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Abstract

According to Watanabe [6], by generalized Wiener functional we could give a simple
stochastic proof of the index theorem for twisted Dirac operator (the Atiyah-Singer
index theorem) on Clifford module.
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1. Introduction

The purpose of this work is to provide a simple stochastic proof of the index theorem

for the twisted Dirac operator by generalized Wiener functional. In 1950s and 1960s,

Atiyah, Singer, Hirzebruch, Bott have established the index theorem([1], [12]), which is an

interesting theorem in geomery and analysis. Later on, the refined local index theorems

have been established by several authors Atiyah-Bott-Patodi [2], Patodi [19], [20], Gilkey

[13], [14]. The proofs of the local index theorems are complicated, which need knowledge

from analysis, geometry and algebra. On the classical method proofs of the local index

theorem, we could refer to Atiyah-Bott-Patodi [2], Getlzer [4], [5], Berline-Getzler-Vergne

[11], Yu [24], [25], Roe [17], Gilkey [14], Ponge [30] etc, where Berline-Getzler-Vergne

[11] is a good reference on heat equation method for index theorem. In 1984, Bismut [7]

has introduced stochastic analysis method to prove the local index theorem. Bismut’s

work is significant. After that, several proofs by stochastic method have been provided,

for example, Watanabe [6], Baudoin [21], Hsu [28], [29]. In [6], Watanabe has proved

the Gauss-Bonnet-Chern theorem, the Signature index theorem by generalized Wiener
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functional which is included in stochastic analysis. In Shigekawa-Ueki [22], Riemann-

Roch theorem has been proved by this method. In this work, we prove the twist Dirac

index theorem ( the Atiyah-Singer theorem) by Watanabe’s method.

For the convenience of readers, we state the twisted Dirac index theorem. Let p(t, x, y)

is the heat kernel for Dirac heat equation on Clifford module E of M , F E /S is the twisting

curvature of E (see [11] p117), then

lim
t→0

Str(p(t, x, x))dx = (
1

2πi
)
d
2 {Â(M)ch(F E /S)}d(x),

where M is a d-dimensional Riemannian manifold, d is even, E is a Clifford module on

M , Â(M) is A genus of M , ch(F E /S) = StrE /S [exp(−F E /S)] is relative Chern character

of E .

Getzler [5] has used the rescale to get the limit of supertrace of the heat kernel, where an

important estimate was obtained by Stroock’s Feynman-Kac formula. Most of his methods

are classical. Bismut [7]’s stochastic method contains the splitting of Wiener space and the

implicit function theorem. Our method is from Watanabe [18], [38], different from Bismut

[7]’s. Of course our idea is motivated by many works which contain Bismut [7], Hsu

[29], Baudoin [21] etc. By virtue of the Malliavin calculus and generalized expectation of

generalized Wiener functional, we have the probabilistic representation of the heat kernel:

p(ε2, x, y) = E[M εeεδy(X
ε)],

where δ is a generalized function: Dirac delta function, M, e,X are random variables,

δ(X) is generalized Wiener functional got by the composition of δ with the non-degenerate

smooth Wiener functional X, E is generalized expectation (On precise definition of these

notation, please read the following context or [18], [38].), then we could compute the limit

of supertrace by the asymptotic expansion with respect to ε in Sobolev space of Wiener

functional. Our proof doesn’t involve the principal bundle and stochastic differential

geometry.

Our paper is organized as follows. In the first part, we simply introduce Clifford algebra

and Dirac operator. In the second part, we give Feynman-Kac formula for parabolic

systems. In the third part, we state some basic definitions and theorems on the Malliavin

calculus. In the fourth part, we give the proof by generalized Wiener functional and its

asymptotic expansion.
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2. Clifford algebra and Spin bundle

For the convenience of the readers, we would introduce the knowledge on Clifford

algebra simply. On details the readers may consult Berline-Getzler-Vergne [11], Jost [26].

Let V be an oriented d dimensional Euclidean space. We assume that d = 2l is even. The

tensor algebra is

T (V ) = R⊕ V ⊕ (V ⊗ V ) + ... .

By the equivalent relations uv + vu = −2 < u, v > in tensor algebra, we could define

Clifford algebra Cl(V ). Let {ei} be an oriented basis of V and ci be the image of the ei

in the Cl(V ). Then

ci1 ...cik , 0 ≤ k ≤ d, 1 ≤ i1 < ... < ik ≤ d,

forms a basis of Cl(V ). Let Cl+(V ) be the subspace of elements of even degrees, Cl−(V )

be the subspace of the elements of odd degree. There is a unique graded complex Clifford

module S = S+ ⊕ S−, called the spinor module, such that

Cl(V )⊗ C ∼= End(S),

wiith

Cl+(V ) · S+ ⊂ S+, Cl+(V ) · S− ⊂ S−,

Cl−(V ) · S− ⊂ S+, Cl−(V )S+ ⊂ S−.

The supertrace on Cl(V ) is defined by

Str(a) = trS+a− trS−a,

where a is regarded as an element of End(S). If

a =
∑

0≤k≤d

∑
1≤i1<...<ik≤d

ai1...ikci1 ...cik ,

then

Str(a) = (−2i)la12...d. (1.1)

Let E = E+⊕E− is a superspace, we could define Str(b) = tr+(b)−tr−(b) for b ∈ End(E).

Then we could define supertrace on End(S ⊗ E), such that Str(a ⊗ b) = Str(a) · Str(b).
There is a linear isomorphism ( not algebra isomorphism) between the wedge product∧
(V ) and Cl(V )(see [11] Pro 3.5) which is denoted by c. The group Spin(V ) is the group
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obtained by exponentiating the Lie algebra C2(V ) inside the Clifford algebra C(V ).

Let us assume that M be a Riemannian manifold which has a spin structure, the

spin principal bundle Spin(M) has a connection which is induced from SO(M). The

spinor bundle L is defined to be the associated bundle Spin(M) ×Spin(d) S, which also

has a linear induced connection. The Clifford bundle Cl(M) has a action on L, and

C⊗Cl(M) ∼= End(L). A Clifford module E on an even diemnsional Riemannian manifold

M is Z2-graded bundle on M with a graded action of the bundle C(M) on it. Dirac

operator D is defined to be

D =
∑

c(ei)∇ei ,

where {ei} is a local orthonormal frame, {ei} is its dual base.

Lemma 1 (Lichnerowicz formula): Let E be a Clifford module on M , s be the scalar

curvature of M , F E /S be the twisting curvature of E (see [11]), then

−D2 = △− c(F E /S)− s

4
,

where s is scalar curvature on M .

3. Stroock’s version of Feynman-Kac formula for the parabolic systems

Stroock has given Feynman-Kac formula for parabolic systems (see [34]). According

to his technique, we consider a slightly different parabolic system in form. Let f, φ are

Cn valued functions, {gij}, 1 ≤ i, j ≤ d is a real positive symmetric matrix, Γi, 1 ≤ i ≤ d,

c are bounded complex n × n matrixs valued function defined in Rd whose all partial

derivatives are bounded, bi ,1 ≤ i ≤ d are bounded scalar functions defined in Rd whose

all partial derivatives are bounded.
∂f

∂t
=

1

2
gij(

∂

∂xi
+ Γi)(

∂

∂xj
+ Γj)f +

1

2
bi(

∂

∂xi
+ Γi)f +

1

2
cf, (t, x) ∈ (0,∞)×Rd

f(0, x) = φ(x), x ∈ Rd

Lemma 2: We assume that
∑

σi
kσ

j
k = gij ,

duix(t) = σi
k(ux(t))dw

k +
1

2
bidt,

de(t) = etΓi(ux(t)) ◦ duix(t),
dM(t) =

1

2
M(t)e(t)c(u(t))e−1(t)dt,

e0 = 1,Mt = 1, ux(0) = x,
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where {ωk} is a Brownian motion on Rd, et,M(t) is a n×n dimensional matrix valued

process, ” ◦ ” stands for Stratonovich integral. Then f(t, x) = E(Mtetφ(ux(t))).

Proof: we could apply the Ito formula to Msesφ(t− s, ux(s)).

4. The Malliavin calculus

The materials in this section are from ([6], [18], [38]). Due to limited space ,we couldn’t

state too many definitions and theorems on the Malliavin calculus. For more details

we could refer to the above works. Let (W,F , P ) be the d-dimensional Wiener space:

W = {W : C[0, 1] → Rd;w(0) = 0}. With the supremum norm, W is a Banach space. Let

H be the subspace of W consisting of all h which is absolutely continuous and has square

integrable derivatives. If we define the inner product:

< h, g >=
∑
i

∫ 1

0
ḣi(t)ġi(t)dt,

then H is a Hilbert space. We define h[w] by

h[w] =
∑
i

∫ 1

0

dhi

dt
(s)dwi(s)

for h ∈ H. h[w] is a Gaussian random variable, E(h1[w]h2[w]) =< h1, h2 >.

For a measurable function F (w) on W , if there is a polynomial g such that F (w) =

g(h1[w], h2[w], h3[w], ..., hn[w]), then we call it polynomial functional, the total space of

polynomial functional is denoted by S. Let L2(P ) be the linear space of square integrable

random variables on W . There is a decomposition called Wiener’s homogeneous chaos:

L2(P ) = C0 ⊕ C1 ⊕ ...⊕ Cn ⊕ ...

We denote the progection of L2(P ) onto Cn by Jn. Let operators L, (I − L)s be defined

on S by

LF =
∑
n

(−n)JnF,

(I − L)sF =
∑
n

(1 + n)sJnF,

where for polynomial functional F ∈ S, the above sum has only finite items. Let ∥∥p,s be

defined by

∥F∥p,s = ∥(I − L)
s
2F∥p,
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where ∥∥p is the usual Lp norm. Let Ds
p is the completion of S under the norm ∥∥p,s. Then

Ds′
p′ ⊆ Ds

p, p ≤ p′, s ≤ s′,

(Ds
p)

′ = D−s
q , p−1 + q−1 = 1.

We define

D∞ = ∩s>0 ∩1<p<∞ Ds
p, D

−∞ = ∪s>0 ∪1<p<∞ D−s
p ,

D̃−∞ = ∪∞
k=1 ∩1<p<∞ D−k

p , D̃∞ = ∩∞
k=1 ∪1<p<∞ Dk

p .

Similarly, for a separable Hilbert space E,D∞(E), D−∞(E), we may define the func-

tional space S(E). For a polynomial functional F , the derivative DF ∈ S(H) is given

by:

DF =
n∑
i

∂ig(h1[w], h2[w], ..., hn[w])

∫ ·

0
h′i(s)ds.

By computation, we could have:

< DF, h >=
d

dϵ
F (ω + ϵh)|ϵ=0.

The operator D could be uniquely extended to a linear operator by Meyer’s work

D : D−∞(E) → D−∞(H ⊗ E).

The following theorem plays an important role in Malliavin calculus.

Theorem 1 (Malliavin[36], Ikeda-Watanabe [18] etc): If F ∈ D∞(Rd), let

σij =< DF i(ω), DF j(ω) >∈ D∞, i, j = 1, ..., d.

(σij) is called the Malliavin covariance of F . If

[det(σij)]−1 ∈ ∩1<p<∞Lp,

F is called to be nondegenerate in the sense of Malliavin, then the law of F has the

C∞−density.
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5. The probabilistic proof

In this section we would use generalized Wiener functional and its asymptotic expan-

sion, which are introduced in [6], [18], [38]. The most notations in this section are the

same as the above works. The asymptotic expansion of the fundamental solution (heat

kernel) of heat equation is determined by local conditions ([11], [18]). We consider the

linear space Rd, equipped with {gij}, which is the same as {δij} except a bounded set

containing the original point. We may choose a normal coordinate around the original

point, {ei}, 1 ≤ i ≤ d, is a basis of Rd. Let E = L
⊗

W be a Clifford module on Rd,

W is a s-dimensional graded vector bundle. Parallel transport along the rays from the

original point gives a trivialization of W. Let ω be the connection of W in this frame,
1
2F (∂i, ∂j)dx

i
∧

dxj be the curvature of W. We have (see[6], [11])

gij(x) = δij −
1

3
Rimkj(0)x

mxk +O(|x|3),

and

Γi
jk(x) =

1

3
Rijkm(0)xm +

1

3
Rikjm(0)xm +O(|x|2),

and

σi
k = δik +

1

6
Rimnk(0)x

mxn +O(|x|3),

and

ωi(x) = −1

2

∑
j

F (∂i, ∂j)(0)x
j +O(|x|2).

Let ci = σk
i ek, then {ci} is an oriented orthonormal frame. Let {σ̃i

k} be the inverse of

{σi
k}, define Γ̃i

jk = (∇ejck, c
i), then

Γ̃i
jk =

∂

∂xj
(σl

k)σ̃
i
l + σl

kσ̃
i
sΓ

s
jl,

Γ̃i
jk(x) = (

1

6
Rimjk(0) +

1

6
Rijmk(0))x

m +
1

3
Rijkm(0)xm +

1

3
Rikjm(0)xm +O(|x|)2

=
1

2
Rikjm(0)xm +O(|x|2)

Let Cl(Rd) denote Clifford algebra of Euclid space Rd. Because of the scaling property

of Brownian motion, we consider the following stochastic differential equation on Rd ×
(Cl(Rd)⊗ End(Rs)), with a parameter ε

dXi(t) = εσi
k(X(t))dwk(t)− ε2

2
gjk(X(t))Γi

jk(X(t))dt,

de(t) = e(t)Γ̃i ◦ dXi(t), i, j, k = 1, 2, ...d.
(X(0), e(0) = (0, 1),

(1)
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where e(t) is a Clifford algebra valued process, Γ̃i =
1
4 Γ̃

k
ijcjck ⊗ 1 + 1 ⊗ ωi. Denote this

solution by rε(t) = (Xε(t), eε(t)), then rε(t) ≈ r(ε2t), where ”≈” stands for the laws are

the same, r(t) is the solution when ε = 1. dM(t) = −ε2

2
M(t)e(t)[c(F E /S) +

s

4
]e−1(t)dt,

M(0) = 1,
(2)

For the Dirac heat equation on spin bundle,{
∂f

∂t
= −1

2
D2f,

f(0, x) = φ(x).

we can conclude that the solution of heat equation f(t, x) = E[M(t)e(t)φ(Xx(t))],

where φ is bounded initial function, the heat kernel p(ε2, 0, 0) = E[M ε(1)eε(1)δ0(X
ε(1))],

where δ0 is the Dirac δ−function at the original point which is introduced in generalized

functions theory.

According to [6], [18], [38], We have

Xε(1) = εw(1) +O(ε2)

in D∞ as ε → 0.

δ0(X
ε(1)) = ε−dδ0(w(1)) +O(ε−d+1) (3)

in D̃−∞as ε → 0.

eε(t) = 1 +

∫ t

0
eε(s) ◦ dθε(s),

where

θε(t) =

∫ t

0
Γ̃i ◦ dXε(s)i

= ε2(Cij(t)cicj ⊗ 1 + 1⊗ F (t)) +O(ε3)

in D∞ as ε → 0, where

Cij(t) =
1

8
Rijmk(0)

∫ t

0
wk(s) ◦ dwm(s),

F (t) = −1

2

∑
j

F (∂i, ∂j)(0)

∫ t

0
wj(s) ◦ dwi(s).
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eε(1) = 1 +

∫ 1

0
eε ◦ dθε(s)

= 1 + θε(1) +

∫ 1

0

∫ t1

0
eε(t2) ◦ dθε(t1)

= 1 + θϵ(1) +

∫ 1

0
θε(t1) ◦ dθε(t1) +

∫ 1

0

∫ t1

0

∫ t2

0
eε(t3) ◦ dθε(t3) ◦ dθε(t2) ◦ dθε(t1)

= 1 +A1 +A2 + ...+Al +O(ε2l+2) (4)

in D∞(Cl(Rd)⊗ End(Rs)) as ε → 0, where assuming C(t) = Cij(t)cicj ⊗ 1 + 1⊗ F (t),

Am =

∫ 1

0

∫ t1

0

∫ t2

0
...

∫ tm−1

0
◦dθε(tm) ◦ dθε(tm−1) ◦ ... ◦ dθε(t1)

= ε2m
∫ 1

0

∫ t1

0
...

∫ tm−1

0
◦dC(tm) ◦ dC(tm−1) ◦ ... ◦ dC(t1) +O(ε2m+1)

in D∞(Cl(Rd)⊗ End(Rs)).

M ε(1) = 1 +B1 +B2 + ...+Bl +O(ε2l+2) (5)

in D∞(Cl(Rd)⊗ End(Rs)), where

Bn = (−1)nε2n
∫ 1

0

∫ t1

0
...

∫ tn−1

0

1

2
bε(tn)

1

2
bε(tn−1)...

1

2
bε(t1)dtndtn−1...dt1

=
ε2n

n!
[
1

2
(−c(F E /S(0))− s(0)

4
)]n +O(ε2n+1),

where b(t) = e(t)[−c(F E /S)− s
4 ]e

−1(t).

Lemma 3 ([18]):

E[δ0(w(1)) · Φ(w)] = (2π)−lE[Φ(w)|w(1) = 0], Φ ∈ D̃∞. ⊙

By (3), (4), (5), lemma 3,

Str[p(ε2, 0, 0)]e1 ∧ e2 ∧ ... ∧ ed

= (−2i)
d
2

∑
m+n= d

2

E[
1

m!
(
1

4
Ωij

∫ 1

0
wi(s) ◦ dwj(s))m · δ0(w(1))]

StrE /S [−F E /S(0)]n

2nn!
+O(ε)

=
1

(2iπ)
d
2

∑
m+n= d

2

E[
1

m!
(
1

2
Ωij

∫ 1

0
wi(s) ◦ dwj(s))m · |w(1) = 0]

StrE /S [−F E /S(0)]n

n!
+O(ε)

as ε → 0 where Ωij =
1
2Rijkm(0)ek ∧ em.

It is obvious that the computation result should be the polynomial of Ωij . Because two-

forms are communicated under the product, {Ωij} could be regarded as a skew symmetric
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scalar matrix. While the Brownian bridge measure is O(d)-invariance, we may assume

{Ωij} is in block diagonal form such that Ω2i−1,2i = 2xi,Ω2i,2i−1 = −2xi, i = 1, ..., l, and

other entries are 0. The independence in law among {wi} will make the computation

simple.

There is a stochastic area formula which is given by P Levy ([18]):

E{exp[ix(
∫ 1

0
w1(s)dw2(s)−

∫ 1

0
w2(s)dw1(s))]|w1(1) = 0, w2(1) = 0} =

2x

ex − e−x
=

x

sinhx

So formally we may get that:

E{exp[x(
∫ 1

0
w1(s)dw2(s)−

∫ 1

0
w2(s)dw1(s))]|w1(1) = 0, w2(1) = 0} =

−ix

sinh(−ix)
=

x

sinx

Therefore

E[exp(
1

2
Ωij

∫ 1

0
wi(s) ◦ dwj(s))|w(1) = 0] = det(

Ω

2 sinh(12Ω)
)
1
2 = Â(M).

This is

lim
t→0

Str[p(t, 0, 0)]e1 ∧ e2 ∧ ... ∧ ed =
1

(2πi)
d
2

{Â(M)(0)strE /S [exp(F
E /S(0))]}d,

perhaps we have completed the proof.
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