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Abstract. In this paper we introduce a global geometric invariant α(M) related to injec-
tivity radius to complete non-compact Riemannian manifolds and prove: If α(Mn) > 1,
then Mn is isometric to Rn when Ricci curvature is non-negative, and is diffeomorphic to
Rn for n , 4 and homeomorphic to R4 for n = 4 if without any curved assumption. .

1. introduction

The injectivity radius estimate plays an important role in the studying of global Rie-
mannian geometry. For instance, see Klingenberg [8] and Cheeger [1]. But most work
involves the injectivity radiuses of compact manifolds. Partial reason is that the injectivity
radius of a compact manifold M

injrad(M) = min{injrad(p), p ∈ M}

is always finite and positive. When the manifold is non-compact, we cannot say much
about it.

In order to study complete non-compact Riemannian manifolds, we usually consider
some objects involving infinity. Such as volume growth, Busemann function [9] (roughly
speeking, a distance function from ∞) etc. In present paper we shall research the relation-
ship between geometry and topology of complete non-compact Riemannian manifolds and
the asymptotic properties of injectivity radiuses at infinity.

Let M be a complete Riemannian manifold. For a point p ∈ M, we denote the distance
from p to x by d(p, x). Recall that the injectivity radius of a point p ∈ M is defined by

injrad(p) := sup{r|expp : B(0, r)→ B(p, r) is a diffeomorphism},

where B(0, r) and B(p, r) denote the open ball of radius r and center at p in TpM and M.
We define the injectivity radius growth by

α(M) = lim
r→∞

injrad(p, r)
r

, (1)

where injrad(p, r) = inf {injrad(x)|x ∈ M, d(p, x) = r}. We can show that α(M) is well-
defined, i.e., it is independent on the choice of p ∈ M (see proposition 2.1).

Our first theorem can be stated as follows.

Theorem 1.1. Let Mn be a complete non-compact Riemannian manifold with non-negative
Ricci curvature. If α(M) defined by (1) satisfies α(M) > 1, then Mn is isometric to Rn.
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Roughly speaking, theorem 1.1 says that if the injectivity radius at infinity is large
enough, then a complete non-negative Ricci curved Riemannian manifold must be isomet-
ric to Rn.

Without assumption of non-negative Ricci curvature in theorem 1.1, we have

Theorem 1.2. Let Mn be a complete non-compact Riemannian manifold. If α(M) defined
by (1) satisfying α(M) > 1, then Mn is diffeomorphic to Rn for n , 4 and homeomorphic
to R4 for n = 4.

The proof of theorem 1.2 lies on some deep topological results. In fact we prove that
if α(M) > 1, then the manifold must be contractible and simple connected at infinity. We
don’t know whether one has a purely geometric method. We also don’t know whether Mn

is diffeomorphic to R4 for n = 4.

Remark 1.3. The α(M) > 1 in theorem 1.1 and 1.2 is best possible. If α(M) ≤ 1, then we
can construct counterexamples to theorem 1.1 and 1.2 (see section 5).

The rest of the paper is organized as follows: In section 2, we prove that α(M) is inde-
pendent on the choice of point; We will give the proof of theorem 1.1 (resp. theorem 1.2)
in section 3 (resp. section 4). The last section contains some examples and questions.

Acknowledgements The first author would like to thank his advisor professor Xiaochun
Rong for his encouragement.

The second author would like to thank professor Xiaochun Rong for his many encour-
agement and help during his visits to Capital Normal University. A special thank goes
to professor Kefeng Liu for his long-time encouragement. He also would like to thank
professor Hongwei Xu for his many help.

2. on the injectivity radius growth

Let M be a complete non-compact Riemannian manifold. For a point p ∈ M, we write

α(p) = lim
r→∞

injrad(p, r)
r

,

here injrad(p, r) = inf {injrad(x)|x ∈ M, d(p, x) = r}.

Proposition 2.1. The α(p) is independent on the choice of p. So we can write it as α(M).

Proof. Let p, q be any two points of M. d(p, q) = l.
Case 1: α(p) = ∞.
By the definition of α(p), for any m > 0, there exists r0 > 0 such that for all x ∈

M \ B(p, r0), one has
injrad(x) ≥ mr1,

here r1 = d(p, x). Then
injrad(q, r2)

r2
≥

mr1

r2
≥

m(r2 − l)
r2

for all x such that r2 = d(q, x) ≥ l + r0. Hence

α(q) = lim
r→∞

injrad(q, r)
r

≥ lim
r→∞

m(r − l)
r

= m.

Since m is any positive number, we must have α(q) = ∞.
Case 2: α(p) < ∞. From case 1 one must have α(q) < ∞
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By the definition of α(q), for any ε > 0, there exists r0 > 0 such that for all x ∈
M \ B(q, r0), one has

injrad(x) ≥ injrad(q, r2) ≥ (α(q) − ε)r2,

where r2 = d(q, x). Hence for all x such that d(p, x) = r1 ≥ l + r0, we have
injrad(p, r1)

r1
≥

(α(q) − ε)r2

r1
≥

(α(q) − ε)(r1 − l)
r1

when α(q) − ε ≥ 0 and
injrad(p, r1)

r1
≥

(α(q) − ε)r2

r1
≥

(α(q) − ε)(r1 + l)
r1

when α(q) − ε < 0. Thus

α(p) = lim
r→∞

injrad(p, r)
r

≥ α(q) − ε.

Since ε is any positive real number, we get

α(p) ≥ α(q).

Similarly we can get
α(q) ≥ α(p).

So we have
α(p) = α(q).

�

Note that even the manifold is non-compact, α(M) may be equal to zero. The cylinder
S 1 × R is a simple example. Obviously the α(M) of a Cartan-Hadamard manifold is∞.

3. A proof of Theorem 1.1

In order to prove theorem 1.1, we need two lemmas.

Lemma 3.1. Let Mn be a complete non-compact Riemannian manifold with non-negative
Ricci curvature. If α(M) > 1, then Mn is isometric to N × R1, where N is a complete
non-negative Ricci curved manifold.

Proof. Let p be a point of M. Let γ0(t) (t ∈ [0,+∞)) be a ray starting at p. Let γ(t)
(−∞ < t < +∞) be a geodesic through p such that γ

′

0 = γ
′

at p. We claim that γ(t) is a line.
Argue by contradiction. Assume that there exists p1, p2 ∈ γ(t) such that p2 is a cut

point of p1. Then there is another geodesic σ(t) from p1 to p2.
Since α(M) > 1, by the definition, for any 0 < ε < α(M)−1

2 , there exists r0 such that for
all r > r0, we have

injrad(p, r) ≥ (α(M) − ε)r > (1 + ε)r.1

Hence for r > max{max{d(p1,p),d(p2,p)}
ε

, r0}, we can choose q ∈ γ0(t) such that

injrad(q) ≥ injrad(p, r) > (1 + ε)r, (2)

and
d(p, q) = r = the length of γ0(t) from p to q.

So we have
d(pi, q) ≤ d(pi, p) + d(p, q) < εr + r = (1 + ε)r, i = 1, 2. (3)

1If α(M) = ∞, we still have injrad(p, r) > (1 + ε)r when r > r0.
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Therefore, we can conclude that from (2) and (3) that

p1, p2 ∈ B(q, (1 + ε)r) ⊂ B(q, injrad(q)). (4)

Without losing generality, we assume that p1 = γ(t1), p2 = γ(t2) and t1 < t2. Let γ1(t)
be the curve from p1 to q such that

γ1(t)|[p1,p2] = σ(t)

and
γ1(t)|[p2,q] = γ(t)|[p2,q].

Smoothing γ1(t) at p2, we can obtain a smooth curve which the length is shorter than the
length of γ(t)|[p1,q]. This is contradict to (4). Hence the claim is true.

Combining with the Cheeger-Gromoll splitting theorem [3], we complete the proof of
the lemma. �

Lemma 3.2. The N in lemma 3.1 is non-compact.

Proof. If N is compact, then for any q ∈ M = N ×R1, one has injrad(q) ≤ diam(N). Hence
α(M) = 0. We get a contradiction. �

Proof of theorem 1.1: Since N is non-compact, M must contain another ray starting at
p which is contained in N. Repeating the procedure of lemma 3.1, 3.2 and using Cheeger-
Gromoll splitting theorem again, we have that Mn is isometric to N

′

× R2, N
′

is non-
compact. Step by step, we can conclude that Mn is isometric to Rn.

4. A proof of Theorem 1.2

Lemma 4.1. Let M be a complete non-compact Riemannian manifold. If α(M) > 1,
then for every compact set C (not need connected), we can find q ∈ M such that C ⊂
B(q, injrad(q)).

Proof. Let p be a point of M. Let γ(t) be a ray starting at p. Similar to the proof of lemma
3.1. For any 0 < ε < α(M)−1

2 , there exists r0 such that for all r > r0, we have

injrad(p, r) ≥ (α(M) − ε)r > (1 + ε)r.

Let s = max{d(p, x)|x ∈ C}. For r > max{ s
ε
, r0}, we can choose q ∈ γ(t) such that

injrad(q) ≥ injrad(p, r) > (1 + ε)r,

and
d(p, q) = r = the length of γ(t) from p to q.

So for any x ∈ C, one has

d(q, x) ≤ d(x, p) + d(p, q) < εr + r = (1 + ε)r,

Thus C ⊂ B(q, injrad(q)). �

Corollary 4.2. Let M be a complete non-compact Riemannian manifold. If α(M) > 1,
then M is contractible.

Proof. We only need to showed that the homotopy group πi(M) is trivial for i ≥ 0. Let
f : (S i, s0) → (M, p) be an element of πi(M, p). By lemma 4.1, we know that f (S i) is
contained in some B(q, injrad(q)). Hence it is contractible in M. �

A topological space T is said to be 1-connected at infinity [10]: If for each compact set
C of T , there is a compact set D of T with C ⊂ D ⊂ T , such that T \ D is 1-connected.
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Corollary 4.3. Let Mn(n ≥ 3) be a complete non-compact Riemannian manifold. If
α(M) > 1, then M is 1-connected at infinity.

Proof. Let C be any compact set of M. By lemma 4.1, we can choose a compact ball
B(q, r) such that B(q, r) is diffeomorphic to Euclid unit ball and C ⊂ B(q, r). Since M
is 1-connected, we know that M \ B(q, r) is 1-connected. Hence M is 1-connected at
infinity. �

To prove theorem 1.2, we need the following deep theorem.

Theorem 4.4. Let Mn(n ≥ 3) be a contractible open smooth manifold and 1-connected at
infinity. Then Mn is diffeomorphic to Rn for n , 4 and homeomorphic to R4 for n = 4.

The case n ≥ 5 is due to Stallings [10]. For n = 3, it is a consequence of Perelman’s
solution to Poincare conjecture and a theorem of Edwards [5] (see the theorem 1 and the
third paragraph of [5]). The case n = 4 is due to Freedman [6] (see corollary 1.2 of [6]).
Since Donaldson [4] found a smooth 4-manifold which is homeomorphic to R4 but not
diffeomorphic to R4, we cannot get that Mn is diffeomorphic to R4 for n = 4.

Proof of theorem 1.2: For the dimension ≥ 3, it is a consequence of corollary 4.2,
corollary 4.3 and theorem 4.4. It follows from the Riemann mapping theorem as dimension
= 2.

5. examples and discussions

Now we give examples to show that the α(M) in theorem 1.1 and 1.2 is best possible.

Example 5.1. Let
x2 + y2 − (z tan(θ))2 = 0, z ≥ 0

be the cone in R3. Smoothing the original point p = (0, 0, 0), we get a complete noncom-
pact surface with non-negative Gauss curvature. Clearly it is not isometric to R2.

It is straightforward to compute that

α(M) =

{
sin(πsinθ), if 0 < θ < π

6 ;
1, if π

6 ≤ θ <
π
2 .

Example 5.2. We glue the following two surfaces

x2 + y2 − (z tan(θ))2 = 0, z ≥ ε > 0

and
x2 + y2 − (z tan(θ))2 = 0, z ≤ −ε < 0

along their edges. It is a non-simple connected surface.
One also can easy to check that

α(M) =

{
sin(πsinθ), if 0 < θ < π

6 ;
1, if π

6 ≤ θ <
π
2 .

Finally we propose two interesting questions.
Question 1 For a complete non-compact manifold, can we prove that every geodesic is

a line as long as α(M) > 1?
Question 2 Determining the minimal α0 ∈ (0, 1] such that for any complete non-

compact Riemannian manifold with non-negative Ricci curvature , if α(M) > α0, then
Mn is diffeomorphic to Rn.

Let us compare with the following two classical theorems:
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1) Cheng’s maximal diameter theorem [2]: A complete Riemannian manifold with
RicM ≥ n − 1 and diam = π must be isometric to S n(1).

2) Grove-Shiohama’s generalized sphere theorem [7]: A closed Riemannian manifold
with secM ≥ 1 and diam > π

2 is homeomorphic to a sphere.
Roughly speaking, theorem 1.1 is a non-compact analogue of Cheng’s theorem. Ques-

tion 2 is to seek a non-compact analogue of Grove-Shiohama theorem.
We hope that the α(M) gives more contributions to the research of complete non-

compact Riemannian manifolds.
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