
ar
X

iv
:1

11
2.

46
01

v1
  [

m
at

h.
A

G
] 

 2
0 

D
ec

 2
01

1

FORMAL PSEUDODIFFERENTIAL OPERATORS AND

WITTEN’S r-SPIN NUMBERS

KEFENG LIU, RAVI VAKIL, AND HAO XU

Abstract. We derive an effective recursion for Witten’s r-spin intersection
numbers, using Witten’s conjecture relating r-spin numbers to the Gel’fand-
Dikii hierarchy (Theorem 4.1). Consequences include closed-form descriptions
of the intersection numbers (for example, in terms of gamma functions: Propo-
sitions 5.2 and 5.4, Corollary 5.5). We use these closed-form descriptions to
prove Harer-Zagier’s formula for the Euler characteristic of Mg,1. Finally in
§6, we extend Witten’s series expansion formula for the Landau-Ginzburg po-
tential to study r-spin numbers in the small phase space in genus zero. Our
key tool is the calculus of formal pseudodifferential operators, and is partially
motivated by work of Brézin and Hikami.
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1. Introduction

Motivated by two dimensional gravity, E. Witten proposed two influential con-
jectures relating integrable hierarchies to the intersection theory of moduli spaces
of curves, see [30, 31].

We begin by recalling Witten’s definition of r-spin intersection numbers. Wit-
ten’s original papers [31, 32] remain the best introduction to the mathematical and
physical background of this subject. Other excellent expositions can be found in
[13, 26]. For an introduction to relevant facts about the moduli spaces of curves,
see [29].

Let Σ be a Riemann surface of genus g with marked points x1, x2, . . . , xs. Fix
an integer r ≥ 2. Label each marked point xi by an integer mi, 0 ≤ mi ≤ r − 1.
Consider the line bundle S = K ⊗ O(−

∑s
i=1mixi) over Σ, where K as usual

denotes the canonical line bundle. If 2g − 2−
∑s

i=1mi is divisible by r, then there
1
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are r2g isomorphism classes of line bundles T such that T ⊗r ∼= S. The choice of an
isomorphism class of T determines a finite étale cover M1/r

g,s of Mg,s, the moduli

space of r-spin curves, which comes with a universal curve π : C1/r
g,n → M1/r

g,s , on
which lives a universal bundle, which we also sloppily denote T . A compactification

of M1/r
g,s , denoted by M1/r

g,s , was constructed in [1, 12].

Let V be a vector bundle over M1/r

g,s whose fiber is the dual space to H1(Σ, T ).

More precisely, V := R1π∗T . The top Chern class ctop(V) of this bundle has degree
(g − 1)(r − 2)/r +

∑s
i=1mi/r. The algebro-geometric constructions of ctop(V) can

be found in [4, 24].
We associate with each marked point xi an integer ni ≥ 0. Witten’s r-spin

intersection numbers are defined by

(1) 〈τn1,m1
. . . τns,ms〉g =

1

rg

∫

M1/r
g,s

s
∏

i=1

ψ(xi)
ni · ctop(V),

which is non-zero only if

(2) (r + 1)(2g − 2) + rs = r

s
∑

j=1

nj +

s
∑

j=1

mj .

Fix an integer r ≥ 2. Consider the pseudodifferential operator

(3) Q = Dr +

r−2
∑

i=0

γi(x)D
i, where D =

√
−1√
r

∂

∂x
.

It is easy to see that there is a unique pseudodifferential operator L such that
Lr = Q (see Lemma 3.1),which we denote

Q1/r = D +
∑

i>0

w−iD
−i,

where the coefficients {w−i} are universal differential polynomials in the {γi}.
The Gel’fand–Dikii equations read

i
∂Q

∂tn,m
= [Q

n+(m+1)/r
+ , Q] · cn,m√

r
,

where the constants cn,m are given by

cn,m =
(−1)nrn+1

(m+ 1)(r +m+ 1) · · · (nr +m+ 1)
.

Consider the formal series F in variables tn,m, n ≥ 0 and 0 ≤ m ≤ r − 1,

F (t0,0, t0,1, . . . ) =
∑

dn,m

〈
∏

n,m

τdn,m
n,m 〉

∏

n,m

t
dn,m
n,m

dn,m!
.

Witten conjectured in [31] that the above F is the string solution of the r-
Gel’fand–Dikii hierarchy, namely that F satisfies

(4)
∂2F

∂t0,0∂tn,m
= −cn,mRes(Qn+m+1

r ),
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where Q satisfies the Gel’fand–Dikii equations and t0,0 is identified with x. In
addition, F satisfies the string equation

(5)
∂F

∂t0,0
=

1

2

r−2
∑

i,j=0

δi+j,r−2t0,it0,j +
∞
∑

n=0

r−2
∑

m=0

tn+1,m
∂F

∂tn,m
.

This should be regarded as a boundary condition for F .
When r = 2, the above assertion is the celebrated Witten-Kontsevich theorem

[15], to which there are a number of enlightening proofs. Witten’s conjecture for
any r ≥ 2 has been proved by Faber, Shadrin and Zvonkine [8], building on work
of Givental and Lee [16]. In fact, Witten’s r-spin theory corresponds to Ar−1

singularity in the Landau-Ginzburg theory. Fan, Javis and Ruan [9] have developed
a Gromov-Witten type quantum theory for all non-degenerate quasi-homogeneous
singularities and proved the ADE-integrable hierarchy conjecture of Witten. Chang
and Li [6] have initiated a program to give an algebro-geometric construction of
Landau-Ginzburg theory.

Witten’s constraints (4) (the r-Gel’fand–Dikii equation) and (5) (the string
equation) uniquely determine F . There is much interest in understanding the
structure of r-spin intersection numbers both in mathematics and physics (cf.
[2, 3, 5, 14, 21, 27]).

The paper is organized as follows. In §2, we recall useful identities of r-spin
numbers. In §3, we prove a structure theorem of formal pseudodifferential operators
and use it to derive/define “universal differential polynomials” Wr(z), which will
play a central role in the rest of the paper. In §4, we present a recursive algorithm for
computing Witten’s r-spin numbers for all genera. Consequences include closed-
form descriptions of the one-point r-spin numbers, which we use in §5 to prove
Harer-Zagier’s formula for the Euler characteristic of Mg,1. In §6, we study r-spin
numbers on small phase spaces in genus zero.
Acknowledgements. We thank J. Li, W. Luo, M. Mulase, Y.B. Ruan, and J.
Zhou for helpful conversations. The third author thanks Professor D. Zeilberger
for answering a question on computer proof of combinatorial identities.

2. Review: Witten’s r-spin intersection numbers

In this section, we collect fundamental properties of r-spin intersection numbers
that we will use in this paper. The proof of the these identities can be found in
[31, 13]. The r-spin numbers satisfy the following:

i) If mi = r − 1, for some 1 ≤ i ≤ s, then

〈τn1,m1
· · · τns,ms〉g = 0.

ii) (string equation)

(6) 〈τ0,0
s
∏

i=1

τni,mi〉g =

s
∑

j=1

〈τnj−1,mj

s
∏

i=1
i6=j

τni,mi〉g.

This, along with 〈τ0,0τ0,iτ0,j〉0 = δi+j,r−2, is equivalent to (5).
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iii) (dilaton equation)

(7) 〈τ1,0
s
∏

i=1

τni,mi〉g = (2g − 2 + s)〈
s
∏

i=1

τni,ms〉g.

iv) (genus zero topological recursion relation)

(8)

〈τn1+1,m1
τn2,m2

τn3,m3

s
∏

i=4

τni,mi〉0 =
∑

{4···s}=I
∐

J

r−2
∑

m′,m′′=0

〈τn1,m1

∏

i∈I

τni,miτ0,m′〉0

· ηm′,m′′〈τ0,m′′τn2,m2
τn3,m3

∏

i∈J

τni,mi〉0,

where ηm
′,m′′

= δm′+m′′,r−2.
v) (WDVV equation in genus zero)

(9)
r−2
∑

m′,m′′=0

∏

{5···s}=I
∐

J

〈τn1,m1
τn2,m2

∏

i∈I

τni,miτ0,m′〉0ηm
′,m′′〈τ0,m′′τn3,m3

τn4,m4

∏

i∈J

τni,mi〉0

=
r−2
∑

m′,m′′=0

∏

{5···s}=I
∐

J

〈τn1,m1
τn3,m3

∏

i∈I

τni,miτ0,m′〉0ηm
′,m′′〈τ0,m′′τn2,m2

τn4,m4

∏

i∈J

τni,mi〉0

Witten gives a detailed study of r-spin numbers in genus zero in [31]. As he
points out, the genus zero topological recursion relation can be used to eliminate
all descendent indices (those τi,j with i > 0), so we only need to consider primary
intersection numbers 〈τ0,m1

, · · · τ0,ms〉 on the small phase space. Witten proves
that the WDVV equation uniquely determines primary r-spin intersection numbers
in genus zero. For the reader’s convenience, we record Witten’s work below in a
more explicit form. We will denote 〈τ0,a1

, · · · , τ0,as〉0 by either 〈τa1
, · · · , τas〉 or

〈a1, · · · , as〉. Witten proves that

〈τa1
τa2

τa3
〉 = δa1+a2+a3,r−2,

〈τa1
τa2

τa3
τa4

〉 = 1

r
·min(ai, r − 1− ai).

Theorem 2.1 (Witten, [31]). Let s ≥ 5, a1 ≥ · · · ≥ as and
∑s

j=1 aj = r(s−2)−2.
Define z = a1, y = a2, x = a3 and

m1 = x+ z − (r − 1), m2 = r − 1− z, m3 = y, m4 = z.

Then Witten’s formula can be written as

(10) 〈a1, · · · , as〉 =
〈

x+ y + z − (r − 1), r − 1− z, z,

s
∏

i=4

ai

〉

+
∑

I
∐

J={4,...,s}
I,J 6=∅

r−2
∑

j=0

(

〈

j,m1,m3,
∏

i∈I

ai

〉〈

r − 2− j,m2,m4,
∏

i∈J

ai

〉

−
〈

j,m1,m2,
∏

i∈I

ai

〉〈

r − 2− j,m3,m4,
∏

i∈J

ai

〉

)

.
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This formula recursively computes all primary r-spin numbers.

Proof. The argument is due to Witten. From s ≥ 5, and 0 ≤ ai ≤ r − 2, it is not
difficult to check that 0 ≤ mi ≤ r − 2. By the WDVV equation (9), we have

∑

I
∐

J={4,...,s}

r−2
∑

j=0

〈

j,m1,m3,
∏

i∈I

ai

〉〈

r − 2− j,m2,m4,
∏

i∈J

ai

〉

=
∑

I
∏

J={4,...,s}

r−2
∑

j=0

〈

j,m1,m2,
∏

i∈I

ai

〉〈

r − 2− j,m3,m4,
∏

i∈J

ai

〉

.

Then Witten’s formula follows from the inequalitiesm3+m4 > r−2 and m2+m4 >
r − 2.

For the effectiveness of Witten’s formula (10), it is not difficult to prove that if
z′ ≥ y′ ≥ x′ are the three largest numbers in the index set {x+ y+ z − (r− 1), r−
1 − z, z, a4, . . . , as}, then r − 1 − z is not one of x′, y′, z′ as long as s ≥ 5. On the
other hand, each bracket in the quadratic terms in the right hand side of (10) has
strictly less than s points. �

3. Formal pseudodifferential operators

A formal pseudodifferential operator is an expression of the form

L =

N
∑

i=−∞
ui(x)∂

i, where ∂ =
∂

∂x
.

Its positive and negative parts are defined to be

L+ =

N
∑

i=0

ui(x)∂
i, L− =

−1
∑

i=−∞
ui(x)∂

i.

For k ∈ Z, we define

∂k · f =
∑

j≥0

(

k

j

)

f (j)∂k−j , where f (j) =
∂jf

∂xj
.

We follow the usual convention that
(−a− 1

b

)

=

(

a+ b

b

)

(−1)b, a, b ≥ 0.

In particular, ∂ ·f = f ′+f∂. Note that we reserve the notation ∂f for the derivative
of f . It is straightforward to check that the set of all formal pseudodifferential
operators forms an associative algebra, denoted by ΨDO.

The idea of fractional powers appeared in the work of Gel’fand and Dikii [10].
It plays an important role in integrable systems (cf. [25]). The following lemma is
well-known.

Lemma 3.1. Recall the pseudodifferential operator Q defined in (3)

Q = Dr +

r−2
∑

i=0

γi(x)D
i.
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There exists a unique pseudodifferential operator of the form

Q1/r = D +
∑

i≥0

w−iD
−i,

whose r-th power is Q; and w0 = 0.

Proof. Let Q
1
r = D + w0 + w−1D

−1 + · · · . Then (Q
1
r )r = Dr + rw0D

r−1 + · · · .
Since there is no Dr−1 term on Q, we have w0 = 0. Thus we may write

(Q
1
r )r = Dr + rw−1D

r−2 + (rw−2 +
r(r − 1)Dw−1

2
)Dr−3 + · · · .

In general, we have

rw−i + pi(w−1, · · ·w−i+1) = γr−1−i,

where pi is a differential polynomial of its argument. So w−i can be uniquely
determined recursively as differential polynomials of γi. �

Fix k ≥ 1. Write

Qk/r = Dk +

k−2
∑

i=0

γki D
i +

∞
∑

i=1

γk−iD
−i.

Here we emphasize that throughout this paper, the superscript k in γki never denotes
a power. In particular, we have γri = γi.

Since Q(k+1)/r = Q1/r ·Qk/r, for ℓ ≤ k − 1 we have

(11) γk+1
ℓ = wℓ−k +Dγkℓ + γkℓ−1 +

k−2−ℓ
∑

j=1

w−j

k−2
∑

i=j+ℓ

( −j
i− j − ℓ

)

Di−j−ℓγki .

This identity can be used to determine γk+1
ℓ recursively as differential polynomials

of {w−i}.

Lemma 3.2. With the notation above, if we assign w
(j)
−i = Djw−i the weight

i+ j + 1, then γkℓ is homogeneous of weight k − ℓ.

Proof. Since γ1ℓ = wℓ is of weight 1 − ℓ, the general statement follows from the
equation (11). �

Lemma 3.3. Let [w
(j)
−i ]γ

k
ℓ denote the coefficient of w

(j)
−i in γkℓ . If k ≥ 1, ℓ ≤ k − 2

and 1 ≤ i ≤ k − ℓ− 1, then we have

(12) [Dk−ℓ−i−1w−i]γ
k
ℓ =

(

k

k − ℓ− i

)

.

In particular, [wℓ−k+1]γ
k
ℓ = k and [Dwℓ−k+2]γ

k
ℓ = k(k−1)

2 .

Proof. When k = 1, by definition, γ1ℓ = wℓ for ℓ < 0. The identity (12) obviously
holds in this case. So we apply the recursive equation (11) and use induction on k.

When i = k − ℓ− 1, we have

[wℓ−k+1]γ
k
ℓ = 1 + [wℓ−k+1]γ

k−1
ℓ−1

= 1 + k − 1

= k
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and similarly when i < k − ℓ− 1, we have

[Dk−ℓ−i−1w−i]γ
k
ℓ = [Dk−ℓ−i−2w−i]γ

k−1
ℓ + [Dk−ℓ−i−1w−i]γ

k−1
ℓ−1

=

(

k − 1

k − ℓ− i− 1

)

+

(

k − 1

k − ℓ− i

)

=

(

k

k − ℓ− i

)

as desired. �

Lemma 3.4 (Witten, [31]). With the above notation, γi+1
−1 = Res(Q(i+1)/r), we

can express coefficients γi of Q as differential polynomials in γi+1
−1 , 0 ≤ i ≤ r − 2.

Proof. By Lemmas 3.2 and 3.3, we have

γi+1
−1 = (i + 1)w−1−i + pi(w−1, · · ·w−i)(13)

=
(i + 1)γr−2−i

r
+ p′i(γr−2, · · · γr−1−i),

where pi and p′i are differential polynomials of their arguments. Thus we can

recursively express γi as differential polynomials in γi+1
−1 , 0 ≤ i ≤ r − 2. �

Denote by P (γkℓ ) the sum of monomials in γkℓ that does not contain derivatives
of w−i. Then we have

P (γkℓ ) = [pk−ℓ]

(

1 +
∑

i>0

w−ip
i+1

)k

(14)

= Resp=0

(1 +
∑

i>0 w−ip
i+1)k

pk−ℓ+1
.

Fix an integer r ≥ 2. From the Gel’fand-Dikii equation (4), we have

γm+1
−1 = Res(Q

m+1

r ) = −m+ 1

r
〈〈τ0,0τ0,m〉〉, for 0 ≤ m ≤ r − 2

= (m+ 1)w−m−1 + · · ·
and

γr+1
−1 = Res(Q1+ 1

r ) =
r + 1

r2
〈〈τ0,0τ1,0〉〉(15)

= (r + 1)w−r−1 +
r(r + 1)

2
Dw−r + · · · .

For the first time, we use the fact that Q is a differential operator (i.e. Q− = 0),
which implies that

(16) 0 = γr−1 = r · w−r + · · · and

(17) 0 = γr−2 = r · w−r−1 + · · · .
The leading coefficients of the above equations come from Lemma 3.3.

We first substitute (17) and then (16) into (15) to eliminate w−r−1 and w−r re-
spectively. Next we substitute γr−1

−1 , γ
r−2
−1 , . . . , γ

1
−1 consecutively into (15) to elim-

inate w−r+1, w−r+2, . . . , w−1 successively. Then it is easy to see that γr+1
−1 is now

expressed in terms of differential polynomials of γm+1
−1 , 0 ≤ m ≤ r−2. From now we

on will use S(γr+1
−1 ) to denote this differential polynomial in γm+1

−1 , 0 ≤ m ≤ r − 2
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resulting from substitutions in γr+1
−1 . We will keep the notation γr+1

−1 for the differ-
ential polynomial (15) in w−i.

If we use the notation

(18) z(j)m = − r

m+ 1
· ∂

jγm+1
−1

∂xj
= 〈〈τ j+1

0,0 τ0,m〉〉,

then we have the following structure theorem of formal pseudodifferential operators.

Theorem 3.5. (As discussed above, we may regard S(γr+1
−1 ) as a differential poly-

nomial in zm.) We have

r2

r + 1
S(γr+1

−1 ) =
1

2

r−2
∑

j=0

zjzr−2−j +Wr(z),

where Wr(z) represents the terms containing derivatives of some zm.

Proof. Since (16) is used to eliminate w−r−1 in γr+1
−1 , it is not difficult to see that

the identity of Theorem 3.5 is equivalent to

r2

r + 1
P (γr+1

−1 )− rP (γr−2) =
1

2

r−2
∑

j=0

−r
j + 1

P (γj+1
−1 )

−r
r − 1− j

P (γr−1−j
−1 ).

From equation (14), this is precisely the combinatorial identity shown in the next
proposition. �

Proposition 3.6. Let aj be formal variables and

f(x) = 1 +

∞
∑

j=2

ajx
j ∈ C[[x]]

be a formal series satisfying f(0) = 1 and f ′(0) = 0. Then for any n ≥ 1,

(19)
[xn+2]fn+1

n+ 1
=

1

2

n−1
∑

j=1

[xj+1]f j

j
· [x

n−j+1]fn−j

n− j
+

[xn+2]fn

n
,

where [xn]fk denotes the coefficient of xn in the series expansion of fk.

The proof of Proposition 3.6 along with other interesting equivalent formulations
can be found in Appendix A.

Example 3.7. We illustrate the above procedure explicitly for r = 4. Let Q1/4 =
D +

∑

i>0 w−iD
−i. Then

−1

4
〈〈τ0,0τ0,0〉〉 = Res(Q1/4) = w−1,

−1

2
〈〈τ0,0τ0,1〉〉 = Res(Q2/4) = 2w−2 +Dw−1,

−3

4
〈〈τ0,0τ0,2〉〉 = Res(Q3/4) = 3w−3 +D2w−1 + 3Dw−2 + 3w2

−1.

We also have

0 = Res(Q) =4w−4 +D3w−1 + 4D2w−2 + 6Dw−3 + 6w−1Dw−1 + 12w−1w−2,

0 = γ4−2 =4w−5 + 6Dw−4 + 4D2w−3 +D3w−2 + 6w−1Dw−2 − (Dw−1)
2

+ 12w−1w−3 + 6w2
−2 + 4w3

−1 + 2w−1D
2w−1.
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Substituting the above two groups of identities into

γ5−1 =
5

16
〈〈τ0,0τ1,0〉〉 = Res(Q5/4)

= 5w−5 +D4w−1 + 5D3w−2 + 10D2w−3 + 10Dw−4 + 5(Dw−1)
2 + 10w−1D

2w−1

+ 10w2
−2 + 10w3

−1 + 20w−1Dw−2 + 10w−2Dw−1 + 20w−1w−3

and using D =
√
−1
2

∂
∂x , we get

16

5
γ5−1 = z0z2 +

1

2
z21 +

1

4
z
(2)
2 +

1

48
z0z

(2)
0 +

1

32
z′0z

′
0 +

1

480
z
(4)
0 .

If we substitute the zm using equation (18), we get exactly the recursion formula
(25).

The universal differential polynomial Wr(z) in z0, . . . , zr−2 is particularly inter-
esting in view of Theorem 3.5. We present Wr(z) for 2 ≤ r ≤ 6 below:

W2(z) =
1

12
z
(2)
0 , W3(z) =

1

6
z
(2)
1 ,

W4(z) =
1

4
z
(2)
2 +

1

48
z0z

(2)
0 +

1

32
z′0z

′
0 +

1

480
z
(4)
0 ,

W5(z) =
1

10
z′0z

′
1 +

1

30
z0z

(2)
1 +

1

30
z
(2)
0 z1 +

1

3
z
(2)
3 +

1

150
z
(4)
1 ,

W6(z) =
5

864
z
(3)
0 z′0 +

1

144
z0(z

′
0)

2 +
1

8
z′2z

′
0 +

1

24
z0z

(2)
2 +

1

432
z20z

(2)
0 +

1

24
z2z

(2)
0

+
1

72
z
(4)
2 +

1

9072
z
(6)
0 +

11

2592
(z

(2)
0 )2 +

1

12
(z′1)

2 +
1

18
z1z

(2)
1 +

1

720
z0z

(4)
0 +

5

12
z
(2)
4 .

We now study their coefficients.

Proposition 3.8. We have [z
(2)
r−2]Wr(z) =

r−1
12 .

Proof. From equation (18) and D =
√−1√

r
∂
∂x , we have

∂2zr−2

∂x2
= − r

r − 1
· ∂

2γr−1
−1

∂x2
=

r2

r − 1
D2γr−1

−1 .

So from Theorem 3.5, we get

(20) [z
(2)
r−2]Wr(z) =

r − 1

r + 1
[D2γr−1

−1 ]S(γr+1
−1 ).

Recall that in γr+1
−1 = (r+1)w−r−1+

r(r+1)
2 Dw−r+· · · , we first substitute w−r−1

using γr−2 and then substitute w−r using γr−1, see equations (16), (17). Then γr+1
−1

becomes a differential polynomial in w−1, . . . , w−r+1. We need to take care that
when substituting w−r−1 by γr−2, a new term of Dw−r will appear. With the above

substitutions in mind and note that γr−1
−1 = (r − 1)w−r+1 + · · · , we may apply

Lemma 3.3 to get

r − 1

r + 1
[D2γr−1

−1 ]S(γr+1
−1 ) =

1

r + 1
[D2w−r+1]

(

γr+1
−1 − (r + 1) · 1

r
γr−2

)

+
1

r + 1
[D2w−r+1]

((

r + 1

r
[Dw−r ]γ

r
−2 −

(r + 1)r

2

)

· 1
r
Dγr−1

)
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=
1

r + 1

(

(r + 1)r(r − 1)

3!
− r + 1

r
· r(r − 1)(r − 2)

3!

)

+
1

r + 1

(

r + 1

r
[Dw−r]γ

r
−2 −

(r + 1)r

2

)

· 1
r
[Dw−r+1]γ

r
−1

=
r − 1

3
+

−1

2r
[Dw−r+1]γ

r
−1 =

r − 1

12
.

From (20), we get the desired result. �

Corollary 3.9 (Witten, [31]). We have the following identity for r-spin numbers:

〈τ1,0〉1 =
r − 1

24
.

Proof. From the dilaton equation, 〈τ1,0τ0,0τ2,0〉1 = 2〈τ1,0〉1. On the other hand,
from Theorems 4.1 and 3.5, we have

〈τ1,0τ0,0τ2,0〉1 = [z
(2)
r−2]Wr(z)〈τ30,0τ0,r−2τ2,0〉0

=
r − 1

12
.

In the right hand side of the first equation, all other terms vanish for dimensional
reason (see (22), (23)). Hence 〈τ1,0〉1 = r−1

24 . �

Proposition 3.8 generalizes as follows.

Proposition 3.10. Suppose 2 ≤ i ≤ r. If i is odd, then [z
(i)
r−i]Wr(z) = 0. If i is

even (2k, say), then

[z
(2k)
r−2k]Wr(z) =

(−1)k+1(r + 1− 2k)

rk(r + 1)

(

r + 1

2k

)

B2k,

where B2k are Bernoulli numbers.

See Appendix B for a proof. By similar arguments, we have the following fact,
which means that the genera in the right-hand side of (21) are integers (see (23)).
We omit the details.

Proposition 3.11. The order of derivatives in each monomial of Wr(z) is an even
number.

4. An algorithm for computing Witten’s r-spin numbers

Let ηij = δi+j,r−2 and

〈〈τn1,m1
. . . τns,ms〉〉 =

∂

∂tn1,m1

. . .
∂

∂tns,ms

F (t0,0, t0,1, . . . ).

The main result of this paper is the following simple and effective recursion
formula for computing all r-spin intersection numbers.

Theorem 4.1. For fixed r ≥ 2, we have

(21) 〈〈τ1,0τ0,0〉〉g =
1

2
〈〈τ0,0τ0,m′〉〉g′ηm

′m′′〈〈τ0,m′′τ0,0〉〉g−g′ + Lower(r),

where Lower(r) is a explicit sum of products of 〈〈. . . 〉〉 with genera strictly lower
than g.
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Proof. Since r2

r+1γ
r+1
−1 = 〈〈τ0,0τ1,0〉〉, from Theorem 3.5, we need only prove that

those monomials in Wr(z) must have genera strictly less than the left hand side.
Let us compare 〈〈τ0,0τ1,0〉〉g and

∏

k

z
(jk)
ik

=
∏

k

〈〈τ jk+1
0,0 τ0,ik〉〉gk .

Since the weight of γr+1
−1 is r + 2 and the weight of z

(j)
m is m+ j + 2, we have

(22)
∑

k

(ik + jk + 2) = r + 2.

Combining with the dimensional constraints (2), we have

(23) (2r + 2)

(

g −
∑

k

gk

)

= (r + 1)
∑

k

jk.

So g =
∑

k gk if and only if all jk = 0. �

Remark 4.2. Following a suggestion of Witten [31, p.248], Shadrin [26] derived
an expansion of 〈〈τn,mτ20,0〉〉 when r = 3 and used it to compute some special r-spin
numbers. Because of a lack of an elegant structural description, Shadrin’s formula
(and its generalization to higher r) results in a much more complicated algorithm
than (21).

For example, when r = 3, (21) gives

(24) 〈〈τ1,0τ0,0〉〉g = 〈〈τ0,0τ0,1〉〉g′ 〈〈τ20,0〉〉g−g′ +
1

6
〈〈τ30,0τ0,1〉〉g−1.

When r = 4, we have

(25) 〈〈τ1,0τ0,0〉〉g = 〈〈τ0,0τ0,2〉〉g′〈〈τ20,0〉〉g−g′ +
1

2
〈〈τ0,0τ0,1〉〉g′ 〈〈τ0,0τ0,1〉〉g−g′

+
1

4
〈〈τ30,0τ0,2〉〉g−1 +

1

48
〈〈τ20,0〉〉g′〈〈τ40,0〉〉g−1−g′ +

1

32
〈〈τ30,0〉〉g′〈〈τ30,0〉〉g−1−g′

+
1

480
〈〈τ60,0〉〉g−2.

Now we show how to use Theorem 1.1 to compute intersection numbers. It
consists of three steps.

(i) When g = 0, these intersection numbers can be computed by WDVV equa-
tions, using Witten’s algorithm [31], as discussed in §2.

(ii) Assume now that g ≥ 1. For an intersection number containing a punc-
ture operator 〈τ0,0τn1,m1

. . . τns,ms〉g, we have from Theorem 1.1 and the dilaton
equation

(26) (2g − 1 + s− a)〈τ0,0τn1,m1
. . . τns,ms〉g

=
1

2

∼
∑

s=I
∐

J

〈τ0,0τ0,m′

∏

i∈I

τni,mi〉g′ηm
′m′′〈τ0,m′′τ0,0

∏

i∈J

τni,mi〉g−g′ + Lower(r)

where a = #{i | ni = 0}. Note that in the summation of the right-hand side, we
rule out the cases I = {i1} and ni1 = 0 or J = {i1} and ni1 = 0. Then the right
hand side follows by induction on genera or numbers of marked points.
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(iii) For any intersection number 〈τn1,m1
. . . τns,ms〉g with n1 ≥ n2 ≥ · · · ≥ ns,

we apply the string equation first:

〈τn1,m1
. . . τns,ms〉g = 〈τ0,0τn1+1,m1

. . . τns,ms〉g−
s
∑

j=2

〈τn1+1,m1
τnj−1,mj

∏

i6=1,j

τni,mi〉g

The first term in the right hand side follows from step (ii) and the second term
follows by induction on the maximum descendent index. This ends the algorithm.

The results of the above algorithm agree with the table of r-spin numbers when
r = 3 and 4 given in [18]. Some r-spin numbers when r = 5 are presented in Table
1.

Table 1. Witten’s r-spin numbers (r = 5)

〈τ1,0〉1 1
6 〈τ0,2τ1,3〉1 1

60 〈τ0,1τ0,1τ2,3〉1 1
30

〈τ3,2〉2 11
3600 〈τ0,3τ1,2〉1 1

60 〈τ0,1τ0,2τ2,2〉1 1
20

〈τ8,1〉4 341
25920000 〈τ0,1τ4,1〉2 7

1200 〈τ0,1τ0,3τ2,1〉1 1
20

〈τ10,3〉5 161
777600000 〈τ0,2τ4,0〉2 7

1200 〈τ0,2τ0,2τ2,1〉1 1
15

〈τ13,0〉6 3397×10−6

93312 〈τ1,1τ3,1〉2 17
1200 〈τ0,2τ0,3τ2,0〉1 1

30

〈τ15,2〉7 3421×10−7

419904 〈τ1,2τ3,0〉2 47
3600 〈τ0,1τ0,1τ5,0〉2 31

3600

〈τ20,1〉9 1670581×10−9

846526464 〈τ2,0τ2,2〉2 59
3600 〈τ0,1τ0,3τ4,3〉2 7

6000

〈τ22,3〉10 2660573×10−12

1088391168 〈τ2,1τ2,1〉2 9
400 〈τ0,2τ0,2τ4,3〉2 1

500

〈τ25,0〉11 21324511×10−12

5986151424 〈τ3,2τ3,2〉3 697
324000 〈τ0,2τ0,3τ4,2〉2 23

9000

〈τ27,2〉12 87572287×10−14

13060694016 〈τ3,1τ3,3〉3 1111
756000 〈τ0,3τ0,3τ4,1〉2 1

500

〈τ32,1〉14 7787064791×10−16

6582589784064 〈τ2,1τ4,3〉3 803
756000 〈τ0,1τ1,1τ4,0〉2 17

600

〈τ34,3〉15 538156369×10−17

4231664861184 〈τ2,2τ4,2〉3 557
324000 〈τ1,1τ1,1τ3,0〉2 41

600

The Boussinesq hierarchy (r = 3).
For the remainder of this section, let r = 3. The 3-KdV hierarchy is also called

the Boussinesq hierarchy. We see from (24), (25) that compared with the recursive
formula for 3-spin intersection numbers, the recursive formula for r-spin numbers
are much more complicated for r ≥ 4.

The following closed formula holds for intersection numbers when r = 3. This
generalizes the special case k = 0 obtained by Brézin and Hikami in [2].

Proposition 4.3. Let k ≥ 0 and 0 ≤ j ≤ 1. Then

〈τk0,1τ 8g+2k−5−j
3

,j〉g =
1

12gg!

Γ( g+k+1
3 )

Γ(2−j
3 )

,

where Γ(z) is the gamma function.

Proof. We first prove the identity in g = 0 by induction on k, namely

〈τk0,1τ 2k−5−j
3

,j〉0 =
Γ(k+1

3 )

Γ(2−j
3 )

.
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When k = 3, 4, 5 respectively, we readily verify

〈τ30,1τ0,1〉0 =
1

3
, 〈τ40,1τ1,0〉0 =

2

3
, 〈τ50,1τ1,2〉0 = 0.

Note the last identity is consistent with the fact that Γ(z) has a simple pole at
z = 0.

Thus we may assume k ≥ 6. We apply the genus zero topological recursion
relation (8) to obtain:

〈τk0,1τ 2k−5−j
3

,j〉0 =

k−2
∑

i=0

(

k − 2

i

)

〈τ 2k−8−j
3

,jτ0,0τ
i
0,1〉0〈τ30,1τk−2−i

0,1 〉0

= (k − 2)〈τ 2k−8−j
3

,jτ0,0τ
k−3
0,1 〉0〈τ30,1τ0,1〉0

=
k − 2

3
· Γ(

k−2
3 )

Γ(2−j
3 )

=
Γ(k+1

3 )

Γ(2−j
3 )

.

The second equation comes from dimensional constraints. Thus we have proved
Proposition 4.3 when g = 0.

We next assume g ≥ 1 and proceed by induction on g. We have

〈τ1,0τ0,0τk0,1τ 8g+2k−2−j
3

,j〉g = k〈τ0,0τk0,1τ 8g+2k−2−j
3

,j〉g〈τ20,0τ0,1〉0+
1

6
〈τ30,0τk+1

0,1 τ 8g+2k−2−j
3

,j〉g−1.

Applying the dilaton equation (7) and the string equation (6) to the above iden-
tity and combining the first term in the right hand side with the left hand side, we
get

〈τk0,1τ 8g+2k−5−j
3

,j〉g =
1

12g
〈τk+1

0,1 τ 8g+2k−11−j
3

,j〉g−1

=
1

12g
· 1

12g−1(g − 1)!

Γ
(

(g−1)+(k+1)+1
3

)

Γ(2−j
3 )

=
1

12gg!

Γ( g+k+1
3 )

Γ(2−j
3 )

as desired. �

We now show that the 3-spin numbers in genus zero in general do not have
clean closed formulas in contrast to the case of r = 2. We will compute intersection
numbers of the form 〈τk0,1τ ℓ2,0〉0, which is nonzero only if k ≡ 1 mod 3 and 2k−3ℓ =
8.

We will use the temporary notation am = 〈τ3m+1
0,1 τ2m−2

2,0 〉0, for m ≥ 1. By

applying (26) to

〈τ1,0τ0,0τ3m+1
0,1 τ2m−1

2,0 〉0 = (2m− 1)(5m− 3)am

and using the dilaton and string equations, it is not difficult to obtain

(27) (2m− 2)(2m− 1)(5m− 3)am

=

m−1
∑

i=1

(

3m+ 1

3i+ 1

)(

2m− 1

2i

)

2i(2i−1)(5i−1)(5i−3)(2m−2i−1)(5m−5i−3)aiam−i.
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For example, we recursively find a1 = 〈τ40,1〉0 = 1
3 , a2 = 80

9 , a3 = 179200
9 , a4 =

1281280000
3 .

To simplify the above equation, we substitute

bm =
(5m− 3)am

(3m+ 1)!(2m− 2)!
.

For example, b1 = 1
36 , b2 = 1

126 , b3 = 2
792 , b4 = 85

52488 . Then (27) becomes

(28) (2m− 2)bm =

m−1
∑

i=1

(5i− 1)(3m− 3i+ 1)bibm−i.

In terms of the generating function y(x) =
∑∞

i=1 bix
i, we can rewrite (28) as

15x2
(

dy

dx

)2

+ (2xy − 2x)
dy

dx
− y2 + 2y = 0,

from which we get a first order ODE

dy

dx
=

1− y −
√

1 + 16y2 − 32y

15x
.

Integrating both sides of

15dy

1− y −
√

1 + 16y2 − 32y
=
dx

x
,

we get

x = exp

(

∫

15dy

1− y −
√

1 + 16y2 − 32y
+ C

)

= exp

(

ln y + ln 36− 8y − 32y2 − 992

3
y3 − 4864y4 +O(y5)

)

= 36y − 288y2 − 5760y4 − 92160y5 +O(y6).

The constant of integration C is uniquely determined by the initial value b1 = 1
36 .

Thus bi can also be computed using the Lagrange inversion formula (see Lemma
A.1).

bi =
1

i
Resy=0

(

1

x(y)i

)

, i ≥ 1.

We note that the above derivation becomes more difficult if we instead use the
genus zero topological recursion relation (8) to compute 〈τk0,1τ ℓ2,0〉0.

5. The Euler characteristic of Mg,1

We now give a proof for Harer and Zagier’s formula of the Euler characteristic
of the moduli space of curves:

Theorem 5.1 (Harer-Zagier [11], see also [3, 15, 20, 22, 23]). Let g ≥ 1. Then

χ(Mg,1) = −B2g

2g
.

For example, χ(M1,1) = − 1
12 , χ(M2,1) =

1
120 , χ(M3,1) = − 1

252 .
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The early proofs of Harer-Zagier’s formula [15, 20, 22, 23] all exploit the cell
decomposition of decorated moduli space in terms of Ribbon graphs. There is
an intriguing fact from Witten’s construction [32] that the r → −1 limit of r-spin
numbers actually gives χ(Mg,1). The main difficulty is to derive an explicit formula
for the one-point r-spin numbers. This was obtained recently by Brezin and Hikami
[3] using rather complicated techniques from matrix integrals. We will give a proof
using only properties of ΨDO. The proof will conclude just after Lemma 5.3.

We will use the case s = 1, and general r. Our discussion so far has assumed
r ≥ 2. However, for any r, there is a generalized Kontsevich (Airy) matrix model,
and under the limit r → −1, the model gives a logarithmic potential corresponding
to the Penner matrix model, whose asymptotic expansion gives the generating
function of the Euler characteristic of Mg,1, [23]. (We do not understand how to
make [32, (3.55-3.57)] precise, so we instead refer the reader to [2, §6] or [19] for
a complete discussion.) Thus by taking r = −1 in our formulas (interpreted as
analytic continuation), we may compute χ(Mg,1), as follows. Setting s = 1 in (1),
we have

(29) lim
r→−1

〈τn,m〉g
∣

∣

∣

m=0
= χ(Mg,1),

where χ(Mg,1) is the orbifold Euler characteristic of Mg,1. We now proceed to
compute the left side of (29), thereby computing χ(Mg,1).

By the Gel’fand-Dikii equation (4), in order to compute 〈τ0,0τn,m〉g, we need to

compute the coefficient of (Dγr−1
−1 )2g in Res(Qn+(m+1)/r). Note that

(30) γr−1
−1 = −r − 2

r
〈〈τ0,0τ0,r−2〉〉.

By Lemma 3.4 and (13), we know that when expressing γi (0 ≤ i ≤ r − 2) in
terms of γi+1

−1 (0 ≤ i ≤ r − 2), only γ0 contains the term γr−1
−1 , with

(31) γ0 =
r

r − 2
γr−1
−1 + p(γ1−1, . . . , γ

r−2
−1 ),

where p is a differential polynomial in its arguments.
If we replace γ0 by x and denote by L = Dr + x, it is not difficult to see from

(30) and (31) that

(32) 〈τ0,0τn,m〉g =
(−1)gcn,m

rg
× the constant term in Res(Ln+(m+1)/r).

There exists a pseudodifferential operator K ∈ ΨDO of the form

K = 1 +

∞
∑

i=1

bi(x)D
−i,

such that KLK−1 = Dr.
We can determine K by comparing the coefficients at both sides of

(33) KL = DrK.

The first few terms are

(34) K =
x2

2r
D−(r−1) +

(1− r)x

2r
D−r +

x4

8r2
D−(2r−2) +

7(1− r)x3

12r2
D−(2r−1)

+
(r − 1)(7r − 3)x2

8r2
D−2r +

(1− r)(10r2 − 3r − 1)x

24r2
D−(2r+1) + · · · .
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In general, we have

K = 1 +

∞
∑

u=1

2u
∑

i=1

bur+u−iD
−(ur+u−i),

where bur+u−i = au,ix
i with au,i rational functions of r. In particular, from (34),

we have

a1,1 =
1− r

2r
, a1,2 =

1

2r
.

Given u ≥ 1 and 1 ≤ i ≤ 2u, if we equate the coefficient of D−u+i−1−(u−1)r in
(33), we get

(35) au−1,i−2 +
(

i− u− (u − 1)r
)

au−1,i−1 =

2u−i
∑

k=0

(

r

k + 1

) k
∏

j=0

(i+ j) · au,i+k.

By a tedious but straightforward calculation, we find the recursion

(36) i! au,i =

2u−2
∑

j=0

au−1,j

(

(j + 1)! sj+2−i + (j − (u− 1)(r + 1))j! sj+1−i

)

,

where sk is the coefficient of xk in

x

(1 + x)r − 1
=

1

r +
(

r
2

)

x+
(

r
3

)

x2 + · · · .

For convenience, let eu,i = i! au,i. Then (36) becomes

(37) eu,i =

2u−2
∑

j=1

eu−1,j

(

(j + 1)sj+2−i + (j − (u− 1)(r + 1))sj+1−i

)

,

with initial values

e1,1 = s1 =
1− r

2r
, e1,2 = s0 =

1

r
.

From the recursion, we see eu,i is nonzero only when 1 ≤ i ≤ 2u.

Proposition 5.2. Let g ≥ 0. We have the following formula for one-point r-spin
numbers

(38) 〈τn,m〉g =
(−1)gΓ(−2g − 2g−1

r )

rgΓ(1− m+1
r )

E2g,

where

Eu =

2u
∑

i=1

(

u(r + 1)− 1

i

)

eu,i.

Proof. Since L = K−1DrK, we have Ln+1+(m+1)/r = K−1D(n+1)r+m+1K. From
〈τn,m〉g = 〈τ0,0τn+1,m〉g and (n + 1)r +m + 1 = 2g(r + 1) − 1, it is not difficult

to see that the constant term in Res(Ln+1+(m+1)/r) equals the constant term in
ResD(n+1)r+m+1K, which is E2g. Finally (38) follows from (32) and

cn+1,m =
(−1)n+1rn+2

(m+ 1)(r +m+ 1) · · · ((n+ 1)r +m+ 1)

=
Γ(−n− 1− m+1

r )

Γ(1 − m+1
r )

=
Γ(−2g − 2g−1

r )

Γ(1− m+1
r )

.
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�

Setting m = 0 and taking r → −1 in the right-hand side of (38), we get

lim
r→−1

Γ

(

−2g − 2g − 1

r

)

E2g,

which is computed by applying L’Hôpital’s Rule to the following Lemma.

Lemma 5.3. For any integer u ≥ 1, we have

lim
r→−1

Γ(−u− u− 1

r
)Eu = −Bu

u
.

Proof. Since the residue of Γ(z) at z = −1 is −1, we have

(39) lim
r→−1

d

dr

(

1

Γ(−u− u−1
r )

)

= 1− u.

We also have

(40)
d

dr

∣

∣

∣

r=−1

(

u(r + 1)− 1

i

)

= (−1)i+1uHi,

where Hi =
∑

1≤k≤i
1
k is the ith harmonic number.

Setting i = 1 in (35), we get

0 =

2u
∑

k=1

(

r

k

)

eu,k,

which, after taking derivative with respect to r, becomes

(41) 0 =

2u
∑

k=1

(

(−1)k+1Hkeu,k(−1) + (−1)ke′u,k(−1)
)

.

From (40) and (41), we have

lim
r→−1

Eu =

2u
∑

k=1

(

(−1)k+1uHkeu,k(−1) + (−1)ke′u,k(−1)
)

(42)

= (u− 1)

2u
∑

k=1

(−1)k+1uHkeu,k(−1).

By (39) and (42), we see that Lemma 5.3 is equivalent to

(43)
2u
∑

k=1

(−1)k+1Hkeu,k(−1) =
Bu

u
, u ≥ 2.

Setting r = −1 in (37), we get

(44) eu,i(−1) = (1− i)eu−1,i−2(−1) + (1− 2i)eu−1,i−1(−1)− ieu−1,i(−1).

Here we use s0(−1) = s1(−1) = −1 and sk(−1) = 0, k > 1.
If we substitute (44) into (43), we get

(45)

2u−2
∑

k=1

(−1)k

(k + 1)(k + 2)
eu−1,k(−1) =

Bu

u
, u ≥ 2.
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By substituting (44) successively into (45), we get

(46)

2(u−j)
∑

k=0

(−1)k+1fj(k)eu−j,k(−1) =
Bu

u
, 1 ≤ j ≤ u,

where fj, j ≥ 1 are given by the recursion

(47) fj+1(k) = −(k + 1)fj(k + 2) + (2k + 1)fj(k + 1)− kfj(k)

starting with f1(k) =
−1

(k+1)(k+2) .

Let e0,i = δ0i, which is compatible with the recursion (44). Then (45) (hence
(43)) is equivalent to

(48) fu(0) =
−Bu

u
, u ≥ 2.

We leave the proof to the Appendix C. �

From (29), (38) and Lemma 5.3, we recover the Harer-Zagier formula (Theo-
rem 5.1).

Now we make a connection to the matrix integral approach of Brézin and Hikami
[3]. First we note that a refined argument in the proof of Lemma 5.3 will give the
following identity of generating functions.

(49) Γ

(

1

r

)

+

∞
∑

u=1

EuΓ

(

−u− u− 1

r

)

yu

= r

∫ ∞

0

exp

(

− 1

(r + 1)y

[

(

x+
y

2

)r+1

−
(

x− y

2

)r+1
])

dx.

The integral expression of the right-hand side appeared in [3].
Consider the semigroup N∞ of sequences d = (d1, d2, . . . ) where di are nonneg-

ative integers and di = 0 for sufficiently large i. For d ∈ N∞, we define

(50) |d| :=
∑

i≥1

idi, ||d|| :=
∑

i≥1

di, d! :=
∏

i≥1

di!.

In the following exposition, we set ti = −
(

r
2i

)

/((2i+ 1)4i), i ≥ 1.

Proposition 5.4. Let g ≥ 0. We have the following closed formula for one-point
r-spin numbers

〈τn,m〉g =
(−1)g

rgΓ
(

1− 1+m
r

)

∑

|d|=g

Γ

(

||d|| − 2g − 1

r

)

∏

i≥1 t
di

i

d!
.

Proof. By expanding the right-hand side of (49)

− 1

(r + 1)y

(

(

x+
y

2

)r+1

−
(

x− y

2

)r+1
)

= −xr −
∑

i≥1

tiy
2ixr−2i

and using

Γ(z) = r

∫ ∞

0

xrz−1 exp(−xr)dx,

we see that Proposition 5.4 follows from (38). �
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Corollary 5.5. Let k ≥ 0 and g ≥ 0. We have the following closed formula for
r-spin numbers

〈τk0,1τn,m〉g =
(−1)g

rgΓ(1− 1+m
r )

∑

|d|=g

Γ

(

||d|| − 2g − k − 1

r

)

∏

i≥1 t
di

i

d!
.

This follows from the same inductive argument as in the proof of Proposition
4.3.

Remark 5.6. For r-spin numbers, we do not have the analogue of the divisor
equation as in Gromov-Witten theory. But the identity of Proposition 5.4 suggests
that some form of the “divisor equation” may still exist for r-spin numbers.

Corollary 5.7. Let g ≥ 1. Setting r = −1, m = 0 in the right-hand side of
Proposition 5.4, we get

∑

|d|=g

Γ(||d||+ 2g − 1)
(−1)||d||

d!
∏

i≥1((2i+ 1)4i)di
= −B2g

2g
.

Proof. We follow the method used [3, §3].
Letting r → −1 in the right-hand of (49) and applying L’Hôpital’s Rule, we get

RHS = −
∫ ∞

0

(

x− y
2

x+ y
2

)1/y

dx,

which is the generating function of the left-hand side of Corollary 5.7.
Making the change of variables

x− y
2

x+ y
2

= e−z, i.e. x =
y

2

(

1 + ez

1− ez

)

.

we have

RHS = −
∫ ∞

0

e−z/y −ye−z

(1 − e−z)2
dz(51)

= −
∫ ∞

0

e−z/y 1

1− e−z
dz(52)

= −y
∫ ∞

0

e−tdt
1

1 − e−yt
(53)

= −
∞
∑

k=1

Bk

k
yk.(54)

Here (52) follows from

d

dz

(

e−z/y

1− e−z

)

=
−e−z/y

y(1− e−z)
+

−e−ze−z/y

(1− e−z)2

and (54) follows from

1

1− e−t
=

∞
∑

k=0

Bk
tk−1

k!
.

This completes the proof. �
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6. Small phase space in genus zero

In this section, we extend Witten’s exposition in [31]. We first reorganize Wit-
ten’s argument and highlight important relevant results of Witten for the reader’s
convenience. We then prove a full series expansion formula for the Landau-Ginzburg
potential W (p, x) in the small phase space (tn,m = 0, n > 0) of genus zero.

For dimensional reasons (equation (2)), a primary intersection number 〈τ0,m1
· · · τ0,ms〉g

can be nonzero only when g = 0. Furthermore, for each r, there are only finite
number of nonzero primary intersection numbers 〈τ0,m1

· · · τ0,ms〉0, since we have
r(s− 2)− 2 = m1 + · · ·+ms ≤ (r − 2)s (so in particular s ≤ r + 1).

As observed by Witten, the genus zero Gel’fand-Dikii equation is obtained by
replacing the differential operator Q by a function

W (p, x) = pr +

r−2
∑

i=0

ui(x)p
i

and replacing commutators by Poisson brackets

{A,B} =
∂A

∂p

∂B

∂x
− ∂A

∂x

∂B

∂p
.

So in genus zero, the Gel’fand-Dikii equations reduce to

∂W

∂tn,m
=
cn,m
r

{Wn+(m+1)/r
+ ,W},

where cn,m is the same constant defined in §1
Lemma 6.1 (Witten, [31]). On the small phase space, we have

∂F

∂tm
=

r2

(m+ 1)(r +m+ 1)
Res(W 1+(m+1)/r).

Proof. A special case of Witten’s conjecture is

∂2F

∂t0,0∂t1,m
=

r2

(m+ 1)(r +m+ 1)
Res(W 1+(m+1)/r).

The string equation implies that on small phase space, we actually have

∂2F

∂t0.0∂t1,m
=

∂F

∂t0,m
.

The desired equation follows. �

Below, all of our computations will be done entirely on the small phase space
(tn,m = 0, n > 0) and we set tm = t0,m and τm = τ0,m.

Lemma 6.2 (Witten, [31]). For 0 ≤ m ≤ r − 2, we have

∂W

∂tm
= − 1

m+ 1

∂

∂p
W

(m+1)/r
+ .

Proof. A special case of Witten’s conjecture is

(55)
∂2F

∂t0∂tm
=

−r
m+ 1

Res(W (m+1)/r).

By (13) in the proof of Lemma 3.4 (the differential polynomials p, p′ there should
be replaced by plain polynomials of their arguments), we can use equation (55) to
express the coefficients ui of W as differential polynomials in ∂2F/∂t0∂tm. Hence
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W can be regarded as a function in p, t0, . . . , tm. If we set all tm = 0, then the left
hand side of (55) is obviously zero for dimensional reasons, so all ui = 0 by Lemma
3.4. Thus W = pr when all tm = 0. We then get the constant term of W .

Differentiating (55) with respect to x = t0, we get

(56) δm,r−2 = − r

m+ 1

∂

∂x
Res(W (m+1)/r).

Since ∂W/∂x is a polynomial in p of degree at most r − 2, if this polynomial is of
degree k, then from (13) in the proof of Lemma 3.4, the right hand side of (56) is
non-zero for m = r − 2− k. Thus k = 0 and

∂W

∂x
=
∂u0
∂x

=
r

r − 1

∂

∂x
Res(W

r−1

r ) = −1.

From this and ∂ui/∂x = 0 when 1 ≤ i ≤ r − 2, we have for 0 ≤ m ≤ r − 2,

∂

∂x
W

(m+1)/r
+ = 0,

since the coefficients of W
(m+1)/r
+ do not contain u0. This follows from a weight

count, since by our convention (see Lemma 3.2),W
(m+1)/r
+ is homogeneous of weight

m+ 1 ≤ r − 1, while the weight of ui is r − i. �

Theorem 6.3 (Witten, [31]). For 0 ≤ m ≤ r − 2, define φm = − ∂W
∂tm

. Then

∂3F

∂tj∂tm∂ts
= r · Res

{

φjφmφs
∂pW

}

.

Now we can state our new results: the full series expansion for W in t0, . . . , tm,
extending Witten’s computation up to linear terms [31].

Theorem 6.4. We have the following series expansion for W :

W = pr +
r−2
∑

k=0

pk
∞
∑

n=1

(−1)n

n! · rn−1

∑

v1+···+vn=(n−1)r+k

(k + n− 1)!

k!
tv1 · · · tvn

= pr +

r−2
∑

k=0

pk

(

−tk +
1

2! · r
∑

u+v=r+k

(k + 1)tutv

− 1

3! · r2
∑

u+v+w=2r+k

(k + 1)(k + 2)tutvtw + · · ·
)

Proof. We can compute the degree n term of W
(m+1)/r
+ from terms of W up to

degree n. Then we use Lemma 6.2 to compute the degree n + 1 term of W from

the degree n term of W
(m+1)/r
+ .

W
(m+1)/r
+ = pm+1 − m+ 1

r

∑

u≥r−m−1

tup
m+u−r+1

+
m+ 1

2! · r2
∑

u+v≥2r−m−1

(m+ u+ v + 2− 2r)tutvp
m+u+v−2r+1 + · · ·
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= pm+1 + (m+ 1)

∞
∑

n=1

(−1)n

n! · rn
∑

v1+···+vn≥nr−m−1

(m+
n
∑

i=1

vi + n− nr)!

(m+
n
∑

i=1

vi + 1− nr)!

× tvi · · · tvnpm+v1+···+vn−nr+1

Thus the theorem can be proved inductively. �

Corollary 6.5. Let 0 ≤ m ≤ r − 2. The series expansion for φm is

φm = −∂W
∂tm

= pm −
∑

u≥r−m

m+ u+ 1− r

r
tup

m+u−r

+
1

2! · r2
∑

u+v≥2r−m

(u + v +m+ 1− 2r)(u + v +m+ 2− 2r)tutvp
m+u+v−2r + · · ·

= pm+

∞
∑

n=1

(−1)n

n! · rn
∑

v1+···+vn≥nr−m

(m+
n
∑

i=1

vi + n− nr)!

(m+
n
∑

i=1

vi − nr)!
tvi · · · tvnpm+v1+···+vn−nr

Proof. This follows from the definition of φm and a direct computation. �

In [7], Dijkgraaf, Verlinde and Verlinde give a closed formula of φm in terms
of the determinant of matrices. Presumably their formula is equivalent to ours,
although we have not checked the details.

In view of Lemma 6.1, it would also be interesting to have a series expansion for

W
m+1

r . Here we write out terms up to degree 3. Let θ(x) be the Heaviside function
that is 1 for x ≥ 0 and 0 for x < 0.

(57) W
m+1

r = pm+1 − m+ 1

r

∑

u

tup
m+1+u−r

+
m+ 1

2! · r2
∑

u,v

((m+ 1− r) + (u+ v − r + 1)θ(u + v − r))tutvp
m+u+v+1−2r

− (m+ 1)

3! · r3
∑

u,v,w

((m+ 1− r)(m+ 1− 2r) + (m+ 1− r)(u + v + 1− r)θ(u + v − r)

+ (m+1− r)(u+w+1− r)θ(u+w− r) + (m+1− r)(v +w+ 1− r)θ(v +w− r)

+ (u+ v+w− 2r+1)(u+ v+w− 2r+2)θ(u+ v+w− 2r))tutvtwp
m+u+v+w+1−3r

+ · · ·
By Lemma 6.1, we can use the degree 3 term of the above expansion to get a

formula for 4-point correlation functions.

Corollary 6.6.

〈τmτuτvτw〉 =
1

r
(r −m− 1− (u+ v − r + 1)θ(u + v − r)

− (u+ w − r + 1)θ(u + w − r)− (v + w − r + 1)θ(v + w − r)).

Proof. Replace m by m + r in the expansion of W
m+1

r and take the coefficient of
p−1. We get the desired result from Lemma 6.1. �
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The formula in Corollary 6.6 is slightly different with Witten’s formula [31,
(3.3.36)]

〈τmτuτvτw〉 =
1

r
(m− (m+ u− r + 1)θ(m+ u− r)

− (m+ v − r + 1)θ(m+ v − r)− (m+ w − r + 1)θ(m+ w − r)),

but it is not difficult to prove that they are both equivalent to 〈τa1
τa2
τa3

τa4
〉 =

1
r ·min(ai, r − 1− ai).

Our motivation in studying r-spin numbers on the small phase space is to prove
the following conjectural properties of these numbers.

Conjecture 6.7. In the small phase space, we have

i) (Integrality) rs−3

(s−3)! 〈τm1
· · · τms〉 ∈ Z.

ii) (Vanishing) If mi < s− 3 for some 1 ≤ i ≤ s, then 〈τm1
· · · τms〉 = 0.

iii) (Multinomial distribution) If m1 > m2, then 〈τm1−1τm2+1τm3
· · · τms〉 ≥

〈τm1
τm2

· · · τms〉.
We have verified this conjecture in low genus or when s is small. One can

even prove rs−3〈τm1
· · · τms〉 ∈ Z by extending (57). However, the combinatorial

difficulty for the general case is still considerable, even though we can write down
explicit formulae for general s-point correlation functions 〈τm1

· · · τms〉 via Theorem
6.4, Corollary 6.5 and Witten’s Theorem 6.3.

See [17] for more on denominators and multinomial-type properties of intersec-
tion numbers.

Part of our motivation comes from Gromov-Witten invariants of CP
n on the

small phase space. For fixed n ≥ 1 and d ≥ 0, consider Gromov-Witten invariants
of CPn on the small phase space in genus zero

〈m1, · · · ,ms〉 := 〈τ0,m1
, · · · , τ0,ms〉CP

n

0,d ,

which is nonzero (for dimensional reasons) only when

(58)

s
∑

i=1

mi = n+ (n+ 1)d+ s− 3.

The following properties are analogues of corresponding statements in Conjec-
ture 6.7:

i) (Integrality) 〈m1, · · · ,ms〉 ∈ N≥0.
ii) (Vanishing) If d > 1 and s = d+ 2, then 〈m1, · · · ,ms〉 = 0.
iii) (Multinomial distribution) If m1 > m2, then

〈m1 − 1,m2 + 1,m3, · · · ,ms〉 ≥ 〈m1,m2, · · · ,ms〉.
The integrality (i) is clear, since genus zero Gromov-Witten invariants of CPn

are intersections on a scheme, and hence integral. We conjecture the multinomial
distribution (iii), based on numerical evidence. We now prove (ii).

Proposition 6.8. With the notation above, we have the vanishing 〈m1, · · · ,ms〉 =
0 of degree d genus 0 invariants in Pn, where s = d+ 2, with any mi, and d > 1.

Proof. We show that for any choice ofmi, the intersection theory problem 〈m1, · · · ,ms〉,
interpreted as counting stable maps “meeting” generally chosen linear spaces of
codimension m1, . . . , ms, corresponds to the empty intersection. Let ci = n −mi
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be the dimension of these linear spaces for convenience;
∑

ci = n − 2d + 1 from
(58).

As mi ≤ n, we have

n(d+ 2) ≥
s
∑

i=1

mi = n+ (n+ 1)d+ (d+ 2)− 3 (using (58)),

from which d ≤ (n + 1)/2 < n. The image of any degree d stable map lies inside
a Pd. We show that there isn’t even a Pd inside Pn meeting the (generally chosen)
linear spaces of dimension ci. The codimension of the condition (on G(d, n)) that
a Pd in Pn meet a Pci is max(0, n− d− ci). Then

s
∑

i=1

max(0, n− d− ci) ≥
s
∑

i=1

(n− d− ci)

= (n− d)(d + 2)− (n− 2d+ 1)

> (d+ 1)(n− d) (using d > 1)

= dimG(d, n)

so there is no Pd in Pn meeting the desired linear spaces, and thus no degree d
stable map meeting these linear spaces. �

Appendix A. Combinatorial identities

We prove Proposition 3.6, using the Lagrange inversion formula. The following
form of Lagrange inversion formula can be found in [28, p. 38].

Lemma A.1 (Lagrange inversion formula). Let F (x) = a1x + a2x
2 + · · · ∈ C[[x]]

be a power series with a1 6= 0 and F−1(x) ∈ C[[x]] be its inverse (defined by
F−1(F (x)) = x). For k, n ∈ Z we have

(59)
1

n
[xn−k]

(

x

F (x)

)n

=
1

k
[xn]F−1(x)k.

We now prove Proposition 3.6.
Let f(x) = 1+

∑∞
j=2 ajx

j ∈ C[[x]] be as in Proposition 3.6. Then F (x) = x/f(x)
is a power series with a1 6= 0, so we can apply Lemma A.1. Taking k = 1 in equation
(59), we see that [x2]F−1(x) = 1

2 [x]f(x)
2 = 0, so we have

1

F−1(x)
=

1

x+ c3x3 + c4x4 + · · ·(60)

=
1

x
− c3x− c4x

2 − · · · .

Taking k = 1 and k = 2 in equation (59) respectively, we get

[xn+1]f(x)n

n
= −[xn]

1

F−1
,

[xn+2]f(x)n

n
= −1

2
[xn]

1

F−1
.
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Substituting the above two identities into equation (19) and then applying equation
(60) to the summation term on the right hand side, equation (19) becomes

−[xn+1]
1

F−1
=

1

2

n−1
∑

j=1

[xj ]
1

F−1
[xn−j ]

1

F−1
− 1

2
[xn]

1

(F−1(x)2

=

(

1

2
[xn]

1

F−1(x)2
− [xn+1]

1

F−1

)

− 1

2
[xn]

1

(F−1(x)2

= −[xn+1]
1

F−1
.

So we have proved Proposition 3.6. �

We now present equivalent formulations of Proposition 3.6 that may be useful
elsewhere. We use the notation introduced in (50).

Proposition A.2. Let a,b ∈ N∞, c ∈ N∞ and ||c|| ≥ 2. Then the following
identity holds

(|c|+ ||c|| − 3)!

(|c| − 1)!
· (||c|| − 1) =

1

2

∑

c=a+b

a,b 6=0

(

c

a,b

)

(|a| + ||a|| − 2)! · (|b|+ ||b|| − 2)!

(|a| − 1)! · (|b| − 1)!
,

where
(

c

a,b

)

is defined as
∏

i≥1
c!

a!b! =
∏

i≥1

(

ci
ai,bi

)

(cf. (50)).

Proof. Take any c = (c1, c2, . . . ) ∈ N∞, compare the coefficient
∏

j≥2 a
cj−1

j in both

sides of equation (19). We have

(|c|+ ||c|| − 2)!

(|c| − 1)!c!
=

1

2

∑

c=a+b

a,b 6=0

(|a|+ ||a|| − 2)!

(|a| − 1)!a!

(|b|+ ||b|| − 2)!

(|b| − 1)!b!
+

(|c|+ ||c|| − 3)!

(|c| − 2)!c!
.

By moving the last term in the right hand side to the left, we get the desired
identity. �

A partition is a sequence of integers µ1 ≥ µ2 ≥ · · · ≥ µk > 0. We write

|µ| = µ1 + · · ·+ µk, ℓ(µ) = k.

Define mj(µ) to be the number of j’s among µ1, . . . , µk, zµ =
∏

j mj(µ)!j
mj(µ),

and pµ =
∏

j p
mj(µ)
j .

Proposition A.3.

∑

ℓ(µ)≥2

(|µ|+ ℓ(µ)− 3)!(ℓ(µ)− 1)pµ
(|µ| − 1)!zµ

=
1

2





∑

µ6=0

(|µ|+ ℓ(µ)− 2)!pµ
(|µ| − 1)!zµ





2

Proof. Take c = (m1(µ),m2(µ), . . . ) ∈ N∞. Then the identity in the proposition is
just a reformulation of Proposition A.2. �
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Appendix B. The differential polynomial Wr(z)

From §3, γr+1
−1 can be expressed as a differential polynomial in γ1−1, . . . , γ

r−1
−1 . If

2 ≤ i ≤ r, denote by pi(r) the coefficient of Diγr+1−i
−1 in the resulting differential

polynomial S(γr+1
−1 ). From the proof of Proposition 3.8, it is straightforward to

obtain the following recursive formula for pi(r),

pi(r) =
1

r + 1− i
[Diw−(r+1−i)](γ

r+1
−1 − r + 1

r
γr−2 −

r + 1

2r
Dγr−1)

− 1

r + 1− i

i−1
∑

j=2

(

r + 1− j

i+ 1− j

)

pj(r)(61)

=

(

r + 1

i

)

1

r

i− 1

2(i+ 1)
− 1

r + 1− i

i−1
∑

j=2

(

r + 1− j

i+ 1− j

)

pj(r).

We have proved p2(r) = r+1
12 in Proposition 3.8. The relation of pi(r) to the

coefficients of Wr(z) is given by

(62) [z
(i)
r−i]Wr(z) =

−
√
−1

i
(r − i+ 1)

r
i
2
−1(r + 1)

pi(r).

For i ≥ 2, define quantities Ci by

(63) pi(r) =
1

r

(

r + 1

i

)

Ci.

We will see shortly that Ci are in fact constants independent of r.
Substituting (63) into the recursion formula (61), we get

1

r

(

r + 1

i

)

Ci =

(

r + 1

i

)

1

r

i − 1

2(i+ 1)
− 1

r + 1− i

i−1
∑

j=2

(

r + 1− j

i+ 1− j

)

1

r

(

r + 1

j

)

Cj

Ci =
i− 1

2(i+ 1)
−

i−1
∑

j=2

(

i+ 1

j

)

Cj

i+ 1
.(64)

Hence by induction (starting from C0 = − 1
2 , C1 = 0), we see that the Ci are

constants. Using the values of C0 and C1, we may simplify (64) as

(65)

i
∑

j=0

(

i+ 1

j

)

Cj =
i− 2

2
, i ≥ 1.

Proposition B.1. Let i ≥ 2. Then Ci = Bi the Bernoulli numbers. In particular,
C2k+1 = 0.

Proof. We define a new sequence C′
j by C′

0 = 1, C′
1 = − 1

2 and C′
j = Cj , j ≥ 2.

From (65), we have
i
∑

j=0

(

i+ 1

j

)

C′
j = 0, i ≥ 1,

which is the usual recursion for Bernoulli numbers. Since C′
0 = B0, C

′
1 = B1, we

must have Cj = C′
j = Bj for all j ≥ 2. �

From (62) and (63), we thus proved Proposition 3.10.
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Appendix C. An identity of Bernoulli numbers

Let fn(k), n ≥ 1 be given by the recursion

(66) fn+1(k) = −(k + 1)fn(k + 2) + (2k + 1)fn(k + 1)− kfn(k)

starting with f1(k) =
−1

(k+1)(k+2) .

Proposition C.1. Let n ≥ 2. We have fn(0) = −Bn/n.

The rest of the appendix is devoted to proving the above proposition. First we
record the following combinatorial identities.

n
∑

k=0

(

n

k

)

(−1)n−k 1

n+ i− k
=
n!(i− 1)!

(n+ i)!
,(67)

n
∑

i=w

(i − 1)!

(i − w)!
=

n!

(n− w)!w
,(68)

(

et − 1

t

)w

=

∞
∑

j=w

tj−w

j!

w
∑

s=0

(−1)s
(

w

s

)

(w − s)j .(69)

Consider the generating function Fn(x) =
∑∞

k=0 fn(k)x
k, then we have F1(x) =

−1
x + x−1

x2 ln(1− x) and (66) implies

Fn(x) = − ∂

∂x

(

Fn−1(x)

x

)

+ 2
∂

∂x
Fn−1(x)−

1

x
Fn−1(x)− x

∂

∂x
Fn−1(x)

=
−(x− 1)2

x
Fn−1(x) +

1− x

x2
Fn−1(x).

More precisely, Fn(x) from the above recursion differs from the true generating
function by a finite sum of negative powers of x. Thus Proposition C.1 is equivalent
to prove that the constant term of −nFn(x) equals Bn.

It is not difficult to see that Fn(x) decomposes as

(70) Fn(x) = Gn(x) +Rn(x) ln(1− x), n ≥ 1,

where Gn(x) and Rn(x) are rational functions in x satisfying the recursions

Gn(x) =
−(x− 1)2

x

∂

∂x
Gn−1(x) +

1− x

x2
Gn−1(x) +

1− x

x
Rn−1(x),(71)

Rn(x) =
−(x− 1)2

x

∂

∂x
Rn−1(x) +

1− x

x2
Rn−1(x).(72)

We may solve (72) to get

(73) Rn(x) = (x− 1)n
n
∑

i=1

(−1)i+1a(n, i)x−n−i,

where a(n, i) is given by

a(n, i) =

i
∑

w=0

(−1)i−w

(

n+ i

i − w

) w
∑

s=0

(−1)s
(w − s)n+w

s!(w − s)!
.

From (71), we may prove that [xk]Gn(x) = 0, ∀k ≥ 0. By using (67), (68), (69),
the constant term of −nFn(x) equals
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(74) [x0](−n)Rn(x) ln(1 − x) = (−n)
n
∑

i=1

(−1)ia(n, i)

n
∑

k=0

(

n

k

)

(−1)n−k 1

n+ i− k

= (−n)
n
∑

i=1

(−1)ia(n, i)
n!(i− 1)!

(n+ i)!

= (−n)
n
∑

w=1

w
∑

s=0

(−1)s
(

w

s

)

(w − s)w+n

w!
(−1)w

n!

(w + n)!

n
∑

i=w

(i − 1)!

(i − w)!

= (−n)
n
∑

w=1

w
∑

s=0

(−1)s
(

w

s

)

(w − s)w+n

w!
(−1)w

n!

(w + n)!

n!

(n− w)!w

= (−n)
n
∑

w=1

(−1)w
(

n

w

)

n!

w
[tn]

(

et − 1

t

)w

= −
n
∑

w=1

(−1)w
(

n

w

)

n![tn−1]

(

(

et − 1

t

)w−1
d

dt

(

et − 1

t

)

)

= −n![tn−1]

(

n
∑

w=0

(−1)w
(

n

w

)(

et − 1

t

)w
tet − et + 1

t(et − 1)

)

+ n![tn−1]
tet − et + 1

t(et − 1)

= −n![tn−1]

((

1− et − 1

t

)n
tet − et + 1

t(et − 1)

)

+ n![tn]
tet − et + 1

et − 1

= n![tn]
tet − et + 1

et − 1
,

where the last equation follows by noting

1− et − 1

t
=

−1

2
t− 1

6
t2 + · · · ,

tet − et + 1

t(et − 1)
=

1

2
+

1

12
t+ · · · .

Finally, Proposition C.1 follows from

(75) 1 +
tet − et + 1

et − 1
=

t

1− e−t
= 1 +

t

2
+

∞
∑

n=2

Bnt
n

n!
.

Remark C.2. Another way of proving Proposition C.1 is by studying the function

hj(k) =
∏2j

i=1(k + i)fj(k). Then (66) becomes

(76) hj+1(k) = −(k + 1)2(k + 2)hj(k + 2)

+ (k + 1)(2k + 1)(k + 2j + 2)hj(k + 1)− k(k + 2j + 1)(k + 2j + 2)hj(k)

starting with h1(k) = −1, h2(k) = 4k − 2, h3(k) = −36k2 + 84k.
We may prove from the recursion (76) (although more difficult) that hj(k) is a

degree j−1 polynomial whose leading term equals (−1)j(j!)2kj−1 and the constant
term equals −(2j)!Bj/j when j ≥ 2, as claimed in Proposition C.1.
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