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1. Introduction

In this paper we prove two main results about the global properties of the period maps
from the Teichmüller space of polarized and marked Calabi-Yau type manifolds to the
period domain of polarized Hodge structures.

Let (M,L, {γ1, · · · , γm}) be a polarized and marked Calabi-Yau type manifold of com-
plex dimension n as defined in Section 2.2, which includes all simply connected Calabi-Yau
manifolds and certain Fano manifolds. Here L denotes an ample line bundle on M and
{γ1, · · · , γm)} is a basis of Hn(M,Z)/Tor. The moduli space M of polarized complex
structures on a given compact differentiable manifold X is a complex analytic space
consisting of biholomorphically equivalent pairs of complex structure and an ample line
bundle (M,L). We use [M,L] to denote the point in M corresponding to the complex
structure on a complex manifold M that is diffeomorphic to X . The corresponding Te-
ichmüller sapce T can be considered as the moduli space of polarized and marked triples
(M,L, {γ1, · · · , γm}), of which we refer to Section 2.3 for details.
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For simplicity, in this paper we assume the Teichmüller space T of polarized and marked
Calabi-Yau type manifold (M,L, {γ1, · · · , γm}) is a connected smooth complex manifold
together with a versal family

π : U → T

of polarized and marked Calabi-Yau type manifolds, which contains (M,L, {γ1, · · · , γm})
as a fiber. In Section 2, one will see that the Teichmüller space is actually simply con-
nected. We will simply use M to denote the polarized and marked Calabi-Yau type
manifold (M,L, {γ1, · · · , γm}).

Let D denote the period domain of the Hodge structures of polarized and marked
Calabi-Yau type manifolds of weight n, and Φ : T → D denote the period map from
the Teichmüller space of polarized and marked Calabi-Yau type manifolds to the period
domain.

By using the fact that the restriction of the versal family of the polarized and marked
Calabi-Yau type manifolds on any small coordinate chart of T is a local Kuranishi family,
one gets a local holomorphic coordinate chart around each point in T . From this we con-
struct a global holomorphic affine structure on the Teichmüller space T , which naturally
induces a global holomorphic affine connection on T . We then use the global holomorphic
affine connection on the Teichmüller space to construct the global holomorphic coordinate
functions on T . This construction is given in Theorem 4.2. From Theorem 4.2, we derive
the following global Torelli theorem on the Teichmüller space of polarized and marked
Calabi-Yau type manifolds:

Theorem 1.1. Let T be the Teichmüller space of polarized and marked Calabi-Yau type
manifolds, then the period map

Φ : T → D

is injective.

If we further assume that the moduli space M is smooth, and consider the period map
ΦM : M → D/Γ, where Γ denotes the global monodromy group which acts properly and
discontinuously on the period domain D. For simplicity we also assume that the action
of Γ is free so that D/Γ is a smooth analytic manifold. The following main theorem of
this paper proves that for polarized Calabi-Yau type manifolds the period map ΦM is a
covering map onto its image.

The global Torelli problem on the moduli space M asks when ΦM is injective, and the
generic Torelli problem asks when there exists an open dense subset U ⊂ M such that
ΦM|U is injective. In general, generic Torelli theorem on the moduli space is weaker than
global Torelli theorem on the moduli space M. However as a consequence of this main
theorem, we show that if the generic Torelli theorem on the moduli space of polarized
Calabi-Yau type manifolds is known, then we also get the global Torelli theorem on the
moduli space of polarized Calabi-Yau type manifolds.

Theorem 1.2. Let M be the moduli space of polarized Calabi-Yau type manifolds. If M is
smooth, and Γ acts on D freely, then the period map on the moduli space ΦM : M → D/Γ
is a covering map from M onto its image in D/Γ. As a consequence, if the period map
on the moduli space ΦM is generically injective, then it is globally injective.



3

Note that in the most interesting cases it is always possible to find a subgroup Γ0 of
Γ, which is of finite index in Γ, such that Γ0 acts on freely and thus D/Γ0 is smooth. In
such cases we can consider the lift ΦM0 : M0 → D/Γ0 of the period map ΦM, with M0

a finite cover of M. Then our argument can be applied to prove that ΦM0 is actually a
covering map onto its image for polarized Calabi-Yau type manifolds with smooth moduli
spaces.

This paper is organized as follows: in Section 2, we review the definition of the clas-
sifying space of polarized Hodge structures, give the definition of the Calabi-Yau type
manifolds, and describe definition of the moduli space of polarized Calabi-Yau type man-
ifolds and the Teichmüller space of polarized and marked Calabi-Yau type manifolds,
together with our basic assumptions on the Teichmüller space and its properties. Then
we introduce the period map from the Teichmüller space of polarized and marked Calabi-
Yau type manifolds to the period domain.

In Section 3, we review the concepts of affine manifolds and affine maps following
Matsushima [13], Vitter [25], and Auslander and Markus [2]. Based on the local Kuranishi
deformation theory, we construct a local holomorphic coordinate chart around each point
in the Teichmüller space T , and this gives the Kuranishi coordinate cover on T . We then
show that this Kuranishi coordinate cover gives a holomorphic affine structure on the
Teichmüller space T of polarized and marked Calaib-Yau type manifolds.

In Section 4, we use the holomorphic affine structure constructed in Section 3 and the
property that T is simply connected to prove the existence of a global holomorphic flat
coordinate, and prove the holomorphic affine embedding from T into CN ∼= Hs−1,n−s+1

p .
We then use this global holomorphic affine coordinate and the affine embedding to prove
the global Torelli theorem on the Teichmüller space of polarized and marked Calabi-Yau
type manifolds.

In Section 5, following [17] we describe a more geometric way to understand the holo-
morphic affine structure on the Teichmüller space of polarized and marked Calabi-Yau
type manifolds by using the orbit N+ in D of the unipotent group. We define a Hodge
completion T of the Teichmüller space of polarized and marked Calabi-Yau type mani-
folds, and extend the period map to Φ̌ : T → N+ →֒ Ď. At the end of the paper, we
make smoothness assumptions on both the moduli space M of polarized Calabi-Yau type
manifolds and on the quotient space D/Γ, then use the global Torelli theorem on the
Teichmüller space of polarized and marked Calabi-Yau type manifolds, together with the
geometry of the unipotent orbit, we show that the period map ΦM : M → D/Γ is a
covering map onto its image, and conclude that generic Torelli implies global Torelli on
the moduli space.

Acknowledgement: We would like to thank Professors Wilfried Schmid, Andrey
Todorov and Shing-Tung Yau for sharing many of their ideas.

2. The period map on the Teichmüller space

In Section 2.1, we review the construction of the classifying space of polarized Hodge
structures and its basic properties. We refer the reader to Section 2 and Section 3 of
[16] for more details. In Section 2.2, we introduce the definition of the polarized and
marked Calabi-Yau type manifolds and the basic properties. In Section 2.3, we briefly
describe the definitions of the moduli space of polarized Calabi-Yau type manifolds and
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the Teichmüller space of polarized and marked Calabi-Yau type manifolds. We then
make basic assumptions on the Teichmüller space, and show the simply connectedness
property on the Teichmüller space. In Section 2.4 we introduce the period map from
the Teichmüller space of the polarized marked Calabi-Yau type manifolds to the period
domain.

2.1. Classifying space of polarized Hodge structures. Let HR be a real vector
space of dimension m with a Z-structure defined by a lattice HZ ⊂ HR, and let HC be
the complexification of HR. A Hodge structure of weight n on HC is a decomposition

HC =

n⊕

k=0

Hk,n−k, with Hn−k,k = Hk,n−k.

The integers hk,n−k = dimCH
k,n−k are called the Hodge numbers. To each Hodge struc-

ture of weight n on HC, one assigns the Hodge filtration:

(1) HC = F 0 ⊃ · · · ⊃ F n,

with F k = Hn,0 ⊕ · · · ⊕Hk,n−k, and fk = dimC F
k =

∑n

i=k h
i,n−i. This filtration has the

property that

HC = F k ⊕ F n−k+1, for 0 ≤ k ≤ n.(2)

Conversely, every decreasing filtration (1), with the property (2) and fixed dimensions
dimC F

k = fk, determines a Hodge structure {Hk,n−k}nk=0, with

Hk,n−k = F k ∩ F n−k.

A polarization for a Hodge structure of weight n consists of the data of a Hodge Riemann
bilinear form Q over Z, which is symmetric for even n, skew symetric for odd n, such that

Q(Hk,n−k, Hr,n−r) = 0 unless k = n− r,(3)

i2k−nQ(v, v) > 0 if v ∈ Hk,n−k, v 6= 0.(4)

In terms of the Hodge filtration F n ⊂ · · · ⊂ F 0 = HC, the relations (3) and (4) can be
written as

Q
(
F k, F n−k+1

)
= 0,(5)

Q (Cv, v) > 0 if v 6= 0,(6)

where C is the Weil operator given by Cv = i2k−nv when v ∈ Hk,n−k.
The classifying space or the period domainD for polarized Hodge structures with Hodge

numbers {hk,n−k}nk=0 is the space of all such Hodge filtrations

D =
{
F n ⊂ · · · ⊂ F 0 = HC | dimF k = fk, (5) and (6) hold

}
.

The compact dual Ď of D is

Ď =
{
F n ⊂ · · · ⊂ F 0 = HC | dimF k = fk and (5) hold

}
.

The classifying space or the period domain D ⊂ Ď is an open subset.
From the definition of classifying space we naturally get the Hodge bundles over Ď by

associating to each point in Ď the vector spaces {F k}nk=0 in the Hodge filtration of that
point. Without confusion we will also denote by F k the bundle with F k as the fiber, for
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each 0 ≤ k ≤ n. In the rest of this paper, we may simply use Hodge structure to mean
polarized Hodge structure of weight n.

Let {F n ⊂ · · · ⊂ F 0} be a point in D, then the tangent space of D at this point is
n⊕
k=0

Hom(F k, HC).We are interested in the horizontal tangent space
n⊕
k=0

Hom(F k, F k−1) at

this point.
Given a complex manfiold S, a variation of Hodge structure of the given Hodge numbers

and polarization on HC is a holomorphic map

Φ : S → D,

such that the tangent map satisfies the Griffiths transversality:

Φ∗ : T
1,0S →

n⊕

k=0

Hom(F k, F k−1).

The map Φ is called a period map on S. One denotes the image of any point p ∈ S by
Φ(p) = {F n

p ⊂ F n−1
p ⊂ · · · ⊂ F 0

p }.
We introduce several notations before we get to the definition of the polarized and

marked Calabi-Yau type manifolds. We denote by P k
p the projection from the horizontal

tangent space
⊕n

i=0Hom(F i
p, F

i−1
p ) of the classifying space to Hom(F k

p , F
k−1
p ) at p ∈ S

according to the decomposition:

P k
p :

n⊕

i=0

Hom(F i
p, F

i−1
p ) → Hom(F k

p , F
k−1
p ),

and denote the projection from
⊕n

i=0H
i,n−i
p to Hn−k,k

p at p ∈ S by P n−k,k
p according to

the given Hodge decomposition:

P k,n−k
p :

n⊕

i=0

H i,n−i
p → Hk,n−k

p

for each 0 ≤ k ≤ n− 1.

2.2. Calabi-Yau type manifolds. We generalize the definition of Calabi-Yau type man-
ifolds in [9] as follows,

Definition 2.1. Let M be a simply connected compact complex projective manifold of
dimCM = n and L be an ample line bundle over M with c1(L) be the Kähler class on M .
We call M a manifold of Calabi-Yau type if

(1) The middle dimensional Hodge numbers are similar to that of a Calabi-Yau man-
ifold, that is, there exists some [n/2] < s ≤ n, such that

hs,n−s(M) = 1, and hs
′,n−s′(M) = 0 for s′ > s.

(2) For any generator [Ω] ∈ Hs,n−s(M), the contraction map

y : H0,1(M,T 1,0M) → Hs−1,n−s+1(M)

[ϕ] 7→ [ϕyΩ]

is an isomorphism, where Ω is a ∂-closed (s, n− s)-form.
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(3) Hs,n−s(M) = Hs,n−s
pr (M), and H2,0(M)=0.

This paper mainly considers the polarized and marked Calabi-Yau type manifold, which
consists of a triple (M,L, {γ1, · · · , γm}) with a Calabi-Yau type manifoldM of dimCM =
n, an ample line bundle L over M and a basis {γ1, · · · , γm} of the integral cohomology
group modulo torsion Hn(M,Z)/Tor. In the rest of the paper we will use the Chern form
ω ∈ c1(L) of the line bundle L as the Kähler form on M . It is well known that each triple
(M,L, {γ1, · · · , γm}) gives a polarized Hodge structure on the primitive cohomology group
Hn
pr(M,C). For details of polarized Hodge structure on primitive cohomology group of

Kähler manifolds, we refer the reader to Chapter 7.1 in [23].
Notice that if a manifoldM is of Calabi-Yau type, thenHs−1,n−s+1

pr (M) = Hs−1,n−s+1(M).

To show this, it is enough to show that the image of the contraction map is inHs−1,n−s+1
pr (M),

which is proved in the following proposition. This is because condition (2) in Definition
2.1 gives that the contraction map

y : H0,1(M,T 1,0M) → Hs−1,n−s+1(M), [ϕ] 7→ [ϕyΩ]

is an isomorphism.
For this reason, we simply use Hn(M,C) and Hk,n−k(M) to denote the primitive

cohomology groups Hn
pr(M,C) and Hk,n−k

pr (M) respectively. And the Hodge numbers

hk,n−k = dimHk,n−k
pr (M) are the dimensions of the primitive cohomology groups. By

using these notations, we don’t change the condition (1) and condition (2) in Definition
2.1.

Proposition 2.2. Let M be a Calabi-Yau type manifold. Let the contraction map and
[Ω] ∈ Hs,n−s

pr (M) be as in Definition 2.1, then for any [ϕ] ∈ H0,1(M,T 1,0M), [ϕyΩ] ∈
Hs−1,n−s+1
pr (M).

Proof. It is sufficient to show that there exists a smooth (s, n− s + 1) form γ, such that
ω∧ (ϕyΩ) = ∂γ. Since [Ω] ∈ Hs,n−s

pr (M), there exists a smooth (s+1, n− s) form β, such

that ω ∧ Ω = ∂β. First we shall show the following two identities:

(i). ∂(ϕyβ) = ϕy∂β;
(ii). ϕy(ω ∧ Ω) = (ϕyω) ∧ Ω + ω ∧ (ϕyΩ).

To show (i), denote ϕ =
∑

iϕ
i∂i, with ϕi =

∑
jϕ

i
j
dzj ; β =

∑
Iβ

IdzI , and βI =∑
Jβ

I

J
dzJ . Then

∂(ϕyβ) = ∂(
∑

i

∑

I

ϕi ∧ βI ∧ ((−1)|J |∂iydzI))

=
∑

i

∑

I

∂ϕi ∧ βI ∧ ((−1)|J |∂iydzI) +
∑

i

∑

I

ϕi ∧ ∂βI ∧ ((−1)|J |+1∂iydzI)

=
∑

i

∑

I

ϕi ∧ ∂βI ∧ ((−1)|J |+1∂iydzI).

The last identity is due to the property that [ϕ] ∈ H0,1(M,T 1,0M), which gives ∂ϕ = 0.
Then we have the identity (i),

ϕy∂β = ϕy(
∑

I

∂βIdzI) =
∑

i

∑

I

ϕi ∧ ∂β ∧ ((−1)|J |+1∂iydzI) = ∂(ϕyβ).
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For (ii), we denote ω =
∑

k ω
kdzk, with ωk =

∑
j ω

k
j
dzj; Ω =

∑
I Ω

IdzI , and ΩI =∑
J Ω

I
J
dzJ . Then we have

ϕy(ω ∧ Ω) = ϕy(
∑

k

∑

I

ωkdzk ∧ ΩIdzI)

= −
∑

i

∑

k

∑

I

(ϕi ∧ ωk) ∧ (∂iydzk) ∧ ΩIdzI + (−1)|J |
∑

i

∑

k

∑

I

ωkdzk ∧ (ϕi ∧ ΩI) ∧ (∂iydzI)

=

(
−
∑

i

∑

k

(ϕi ∧ ωk)(∂iydzk)

)
∧

(
∑

I

ΩIdzI

)

+

(
∑

k

ωkdzk

)
∧

(
(−1)|J |

∑

i

∑

I

(ϕi ∧ ΩI) ∧ (∂iydzI)

)

= (ϕyω) ∧ Ω+ ω ∧ (ϕyΩ).

Moreover, since [ϕyω] ∈ H0,2(M) ∼= H2,0(M) = 0, there exists α ∈ H0,1(M), such that
ϕyω = ∂α. The fact that Ω is a holomorphic (s, n− s)-form implies that ∂Ω = 0.
Combining all the above properties together, we get

∂(ϕyβ) = ϕy∂β = ϕy(ω ∧ Ω) = (ϕyω) ∧ Ω+ ω ∧ (ϕyΩ)

= ∂α ∧ Ω+ ω ∧ (ϕyΩ) = ∂α ∧ Ω+ ω ∧ (ϕyΩ)

= ∂(α ∧ Ω) + ω ∧ (ϕyΩ).

Therefore if we set γ = ϕyβ − α ∧ Ω, we get ω ∧ (ϕyΩ) = ∂γ. �

From the definition, one can see that a simply connected Calabi-Yau manifold is of
course of Calabi-Yau type. Therefore the results presented in this paper can be applied
to simply connected Calabi-Yau manifolds. In the rest of paper, one may consider simply
connected Calabi-Yau manifolds as our special cases. We remark that one may refer to
[9] for many interesting examples of Calabi-Yau type manifolds of Fano type.

2.3. Moduli space and Teichmüller space. The moduli space M of polarized complex
structures on a given differential manifold X is a complex analytic space consisting of
biholomorphically equivalent pairs of complex structures and ample line bundles (M,L).
Let us denote by [M,L] the point in M corresponding to a pair (M,L), in which M is a
complex manifold diffeomorphic to X and L is an ample line bundle on M . If there is a
biholomorphic map f between M and M ′ with f ∗L′ = L, then [M,L] = [M ′, L′] ∈ M.

We can similarly define the Teichmüller space T of polarized complex structure by
replacing the pair (M,L) by a triple (M,L, {γ1, · · · , γm)}, where {γ1, · · · , γm)} is a basis
of Hn(M,Z)/Tor. For two triples (M,L, {γ1, · · · , γm}) and (M ′, L′, {γ′1, · · · , γ

′
m)}), if

there exists a biholomorphic map f : M → M ′ with

f ∗L′ = L,

f ∗γ′i = γi for 1 ≤ i ≤ m,

then [M,L, {γ1, · · · , γm)}] = [M ′, L′, {γ′1, · · · , γ
′
m)}]. For simplicity we use [M,L, γ] to

denote the triple [M,L, {γ1, · · · , γm)}].
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In this paper we further assume that the Teichmüller space T of polarized marked
Calabi-Yau type manifolds is a smooth connected complex manifold, and there exists a
versal family

π : U → T

containing the polarized and marked Calabi-Yau type manifold (M,L, {γ1, · · · , γm}) as a
fiber. Recall that a family of compact complex manifolds π : U → T is versal at a point
p ∈ T if it satisfies the following conditions:

(1) If a complex analytic family ι : V → S of compact complex manifolds, a point
s ∈ S, and a bi-holomorphic map f0 : V = ι−1(s) → U = π−1(p) are given,
then there exists a holomorphic map g from a neighbourhood N of the point s to
T and a holomorphic map f : ι−1(N ) → U such that they satisfy the following
conditions:

g(s) = p,

f |ι−1(s) = f0,

with the following commutative diagram

ι−1(N )
f

//

ι

��

U

π

��

N
g

// T .

(2) For all g satisfying the above condition, the tangent map (dg)s is uniquely deter-
mined.

If a family π : U → T is versal at every point p ∈ T , then it is a versal family on T . In
this case the family ι−1(N ) → N is complex analytically isomorphic to the pull back of
the family π : U → T by the holomorphic map g.

The versal family π : U → T is local Kuranishi at any point p ∈ T , and this implies
that the Kodaira-Spencer map

κ : T 1,0
p T → H0,1(Mp, T

1,0Mp),

for each p ∈ T is an isomorphism. We refer the reader to page 8-10 in [18], page 94 in
[14] or page 19 in [22], for more details about versal families and local Kuranishi families,
and Chapter 4 in [12] for more details about deformation of complex structures and the
Kodaira-Spencer map.

For a polarized Calabi-Yau type manifold (M,L), let

Aut(M,L) = {α : M →M | α∗L = L}

be the group of biholomorphic maps on M preserving the polarization L. We have a
natural representation of Aut(M,L),

σ : Aut(M,L) → Aut(Hn(M,Z))

α 7→ α∗.

The following theorem tells us that the Techmüller space of polarized and marked Calabi-
Yau type manifolds described as above is simply connected.
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Theorem 2.3. The Techmüller space T of polarized and marked Calabi-Yau type mani-
folds is simply connected.

Proof. Suppose T is not simply connected, and T̃ is the universal cover of T with covering
map

πT̃ : T̃ → T .

For each point p = [M,L, γ] in T the pre-image is π−1

T̃
(p) = {pi| i ∈ I} ⊂ T̃ and |I| > 1.

Let π̃ : Ũ → T̃ be the pull back family of π : U → T with the following commutative
diagram,

Ũ //

π̃
��

U

π

��

T̃
π
T̃

// T .

Then π̃ : Ũ → T̃ is also a versal family of polarized and marked Calabi-Yau type
manifolds.

Then for each different i and j ∈ I, there exists an element α in the deck transformation
group of the covering map, such that α(pi) = pj. Because πT̃ (pi) = πT̃ (pj) = [M,L, γ],
this α can be viewed as a biholomorphic map on M which preserves the marking γ. That
means α ∈ ker(σ). In the following lemma, we will show that we can extend the action

of ker σ to Ũ , which leaves T̃ fixed and also fixing the polarization on each fiber of the
family, thus induces the action of ker σ on T̃ . Furthermore, we will show in the following

corollary that the action of ker σ on T̃ is a trivial action.

Lemma 2.4. Let (M,L, γ) be a fiber of the versal family π̃ : Ũ → T̃ . Then for any

α ∈ ker σ, there is an extension α̃ on Ũ leaving the base space T̃ fixed and also fixing the
polarization on each fiber of the family.

Proof. Let p ∈ T̃ be a point in the Teichmüller space with π̃−1(p) = (M,L, γ). The local

universality of the family π̃ : Ũ → T̃ shows that there exists a neighbourhood Up of

p ∈ T̃ with holomorphic morphisms α̃ : π̃−1(Up) → Ũ and f : Up → T̃ , such that the
following diagram is commutative,

π̃−1(Up)
α̃

//

π̃

��

Ũ

π̃
��

Up
f

// T̃ .

To show α̃ leaves the base space T̃ fixed, it is sufficient to show that f is the identity
on Up. Indeed f(p) = p from the definition of f , suppose f is not an identity on Up.

Then the tangent map f∗ : TpUp → TpT̃ is not identity either. By the identification of
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TpUp = TpT̃ with H0.1(M,T 1,0M) we have the following commutative diagram,

T 1,0
p T̃

f−1
∗

//

��

T 1,0
p Up

��

H0.1(M,T 1,0M)

��

H0.1(M,T 1,0M)

��

Hs−1,n−s+1(M)
α∗

// Hs−1,n−s+1(M).

But α ∈ ker(σ) implies the map α∗ : Hs−1,n−s+1(M) → Hs−1,n−s+1(M) is an identity.
This contradicts the assumption that f∗ is not identity.

Next we show that for each q ∈ Up the biholomorphic map α̃q on the fiberMq preserves
the polarization L. Because H2(M,Z) is a discrete group, we have that, for any point
q ∈ Up,

c1(α̃
∗
qL) = c1(α̃

∗
pL) = c1(L).

The simply connected property ofM implies holomorphic line bundles onM are uniquely
determined by the first Chern class. Therefore for any q ∈ Up, we have α̃∗

q(L) = L.

Now let us define a sheaf ℑ on the base space T̃ as follows, for any open set U ⊂ T̃ , we
assign the group ℑ(U) to be all the biholomorphic maps α

U
: π̃−1(U) → π̃−1(U) which

leaves the open set U fixed and preserving the polarization on each fiber. In another word
for any α

U
∈ ℑ(U), we have the following commutative diagram,

π̃−1(U)
α
U

//

π̃
��

π̃−1(U)

π̃
��

U
id

// U.

and for each point q ∈ U , the restriction of α
U
on the fiber Mq = π̃−1(q) preserves the

polarization L over Mq. If V ⊂ U is open then the restriction map of the sheaf is given
by,

res : ℑ(U) → ℑ(V )

αU → αU |
π̃−1(V )

.

From the local extension result discussed as above, we have that for any point p ∈ T̃ ,

there exists a neighborhood Up ⊂ T̃ such that any α ∈ ker σ on Mp can be extended to
the family π̃−1(Up). This means the restriction map

res : ℑ(Up) → ker σ

α
U
7→ α

U
|Mp

is an isomorphism. Therefore the sheaf ℑ is a locally constant sheaf. Using the fact that

T̃ is simply connected and Proposition 3.9 in [24], we have ℑ is a constant sheaf. This

means ℑ(T̃ ) = ker σ, so for each point p ∈ T̃ and α ∈ ker σ, there is a global section
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α̃ ∈ ℑ(T̃ ) such that α̃|Mp
= α. By the definition of the sheaf ℑ, we have the commutative

diagram,

Ũ
α̃

//

π̃
��

Ũ

π̃
��

T̃
id

// T̃ .

And restricted to each fiber Mq the morphism α̃|Mq
preserves the polarization L. �

We remark that we are using the argument in Lemma 2.6 in [19] for the first part of
proof of Lemma 2.4. As a corollary of above lemma we have the following result, which
will be useful in the proof of Theorem 2.3.

Corollary 2.5. The action of ker(σ) on T̃ is trivial.

Proof. For each element α ∈ ker(σ), we have a global extension α̃ acts on the family Ũ
with the commutative diagram

Ũ
α̃

//

π
��

Ũ

π
��

T̃
f

// T̃ .

Then α acts on T̃ by the holomorphic map f : T̃ → T̃ . But Lemma 2.4 implies that f

is an identity map. Therefore the action of α on T̃ is trivial. �

But the deck transformation α : T → T can also be viewed as a biholomorphic map

α : Ũ → Ũ .

This is the extension of the bi-holomorphic map α :M →M , but the Corollary 2.5 shows

that the global extension α̃ : Ũ → U should leave the T̃ fixed, this contradicts the fact
that α(pi) = pj 6= pi.

�

2.4. The period map on the Teichmüller space. As mentioned in Section 2.2, in
the rest of the paper, we simply use Hn(M,C) and Hk,n−k(M) to denote the primitive
cohomology groups Hn

pr(M,C) and Hk,n−k
pr (M) respectively. And the Hodge numbers

hk,n−k = dimHk,n−k
pr (M) are the dimensions of the primitive cohomology groups. By

using these notations, we don’t change the condition (1) and condition (2) in Definition
2.1.

For any point p ∈ T , let Mp be the fiber of the family π : U → T at p, which is a
polarized and marked Calabi-Yau type manifold. Since the Teichmüller space is simply
connected and we have fixed the basis of the middle cohomology group modulo torsions, we
can use this to identify Hn(Mp,C) for all fibers on T , and thus get a canonical trivial bun-
dle Hn(Mp,C)× T . We have similar identifications for Hn(Mp,Q) and Hn(Mp,Z)/Tor.
The Hodge numbers {hs,n−s, hs−1,n−s+1, · · · , hn−s,s} of Mp are indepentdent to the choice
of p ∈ T . Therefore we have corresponding data of Hn(M,C), Hn(M,Z), {hk,n−k} and
the intersection form on Hn(M,C) on a given polarized and marked Calabi-Yau type
manifolds.
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Let D be the period domain defined as in Section 2.1. The period map

Φ : T → D

from the Teichmüller space of polarized and marked Calabi-Yau type manifolds to the
period domain is defined by assigning each point p ∈ T the Hodge structure on Mp.

We denote Φ(p) = {F s(Mp) ⊂ · · · ⊂ F n−s(Mp)}, F k(Mp) by F k
p and Hk,n−k(Mp) by

Hk,n−k
p for convenience.
Recall that we have described general period maps in Section 2.1. Here we remark

that period maps have several nice properties, the reader may refer to Chapter 10 in [23]
for details. Among these properties, the one we are most interested in is the following
Griffiths transversality on the period map Φ : T → D from the Teichmüller space of
polarized and marked Calabi-Yau type manifolds to the period domain, that is, for any
p ∈ T and v ∈ T 1,0

p T , the tangent map satisfies,

(7) Φ∗(v) ∈
s⊕

k=n−s

Hom
(
F k
p /F

k+1
p , F k−1

p /F k
p

)
,

where F s+1 = 0, or equivalently

Φ∗(v) ∈
s⊕

k=n−s

Hom(F k
p , F

k−1
p ),

such that for any v ∈ T 1,0
p T and [α] ∈ F k

p ,

Φ∗(v)([α]) = [κ(v)yα].

For the period map on the Teichmüller space of polarized and marked Calabi-Yau type
manifold, we have the following property.

Proposition 2.6. For any p ∈ T and any generator [Ωp] of F
s
p , the tangent map Φ∗, the

map

P s
p ◦ Φ∗ : T 1,0

p T ∼= H0,1(Mp, T
1,0Mp) → Hom(F s

p , F
s−1
p /F s

p )
∼= Hs−1,n−s+1

p

is an isomorphism.

Proof. The first isomorphism

T 1,0
p T ∼= H0,1(Mp, T

1,0Mp)

follows from the condition for Kuranishi families that the Kodair-Spencer map is an
isomorphism. The second isomorphism

Hom(F s
p , F

s−1
p /F s

p )
∼= Hs−1,n−s+1

p

follows from the condition on Calabi-Yau type manifold that dimF s
p = 1. This isomor-

phism is determined by the choice of the generator [Ωp].
Now it is clear that the map

P s
p ◦ Φ∗ : H

0,1(Mp, T
1,0Mp) → Hs−1,n−s+1

p

is given by contraction

P s
p ◦ Φ∗(v) = [κ(v)yΩp].



13

This contraction map is an isomorphism by second condition in the definition of Calabi-
Yau type manifolds. The proof is complete. �

To end this section, we introduce corresponding notations for the Hodge bundles for
Calabi-Yau type manifolds. Hodge bundles over T are the pull-backs of the Hodge bundles
over Ď through the period map. For convenience, we still denote them by F k, for each
n − s ≤ k ≤ s. We will also denote by P k

p the projection from Hn(Mp,C) to F k
p with

respect to the Hodge filtration on Mp, and P n−k,k
p the projection from Hn(Mp,C) to

Hn−k,k
p according to the Hodge decomposition on Mp.

3. Holomorphic affine structure on the Teichmüller space

In this setion we will construct a holomorphic affine structure on the Teichmüller space
of polarized and marked Calabi-Yau type manifolds. In Section 3.1, we will give a brief
review on definitions and some basic properties of affine manifolds and affine maps. One
may refer to page 215 of [13], page 231 of [25], page 141 of [2] for more details. In Section
3.2 we construct a local coordinate system around each point of the Teichmüller space T
of polarized and marked Calabi-Yau type manifolds, which gives the Kuranishi coordinate
cover on T . In Section 3.3, we prove that this Kuranishi coordinate cover is a holomorphic
affine cover, thus it gives the holomorphic affine structure on the Teichmüller space.

In this section, we will freely use the notations of the Hodge numbers, Hodge decom-
positions and Hodge filtrations from the definition of Calabi-Yau type manifolds in the
previous section.

3.1. Affine manifolds and affine maps.

Definition 3.1. Let M be a differentiable manifold of real dimension n, if there is a
coordinate cover {(Ui, ϕi); i ∈ I} of M satisfying that ϕik = ϕi ◦ ϕ

−1
k is a real affine

transformation on Rn, whenever Ui ∩ Uk is not empty, then we call that {(Ui, ϕi); i ∈ I}
is a real affine coordinate cover on M and it defines a real affine structure on M .

Similarly one can define the concepts of holomorphic affine coordinate cover and holo-
morphic affine structure on a complex manifold M :

Definition 3.2. Let M be a complex manifold of complex dimension n, if there is a
coordinate cover {(Ui, ϕi); i ∈ I} of M satisfying that ϕik = ϕi ◦ ϕ

−1
k is a holomorphic

affine transformation on Cn, whenever Ui∩Uk is not empty, then we call that {(Ui, ϕi); i ∈
I} is a holomorphic affine coordinate cover on M and it defines a holomorphic affine
structure on M .

We have the following concept of the holomorphic flat connection, which is one-to-one
correspondent to the holomorphic affine structures on a complex manifold. For details
about this, we refer the reader to page 216 of [13], page 233-234 of [25] or page 140 of [2].
The proof for the one-to-one correspondence between holomorphic flat connections and
holomorphic affine structures can be found in page 217-219 of [13] or Section 3 of [25].

Let M be a complex manifold, and Γ(M,TM) denote the space of smooth sections of
the tangent bundle of M . A linear connection ∇ on M is defined to be a bilinear map

Γ(M,TM)× Γ(M,TM) → Γ(M,TM), (X, Y ) 7→ ∇XY

satisfying the following conditions,
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(i) ∇fYX = f∇YX ;
(ii) ∇Y fX = f(∇YX) + Y (f)X

for any f ∈ C∞(M).
A linear connection ∇ is called a holomorphic linear connection if the following two

more conditions are satisfied,

(iii) (∇YX)1,0 = ∇YX
1,0;

(iv) If V and W are complex holomorphic vector fields defined on an open subset
U ⊂M , then ∇WV is also holomorphic on U .

A holomorphic linear connection ∇ is called a holomorphic flat connection if the fol-
lowing two additional conditions are satisfied,

(v) ∇XY −∇YX = [X, Y ];
(vi) ∇X∇Y −∇Y∇X −∇[X,Y ] = 0.

Condition (v) and (vi) is saying that a holomorphic flat connection ∇ is a holomorphic
linear connection which is torsion-free and has zero curvature.

Now let us consider affine maps between holomorphic affine manifolds.
LetM andM ′ be two holomorphic affine manifolds with holomorphic coordinate covers

{Ui, ϕi} and {Vj, ψj} respectively. They both have natural holomorphic flat connections
according to the one-to-one correspondence between holomorphic flat connections and
holomorphic affine structures. Let f : M → M ′ be a smooth map. We call f : M → M ′

a holomorphic affine map if the induced map f∗ : TM → TM ′ maps every horizontal
curve into a horizontal curve, that is, f maps each parallel vector field along each curve
γ(t) of M into a parallel vector field along the curve f(γ(t)). Especially if the tangent

vector field
d

dt
γ(t) is parallel along γ(t), then the image of this vector field is also parallel

along f(γ(t)), that is, f maps geodesics on M to geodesics on M ′. Since the geodesics
on an affine manifold are straight lines in the holomorphic affine coordinate charts, we
deduce that a smooth map f : M → M ′ is a holomorphic affine map if and only for any
f−1(Vj) ∩ Ui 6= ∅, the following map

ψj ◦ f ◦ ϕ−1
i : ϕi(f

−1(Vj) ∩ Ui) → ψj(Vj)(8)

is a holomorphic affine transformation. Here ϕi(f
−1(Vj) ∩ Ui) and ψj(Vj) are both open

sets in complex Euclidean spaces.
In particular, for later use, we mention the following theorem about the extension of

holomorphic affine maps, which is the holomorphic analogue of Theorem 6.1 in [11]. We
refer the reader to page 252-255 of [11] and Section 4 of [8] for the proof.

Theorem 3.3. Let M be a connected, simply connected holomorphic affine manifold and
M ′ be a complete holomorphic affine manifold. Then any holomorphic affine map fU on
a connected open subset U of M into M ′ can be uniquely extended to a holomorphic affine
map f on M into M ′.

3.2. Local holomorphic coordinates on the Teichmüller space. For any fixed point
p ∈ T , we choose orthonormal bases {η0} and {η1, · · · , ηN} of Hs,n−s

p and Hs−1,n−s+1
p

respectively. Let Up be a small neighbourhood around p, and [Ωp] be a local holomorphic
section of the Hodge bundle F s = Hs,n−s, i.e.

[Ωp] : Up → F s = Hs,n−s,
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such that [Ωp](q) ∈ F s
q = Hs,n−s

q . Without loss of generality we also assume [Ωp](p) = η0.
Since as complex vector spaces, Hn(Mp,C) = Hn(Mq,C) for any q ∈ Up, we have

P s,n−s
p ([Ωp](q)) = a0(q)η0,(9)

P s−1,n−s+1
p ([Ωp](q)) = a1(q)η1 + · · ·+ aN (q)ηN ,(10)

for certain holomorphic functions ai(q) in q. This gives us a collection of local holomorphic
functions on Up,

τi : Up → C, τi(q) = ai(q)/a0(q), for 1 ≤ i ≤ N.(11)

In particular, τi(p) = 0 for 1 ≤ i ≤ N .
In the following proposition we will show that these functions actually give a local

holomorphic coordinate system on Up.

Proposition 3.4. The holomorphic map on Up,

ρ
Up

: = (τ1, · · · , τN) : Up → CN

is a local embedding.

Proof. The proof follows directly from Proposition 2.6, which shows that

P s
p ◦ Φ∗ : T

1,0
p T → Hs−1,n−s+1

p

is an isomorphism. Let {t1, · · · , tN} be an arbitrary local holomorphic coordinate system

around p, then we have the Jacobian matrix [∂ai/∂tj ]
N

i,j=0 which is non-singular at p. This

means {a1, · · · , aN} gives a local holomorphic coordinate system around p.
Since τi = ai/a0, we have

∂τi
∂tj

=

∂ai
∂tj

a0 −
∂a0
∂tj

ai

a20
, for 1 ≤ i ≤ N.

Since a0(p) = 1, and ai(p) = 0, thus
∂τi
∂tj

(p) =
∂ai
∂tj

(p). Therefore {τ1, · · · , τN} also gives

a local holomorphic coordinate system around p. This proves that the map ρ
Up

is a local
embedding. �

Notice that the definition of these coordinate functions depends on the choices of the
basis {η0, η1, · · · , ηN} of Hs,n−s

p ⊕Hs−1,n−s+1
p . We call such local holomorphic coordinates

{τ1, · · · , τN} the local holomorphic coordinates associated to {η0, η1, · · · , ηN}.
In general, for any point q ∈ T , by choosing bases of Hs,n−s

q and Hs−1,n−s+1
q , we can

define such a local holomorphic coordinate (Uq, {σ1, · · · , σN}) around q in the same way.
We call the collection {(Uq, {σ1, · · · , σN}), q ∈ T } constructed in this way the Kuranishi
coordinate cover over T , and each local holomorphic coordinate system (Uq, {σ1, · · · , σN})
a Kuranishi coordinate chart around q.

For p ∈ T , by using the Kuranishi coordinate chart (Up, {τ1, · · · , τN}), we can express a
holomorphic class in Hs,n−s

q at each point q ∈ Up in the following Taylor expansion form:

(12) [Ωcp,τ ](q) = [Ωp](q)/a0(q) = η0 + τ1(q)η1 + · · ·+ τN(q)ηN + g(q),
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with g(q) ∈
s⊕

k=2

Hs−k,n−s+k
p . This gives us a local holomorphic section of F s on Up:

[Ωcp,τ ] : Up → F s, q 7→ [Ωcp,τ ](q).

We call [Ωcp,τ ] the local canonical section of F s around the point p in the local holomorphic
coordinate system (Up, {τ1, · · · , τN}).

To close this subsection, we remark that different choices of the bases of Hs,n−s
p ⊕

Hs−1,n−s+1
p won’t affect the affine structure that we will show on the Teichmüller space T

of polarized and marked Calabi-Yau type manifolds in the following sense.
For a fixed point p ∈ T , we can construct, as in Section 3.2, the local holomorphic

coordinate charts (Up, {τ1, · · · , τN}) and (Up, {τ ′1, · · · , τ
′
N}) associated to two different

bases {η0, η1, · · · , ηN} and {η′0, η
′
1, · · · , η

′
N} of Hs,n−s

p ⊕ Hs−1,n−s+1
p respectively, then we

can conclude:

Lemma 3.5. The transition map between (Up, {τ1, · · · , τN}) and (Up, {τ ′1, · · · , τ
′
N}) is a

holomorphic affine map.

Proof. Let A be the N×N matrix, such that (η1, · · · , ηN) = (η′1, · · · , η
′
N )A, and η0 = cη′0,

for some c ∈ C. Using the same notations as in (9), (10) and (11), we define

τi = ai/a0, and τ ′i = a′i/a
′
0, for 1 ≤ i ≤ N.

Then we have the canonical holomorphic classes [Ωcp,τ ](q) and [Ωcp,τ ′](q) at q ∈ Up expressed
in different local holormorphic coordinates, respectively:

[Ωcp,τ ](q) = [Ωp](q)/a0(q) = η0 + τ1(q)η1 + · · ·+ τN(q)ηN + g(q),

[Ωcp,τ ′](q) = [Ωp](q)/a
′
0(q) = η′0 + τ1(q)η

′
1 + · · ·+ τN (q)

′ηN + g′(q),

with g(q), g′(q) ∈
⊕s−2

k=n−sH
k,n−k
p . Thus, we have

[Ωp](q) = a0(q)

(
η0 +

N∑

i=1

τi(q)ηi + g(q)

)
= a′0(q)

(
η′0 +

N∑

i=1

τ ′i(q)η
′
i + g′(q)

)
.

By comparing the coefficients of (s, n− s) type part of [Ωp](q), we get,

a0(q)cη
′
0 = a0(q)η0 = a′0(q)η

′
0,

thus
a′0(q)

a0(q)
= c.

By comparing the coefficients of the (s− 1, n− s+ 1) type part of [Ωp](q), we get,

(η1, · · · , ηN)(τ1, · · · , τN)
T = c(η′1, · · · , η

′
N)(τ

′
1, · · · , τ

′
N)

T = c(η1, · · · , ηN)A(τ
′
1, · · · , τ

′
N)

T .

which implies

(τ1, · · · , τN)
T = cA(τ ′1, · · · , τ

′
N )

T .

Thus the transition map between (τ1, · · · , τN)T and (τ ′1, · · · , τ
′
N)

T is cA, which is holo-
morphic affine. This completes the proof of the lemma. �
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3.3. Holomorphic affine structure on the Teichmüller space T .

We say an orthonormal basis

ξ =
{
ξ0, ξ1, · · · , ξN , · · · , ξfk+1, · · · , ξfk−1, · · · , ξfn−s+2, · · · , ξfn−s+1−1, ξfn−s−1

}

of Hn(M,C) is an adapted basis for the given Hodge decomposition

Hn(M,C) = Hs,n−s ⊕Hs−1,n−s+1 ⊕ · · · ⊕Hn−s+1,s−1 ⊕Hn−s,s,

if it satisfies

F k/F k+1 = Hk,n−k = SpanC

{
ξfk+1 , · · · , ξfk−1

}
.

Recall in Section 2.1, we can identify a point Φ(p) = {F s
p ⊂ F s−1

p ⊂ · · · ⊂ F n−s
p } ∈ D

with its Hodge decomposition
⊕s

k=n−sH
k,n−k
p . Thus we have the notion of an adapted

basis for the Hodge decomposition Φ(p) for each p ∈ T . In the rest of the paper, we will
write an adapted basis for the Hodge decomposition of Hn(Mp,C) at each point p ∈ T in
the row vector form,

ξ = (ξ0, ξ1, · · · , ξN , · · · , ξfk+1, · · · , ξfk−1, · · · , ξfn−s+2, · · · , ξfn−s+1−1, ξfn−s−1).

Recall that a square matrix T = [T α,β], with each T α,β a submatrix, is called a block
lower triangular matrix if T α,β is zero matrix whenever α < β. We use Tij to denote the
entries of the matrix T .

Let Φ : T → D be the period map from the Teichmüller space of polarized and marked
Calabi-Yau type manifolds to the period domain. For a fixed point p ∈ T , we construct
the local holomorphic coordinate system (Up, {τ1, · · · , τN}) around p associated to a given
basis {ξ0(p), ξ1(p), · · · , ξN(p)} of Hs,n−s

p ⊕Hs−1,n−s+1
p as in Section 3.2. We complete the

basis {ξ0(p), ξ1(p), · · · , ξN(p)} to an adapted basis {ξ0(p), · · · , ξm−1(p)} for the Hodge
decomposition of Φ(p). Then we will have the following lemma.

Lemma 3.6. For an adapted basis {ξ0(τ), · · · , ξm−1(τ)} for the Hodge decomposition of
Φ(τ) for any τ ∈ Up, there exists a non-singular block lower trangular matrix T (τ) such
that

(ξ0(τ), · · · , ξm−1(τ)) = (ξ0(p), · · · , ξm−1(p))T (τ).

Proof. This lemma is a direct corollary of the Griffiths transversality for the period map
from the Teichmüller space of polarized and marked Calabi-Yau type manifolds to the
period domain. In this proof, we identify the notation for a point τ ∈ Up with its
corresponding coordinates in the local coordinate system (Up, {τ1, · · · τN}).

Consider a local holomorphic family of adapted bases {ξ0, · · · , ξm−1} for the Hodge de-
compositions of the Hodge structures over Up, obtained by trivializing the Hodge bundles
in a small neighbourhood of p, such that {ξ0(p), · · · , ξm−1(p)} is the given adapted basis
for the Hodge decomposition of Φ(p). That is, for any τ ∈ Up, {ξ0(τ), · · · , ξm−1(τ)} gives
an adapted Hodge basis for the Hodge decomposition of Φ(τ). We need to show that
for any τ ∈ Up, the adapted basis {ξ0(τ), · · · , ξm−1(τ)} for the Hodge decomposition of
Φ(τ) given by this local holomorphic family is differed from {ξ0(p), · · · , ξm−1(p)} by a
non-singular block lower triangular matrix. Let

{F s
τ ⊂ F s−1

τ ⊂ · · · ⊂ F n−s
τ } = Φ(τ)
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be the Hodge filtration determined for the Hodge decomposition of Φ(τ). Then the
Griffiths transversality implies that

∂

∂τ
(F k

τ /F
k+1
τ ) ⊂ F k−1

τ /F k
τ , for all n− s ≤ k ≤ s(13)

where the quotient bundle F k/F k+1 is a holomorphic vector bundle over T and has the
relation F k/F k+1 = Hk,n−k.

For each fk+1 ≤ j ≤ fk − 1, we have ξj(τ) ∈ F k
τ /F

k+1
τ = Hk,n−k

τ , and by using (13), we
get

∂

∂τ l
ξj(τ) ∈ F k−1

τ /F k
τ = Hk−1,n−k+1

τ for each 1 ≤ l ≤ N.

With the convention of multiple derivative notations, we get

∂|I|

∂τ I
ξj(τ) ∈ F k−|I|

τ /F k+1−|I|
τ = Hk−|I|,n−k+|I|

τ for each |I| ≥ 0.

Thus we can write
∂|I|

∂τ I
ξj(τ) as a linear combination of {ξfk+1−|I|(τ), · · · , ξfk−|I|−1(τ)}:

∂|I|

∂τ I
ξj(τ) =

∑

fk+1−|I|≤i≤fk−|I|−1

T ′
ij(τ)ξi(τ), for each |I| ≥ 0(14)

where T ′
ij(τ)’s are holomorphic functions in τ .

Now let us look at the Taylor expansion of ξj(τ) at p for all fk+1 ≤ j ≤ fk − 1. We
get, for |τ | < ǫ small,

ξj(τ) =
∑

|I|≥0

∂|I|

∂τ I
ξj(p)τ

I =
∑

|I|≥0




∑

fk+1−|I|≤i≤fk−|I|−1

T ′
ij(p)ξi(p)


 τ I(15)

=
∑

i≥fk+1

Tij(τ)ξi(p),(16)

where if |I| = d for some d ≥ 0, then for any fk+1−d ≤ i ≤ fk−d − 1, we write

Tij(τ) =
∑

|I|=d

T ′
ij(p)τ

I .

Thus by taking all n− s ≤ k ≤ s, (16) gives us a m×m matrix T (τ), such that

(ξ0(τ), · · · , ξm−1(τ)) = (ξ0(p), · · · , ξm−1(p))T (τ)(17)

If we set the blocks of T (τ) in the following: for each 0 ≤ α, β ≤ 2s − n, the (α, β)-th
block T α,β of T (τ), is

T α,β = [Tij(τ)]f−α+s+1≤i≤f−α+s−1, f−β+s+1≤j≤f−β+s−1 ,(18)

then from (16), we see that for any 0 ≤ β ≤ 2s−n, and f−β+1+s ≤ j ≤ f−β+s−1, Tij(τ) =
0 if i ≤ f−β+1+s − 1, namely if f−α+s+1 < f−β+s+1, then T α,β = 0. As fk =

∑
l=k h

l,n−l
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is decreasing with respect to k, we have when β > α, T α,β = 0. Thus we concludes that
T (τ) has the following form,




T 0,0 0 0 · · · 0 0 0
∗ T 1,1 0 · · · 0 0 0
∗ ∗ T 2,2 · · · 0 0 0
...

...
... · · ·

...
...

...
∗ ∗ ∗ · · · T 2s−n−2,2s−n−2 0 0
∗ ∗ ∗ · · · ∗ T 2s−n−1,2s−n−1 0
∗ ∗ ∗ · · · ∗ ∗ T 2s−n,2s−n




,

which means that T (τ) is a block lower triangular matrix. Moreover, as vector spaces, F 0
p

and F 0
q are the same, thus as the transition matrix between two bases of the same vector

space, T (τ) is obviously non-singular. This completes the proof of Lemma 3.6. �

Here we remark that in [8], we have used column vector for the adapted basis for the
Hodge decomposition of Φ(p), while in this paper we use row vector for the adapted basis
of Φ(p). Due to such different conventions, the form of matrix T (τ) in this lemma and
c(q) in Lemma 4.5 of [8] should be transpose to each other.

Let Φ : T → D be the period map from the Teichmüller space of polarized and marked
Calabi-Yau type manifolds to the period domain. For a fixed point p ∈ T , we construct
the local holomorphic coordinate system (Up, {τ1, · · · , τN}) around p associated to a given
basis {η0, η1, · · · , ηN} of Hs,n−s

p ⊕ Hs−1,n−s+1
p as in Section 3.2. We complete the basis

{η0, η1, · · · , ηN} to an adapted basis {η0, · · · , ηm−1} for the Hodge decomposition of Φ(p).
In Lemma 3.6, we require τ ∈ Up, where Up is a small neighbourhood of p as the Taylor

expansion (16) holds for |τ | small. However, by using the connectedness of T , we can
prove the following corollary.

Corollary 3.7. For an adapted basis {ζ0, · · · , ζm−1} for the Hodge decomposition of Φ(q)
for any q ∈ T , there exists a non-singular block lower trangular matrix T such that

(ζ0 · · · , ζm−1) = (η0, · · · , ηm−1)T.

Proof. Since T is connected, there exists a smooth curve γ(s) connecting p = γ(0) and
q = γ(1) and moreover we can choose

0 = s0 < s1 < · · · < sd−1 < sd = 1,

such that for all 0 ≤ l ≤ d, γ(sl+1) ∈ Uγ(sl), with Uγ(sl) small enough.

Let (Uγ(sl), {τ
(l)
1 , · · · , τ (l)N )} is the local holomorphic coordinate system associated to a

basis

{ξ0(γ(sl)), ξ1(γ(sl)), · · · , ξN(γ(sl))}

of Hs,n−s
γ(sl)

⊕Hs−1,n−s+1
γ(sl)

as defined in Section 3.2, such that

(τ
(0)
1 , · · · , τ (0)N ) = (τ1, · · · , τN),

{ξ0(γ(s0)), ξ1(γ(s0)), · · · , ξN(γ(s0))} = {η0, η1, · · · , ηN},

{ξ0(γ(sd)), ξ1(γ(sd)), · · · , ξN(γ(sd))} = {ζ0, ζ1, · · · , ζN}.
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For simplicity, we will denote γ(sl) = bl.
For each 0 ≤ l ≤ d, we complete the basis {ξ0(bl), · · · , ξN(bl)} to an adapted basis

{ξ0(bl), · · · , ξm−1(bl)} for the Hodge decomposition of Φ(bl), such that

(ξ0(b0), · · · , ξm−1(b0)) = (η0, · · · , ηm−1), (ξ0(bd), · · · , ξm−1(bd)) = (ζ0, · · · , ζm−1).(19)

Since bl ∈ Ubl−1
, we can apply Lemma 3.6 for any 1 ≤ l ≤ d to get that there exists a

non-singular block lower triangular matrix T (bl) such that:

(ξ0(bl), · · · , ξm−1(bl)) = (ξ0(bl−1), · · · , ξm−1(bl−1))T (bl).

Then using this formula repeatedly, together with (19), we get that the transition ma-
trix between the two adapted bases {ζ0, · · · , ζm−1} and {η0, · · · , ηm−1} for the Hodge
decompositions of Φ(p) and Φ(q):

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T (b1)T (b2) · · ·T (bd−1) · T (bd).

Denoting T = T (b1)T (b2) · · ·T (bd−1) · T (bd), we get,

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T.

For each 0 ≤ l ≤ d, T (bl) is a non-singular block lower triangular m×m matrix, thus so
is T . This completes the proof of the corollary. �

From the proof of this corollary, one gets similar formulas as in (16) of the transforma-
tion between the adapted bases {η0, · · · , ηm−1} and {ζ0, · · · , ζm−1} in terms of the entries
of the matrix T , i.e. for each n− s ≤ k ≤ s:

ζj =
∑

i≥fk+1

Tijηi, for fk+1 ≤ j ≤ fk − 1.(20)

Recall that we have defined a local canonical holomorphic section [Ωcp,τ ] on Up, and we
expressed the local canonical class [Ωcp,τ ](q) ∈ Hs,n−s

q in the Taylor expansion form (12)
by using the local holomorphic coordinates (Up, {τ1, · · · , τN}). Using the condition that
hs,n−sp = 1, we can show the following proposition:

Proposition 3.8. Fix p ∈ T and (Up, {τ1, · · · , τN}) the Kuranishi coordinate chart asso-
ciated to a fixed basis {η0, η1, · · · , ηN} of Hs,n−s

p ⊕ Hs−1,n−s+1
p , then for any q ∈ Up, and

any [Θq] ∈ Hs,n−s
q , there exists a constant λ ∈ C such that

[Θq] = λ
(
[Ωcp,τ ](q)

)
= λ

(
η0 +

N∑

i=1

τi(q)ηi + g(q)

)

with g(q) ∈
⊕

k≥2H
s−k,n−s+k
p .

Proof. Since dimC H
s,n−s
q = 1, and both [Ωcp,τ ](q) and [Θq] belong to Hs,n−s

q , there exists
a complex number λ such that,

[Θq] = λ([Ωcp,τ ](q)).

Using (12), we get the conclusion. �
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Note that in the above proposition, if we let [Θq] vary holomorphically in q, then λ also
depends on q holomorphically. But we will not need this property in this paper.

Next we will use Lemma 3.5, Corollary 3.7, and Proposition 3.8 to prove that the
transition maps in the Kuranishi coordinate cover as constructed in Section 3.2 on the
Teichmüller space of polarized and marked Calabi-Yau type manifolds are actually affine
maps. This is given in the following theorem.

Theorem 3.9. The Kuranishi coordinate cover on T is a holomorphic affine coordinate
cover, thus it defines a global holomorphic affine structure on T .

Proof. We use the same notations as in Corollar 3.7. Let p, q ∈ T , and Up, Uq the
corresponding small neighbourhoods of p and q, with Up ∩ Uq 6= ∅. Suppose that
(Up, {τ1, · · · , τN}) is the local holomorphic coordinate system associated to the basis
{η0, η1, · · · , ηN} of Hs,n−s

p ⊕ Hs−1,n−s+1
p , and (Uq, {σ1, · · · , σN}) is the local holomorphic

coordinate system associated to the basis {ζ0, ζ1, · · · , ζN} ofHs,n−s
q ⊕Hs−1,n−s+1

q as defined
in Section 3.2. We complete these two bases to adapted bases {η0, η1, · · · , ηN , · · · , ηm−1}
and {ζ0, ζ1, · · · , ζN , · · · , ζm−1} for the Hodge decompositions of Φ(p) and Φ(q) respec-
tively.

We shall prove the theorem by dividing it into the following two cases.
Case 1: When p = q, if {η0, · · · , ηN} and {ζ0, · · · , ζN} are the same, then the transition

map between the coordinates is just the identity map, thus a holomorphic affine map.
Otherwise, according to Lemma 3.5, the transistion map is a holomorphic affine map.

In particular, this also tells us that we can use any choice of the orthonormal basis
of Hs,n−s

p ⊕ Hs−1,n−s+1
p around a fixed point p ∈ T for our discussion about the global

holomorphic affine structure on T .
Case 2: When p 6= q, for any point r ∈ Up ∩ Uq, let us compute the transition

map between its coordinates in Up and Uq which we denote by {τ1(r), · · · , τN(r)} and
{σ1(r), · · · , σN (r)} respectively.

Let [Ωcp,τ ](r) ∈ Hs,n−s
r be the canonical (s, n − s) class defined by (12) in the local

coordinates (Up, {τ1, · · · , τN}) around p,

[Ωcp,τ ](r) = η0 +
N∑

j=1

τj(r)ηj +
∑

l≥N+1

gl(τ(r))ηl,(21)

where τ(r) is the coordinate of r in {Up, (τ1, · · · , τN )}.
Similarly, let [Ωcq,σ](r) ∈ Hs,n−s

r be the canonical (s, n− s) class defined by (12) in the
local coordinates (Uq, {σ1, · · · , σN}) around q,

[Ωcq,σ](r) = ζ0 +
N∑

j=1

σj(r)ζj +
∑

l≥N+1

fl(σ(r))ζl,(22)

where σ(r) is the coordinate of r in {Up, (σ1, · · · , σN)}.
Since [Ωcp,τ ](r) and [Ωcq,σ](r) are both in Hs,n−s

r , applying Proposition 3.8, we get that
there exists λ ∈ C, such that:

η0 +

N∑

j=1

τj(r)ηj +
∑

l≥N+1

gl(τ(r))ηl = λ

(
ζ0 +

N∑

j=1

σj(r)ζj +
∑

l≥N+1

fl(σ(r))ζl

)
.(23)
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On the other hand, by Corollar 3.7, there exists a non-singular block lower triangular
m×m matrix T , such that:

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T.(24)

According to (20), we can write (24) explicitly as follows,

ζj =
∑

i≥fk+1

Tijηi, for each fk+1 ≤ j ≤ fk − 1

and for each n− s ≤ k ≤ s. Thus (23) can be written as

η0 +
N∑

j=1

τj(r)ηj +
∑

l≥N+1

gl(τ(r))ηl

=λ

(
∑

i≥0

Ti0ηi +
N∑

j=1

(
σj(r)

∑

i≥1

Tijηi

)
+
∑

l≥N+1

(
fl(σ(r))

∑

j≥N+1

Tijηj

))
.

By comparing the coefficients of η0, we get λ = T−1
00 . Projecting both sides of the above

equation to Hs−1,n−s+1
p , we get:

N∑

j=1

τj(r)ηj = λ

(
∑

i≥1

Ti0ηi +

N∑

j=1

(
σj(r)

∑

i≥1

Tijηi

))

= λ

(
N∑

j≥1

(
Tj0 +

N∑

i=1

σi(r)Tji

)
ηj

)
.

By comparing the coefficients for each ηj , 1 ≤ j ≤ N , and substituting λ = T−1
00 , we get

T00τj(r) = Tj0 +
N∑

i=1

σi(r)Tji.

That is,

T00



τ1(r)
...

τN(r)


 =



T10
...

TN0


+



T11 · · · T1N
· · · · · · · · ·
TN1 · · · TNN





σ1(r)
...

σN (r)


 .(25)

Since for all 0 ≤ i, j ≤ N , Tij are constants depending only on p and q, thus (25)
shows that the transition map between (τ1(r), · · · , τN(r))T and (σ1(r), · · · , σN (r))T for
any r ∈ Up ∩ Uq is an affine map. This completes the proof of this theorem. �

In the next section, we shall use this global affine structure on T to show that there
exists a global affine coordinate system on the Teichmüller space of polarized and marked
Calabi-Yau type manfolds, and then prove the global Torelli theorem on the Teichmüller
space.
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4. Global Torelli theorem on the Teichmüller space

In this section, we prove the global Torelli theorem on the Teichmüller space T of
polarized and marked Calabi-Yau type manifolds. The proof is based on the construction
of the global holomorphic flat coordinates on T . In Section 4.1, we use the holomorphic
affine structure constructed in Section 3 to prove the existence of global holomorphic
flat coordinates on the Teichmüller space T of polarized and marked Calabi-Yau type
manfolds, which induces a natural holomorphic affine embedding from the Teichmüller
space into CN ∼= Hs−1,n−s+1

p . In Section 4.2, we use the global holomorphic flat coordinates
on T to prove Theorem 4.4, which is the global Torelli theorem on the Teichmüller space
of polarized and marked Calabi-Yau type manifolds.

4.1. The holomorphic affine embedding from T into CN ∼= Hs−1,n−s+1
p . First recall

that in Section 3.2, we constructed the Kuranishi coordinate cover on the Teichmüller
space T , that is, for each p ∈ T , we defined a local holomorphic coordinate chart
(Up, {τ1, · · · , τN}) around p which is associated to a chosen bases {η0} and {η1, · · · , ηN}
of Hs,n−s

p and Hs−1,n−s+1
p respectively. By setting ρ

Up
(q) = (τ1(q), · · · , τN(q))T , for any

q ∈ Up, we then get a local holomorphic embedding around p,

ρ
Up

: Up → CN ∼= Hs−1,n−s+1
p

∼= T 1,0
p T .

Here recall that we make the identification Hs−1,n−s+1
p

∼= CN by fixing the orthonormal

basis {η1, · · · , ηN} ofH
s−1,n−s+1
p . Because the holomorphic affine structure on T is defined

by the Kuranishi coordinate cover, we have that the local holomorphic coordinate map
ρ

Up
: Up → CN ∼= Hs−1,n−s+1

p is an affine map on Up. Then by applying Theorem 3.3 we
get the following lemma:

Lemma 4.1. There exists a unique global holomorphic affine extension

ρp : T → CN ∼= Hs−1,n−s+1
p

of ρ
Up
, such that when restricted on Up, ρp|Up

= ρ
Up
.

The theorem below will give us the global holomorphic affine coordinates on T and
consequently the global holomorphic embedding of T into CN ∼= Hs−1,n−s+1

p . Recall that
in Section 3.3 we showed that the Kuranishi coordinate cover gives us a holomorphic
affine structure on the Teichmüller space T of polarized and marked Calabi-Yau type
manifolds. By the discussion in Section 3.1, we have a corresponding global holomorphic
affine connection ∇ on T . We shall use this global holomorphic affine connection ∇ and
the assumption that T is simply connected to construct the global holomorphic coodinate
functions. We then prove that it agrees with ρp.

Theorem 4.2. The holomorphic affine map ρp : T → CN ∼= Hs−1,n−s+1
p is a holomorphic

affine embedding.

Proof. The proof is mainly to show ρp is given explicitly by a global holomorphic flat
coordinates.

To construct the global holomorphic coordinate system t = (t1, · · · , tN) on T , we start
from a point p ∈ T , and the local holomorphic coordinate system (Up, {τ1, · · · , τN})
around p as defined in Section 3.2. Then we will follow the discussions as in page 217 of
[13]. Because (Up, {τ1, · · · , τN}) is a local holomorphic coordinate chart, the holomorphic
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vector fields {∂/∂τ1, · · · , ∂/∂τN} form a local parallel frame of T 1,0Up with respect to
the holomorphic flat connection ∇ on T . Because T is simply connected and that the
holomorphic connection is torsion-free and flat, we can extend this local parallel frame,
by parallel transports, to a global holomorphic parallel frame {V1, · · · , VN} of T 1,0T . We
denote by {θ1, · · · , θN} the dual frame of {V1, · · · , VN} defined by the condition

θi(Vj) = δij , for 1 ≤ i, j ≤ N.

We shall show the following two properties:

(i) {θ1, · · · , θN} is a global holomorphic parallel frame of the holomorphic cotangent
bundle T ∗1,0T ;

(ii) The differential forms θ1, · · · , θN are closed holomorphic (1, 0)-forms on T .

In fact, to show (i), we use the fact that the affine connection ∇ is holomorphic. Because
∇ is holomorphic, the parallel frame {V1, · · · , VN} is a global holomorphic frame of T 1,0T .
This implies that the dual frame {θ1, · · · , θN} is a global parallel holomorphic frame of
T ∗1,0T , which also gives that dθi is a (2, 0)-form on T , for each 1 ≤ i ≤ N .

For (ii), notice the fact that ∇ is torsion-free implies that the parallel holomorphic
vector fields are commutative, i.e. [Vk, Vl] = ∇VkVl − ∇VlVk = 0 for 1 ≤ k, l ≤ N. Then
we get

dθi(Vk, Vl) =Vk(θi(Vl))− Vl(θi(Vk))− θi([Vk, Vl])

=Vk(δil)− Vl(δik)− θi(0)

=0, for 1 ≤ i, k, l ≤ N.

This shows that the (2, 0) part of each dθi is zero. Together with the above discussion
that dθi is a (2, 0)-form, we get that dθi = 0 for each 1 ≤ i ≤ N .

Because T is simply connected, these closed forms {θ1, · · · , θN} are exact. This implies
that there are holomorphic functions {t1, · · · , tN} uniquely defined on T such that

dti = θi and ti(p) = 0,

for each 1 ≤ i ≤ N .
By (i), these globally defined holomorphic functions {t1, · · · , tN} satisfy that their dif-

ferentials {dt1, · · · , dtN} give a global parallel frame of the holomorphic cotangent bundle
of T , hence dt1 ∧ · · · ∧ dtN is never zero. Therefore given a local holomorphic coordi-
nate system around any point q ∈ T , the Jacobian of the functions {t1, · · · , tN} in this
local holomorphic coordinate system is nondegenerate. With this discussion, one can con-
clude that the functions {t1, · · · , tN} form a local holomorphic coordinate system when
restricted to a holomorphic coordinate chart around q, for each q ∈ T . Therefore we can
conclude that t = (t1, · · · , tN)T defined in this way is a holomorphic embedding from T
to CN as it forms a global holomorphic coordinate system for T .

Next we prove that (t1, · · · , tN)
T = ρp, and conclude t = (t1, · · · , tN)

T is an affine map
since ρp is affine.

Notice that dti = θi = dτi on Up, then by the uniqueness of {t1, · · · , tN}, we have

ti(q) = τi(q) for q ∈ Up, 1 ≤ i ≤ N.
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By Lemma 4.1, there exists a unique global holomorphic affine map ρp : T → CN ∼=
Hs−1,n−s+1
p that extends ρ

Up
, and when restricted to Up we have

ρi(q) = τi(q) for q ∈ Up, 1 ≤ i ≤ N,

where we write ρp(q) = (ρ1(q), · · · , ρN(q))
T ∈ CN . Note that for each 1 ≤ i ≤ N , the

coordinate function ti and ρi are both globally defined holomorphic functions on T , and
they agree on an open subset Up ⊂ T , thus they must agree on the whole T , i.e.

ρi(q) = ti(q) for q ∈ T , 1 ≤ i ≤ N.

By combining the above discussions we conclude that the holomorphic affine map

ρp : T → CN ∼= Hs−1,n−s+1
p ,

which can also be given by the global holomorphic flat coordinates ρp = t = (t1, · · · , tN)T ,
is a holomorphic affine embedding. This completes the proof of this theorem . �

Since we have obtained ρp by extending the local holomorphic map ρ
Up

: Up → CN

around p with ρp(p) = 0, we will also call these global coordinates t = ρp = {t1, · · · , tN}
on T a global holomorphic flat coordinate system centered at p.

As an alternative description of the construction of this global holomorphic flat co-
ordinate (t1, · · · , tN), which we only briefly describe, is by directly patching the local
holomorphic coordinate charts through affine transformations to get the global holomor-
phic affine coordinates. Both approaches are essentially equivalent, they crucially depend
on the fact that the Teichmüller space T of polarized and marked Calabi-Yau type mani-
folds is a simply connected holomorphic affine manifold. In the following construction we
will use affine transformations and standard obstruction theory.

Let {(Uq, ϕq) : q ∈ T } be the Kuranishi coordinate cover on T , where

ϕq := ρUq
= (τ q1 , · · · , τ

q
N )

T : Uq → CN

denotes the local holomorphic coordinate map constructed in Section 3.2. Notice we
slightly changed the notations of the local holomorphic coordinates just for making the
argument here cleaner. We denote by Aff(CN) the group of holomorphic affine transfor-
mations from CN to CN .

Because the Kuranishi coordinate cover on T is a holomorphic affine coordinate cover,
we have that the transition map ϕq ◦ ϕ

−1
q′ ∈ Aff(CN) for each q and q′ in T whenever

Uq ∩Uq′ 6= ∅. Let us fix a point p ∈ T and the holomorphic coordinate chart {τ p1 , · · · , τ
p
N}

around p. Then we can choose an Aq ∈ Aff(CN) for each coordinate chart (Uq, ϕq), such
that

Aq ◦ ϕq = Aq′ ◦ ϕq′ whenever Uq ∩ Uq′ 6= ∅;

Ap = Id on Up.

By using uniqueness of the analytic continuation of holomorphic functions, or repeating
the standard argument that a flat vector bundle on a simply connected space is a trivial
bundle, see for examples the discussions in [11], Corollary 9.2 in Section 9 of Chapter II,
and Theorem 4.1 in Section 4 of Chapter V, we know that the obstruction to make the
above choices is in Hom (π1(T ), Aff(CN)), where π1(T ) denotes the fundamental group of
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the Teichmüller space T . Because T is simply connected, the obstruction vanishes. This
implies that we may choose a new coordinate cover,

{(Uq, ψq = Aq ◦ ϕq) : q ∈ T },

such that

ψq ◦ ψ
−1
q′ = Id for Uq ∩ Uq′ 6= ∅.

This gives us the global holomorphic flat coordinates which agree with {τ1, · · · , τN} on
Up.

To close this subsection we describe the local exponential map from CN to T , where
we identify CN with T 1,0

p T and Hs−1,n−s+1
p , the identification is described in Section 2.2.

We shall also show that it is an inverse map of the affine embedding ρ
Up

: Up → CN ∼=
Hs−1,n−s+1
p .
One can define the exponential map on the holomorphic tangent space of a holomorphic

affine manifold as follows. Let M be an N dimensional complex manifold with a holo-
morphic flat connection ∇, which is defined in Section 3.1. Then for each point p ∈ M
and a basis {X1, · · · , XN} of the holomorphic tangent space T 1,0

p M , we have the unique
local holomorphic coordinate functions {t1, · · · , tN} around p, such that

∂

∂ti
|p = Xi for each i.

Definition 4.3. LetM be a holomorphic affine manifold. For each pair (p, {X1, · · · , XN})
as described above, the holomorphic map

exp : T 1,0
p M →M,

∑

i

tiXi 7→ (t1, · · · , tN)
T .

on a neighbourhood of 0 ∈ T 1,0
p M is called the exponential map according to (p, {X1, · · · , XN}).

In particular, the Teichmuller space T of polarized and marked Calabi-Yau type mani-
fold is a holomorphic affine manifold. Recall that for a given point p ∈ T and a generator
[Ωp] of H

s,n−s
p , the holomorphic tangent space T 1,0

p T ∼= H0,1(Mp, T
1,0Mp) is identified with

Hs−1,n−s+1
p by the isomorphism

y : H0,1(Mp, T
1,0Mp) → Hs−1,n−s+1

p

[ϕ] 7→ [ϕyΩp].

If we fix bases {η0} and {η1, · · · , ηN} of Hs,n−s and Hs−1,n−s+1
p , respectively, we will have

the local holomorphic coordinate chart given by the holomorphic functions {τ1, · · · , τN}
in a neighbourhood Up of p as constructed in Section 3.2. Then according to the definition
of holomorphic exponential map, we have

exp : T 1,0
p T ∼= Hs−1,n−s+1

p
∼= CN → T

with exp(
N∑
i=1

τiηi) = (τ1, · · · , τN)T , which is the holomorphic exponential map according

to the point p and the basis {η0} and {η1, · · · , ηN}.
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On the other hand, the local coordinate map of the local holomorphic coordinate system

ρ
Up

: Up → CN ∼= Hs−1,n−s+1
p ,

with ρp(τ1, · · · , τN ) =
N∑
i=1

τiηi is clearly the inverse of the above holomorphic exponential

map.

4.2. Proof of the global Torelli theorem.

Theorem 4.4. The period map Φ : T → D is globally injective.

Proof. For any p ∈ T , we can construct a local holomorphic coordinate (Up, {τ1, · · · , τN})
accociated to a fixed basis {η0, η1, · · · , ηN} ofH

s,n−s
p ⊕Hs−1,n−s+1

p respectively as in Section
3.2. We complete this basis {η0, · · · , ηN} to an adapted basis {η0, η1, · · · , ηN , · · · , ηm−1}
for the Hodge decomposition of Φ(p).

Recall that in Section 4.1 we extend the local holomorphic coordinate map

ρ
Up

= (τ1, · · · , τN)
T : Up → CN ∼= Hs−1,n−s+1

p

to a global homolomorphic flat coordinate system

ρp = (t1, · · · , tN)
T : T → CN ∼= Hs−1,n−s+1

p ,

with (t1(p), · · · , tN(p))T = 0, which is a global holomorphic affine embedding.
For any other point q ∈ T , we have local holomorphic coordinates (Uq, {σ1, · · · , σN})

associated to a fixed Hodge basis {ζ0, ζ1, · · · , ζN} of Hs,n−s
q ⊕ Hs−1,n−s+1

q as defined
in Section 3.2. We can also complete the basis {ζ0, ζ1, · · · , ζN} to an adapted basis
{ζ0, ζ1, · · · , ζN , · · · , ζm−1} for the Hodge decomposition Φ(q).

We can similarly extend the local holomorphic coordinate map

ρ
Uq

= (σ1, · · · , σN)
T : Uq → CN ∼= Hs−1,n−s+1

q

to a global homolomorphic flat coordinate map

ρq = (t′1, · · · , t
′
N)

T : T → CN ∼= Hs−1,n−s+1
q ,

with (t′1(q), · · · , t
′
N(q))

T = 0, which is a global holomorphic affine embedding.
Applying the similar arguments as in Lemma 3.6 and Corollary 3.7, we take a smooth

curve γ(s) to connect p = γ(0) and q = γ(1), and moreover we can choose

0 = s0 < s1 < · · · < sd−1 < sd = 1,

such that γ(sl+1) ∈ Uγ(sl). For each 0 ≤ l ≤ d, the local holomorphic coordinate chart

(Uγ(sl), {τ
(l)
1 , · · · , τ (l)N }) is as defined in Section 3.2, which is associated to a fixed basis

{ξ0(γ(sl)), ξ1(γ(sl)), · · · , ξN(γ(sl))} of Hs,n−s
γ(sl)

⊕ Hs−1,n−s+1
γ(sl)

such that (τ
(0)
1 , · · · , τ (0)N )T =

(τ1, · · · , τN)T , (τ
(d)
1 , · · · , τ (d)N )T = (σ1, · · · , σN )T , and

{ξ0(γ(s0)), ξ1(γ(s0)), · · · , ξN(γ(s0))} = {η0, η1, · · · , ηN},

{ξ0(γ(sd)), ξ1(γ(sd)), · · · , ξN(γ(sd))} = {ζ0, ζ1, · · · , ζN}.

For simplicity, we denote γ(sl) = bl.
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For each local holomorphic coordinate chart (Ubl , {τ
(l)
1 , · · · , τ (l)}N ), we can extend the

local holomorphic coordinate map

ρ
Ubl

= (τ
(l)
1 , · · · , τ (l)N )T : Ubl → CN ∼= Hs−1,n−s+1

bl

to a global holomorphic affine coordinate map,

ρbl = (t
(l)
1 , · · · , t

(l)
N )T : T → CN ∼= Hs−1,n−s+1

bl

with (t
(l)
1 (bl), · · · , t

(l)
N (bl))

T = 0, which is a global holomorphic affine embedding.
For each 0 ≤ l ≤ d, we complete the basis {ξ0(bl), ξ1(bl), · · · , ξN(bl)} to an adapted

basis {ξ0(bl), · · · , ξm−1(bl)} for the Hodge decomposition of Φ(bl), such that

(ξ0(b0), · · · , ξm−1(b0)) = (η0, · · · , ηm−1) and (ξ0(bd), · · · , ξm−1(bd)) = (ζ0, · · · , ζm−1).

Since bl ∈ Ubl−1
, we apply Lemma 3.6 for each 0 ≤ l ≤ d to get that there exists a

non-singular block lower triangular matrix T (bl), such that

(ξ0(bl), · · · , ξm−1(bl)) = (ξ0(bl−1), · · · , ξm−1(bl−1))T (bl).(26)

We take T = T (b1)T (b2) · · ·T (bd−1)T (bd), which is a non-singular block lower triangular
matrix, then

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T.

Since Ubl ∩ Ubl−1
6= ∅, we use the same argument as in the proof of Theorem 3.9 to get:

T00(bl)



τ
(l−1)
1 (r)

...

τ
(l−1)
N (r)


 =



T10(bl)

...
TN0(bl)


+



T11(bl) · · · T1N (bl)
· · · · · · · · ·

TN1(bl) · · · TNN (bl)






τ
(l)
1 (r)
...

τ
(l)
N (r)


 , r ∈ Ubl ∩ Ubl−1

.

(27)

Since t
(l)
j = τ

(l)
j on Ubl , for all 0 ≤ l ≤ d, 1 ≤ j ≤ N , we have for any r ∈ Ubl ∩ Ubl−1

:

T00(bl)



t
(l−1)
1 (r)

...

t
(l−1)
N (r)


 =



T10(bl)

...
TN0(bl)


+



T11(bl) · · · T1N(bl)
· · · · · · · · ·

TN1(bl) · · · TNN(bl)






t
(l)
1 (r)
...

t
(l)
N (r)


 .(28)

Because T00(bl)t
(l)
j is globally defined holomorphic functions on T , so is Tj0(bl) +∑N

i=1 Tji(bl)t
(l)
i , for each 0 ≤ l ≤ d, 1 ≤ j ≤ N . By (28), they agree on an open sub-

set Ubl ∩ Ubl−1
⊂ T , therefore they must be the same on the whole T , that is, for any

r ∈ T , (28) holds.

We now compute the transition map between t and t′. If we take t
(l)

= (1, t
(l)
1 , · · · , t

(l)
N )T =

(1, t(l))T , and set the blocks of T (bl) and T as in the proof of Lemma 3.6, then (28) can
be written,

T (bl)
0,0

[
1

t(l−1)

]
=

[
T (bl)

0,0 0
T (bl)

1,0 T (bl)
1,1

] [
1
t(l)

]
.(29)

If we take

T (bl) =

[
T (bl)

0,0 0
T (bl)

1,0 T (bl)
1,1

]
,
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then (29) can be written as

T00(bl)t
(l−1)

= T (bl)t
(l)
.(30)

Thus we get the following formula for the transition map between t
(0)

and t
(d)
,

T00(b1) · · · · · T00(bd)t
(0)

= T (b1) · · · · · T (bd)t
(d)
.

Note that since T (bl)’s are all block lower triangular matrices, we have

T00(b1) · · · · · T00(bd) = T 0,0, and T (b1) · · · · · T (bd) =

[
T 0,0 0
T 1,0 T 1,1

]

By taking t(0) = t = (t1, · · · , tN), and t(d) = t′ = (t′1, · · · , t
′
N ), we get:

T 0,0(t1, · · · , tN)
T = T 1,0 + T 1,1(t′1, · · · , t

′
N)

T .(31)

Here T 0,0, T 1,0 and T 1,1 are respectively the (0, 0), (1, 0) and (1, 1) block of the non-singular
block lower triangular matrix T .

Now we can prove Φ : T → D is injective by showing that Φ(p) = Φ(q) implies p = q.
Indeed, if Φ(p) = Φ(q), then the non-singular block lower triangular matrix T is then a
block diagonal matrix. In particular, we have T 1,0 = 0. Without loss of generality, we
can choose ζ0 = η0 to get T 0,0 = 1. Therefore in (31), we have

(t1, · · · , tN )
T = T 1,1(t′1, · · · , t

′
N)

T

with T 1,1 non-singular. Thus

(t1(p), · · · , tN(p))
T = (0, · · · , 0)T = T 1,1(t′1(p), · · · , t

′
N(p))

T .

and T 1,1 being non-singular implies that (t′1(p), · · · , t
′
N(p))

T = (0, · · · , 0)T . But by
the assumption (t′1(q), · · · , t

′
N(q))

T = (0, · · · , 0)T and Theorem 4.2 which tells us that
(t′1, · · · , t

′
N)

T gives an embedding from T into CN , we get that p = q. This completes our
proof. �

5. Applications

In Section 5.1, based on the idea of a letter from Schmid to the authors [17], we describe
a geometric way to relate the holomorphic affine structure on the Teichmüller space of
polarized and marked Calabi-Yau type manifolds to the orbit N+ in Ď of the unipotent
group. We define a Hodge completion T of the Teichmüller space of polarized and marked
Calabi-Yau type manifolds, and extend the period map to Φ̌ : T → N+ →֒ Ď. In Section
5.2, we further assume that the moduli space of polarized Calabi-Yau type manifolds is
smooth and the global monodromy group acts on the period domain freely. Then we use
the global Torelli theorem on Teichmüller space of polarized and marked Calabi-Yau type
manifolds to show that the period map on the moduli space of polarized Calabi-Yau type
manifolds is a covering map onto its image. As a consequence, we derive that the generic
Torelli theorem on the moduli space of polarized Calabi-Yau type manifolds implies the
global Torelli theorem on the moduli space of polarized Calabi-Yau type manifolds.

Again in this section, we will use the general conventions as defined in Section 2.1.
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5.1. Unipotent orbit and the Hodge completion of the Teichmüller space. Let
us first review some properties about the classifying space D for general polarized Hodge
structure, and then restrict to our Calabi-Yau type manifold case. We refer the reader
for more details to Section 2 and Section 3 in [16].

The orthogonal group of the bilinear form Q in the definition of Hodge structure is a
linear algebraic group, defined over Q. The group of the C-rational points is,

GC = {g ∈ GL(HC)| Q(gu, gv) = Q(u, v) for all u, v ∈ HC}.

which acts on Ď. As one can check in [5] that GC acts transitively on Ď.
The group of real points in GC is

GR = {g ∈ GL(HR)| Q(gu, gv) = Q(u, v) for all u, v ∈ HR}.

which acts as a group of automorphisms on D. Again one can use simple arguments in
linear algebra to conclude that GR acts transitively on D.

Consider a variation of Hodge structure Φ : S → D from a complex manifold S to
the classifying space as defined in Section 2.1. Let us fix a point p ∈ S, with the image
o =: Φ(p) = {F k

p }
n
k=0 ∈ D. The points p ∈ S and o ∈ D ⊂ Ď may be referred as the base

points or reference points. We also fixed an adapted basis {η0, · · · , ηm−1} for the Hodge
decomposition of Φ(p). With the fixed adapted basis {η0, · · · , ηm−1} at the base point,
one obtains matrix representations for elements in GC and GR.

First, let us exhibit Ď and D as quotients of GC and GR. Notice that a linear transfor-
mation g ∈ GC preserves the reference point precisely when gF k

p = F k
p . Thus this gives

the identification

Ď ≃ GC/B, with B = {g ∈ GC| gF
k
p = F k

p , for any k}.(32)

Notice that this isomorphism is a complex holomorphic isomorphism. In fact, with the
identification (32) the identity coset and the base point o correspond to each other. As
a quotient of a complex Lie group by a closed complex Lie subgroup, GC/B has the
structure of complex manifold.

Similarly, one obtains an analogous identification

D ≃ GR/V →֒ Ď, with V = GR ∩ B,

where the embedding corresponds to the inclusion GR/V = GR/GR ∩B ⊂ GC/B.
Next let us express the holomorphic tangent space of Ď and D as quotients of Lie

algebras.
The Lie algebra g of the complex Lie group GC can be described as

g = {X ∈ End(HC)| Q(Xu, v) +Q(u,Xv) = 0, for all u, v ∈ HC}

= {X ∈ End(HC)| XQ+QXT = 0}.

It is a simple complex Lie algebra, which contains g0 = {X ∈ g| XHR ⊂ HR} as a real
form, i.e. g = g0 ⊕ ig0. With the inclusion GR ⊂ GC, g0 becomes Lie algebra of GR. One
observes that the reference Hodge structure {Hk,n−k

p }nk=0 of HC induces a Hodge structure
of weight zero on End(HC). It can be checked that the subspace g ⊂ End(HC) carries a
sub-Hodge structure of weight zero, namely,

g =
⊕

k∈Z

gk,−k, with gk,−k = {X ∈ g|XHr,n−r
p ⊂ Hr+k,n−r−k

p }.(33)
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Since the Lie algebra of B consists of those X ∈ g that preserves the reference Hodge
filtration {F k

p }
n
k=0, according to the decomposition (33), one has

b =
⊕

k≥0

gk,−k.(34)

The Lie algebra v of V is thus

v = g0 ∩ b = g0 ∩ b ∩ b = g0 ∩ g0,0.(35)

As an observation, we notice that

Ad(g)(gk,−k) ⊂
⊕

i≥k

gi,−i, for g ∈ B.(36)

In terms of matrix representation with the fixed base point and fixed adapted basis
at the base point, elements in B ⊂ GC are of non-singular block upper triangular, and
elements in V ⊂ GR are of non-singular block diagonal. From (34), one can see that any
element in b ⊂ g is a block upper triangular matrix. Similarly from (35), elements in
v ⊂ g0 are block diagonal matrices.

With the above discussion, one gets that the holomorphic tangent space of Ď ∼= GC/B
at p is naturally isomorphic to g/b, i.e.

T 1,0
o Ď ∼= g/b.(37)

Because of (36),

b⊕ g−1,1/b ⊂ g/b(38)

defines an Ad(B)-invariant subspace. By left translation via GC, it gives rise to a GC-
invariant holomorphic subbundle of the holomorphic tangent bundle T 1,0

o Ď at the base
point. It will be denoted by T 1,0

o,h Ď, and will be referred to as holomorphic horizontal
tangent bundle at the base point. One can check that this construction does not depend
on the choice of the base point o ∈ D.

As another interpretation of this holomorphic horizontal bundle at the base point o ∈ D,
one has:

T 1,0
o,h Ď ≃ T 1,0

o Ď ∩
⊕

k≥1

Hom(F k
p /F

k−1
p , F k−1

p /F k−2
p ).(39)

The horizontal tangent subbundle at the reference point o, restricted to D, determines a
subbundle T 1,0

o,hD of the holomorphic tangent bundle T 1,0
o D of D at the reference point.

The GC-invariace of T 1,0
o,h Ď implies the GR-invariance of T 1,0

o,hD.
Now let us take a nilpotent Lie subalgebra of g:

n+ =
⊕

k≥1

g−k,k

with its corresponding unipotent Lie subgroup in GC,

N+ = exp(n+).

With the above descriptions (33) and (34) of the g and b respectively, one gets

g/b ∼= n+.(40)
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In terms of matrix representation with the fixed base point and fixed adapted basis
at the base point, the elements in n+ are block lower triangular matrices in g with the
diagonal blocks being all zeros. Correspondingly, elements inN+ are block lower triangular
matrices in GC with the diagonal blocks being all identities.

Note that N+ is defined to be a subgroup in GC, but we can also view N+ as a subset
in Ď as follows:

N+ = N+( base point ) ∼= N+B/B ⊂ Ď,

that is, we identify an element c ∈ N+ with [c] = cB ∈ Ď. Without causing confusion,
we denote by N+ the unipotent orbit of the base point under the action of the unipotent
group N+. In the rest of the paper, we will view N+ as a subset of Ď in this way.

Using the identification (37), (38) and (40), and the property that D ⊂ Ď open, we get
the following isomorphisms and an affine embedding:

T 1,0
o,hD = T 1,0

o,h Ď
∼= b⊕ g−1,1/b →֒ g/b ∼= n+.

In short, we get the following affine embedding,

T 1,0
o,hD →֒ n+.

We now restrict our discussions to the case of Calabi-Yau type manifolds.
By the interpretation (39), as well as the Griffiths transversality, we know that for the

period map Φ : T → D from the Teichmüller space of polarized and marked Calabi-Yau
type manifolds to the period domain, we have

Φ∗(T
1,0
p T ) ⊂ T 1,0

o,hD

at the base point. Moreover, together with Proposition 2.6, we have the following isomor-
phisms and affine embeddings,

Hs−1,n−s+1
p

∼= P s
p ◦ Φ∗(T

1,0
p T ) →֒ Φ∗(T

1,0
p T ) ⊂ T 1,0

o,hD
∼= b⊕ g−1,1/b →֒ g/b ∼= n+.(41)

For the base point p ∈ T , we can define a local holomorphic coordinate chart (Up, τ1, · · · , τN)
around p as in Section 3.2 associated to the fixed basis {η0, · · · , ηN} ofHs,n−s

p ⊕Hs−1,n−s+1
p .

We then get a local holomorphic affine embedding

ρ
Up

: Up → CN ∼= Hs−1,n−s+1
p

∼= T 1,0
p T(42)

by letting ρ
Up
(q) = (τ1(q), · · · , τN(q)) for any q ∈ Up. Combining (41) and (42), we have

the following inclusion

Up
�

�

ρ
Up

// CN �

� ϕ
// n+ .

We shall define a map ψUp
: Up → N+, and use the matrix representation to show that

the following diagram is commutative:

Up
ψUp

  ❆
❆❆

❆❆
❆❆

❆

Φ
��

�

�

ρ
Up

// CN

��

�

� ϕ
// n+

exp
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

D

  ❇
❇❇

❇❇
❇❇

❇ N+

i
��

Ď.
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First, we can choose any adapted basis {ζ0, · · · , ζm−1} for the Hodge decomposition of
Φ(q), and by Lemma 3.6, we know that there exists a non-singular block lower triangular
matrix T (q), such that

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T (q).

More explicitly, if we denote γ = 2s− n, then T (q) has the following form,



T 0,0 0 0 · · · 0 0 0
T 1,0 T 1,1 0 · · · 0 0 0
T 2,0 T 2,1 T 2,2 · · · 0 0 0
...

...
... · · ·

...
...

...
T γ−2,0 T γ−2,1 T γ−2,2 · · · T γ−2,γ−2 0 0
T γ−1,0 T γ−1,1 T γ−1,2 · · · T γ−1,γ−2 T γ−1,γ−1 0
T γ,0 T γ,1 T γ,2 · · · T γ,γ−2 T γ,γ−1 T γ,γ




.

In terms of matrix representation, we let W denote the set of all block lower triangular
matrices in GC, then one can see that T (q) ∈ W . Moreover, since Φ(q) ∈ D ∼= GR/V ,
thus [T (q)] ∈ D, i.e. there exists X ∈ B, such that T (q)X ∈ GR. Therefore we can firstly
define

ψ̃Up
: Up →W, q 7→ T (q).

and then we can define j : W → N+ by sending T (q) to the following element in N+,

j(T (q)) =




I 0 · · · 0 0
(T 0,0)−1T 1,0 I · · · 0 0

...
... · · ·

...
...

(T 0,0)−1T γ−1,0 (T 1,1)−1T γ−1,1 · · · I 0
(T 0,0)−1T γ,0 (T 1,1)−1T γ,1 · · · (T ,γ−1,γ−1)−1T γ,γ−1 I



∈ N+.

Actually, the map j is simply the quotient map W →W/W ∩B.
Now we can define ψUp

as the composition map:

ψUp
= j ◦ ψ̃Up

: Up → N+.

With the above description about ψUp
, one can easily see that the above local diagram

is commutative. In particular,

ρ
Up

: Up → CN , q 7→ (T 0,0)−1T 1,0.

We make a remark about the choices of the adapted bases for Φ(q). If we choose
different adapted basis (ζ ′0, · · · , ζ

′
m−1) for the Hodge decomposition of Φ(q), then we

still get a non-singular block lower triangular matrix T (q)′, such that (ζ ′0, · · · , ζ
′
m−1) =

(η0, · · · , ηm−1)T (q)
′. As another adapted basis of the Hodge decomposition for Φ(q), there

exists C ∈ V , such that (ζ ′0, · · · , ζ
′
m−1) = (ζ0, · · · , ζm−1)C, which gives (ζ0, · · · , ζm−1)C =

(η0, · · · , ηm−1)T (q)
′. On the other hand, (ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T (q), therefore

T (q)′C−1 = T (q). Thus we conclude that as an element in D ∼= GR/V , [T (q)′C−1] =
[T (q)] ∈ D. Therefore since we view N+ ⊂ Ď, the map ψUp

: Uq → N+ doesn’t depend
on the choices of the adapted bases for the Hodge decomposition of Φ(q).

Now let us extend the local commutative diagram to a global commutative diagram.
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On one hand, recall that in Section 4.1, we extend ρ
Up

to a global holomorphic affine
map,

ρp : T → CN ∼= Hs−1,n−s+1
p .(43)

Now combining (41), (42) and (43), we have a global affine embedding:

T �

�

ρp
// CN �

� ϕ
// n+

with the affine structure on T defined in Section 3.
On the other hand we can also extend ψUp

: Up → N+, in the following way. For any
point q ∈ T , we choose an adapted basis {ζ0, · · · , ζm−1} for the Hodge decomposition for
Φ(q), then by Corollary 3.7, we have a non-singular block lower triangular matrix T (q),
such that

(ζ0, · · · , ζm−1) = (η0, · · · , ηm−1)T (q).

Therefore, using exactly the same definition as for ψUp
: Up → N+, we can define a global

affine map

ψp : T → N+.

Moreover with the defnition of this ψp, we can define

ρ′p : T → CN , q 7→ (T 0,0)−1T 1,0.

If we write ρp = (ρ1, · · · , ρN) and ρ′p = (ρ′1, · · · , ρ
′
N), obviously by their definitions, we

have

ρi = ρ′i on Up,

with Up ⊂ T open. As globally defined holomorphic functions, they must agree on the
whole T , i.e.

ρi = ρ′i on T .

Therefore we get the global commutative diagram:

T
ψp

  
❅❅

❅❅
❅❅

❅❅

Φ
��

�

�

ρp
// CN

��

�

� ϕ
// n+

exp
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

D

  ❆
❆❆

❆❆
❆❆

❆ N+

i
��

Ď.

From this diagram, we can extend the period map on the Techmülcer space of Calabi-
Yau type manifolds to the following map:

Φ̌ : CN → N+ →֒ Ď.

Take T = Φ̌−1(D), and we call it the Hodge completion of the Teichmüller space T of
polarized and marked Calabi-Yau type manifolds. Notice that T ⊃ T . Indeed, because
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Φ̌|T = Φ|T , we get Φ̌(T ) = Φ(T ) ⊂ D. Therefore Φ̌−1(D) = T ⊃ T . As a restriction of
the affine embedding ϕ : CN → n+ on the T , we get the following affine embedding,

ϕ = ϕ|T : T →֒ n+ ∼= Cd

with d = dim n+, as well as a map on T :

Φ̌ : T → N+ →֒ Ď,

which is an extension of the period map Φ.
In a subsequent paper we will study more detailed about the geometric properties of

this Hodge completion T of the Teichmüller space T of polarized and marked Calabi-Yau
type manifolds.

5.2. The period map on the moduli space. In this subsection, we assume that
the moduli space of polarized Calabi-Yau type manifolds is smooth. Let GZ = {g ∈
GC| gHZ ⊂ HZ}, then for the smooth moduli space M, we can consider the period map

ΦM : M → D/Γ,

where Γ = Image(π1(M) → GZ) denotes the global monodromy group which acts properly
and discontinuously on the period domain D.

For the two period maps Φ and ΦM, we have the following commutative diagram,

T
Φ̃

""❊
❊❊

❊❊
❊❊

❊❊

π
T

��

�

� Φ
// D

πD
��

M
ΦM

// D/Γ,

where π
T
: T → M is a covering map and Φ̃ = πD ◦ Φ. The image of the period map

ΦM is an analytic subvariety of D/Γ. We refer the reader to page 156 of [6] for details of
the analyticity of the image of the period mapping.

Global Torelli problem on the moduli space M asks when ΦM is injective, and generic
Torelli problem asks when there exists an open dense subset U ⊂ M such that ΦM|U is
injective. In both cases we need to understand the global Torelli property of the period
map ΦM on the moduli space.

Furthermore, we assume Γ acts on D freely, thus the quotient space D/Γ is a smooth
analytic variety. Therefore the quotient map

πD : D → D/Γ

is a covering map. We shall show in the following theorem that ΦM is a covering map onto
its image, and then conclude that generic Torelli theorem implies global Torelli theorem
on the moduli space of polarized Calabi-Yau type manifolds.

Theorem 5.1. Let M be the moduli space of polarized Calabi-Yau type manifolds. If M
is smooth, and the global monodormy group Γ acts on D freely, then the period map on
the moduli space ΦM : M → D/Γ is a covering map from M to its image in D/Γ. As a
consequence, if the period map on the moduli space ΦM is generically injective, then it is
globally injective.

Proof. First, we show that ΦM is a covering map from M to its image in D/Γ. This relies
on the following lemma,
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Lemma 5.2. Let Φ̃ : T → D → D/Γ be the composition of Φ and the covering map

D → D/Γ. If there exist two points p̃1 6= p̃2 ∈ T such that Φ̃(p̃1) = Φ̃(p̃2), then there exist

Ṽ1 and Ṽ2, which are neighbourhoods of p̃1 and p̃2 respectively, such that Φ̃(Ṽ1) = Φ̃(Ṽ2),

Ṽ1 ∩ Ṽ2 = ∅, and the map

Φ̃ : Ṽi → Φ̃(Ṽi)

for each i = 1, 2 is an isomorphism.

Proof of Lemma 5.2. By the argument at the begin of Section 2.1, we can identify a point
Φ(p) = {F s

p ⊂ F s−1
p ⊂ · · · ⊂ F n−s

p } ∈ D with its the Hodge decomposition Φ(p) =

{Hk,n−k
p }sk=n−s.

Let Φ(p̃1) = {Hk,n−k
p̃1

}sk=n−s and Φ(p̃2) = {Hk,n−k
p̃2

}sk=n−s be the corresponding Hodge

decompositions. Then the condition Φ̃(p̃1) = Φ̃(p̃2) implies that there exists some γ ∈
Γ ⊂ Aut(Hn(M,Z)), such that γ · Φ(p̃1) = Φ(p̃2).

We fix an adapted basis {η(1)0 , η
(1)
1 , · · · , η(1)N , · · · , η(1)m−1} for the Hodge decomposition of

Φ(p̃1). Let

{η(2)0 , η
(2)
1 , · · · , η(2)N , · · · , η(2)m−1} = {γ · η(1)0 , γ · η(1)1 , · · · , γ · η(1)N , · · · , γ · η(1)m−1}.

Then {η(2)0 , η
(2)
1 , · · · , η(2)N , · · · , η(2)m−1} forms an adapted basis for the Hodge decomposition

of Φ(p̃2).

Let (Up̃i, {τ
(i)
1 , · · · , τ (i)N )}) be the local holomorphic coordinate chart associated to the

basis {η(i)0 , η
(i)
1 , · · · , η

(i)
N } of Hs,n−s

p̃i
⊕Hs−1,n−s+1

p̃i
, for i = 1, 2 respectively, which are defined

in Section 3.2. In this proof, we use the same notation for a point τ (i) ∈ Up̃i as its

corresponding coordinate in the local holomorphic coordinate (Up̃i, {τ
(i)
1 , · · · , τ (i)N }). Then

Theorem 4.2 shows that we have the following embeddings,

ρ1 : Up̃1 → CN ∼= Hs−1,n−s+1
p̃1

, ρ2 : Up̃2 → CN ∼= Hs−1,n−s+1
p̃2

.

with ρi(τ
(i)
1 , · · · , τ (i)N ) =

∑N

j=1 τ
(i)
j η

(i)
j , for i = 1, 2.

Because dimC Up̃i = dimCH
s−1,n−s+1
p̃i

= dimC T and that ρi is an embedding, we have

that the image ρi(Up̃i) is open in Hs−1,n−s+1
p̃i

for each i = 1, 2. This implies that γ ·ρ1(Up̃1)

and (γ · ρ1(Up̃1)) ∩ ρ2(Up̃2) are also open in Hs−1,n−s+1
p̃2

. Together with the fact that

γ · ρ1(p̃1) = ρ2(p̃2) ∈ (γ · ρ1(Up̃1))∩ ρ2(Up̃2) 6= ∅, we get that there exists a neighbourhood

W of ρ2(p̃2) in H
s−1,n−s+1
p̃2

, such that

W ⊂ (γ · ρ1(Up̃1)) ∩ ρ2(Up̃2).

Let Ṽ1 = ρ−1
1 (γ−1 ·W ) ⊂ Up̃1 and Ṽ2 = ρ−1

2 (W ) ⊂ Up̃2, then the restriction maps

ρ1|Ṽ1 : Ṽ1 →W,(44)

ρ2|Ṽ2 : Ṽ2 →W,(45)

are biholomorphic maps since the ρ1 and ρ2 are embeddings. Then from the global
commutative diagram introduced in Section 5.1, we get the following composition maps,

γ · Φ1|Ṽ1 : Ṽ1
∼= W �

�

// CN ∼= Hs−1,n−s+1
p̃2

�

�

// n+
exp

// N+
// Ď,



37

Φ2|Ṽ2 : Ṽ2
∼= W �

�

// CN ∼= Hs−1,n−s+1
p̃2

�

�

// n+
exp

// N+
// Ď.

Notice that the composition maps from W to Ď in the above two maps are the same.
Together with the isomorphisms between Ṽ1 ∼= W and Ṽ2 ∼= W as defined in (44) and (45),

We now can conclude that γ ·Φ(Ṽ1) = Φ(Ṽ2), which implies Φ̃(Ṽ1) = Φ̃(Ṽ2) = πD(W ). By

shrinking W properly, we can make Ṽ1 and Ṽ2 disjoint, and also we have that the map

Φ̃ : Ṽi
Φ

// W
πD

// Φ̃(Ṽi)

for each i = 1, 2 is an isomorphism. �

Notice that in the following commutative diagram:

T �

� Φ
//

π
T

��

Φ̃

""❊
❊❊

❊❊
❊❊

❊❊
D

πD
��

M
ΦM

// D/Γ,

since T and M are both smooth, the map πT is a covering map. This implies that πT is
a local isomorphism.

Now for any Hodge structure {Hk,n−k}sk=n−s ∈ D/Γ, if the pre-image Φ−1
M({Hk,n−k}sk=n−s) =

{pi| i ∈ I} is not empty. Take {p̃j|j ∈ J} = π−1
T
({pi | i ∈ I}). By Lemma 5.2, for each

j ∈ J , we get Ṽj ⊂ T which is a neighbourhood around p̃i such that

Φ̃ : Ṽj → Φ̃(Ṽj)

is an isomorphism, ∪jṼj is a disjoint union, and all the Φ̃(Ṽj) are the same. Now take

{Vk| k ∈ K} = {π
T
(Ṽj)| j ∈ J}. By shrinking the set W as in Lemma 5.2 properly, we

can still make ∪kVk a disjoint union, and the images ΦM(Vk) = πD(W ), for any k, are
still all the same. Moreover, since π

T
is covering map, the map

ΦM : Vk → ΦM(Vk)

is still an isomorphism for each k ∈ K. Therefore the holomorphic map

ΦM : M → ΦM(M)

is a covering map.
In particular, if the map ΦM : M → ΦM(M) is generically injective, then ΦM : M →

ΦM(M) is a degree one covering map, which must be globally injective. �

Note that in many cases it is possible to find a subgroup Γ0 of Γ, which is of finite index
in Γ, such that its action on D is free and D/Γ0 is smooth. In such cases we can consider
the lift ΦM0 : M0 → D/Γ0 of the period map ΦM, with M0 a finite cover of M. Then
our argument can be applied to prove that ΦM0 is actually a covering map onto its image
for polarized Calabi-Yau type manifolds with smooth moduli spaces.

In this subsection, we require that the moduli space M of Calabi-Yau type manifolds
are smooth, and there are many nontrivial examples satisfying this requirement. As in
the special cases of simply connected Calabi-Yau manifolds, one may see from Popp [14],
Viehweg [22] and Szendroi [19] that the moduli spaces M of Calabi-Yau manifolds are
smooth.
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