
A RESULT ON RICCI CURVATURE AND THE SECOND BETTI NUMBER

JIANMING WAN

Abstract. We prove that the second Betti number of a compact Riemannian manifold
vanishes under certain Ricci curved restriction.

1. introduction

The studying of relation between curvature and topology is the central topic in Rie-
mannian geometry. One of the strong tool is Bochner technique. It plays a very important
role in understanding relation between curvature and Betti numbers. The first result in this
field is Bochner’s classical result (c.f. [5])

Theorem 1.1. (Bochner 1946) Let M be a compact Riemannian manifold with Ricci cur-
vature RicM > 0. Then the first Betti number b1(M) = 0.

Berger investigated that in what case the second Betti number vanishes. He proved the
following (c.f. [1], also see [2] theorem 2.8)

Theorem 1.2. (Berger) Let M be a compact Riemannian manifold of dimension n ≥ 5.
Suppose that n is odd and the sectional curvature satisfies that n−3

4n−9 ≤ KM < 1. Then the
second Betti number b2(M) = 0.

Consider a different curved condition, Micallef and Wang proved (c.f. [3], also see [2]
theorem 2.7)

Theorem 1.3. (Micallef-Wang) Let M be a compact Riemannian manifold of dimension
n ≥ 4. Suppose that n is even and M has positive isotropic curvature. Then the second
Betti number b2(M) = 0.

Here positive isotropic curvature means, for any four othonormal vectors e1, e2, e3, e4 ∈

TpM , the curvature tensor satisfies

R1313 + R1414 + R2323 + R2424 > 2|R1234|.

Recall that the Rauch-Berger-Klingenberg’s sphere theorem (c.f. [1]) states that a com-
pact Riemannian manifold is homeomorphic to a sphere if the sectional curvatures lie in
( 1

4 , 1]. A generalization of sphere theorem (dues to Micallef-Moore c.f. [4]) says that a
compact simply connected Riemannian manifold with positive isotropic curvature is a ho-
motopy sphere. Hence with the help of Poincare conjecture it is homeomorphic to a sphere.
From the two theorems we know that the conditions in theorem 1.2 and 1.3 are very harsh.

In this note we shall use Ricci curvature to give a relaxedly sufficient condition for the
second Betti number vanishing. Our main result is
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Theorem 1.4. Let M be a compact Riemannian manifold. The dimension dim(M) = 2m
or 2m + 1. Let k̄ (resp. k) be the maximal (resp. minimal) sectional curvature of M. If the
Ricci curvature of M satisfies that

(1.1) RicM > k̄ +
2m − 2

3
(k̄ − k),

then the second Betti number b2(M) = 0.

Particularly, if M is a compact Riemannian manifold with nonnegative sectional curva-
ture, then the second Betti number vanishes provided

(1.2) RicM >
2m + 1

3
k̄.

Note that there is no dimensional restriction in theorem 1.4.

Remark 1.5. 1) The condition (1.1) implies that the maximal sectional curvature k̄ > 0: If
k̄ ≤ 0, then

k̄ ≥ RicM > k̄ +
2m − 2

3
(k̄ − k).

We get k̄ < k. This is a contradiction.
2) Since k̄ > 0, of course (1.1) implies RicM > 0.
3) If the minimal sectional curvature k < 0. Since k̄ > 0. If dim(M) = 2m + 1, from

2mk̄ ≥ RicM > k̄ +
2m − 2

3
(k̄ − k),

one has

k̄ >
2m − 2
4m − 1

|k|.

Similarly

k̄ >
1
2
|k|

provided dim(M) = 2m.

We use theorem 1.4 to test some simple examples.

Example 1.6. 1) The space form S n, k̄ = k = 1, Ric = n − 1 = k̄ for n = 2 and Ric =

n − 1 > k̄ for n , 2, b2(S 2) = 1 and b2(S n) = 0 for n , 2.
2) S 2 ×S 2 with product metric, k̄ = 1, k = 0, Ric = 1 < k̄ + 2n−2

3 (k̄− k), b2(S 2 ×S 2) = 2.
3) S m × S m,m > 4 with product metric, k̄ = 1, k = 0, Ric = m − 1 > 2m+1

3 k̄, b2 = 0.
4) CPn with Fubini-Study metric, k̄ = 4, k = 1, Ric = 2n + 2 = k̄ + 2n−2

3 (k̄ − k),
b2(CPn) = 1.

From the examples we know that the inequality (1.1) is precise.
The proof of theorem 1.4 is also based on Bochner technique. But compare with Berger

and Micallef-Wang’s results, we consider a different side. This allows us get a uniform
result (without dimensional restriction).

2. Proof of the theorem

2.1. Bochner formula. Let M be a compact Riemannian manifold. Let

∆ = dδ + δd

be the Hodge-Laplacian, where d is the exterior differentiation and δ is the adjoint to d.
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Let ϕ ∈ Ωk(M) be a smooth k-form. Then we have the well-known Weitzenböck for-
mula (c.f. [5])

(2.1) ∆ϕ =
∑

i

∇2
vivi
ϕ −
∑
i, j

ωi ∧ i(v j)Rviv jϕ,

here ∇2
XY = ∇X∇Y − ∇∇XY and RXY = −∇X∇Y + ∇Y∇X + ∇[X,Y].

A k-form ϕ is called harmonic if ∆ϕ = 0.
The famous Hodge theorem states that the de Rham cohomology Hk

dR(M) is isomorphic
to the space spanned by k-harmonic forms.

Let φ =
∑

i, j φi jω
i ∧ω j be a harmonic 2-form. By (2.1), under the normal frame we can

get (c.f. [2] or [1])

(2.2) ∆φi j =
∑

k

(Ricikϕk j + Ric jkϕik) − 2
∑
k,l

Rik jlϕkl,

where Ri jkl =< R(vi, v j)vk, vl > is the curvature tensor and Rici j =
∑

k < R(vk, vi)vk, v j > is
the Ricci tensor.

So we have

∆|ϕ|2 = 2
∑
i, j

φi j∆φi j + 2
∑
i, j

∑
k

(vkφi j)2

≥ 2
∑
i, j

φi j∆φi j

, 2F(ϕ).

Note that by (2.1) one has the global form of above formula

0 = − < ∆ϕ, ϕ >=
∑

i

|∇viϕ|
2+ <

∑
i, j

ωi ∧ i(v j)Rviv jϕ, ϕ > −
1
2

∆|ϕ|2.

The F(ϕ) is just the curvature term <
∑

i, j ω
i ∧ i(v j)Rviv jϕ, ϕ >.

2.2. proof of theorem 1.4. By Hodge theorem, we only need to show that every harmonic
2-form vanishes.

Case 1: Assume dim(M) = 2m. For any p ∈ M, we can choose an othonormal basis
{v1,w1, ..., vm,wm} of TpM such that ϕ(p) =

∑
α λαv∗α ∧ w∗α (for instance c.f. [1] or [2]).

Here {v∗α,w
∗
α} is the dual basis. Then

(2.3) F(ϕ) =

m∑
α=1

λ2
α[Ric(vα, vα) + Ric(wα,wα)] − 2

m∑
α,β=1

λαλβR(vα,wα, vβ,wβ)
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The term

−2
m∑

α,β=1

λαλβR(vα,wα, vβ,wβ) = −2
∑
α,β

λα · λβ · R(vα,wα, vβ,wβ) − 2
m∑
α=1

λ2
αR(vα,wα, vα,wα)

≥ −
4
3

(k̄ − k)
∑
α,β

|λα| · |λβ| − 2k̄
m∑
α=1

λ2
α

≥ −
2
3

(k̄ − k)
∑
α,β

(λ2
α + λ2

β) − 2k̄|ϕ|2

= −
2
3

(k̄ − k)(2m − 2)|ϕ|2 − 2k̄|ϕ|2

= −2[k̄ +
2m − 2

3
(k̄ − k)]|ϕ|2.

The first ” ≥ ” follows from Berger’s inequality (c.f. [1]): For any othonormal 4-frames
{e1, e2, e3, e4}, one has

|R(e1, e2, e3, e4)| ≤
2
3

(k̄ − k).

On the other hand, by the condition (1.1) we have
m∑
α=1

λ2
α[Ric(vα, vα) + Ric(wα,wα)] ≥ 2[k̄ +

2m − 2
3

(k̄ − k)]|ϕ|2,

the equality holds if and only if ϕ(p) = 0.
This leads to

F(ϕ) ≥ 0
with equality if and only if ϕ(p) = 0. Since∫

M
F(ϕ) ≤

1
4

∫
M

∆|ϕ|2 = 0,

we get
F(ϕ) ≡ 0.

Thus the harmonic 2-form ϕ ≡ 0.
Case 2: If dim(M) = 2m + 1. For any p ∈ M, we also can choose an othonormal basis

{u, v1,w1, ..., vm,wm} of TpM such that ϕ(p) =
∑
α λαv∗α ∧ w∗α (c.f. [1] or [2]). We also have

F(ϕ) =

m∑
α=1

λ2
α[Ric(vα, vα) + Ric(wα,wα)] − 2

m∑
α,β=1

λαλβR(vα,wα, vβ,wβ).

Thus the argument is same to the even dimensional case.
This completes the proof of the theorem.
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