0(Xp, 2KXp

)
)J
, namely,

the elements in H0(Xp, 2KXp
) invariant under the action by the hyperelliptic involution J

with dimC

(
H0(Xp, 2KXp

)
)J

= 2g−1. Also the tangent direction of the hyperelliptic locus

can be identified with
(
H1(Xp, TXp

)
)J
. Hence these directions can not be degenerate and

thus Π|HETg is still an immersion for g ≥ 3. As we know, any Riemann surface of genus 2

is hyperelliptic and the above multiplication map is surjective since 2g− 1 = 3g− 3 when
g = 2. Consequently, Π is an immersion on Tg for g = 2. �

Definition 3.2. Tg, T̃g and T org.
Tg, called the Torelli group, is the kernel of the representation ρ : Γg → Sp(g,Z) while

the extended Torelli group T̃g is defined to be ρ−1(〈−12g〉) where 〈−12g〉 is the subgroup

of Sp(g,Z) generated by −12g. The Torelli space T org is the quotient space of the Te-

ichmüller space Tg by Tg.

Definition 3.3. Γg(n) and M(n)
g .

Γg(n), the level n subgroup of the mapping class group Γg, is the kernel of the repre-

sentation Γg
ρ→ Sp(g,Z)

π→ Sp(g,Zn). M(n)
g is the moduli space of Riemann surfaces of

genus g with level n structure, which is defined as the quotient space of the Teichm̈uller

space Tg by the group action of Γg(n). And we identify Γg(1) with Tg.

As we know, the action of the mapping class group Γg on the Teichmüller space Tg is
properly discontinuous. From the construction of the Kuranishi coordinate of Tg in [2],
we know that the isotropy group Γpg of Γg at p = [Xp, [fp]] on Tg is Aut(Xp) if we fix the
injective homomorphism

Aut(Xp) → Γg
h → [fphf

−1
p ].

Moreover, we can choose ǫ and ǫ′ sufficiently small such that the points p and p′ in different
Γg orbits have disjoint Kuranishi coordinates, i.e., ∆p,ǫ ∩∆p′,ǫ′ = ∅, and

{γ ∈ Γg

∣∣∣γ∆p,ǫ ∩∆p,ǫ 6= ∅} = Γpg.

Proposition 3.4. The action of Tg and Γg(n) with n ≥ 3 on Tg is fixed point free.

This proposition implies that T org and M(n)
g with n ≥ 3 are complex manifolds of

complex dimension 3g − 3.

Proof. We just need to show that Tg ∩ Γpg = {1} and Γg(n) ∩ Γpg = {1}. But we can
identify Γpg with Aut(Xp). It follows from the theory of automorphism groups of Rie-
mann surfaces in [7, Chapter V] that the representation of Aut(Xp) in H1(Xp,Z) and
H1(Xp,Zn) with n ≥ 3 are faithful, i.e., the homomorphisms Aut(Xp) → Sp(g,Z) and
Aut(Xp) → Sp(g,Zn) are injective. Now the isotropy group Γpg embeds into Sp(g,Z) by
the representation ρ : Γg → Sp(g,Z) if we view Γpg as f

−1
p Aut(Xp)fp while Tg is the kernel

of ρ. Thus Tg ∩ Γpg = {1}. Similarly, Γpg embeds into Sp(g,Zn) by the representation

Γg
ρ→ Sp(g,Z)

π→ Sp(g,Zn), and Γg(n) is the kernel of the representation πρ. Finally we
have Γg(n) ∩ Γpg = {1}. �
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From the discussion above, we can shrink our Kuranishi coordinate chart ∆p,ǫ on Tg
such that γ∆p,ǫ ∩∆p,ǫ = ∅ for any γ ∈ Tg and γ 6= 1. Naturally, the Kuranishi coordinate

chart ∆p,ǫ descends to T org. Let Z2
∼= T̃g/Tg and then T org has a natural Z2 action.

There is a commutative diagram

Tg
Π

""❊
❊❊

❊❊
❊❊

❊❊

Tg
��

T org J tor

// Hg.

Lemma 3.5. Let X be a compact Riemann surface with genus g ≥ 2 and J an involution

on X, which does not fix any element of H0(X,KX). Then X is hyperelliptic and J must

be a hyperelliptic involution.

Proof. Since J2 = 1, the automorphism J∗ : H0(X,KX) → H0(X,KX) has two eigen-
value ±1. As J∗ fixes no element of H0(X,KX), J

∗ = −1g on H0(X,KX). Consider the
quotient map π : X → X/J , a 2 : 1 branched covering map, and π = Jπ. We claim
that g(X/J) = 0. If not, there exists a nonzero holomorphic one-form θ ∈ H0(X/J,KX).
Pulling it back, we derive a nonzero holomorphic one-form π∗θ ∈ H0(X,KX). But π

∗θ is
invariant under J∗, which is a contradiction. Thus X/J is the Riemann sphere and π is
a degree 2 meromorphic function on X , which implies that X is hyperelliptic and J is a
hyperelliptic involution. �

Proposition 3.6. Z2 acts freely on the non-hyperelliptic locus T org −HET org of T org
and fixes every point in the hyperelliptic locus HET org for g ≥ 3. In the case g = 2, Z2

acts trivially on T org.

Proof. Let {[φ]} be the non-unit element in Z2, where [φ] ∈ Γg is a representative of
the class {[φ]} and ρ([φ]) = −12g. Then that {[φ]} fixes a point {[Xp, [fp]]} in T org is
equivalent to that there exists some element [ψ] ∈ Tg such that [Xp, [φfp]] = [Xp, [ψfp]].
We have a commutative diagram up to isotopy

Σ

Xp

φfp
>>⑦⑦⑦⑦⑦⑦⑦⑦
h // Xp

ψfp
``❅❅❅❅❅❅❅❅

,

where h is an automorphism of Xp. Hence h ≃ f−1
p ψ−1φfp. As ρ([ψ]) = 12g and ρ([φ]) =

−12g, h∗ : H1(Xp,Z) → H1(Xp,Z) is nothing but −12g. Since a holomorphic one-form is
uniquely determined by its integration on A cycles and

∫

Aα

h∗θ =

∫

h∗Aα

θ = −
∫

Aα

θ,

h∗ : H0(Xp, KXp
) → H0(Xp, KXp

) is −1g. Also the representation of Aut(Xp) to
H1(Xp,Z) is faithful and hence h is an involution. From Lemma 3.5, h is a hyperel-
liptic involution and Xp is hyperelliptic. �

It is easy to check that the Z2 orbit of T org has the same image under J tor, since
we also have Kuranishi coordinate on T org by using (2.14). Consequently, J tor factors
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through T org/Z2:

T org

Z2 %%❏❏
❏❏

❏❏
❏❏

❏

J tor

// Hg

T org/Z2

J tor

::✈✈✈✈✈✈✈✈✈

.

From Proposition 3.6, T org → T org/Z2 is a 2 : 1 branched covering map branching over
the hyperelliptic locusHET org for g ≥ 3. Meanwhile, the Kuranishi coordinate chart ∆p,ǫ,
p ∈ T org − HET org, also descends to T org/Z2. When p ∈ HET org, we can view the
Kuranishi coordinate ∆p,ǫ on T org as follows: ∆3g−3 decomposes into ∆2g−1×∆g−2 where
∆2g−1 indicates the direction of Tp(HET org) and ∆g−2 is the normal direction in which
the period map J tor

∗ vanishes. The Z2 action fixes ∆2g−1 but acts as the multiplication of
−1 on ∆g−2. Thus T org/Z2 locally looks like ∆2g−1× (∆g−2/Z2) around the hyperelliptic
locus.

Theorem 3.7. (Local Torelli Theorem 2) J : Mg → Ag is an immersion for g ≥ 2.

This local Torelli Theorem was first proved by F. Oort and J. Steenbrink [19] and then
by Y. Karpishpan [13] under his framework of understanding higher order derivatives of
period map in terms of Čech cohomology. We approach it by our deformation method.

Proof. From the local Torelli Theorem 3.1, the tangent map Π∗, restricted to Tg −HETg,
is injective for g ≥ 3 and everywhere injective for g = 2. Thus it suffices to show that the
tangent map of J : Mg → Ag at hyperelliptic locus HEg is injective for g ≥ 3. To this
end, we lift the period map to J tor : T org/Z2 → Hg. Fix p ∈ HET org which descends to
p̃ in T org/Z2. From Proposition 3.7, p̃ is a double point. Moreover, the dimension of the

Zariski tangent space at p̃ is g(g+1)
2

. In fact, as T org is a complex manifold of complex
dimension 3g−3 and p is a smooth point, we can choose local parameters (t1, t2, · · · , t3g−3)

such that ÔT org,p = C[[t1, t2, · · · , t3g−3]] and Z2 action is given by
{
Z∗
2ti = ti, 1 ≤ i ≤ 2g − 1,

Z∗
2ti = −ti, 2g ≤ i ≤ 3g − 3,

where {ti}2g−1
i=1 indicates the tangent directions of HET org and {ti}3g−3

i=2g is the normal
directions in which J tor

∗ vanishes. Clearly,

ÔT org/Z2,p̃ =
(
ÔT org,p

)Z2

= C[[t1, · · · , t2g−1, t
2
2g, t2gt2g+1, · · · , t23g−3]].

It is exactly the g(g+1)
2

parameters that give the basis of the Zariski tangent space at p̃.
We denote these directions by {Dk, Dij}1≤k≤2g−1,2g≤i≤j≤3g−3, respectively. Also by (2.14),

we know that J tor can also be written as
(
π̄pA(t)

T + πp
) (
A(t)T + 1g

)−1
. The first and

second order parts of J tor are given by
(
J tor

)(1)
+
(
J tor

)(2)

=− 2
√
−1MpA1(t)

T + 2
√
−1Mp

(
A1(t)

T
)2 − 2

√
−1MpA2(t)

T

=

n∑

i=1

ti

∫

Xp

θαp ∧H(µiyθ
β
p )−

n∑

i,j=1

√
−1

2
titj

∫

Xp

θαp ∧H(µiyθ
δ
p)M

δγ
p

∫

Xp

θγp ∧H(µjyθ
β
p )

+

n∑

i,j=1

titj

∫

Xp

θαp ∧H(µiyη
β
j ),
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where ηαi = −G∂
∗
∂(µiyθ

α
p ) and M

αβ
p is the inverse matrix of Mp,αβ. From the choice of ti

above, for any 1 ≤ α, β ≤ g, we have∫

Xp

θαp ∧H(µiyθ
β
p ) = 0,

where 2g ≤ i ≤ 3g−3. Hence we can write out the image of {Dk, Dij}1≤k≤2g−1,2g≤i≤j≤3g−3

under J tor
∗ by using the expansion formula of J tor:





J tor
∗ (Dk) =

∫
Xp
θαp ∧H(µkyθ

β
p ), 1 ≤ k ≤ 2g − 1,

J tor
∗ (Dij) =

∫
Xp
θαp ∧H

(
µiy∂G∂

∗
(µjyθ

β)
)
, 2g ≤ i = j ≤ 3g − 3,

J tor
∗ (Dij) =

∫
Xp
θαp ∧H

(
µiy∂G∂

∗
(µjyθ

β) + µjy∂G∂
∗
(µiyθ

β)
)
, 2g ≤ i < j ≤ 3g − 3.

Finally we need to show that {J tor
∗ (Dk),J tor

∗ (Dij)} are linearly independent. SinceXp is a
hyperelliptic Riemann surface, these Čech cohomology groups, such as H0(Ω1

Xp
), Ȟ1(OXp

)

and Ȟ1(TXp
), have explicit bases just as described in [13, 19]. Moreover, these papers

have showed that these directions are linearly independent in terms of Čech cohomology.
We give a proof in Appendix 5 that our directions are actually the same as theirs, which
completes the proof of this theorem. �

Local Torelli Theorems 3.1 and 3.7 tell us that the period map gives a local embedding
of the Kuranishi coordinate chart ∆p,ǫ when p lies in the nonhyperelliptic locus, and of
∆p,ǫ/Z2 when p lies in the hyperelliptic locus. This local embedding induces a matrix
model for the local Kuranishi coordinates.

Definition 3.8. Matrix Model for the Kuranishi coordinate charts.

The image of the Kuranishi coordinate chart under the period map is called the matrix

model when the local Torelli theorems hold. Here we identify the Kuranishi coordinate

chart with its matrix model, which lies in Hg ⊂ C
g(g+1)

2 .

4. Proof of the global Torelli Theorems

This section is devoted to the proof of global Torelli theorem for Riemann surfaces.

Theorem 4.1. J tor : T org/Z2 → Hg is an embedding for g ≥ 3.

Proof. From the discussion of Section 3, T org/Z2 is a complex orbifold of complex di-
mension 3g − 3. For every point p in the non-hyperelliptic locus, we have the Kuranishi
coordinate chart ∆p,ǫ centered at p, which descends from T org. As to the hyperelliptic
locus, we denote by ∆p,ǫ/Z2 the local coordinate chart around the hyperelliptic point
according to the local behavior of the hyperelliptic locus. From the local Torelli theorems
3.1 and 3.7, J tor gives a local embedding on both of these two kinds of coordinate charts.
All we need to show is that J tor is injective. It is easy to see that T org/Z2

∼= Tg/T̃g.
Thus the proof of the one-to-one correspondence between T̃g orbit and its Jacobian is our
ultimate, which is equivalent to say that two points in Tg with the same Jacobian must

be related by some element in T̃g.
According to [11] and [12], Hg can be viewed as the isomorphism classes of principally

polarized abelian varieties together with a symplectic basis (A, γ), where γ : H1(Σ,Z) →
H1(A,Z) preserves the intersection paring on Σ and the principally polarized form on
A. And the identification is given from (A, γ) to its period matrix with respect to this
symplectic basis. By changing the symplectic basis, we have the natural Sp(g,Z) action
on Hg. However, the kernel of the Sp(g,Z) action is ±12g. That is to say

(A, γ) ∼= (A,−γ).
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Also T org can be identified with the isomorphism classes of Riemann surfaces together
with a symplectic basis (C, γ), where γ : H1(Σ,Z) → H1(C,Z) preserves the intersection
paring on Σ and C, since Γg/Tg = Sp(g,Z). Moreover, the period map J tor : T org → Hg

is given by
T org −→ Hg

(C, γ) −→ (JacC, γ),

where we have the natural isomorphism H1(C,Z) ∼= H1(JacC,Z).
Now assume that two points [C, [f ]] and [C ′, [f ′]] on Tg are mapped to the same Jaco-

bian, namely (A, γ). Write (C, γ) and (C ′, γ′) on T org as the corresponding two points
descended from [C, [f ]] and [C ′, [f ′]], respectively. As (C, γ) and (C ′, γ′) are mapped to
the same Jacobian (A, γ), their symplectic bases will be the same up to a change of
the sign. Without loss of generality, we may assume that (C, γ) and (C ′, γ′) share the
same symplectic basis after changing the sign (If γ and γ′ are different by a sign, pick
[ψ] ∈ ρ−1(−12g) where ρ : Γg → Sp(g,Z) is surjective. Then [C, [f ]] and [C ′, [ψf ′]] have
the same symplectic basis). Going back to the two corresponding points on Tg, the fol-
lowing picture appears since we can see the construction of Kuranishi coordinate charts
of Tg from deformation theoretic point of view:

Σ Σ

C

f

OO

φ // C ′

f ′

OO ,

where φ is a diffeomorphism obtained from the deformation of the complex structures
between C and C ′. What is more, we have [fφ−1f ′−1] ∈ Tg. Denote F by fφ−1f ′−1. Then
the commutative diagram follows

Σ

C

f
??⑧⑧⑧⑧⑧⑧⑧⑧ φ // C ′

Ff ′
``❅❅❅❅❅❅❅

.

In fact we will prove that φ is holomorphic and thus obviously biholomorphic. Hence

[C, [f ]] and [C ′, [f ′]] are related by T̃g.
To see φ is holomorphic, we first recall the definition of the Jacobian. The Jacobian of

a Riemann surface X is nothing but Cg
/
Λ and

Λ = Z





∫

A1



θ1

...
θg


 , · · · ,

∫

Ag



θ1

...
θg


 ,

∫

B1



θ1

...
θg


 , · · · ,

∫

Bg



θ1

...
θg







,

where {θα}gα=1 is a basis of H0(X,KX). [C, [f ]] and [C ′, [f ′]] are mapped to the same
Jacobian by the period map, then their symplectic basis (Aα, Bα) and (A′

α, B
′
α) are related

by φ together with

(4.1)

∫

Aα



θ1

...
θg


 =

∫

A′

α



θ′1

...
θ′g


 ,

∫

Bα



θ1

...
θg


 =

∫

B′

α



θ′1

...
θ′g


 .

Let

Θ =



θ1

...
θg


 , Θ′ =



θ′1

...
θ′g


 .
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Set φ∗θ′α =
∑g

β=1 xαβθ
β +

∑g
β=1 yαβ θ̄

β . Thus

(4.2) φ∗Θ′ =
(
X Y

)(Θ
Θ̄

)
.

Put (4.1) and (4.2) together to get
∫

Aα

Θ =

∫

A′

α

Θ′ =

∫

φ∗Aα

Θ′ =

∫

Aα

φ∗Θ′ =
(
X Y

) ∫

Aα

(
Θ
Θ̄

)
,

∫

Bα

Θ =

∫

B′

α

Θ′ =

∫

φ∗Bα

Θ′ =

∫

Bα

φ∗Θ′ =
(
X Y

) ∫

Bα

(
Θ
Θ̄

)
.

Reformulating these two equalities into matrix form, we get

(4.3)




∫
Aα

Θ
∫
Bα

Θ
∫
Aα

Θ̄
∫
Bα

Θ̄


 =

(
X Y
Ȳ X̄

)(∫
Aα

(
Θ
Θ̄

) ∫
Bα

(
Θ
Θ̄

))
.

Observe that det




∫
Aα

Θ
∫
Bα

Θ
∫
Aα

Θ̄
∫
Bα

Θ̄


 6= 0. In fact, it is well-known that (A,B) period matrix

of canonical basis Θc is
(
1g M

)
with ImM > 0. This matrix can be written as

(
D DM
D̄ D̄M̄

)
,

where nonsingular matrix D is given by the equality Θ = DΘc. Also it is easy to check
that (

D DM
D̄ D̄M̄

)
=

(
1g 0
0 D̄

)(
D 0
0 1g

)(
1g M
1g M̄

)
,

and then its determinant is nonzero since

det

(
1g M
1g M̄

)
= det

(
1g M
0 2

√
−1ImM

)
6= 0.

These imply that

X = 1g, Y = 0.

Hence the diffeomorphism φ preserves holomorphic one-forms. Now choose coordinates
centered at p and φ(p), which are denoted by (z, p) and (w, φ(p)), respectively. Pick
Ω ∈ H0(C ′, KC′) with Ω(φ(p)) 6= 0. Locally Ω can be written as

Ω = g(w)dw.

Pulling Ω back by φ, we get a holomorphic one-form on C. However,

φ∗Ω = g(φ(z))
∂φ

∂z
dz + g(φ(z))

∂φ

∂z̄
dz̄.

Then g(φ(z))∂φ
∂z̄

= 0. At the point p, g(φ(p)) 6= 0, we have ∂φ
∂z̄

∣∣
z=0

= 0. Hence, φ is
holomorphic, finishing the proof of the theorem.

�

Corollary 4.2. For the case of g = 2, J tor : T org → Hg is an open embedding.
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Proof. Theorem 3.1 tells us that J tor : T org → Hg is an immersion everywhere when
g = 2. Besides, J tor is an open map from dimC T org = dimC Hg = 3. Moreover,
Proposition 3.6 implies that Z2 is a trivial action on T org since any Riemann surface with

g = 2 is hyperelliptic, indicating that T̃g orbit is the same as Tg orbit on Tg. The proof of
Theorem 4.1 implies that J tor is an open embedding. �

Corollary 4.3. J tor : T org → Hg is a 2 : 1 branched covering map branched over

HET org onto its image for g ≥ 3.

Proof. This is a direct consequence of Theorem 4.1. �

Proposition 4.4. Let ∆p,ǫ be the Kuranishi coordinate chart on Tg. The period map Π
maps the Γg orbit of ∆p,ǫ onto the Sp(g,Z) orbit of its image in Hg.

Proof. Recall that the Kuranishi coordinate chart ∆p,ǫ is given by

∆p,ǫ → Tg
t → [Xt, [Ft]],

where (X , F ) is the Kuranishi family with the Teichmüller structure of (Xp, [F0]) over

∆p,ǫ, while the coordinate map of ∆
[φ]
p,ǫ can be written as

∆
[φ]
p,ǫ → Tg
t → [Xt, [φFt]],

where ∆
[φ]
p,ǫ := [φ]∆p,ǫ. Now the Kuranishi family becomes (X , (φ × 1)F ), where φ × 1 :

Σ×∆
[φ]
p,ǫ → Σ ×∆

[φ]
p,ǫ, the same family as (X , F ) up to a different symplectic basis. Two

bases are linked by ρ([φ]), denoted by

(
U V
R S

)
∈ Sp(g,Z), i.e.,

(
Ã

B̃

)
=

(
U V
R S

)(
A
B

)
,

where

(
Ã

B̃

)
and

(
A
B

)
are the symplectic bases on ∆

[φ]
p,ǫ and ∆p,ǫ, respectively. As we have

seen, the matrix model of ∆p,ǫ is

Π(t) =

(
π̄p πp
1g 1g

)
y A(t)T .

While on ∆
[φ]
p,ǫ, one has

Π̃(t)αβ =

∫

B̃α

σ̃(t)γβθγp (t)

=

∫

B̃α

σ̃(t)γβ
(
θγp + A(t)γδ θ̄

δ
p

)

=

∫

RαλAλ+SαλBλ

σ̃(t)γβ
(
θγp + A(t)γδ θ̄

δ
p

)

= (Rαγ + Sαλπp,λγ +RαδA(t)
γ
δ + Sαλπ̄p,λδ A(t)

γ
δ ) σ̃(t)

γβ ,
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where σ̃(t)αβ is the inverse matrix of σ̃(t)αβ. And σ̃(t)αβ is given by

σ̃(t)αβ =

∫

Ãα

θβp (t)

=

∫

UαλAλ+VαλBλ

θβp + A(t)βγ θ̄
γ
p

= Uαβ + Vαγπp,γβ +UαγA(t)
β
γ + Vαγ π̄p,λγ A(t)

β
γ .

Then we formulate all these into the matrix form:

Π̃(t) =
(
R( 1g + A(t)T ) + S( πp + π̄pA(t)

T )
) (
U( 1g + A(t)T ) + V ( πp + π̄pA(t)

T )
)−1

=

(
S R
V U

)(
π̄p πp
1g 1g

)
y A(t)T

=

(
S R
V U

)
y Π(t).

Thus the Γg orbit of ∆p,ǫ is mapped, by the period map, onto the Sp(g,Z) orbit of its
matrix model Π(t) in Hg, since the representation ρ : Γ → Sp(g,Z) is surjective. �

Denote by ν the transformation of Sp(g,Z)

Sp(g,Z) → Sp(g,Z)(
U V
R S

)
→

(
S R
V U

)

and it is obvious that ν2 = 1.

Theorem 4.5. (Global Torelli Theorem on moduli space) J : Mg → Ag is injective for

g ≥ 2.

Proof. As we have seen from Corollary 4.3, J tor : T org → Hg is a 2 : 1 branched covering

map onto its image, branching over HET org for g ≥ 3. That is to say that the T̃g orbits
on Tg have one-to-one correspondence to their Jacobian given by the period map Π. This
is also true for g = 2, from the proof of Corollary 4.2. From Proposition 4.4, the Γg
orbits are mapped onto Sp(g,Z) orbits. Assume that two Γg orbits [p] and [q] of Mg are
mapped to the same Sp(g,Z) orbit by J . We lift these to Π : Tg → Hg and thus have
Π(p) = Ly Π(q) for some L ∈ Sp(g,Z). There is the following exact sequence

1 → Tg → Γg
ρ→ Sp(g,Z) → 1.

Pick [φ] ∈ ρ−1(ν(L)). Then Π([φ]q) = L y Π(q) by Proposition 4.4. Hence p and [φ]q

are in the same T̃g orbit, which implies that p and q are in the same Γg orbit. �

5. Appendix

Recall that the natural isomorphism between the Čech cohomology Ȟ1(TX) and the
Dolbeault cohomology H0,1

∂
(TX), and isomorphism between Ȟ1(OX) and H0,1

∂
follows

similarly. Assume that there is an open covering
⋃
α Uα on X and then the natural

isomorphism Ψ is given by

Ψ : Ȟ1(TX) −→ H0,1

∂
(TX)

[θαβ ] −→ [∂ξα]
,

where ξα ∈ A0,0(Uα, TX) and ξ
β − ξα = θαβ .

Now we return to the proof of the Theorem 3.7, that is, X is a hyperelliptic Riemann
surface, covered by two affine charts U0 and U1 as described in [13, P. 568]. The first
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derivative of the period map in the direction Dk, 1 ≤ k ≤ 2g − 1 in terms of Čech
cohomology is given by

H0(X,Ω1) −→ Ȟ1(X,OX)
ω −→ [θkyω]

,

where [θk] ∈ Ȟ1(TX) corresponds to [µk] ∈ H0,1

∂
(TX). It is obvious that [θkyω] is mapped

to [µkyω] by the natural isomorphism from Ȟ1(OX) to H0,1

∂
. The second derivative of

period map in the direction of Dij, 2g ≤ i < j ≤ 3g − 3 in terms of Čech cohomology is
given by

H0(X,Ω1) −→ Ȟ1(X,OX)
ω −→ [θjyLθiω]

,

where Lθi denotes Lie derivative along θi and [θi] ∈ Ȟ1(TX) corresponds to [µi] ∈
H0,1

∂
(TX). It is easy to see that θjyLθiω = θjy∂(θiyω). Hence we need to show that

[θjy∂(θiyω)] is mapped to [µiy∂G∂
∗
(µjyω)+µjy∂G∂

∗
(µiyω)] by the natural isomorphism

from Ȟ1(OX) to H
0,1

∂
. The i = j case follows from almost the same method as below. By

the natural isomorphism between Ȟ1(X, TX) and H
0,1

∂
(X, TX), we get ξ1i ∈ A0,0(U1, TX)

and ξ0i ∈ A0,0(U0, TX) such that

(5.1)

{
ξ1i − ξ0i = θi,

∂ξ1i = µi + ∂fi,

where fi ∈ A0,0(X, TX). As µi can change in the Dolbeault cohomology class, we can
assume that µi

∣∣
U0∩U1

= 0. In fact, µi is ∂-closed and thus locally ∂-exact, i.e., µi = ∂hi on

U0 ∩ U1. The desired representative can be chosen as µi − ∂(ρhi), where ρ is the suitable
cut-off function. Moreover we can choose fi such that fi = ξ0i on U0 ∩ U1, for example
fi := ρξ0i

∣∣
U0∩U1

. By use of (5.1), on U1, we have

µiy∂G∂
∗
(µjyω) + µjy∂G∂

∗
(µiyω)

=∂(ξ1i − fi)y∂
(
(ξ1j − fj)yω

)
+ ∂(ξ1j − fj)y∂

(
(ξ1i − fi)yω

)
.

Similarly, we have an analogous equality on U0.
Now we shall identify the Čech and Dolbeault cohomology classes above. This ques-

tion is equivalent to finding φ1
ij and φ

0
ij belonging to A0,0(U1) and A

0,0(U0), respectively,
satisfying the following equations

(5.2)





∂φ1
ij = ∂(ξ1i − fi)y∂

(
(ξ1j − fj)yω

)
+ ∂(ξ1j − fj)y∂

(
(ξ1i − fi)yω

)
,

∂φ0
ij = ∂(ξ0i − fi)y∂

(
(ξ0j − fj)yω

)
+ ∂(ξ0j − fj)y∂

(
(ξ0i − fi)yω

)
,

φ1
ij − φ0

ij = θjy∂(θiyω).

It is obvious that the solutions of the first two equalities of (5.2) always exist since the
right hand sides of these two equalities are (0, 1)-forms and clearly ∂-closed. As

∂(ξ1i − fi)y∂
(
(ξ1j − fj)yω

)
+ ∂(ξ1j − fj)y∂

(
(ξ1i − fi)yω

)

= ∂
(
(ξ1i − fi)y∂

(
(ξ1j − fj)yω

))
− (ξ1i − fi)y∂

(
∂(ξ1j − fj)yω

)

+ ∂
(
(ξ1j − fj)y∂

(
(ξ1i − fi)yω

) )
− (ξ1j − fj)y∂

(
∂(ξ1i − fi)yω

)
,
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we can write φ1
ij as

(ξ1i − fi)y∂
(
(ξ1j − fj)yω

)
+ (ξ1j − fj)y∂

(
(ξ1i − fi)yω

)

− ∂
−1
(
(ξ1i − fi)y∂

(
∂(ξ1j − fj)yω

))
− ∂

−1
(
(ξ1j − fj)y∂

(
∂(ξ1i − fi)yω

))
,

where ∂
−1
(
(ξ1i − fi)y∂

(
∂(ξ1j − fj)yω

))
stands for some solution g satisfying

∂g = (ξ1i − fi)y∂
(
∂(ξ1j − fj)yω

)
.

This notation is reasonable as the solution always exists. Thus

φ1
ij − φ0

ij

=(ξ1i − fi)y∂
(
(ξ1j − fj)yω

)
− (ξ0i − fi)y∂

(
(ξ0j − fj)yω

)

+ (ξ1j − fj)y∂
(
(ξ1i − fi)yω

)
− (ξ0j − fj)y∂

(
(ξ0i − fi)yω

)

− ∂
−1
(
(ξ1i − ξ0i )y∂

(
∂(ξ1j − fj)yω

) )
− ∂

−1
(
(ξ1j − ξ0j )y∂

(
∂(ξ1i − fi)yω

))

=(ξ1i − ξ0i )y∂
(
(ξ1j − fj)yω

)
+ (ξ0i − fi)y∂

(
(ξ1j − ξ0j )yω

)

+ (ξ1j − ξ0j )y∂
(
(ξ1i − fi)yω

)
+ (ξ0j − fj)y∂

(
(ξ1i − ξ0i )yω

)

− ∂
−1
(
(ξ1i − ξ0i )y∂

(
∂(ξ1j − fj)yω

) )
− ∂

−1
(
(ξ1j − ξ0j )y∂

(
∂(ξ1i − fi)yω

))

=(ξ1i − ξ0i )y∂
(
(ξ1j − fj)yω

)
+ (ξ0i − fi)y∂

(
(ξ1j − ξ0j )yω

)

+ (ξ1j − ξ0j )y∂
(
(ξ1i − ξ0i )yω

)
+ (ξ1j − ξ0j )y∂

(
(ξ0i − fi)yω

)
+ (ξ0j − fj)y∂

(
(ξ1i − ξ0i )yω

)

− ∂
−1
(
(ξ1i − ξ0i )y∂

(
∂(ξ1j − fj)yω

) )
− ∂

−1
(
(ξ1j − ξ0j )y∂

(
∂(ξ1i − fi)yω

))

=(ξ1j − ξ0j )y∂
(
(ξ1i − ξ0i )yω

)

+ (ξ0j − fj)y∂
(
(ξ1i − ξ0i )yω

)
+ (ξ0i − fi)y∂

(
(ξ1j − ξ0j )yω

)

+ (ξ1j − ξ0j )y∂
(
(ξ0i − fi)yω

)
− ∂

−1
(
(ξ1j − ξ0j )y∂

(
∂(ξ1i − fi)yω

) )

+ (ξ1i − ξ0i )y∂
(
(ξ1j − fj)yω

)
− ∂

−1
(
(ξ1i − ξ0i )y∂

(
∂(ξ1j − fj)yω

))

=θjy∂(θiyω) + (ξ0i − fi)y∂
(
(ξ1j − ξ0j )yω

)
+ (ξ0j − fj)y∂

(
(ξ1i − ξ0i )yω

)

=θjy∂(θiyω).

The penultimate equality results from

∂̄

(
(ξ1j − ξ0j )y∂

(
(ξ0i − fi)yω

))
= (ξ1j − ξ0j )y∂

(
∂(ξ1i − fi)yω

)

∂̄

(
(ξ1i − ξ0i )y∂

(
(ξ1j − fj)yω

))
= (ξ1i − ξ0i )y∂

(
∂(ξ1j − fj)yω

)

and the last step stems from our choice of fi.
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