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1. INTRODUCTION

In this paper we prove two main results about the global properties of the period maps
from the Teichmiiller space of polarized and marked Calabi-Yau type manifolds to the
period domain of polarized Hodge structures.

Let (M, L, {7, ,7m}) be a polarized and marked Calabi-Yau type manifold of com-
plex dimension n as defined in Section [2.2] which includes all simply connected Calabi-Yau
manifolds and certain Fano manifolds. Here L denotes an ample line bundle on M and
{71, ,vm)} is a basis of H"(M,Z)/Tor. The moduli space M of polarized complex
structures on a given compact differentiable manifold X is a complex analytic space
consisting of biholomorphically equivalent pairs of complex structure and an ample line
bundle (M, L). We use [M, L] to denote the point in M corresponding to the complex
structure on a complex manifold M that is diffeomorphic to X. The corresponding Te-
ichmiiller sapce T can be considered as the moduli space of polarized and marked triples

(M, L,{v1, -+ ,7vm}), of which we refer to Section 23] for details.
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For simplicity, in this paper we assume the Teichmiiller space T of polarized and marked
Calabi-Yau type manifold (M, L, {~1, -+ ,%n}) is a connected smooth complex manifold
together with a versal family

T U—T

of polarized and marked Calabi-Yau type manifolds, which contains (M, L, {71, ,Ym})
as a fiber. In Section 2, one will see that the Teichmiiller space is actually simply con-
nected. We will simply use M to denote the polarized and marked Calabi-Yau type
manifold (M, L, {71, -+ ,Ym})-

Let D denote the period domain of the Hodge structures of polarized and marked
Calabi-Yau type manifolds of weight n, and ® : 7 — D denote the period map from
the Teichmiiller space of polarized and marked Calabi-Yau type manifolds to the period
domain.

By using the fact that the restriction of the versal family of the polarized and marked
Calabi-Yau type manifolds on any small coordinate chart of 7 is a local Kuranishi family,
one gets a local holomorphic coordinate chart around each point in 7. From this we con-
struct a global holomorphic affine structure on the Teichmiiller space 7, which naturally
induces a global holomorphic affine connection on 7. We then use the global holomorphic
affine connection on the Teichmiiller space to construct the global holomorphic coordinate
functions on 7. This construction is given in Theorem 4.2l From Theorem [4.2] we derive
the following global Torelli theorem on the Teichmiiller space of polarized and marked
Calabi-Yau type manifolds:

Theorem 1.1. Let T be the Teichmiiller space of polarized and marked Calabi-Yau type
manifolds, then the period map

o:T —D
18 injective.

If we further assume that the moduli space M is smooth, and consider the period map
®r: M — D/T', where I" denotes the global monodromy group which acts properly and
discontinuously on the period domain D. For simplicity we also assume that the action
of I' is free so that D/T" is a smooth analytic manifold. The following main theorem of
this paper proves that for polarized Calabi-Yau type manifolds the period map 4 is a
covering map onto its image.

The global Torelli problem on the moduli space M asks when ®,, is injective, and the
generic Torelli problem asks when there exists an open dense subset U C M such that
® |y is injective. In general, generic Torelli theorem on the moduli space is weaker than
global Torelli theorem on the moduli space M. However as a consequence of this main
theorem, we show that if the generic Torelli theorem on the moduli space of polarized
Calabi-Yau type manifolds is known, then we also get the global Torelli theorem on the
moduli space of polarized Calabi-Yau type manifolds.

Theorem 1.2. Let M be the moduli space of polarized Calabi- Yau type manifolds. If M 1is
smooth, and I acts on D freely, then the period map on the moduli space ®pq : M — D/T’
is a covering map from M onto its image in D/T'. As a consequence, if the period map
on the moduli space ®rq is generically injective, then it is globally injective.
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Note that in the most interesting cases it is always possible to find a subgroup I'y of
I, which is of finite index in I', such that I'y acts on freely and thus D /Ty is smooth. In
such cases we can consider the lift ®q, : My — D/I'g of the period map ®,,, with M,
a finite cover of M. Then our argument can be applied to prove that ® 4, is actually a
covering map onto its image for polarized Calabi-Yau type manifolds with smooth moduli
spaces.

This paper is organized as follows: in Section 2] we review the definition of the clas-
sifying space of polarized Hodge structures, give the definition of the Calabi-Yau type
manifolds, and describe definition of the moduli space of polarized Calabi-Yau type man-
ifolds and the Teichmiiller space of polarized and marked Calabi-Yau type manifolds,
together with our basic assumptions on the Teichmiiller space and its properties. Then
we introduce the period map from the Teichmiiller space of polarized and marked Calabi-
Yau type manifolds to the period domain.

In Section B, we review the concepts of affine manifolds and affine maps following
Matsushima [13], Vitter [25], and Auslander and Markus [2]. Based on the local Kuranishi
deformation theory, we construct a local holomorphic coordinate chart around each point
in the Teichmiiller space T, and this gives the Kuranishi coordinate cover on 7. We then
show that this Kuranishi coordinate cover gives a holomorphic affine structure on the
Teichmiiller space T of polarized and marked Calaib-Yau type manifolds.

In Section M, we use the holomorphic affine structure constructed in Section [ and the
property that 7 is simply connected to prove the existence of a global holomorphic flat
coordinate, and prove the holomorphic affine embedding from 7 into CV = H;_l’”_s“.
We then use this global holomorphic affine coordinate and the affine embedding to prove
the global Torelli theorem on the Teichmiiller space of polarized and marked Calabi-Yau
type manifolds.

In Section [ following [I7] we describe a more geometric way to understand the holo-
morphic affine structure on the Teichmiiller space of polarized and marked Calabi-Yau
type manifolds by using the orbit N, in D of the unipotent group. We define a Hodge
completion 7 of the Teichmiiller space of polarized and marked Calabi-Yau type mani-
folds, and extend the period map to ® : T — N, < D. At the end of the paper, we
make smoothness assumptions on both the moduli space M of polarized Calabi-Yau type
manifolds and on the quotient space D/T", then use the global Torelli theorem on the
Teichmiiller space of polarized and marked Calabi-Yau type manifolds, together with the
geometry of the unipotent orbit, we show that the period map &y : M — D/I' is a
covering map onto its image, and conclude that generic Torelli implies global Torelli on
the moduli space.

Acknowledgement: We would like to thank Professors Wilfried Schmid, Andrey
Todorov and Shing-Tung Yau for sharing many of their ideas.

2. THE PERIOD MAP ON THE TEICHMULLER SPACE

In Section 2.I], we review the construction of the classifying space of polarized Hodge
structures and its basic properties. We refer the reader to Section 2 and Section 3 of
[16] for more details. In Section 222, we introduce the definition of the polarized and
marked Calabi-Yau type manifolds and the basic properties. In Section 2.3l we briefly
describe the definitions of the moduli space of polarized Calabi-Yau type manifolds and
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the Teichmiiller space of polarized and marked Calabi-Yau type manifolds. We then
make basic assumptions on the Teichmiiller space, and show the simply connectedness
property on the Teichmiiller space. In Section 2.4 we introduce the period map from
the Teichmiiller space of the polarized marked Calabi-Yau type manifolds to the period
domain.

2.1. Classifying space of polarized Hodge structures. Let Hy be a real vector
space of dimension m with a Z-structure defined by a lattice H; C Hg, and let H¢ be
the complexification of Hg. A Hodge structure of weight n on H¢ is a decomposition

He = @@ HEF, with H" ™ = HEn=F,
k=0

The integers h*" =% = dimg H*"~* are called the Hodge numbers. To each Hodge struc-
ture of weight n on H¢, one assigns the Hodge filtration:

(1) He=F">..-D>F"

with F¥ = H"0 @ ... @ H*"=* and f* = dimc F¥ = 577, h®"~*. This filtration has the
property that

(2) He=FF@ Pt for 0 <k <n.

Conversely, every decreasing filtration (II), with the property (2) and fixed dimensions
dime F* = f* determines a Hodge structure { H*"~*}7_ . with

HF=k — pkn -k,

A polarization for a Hodge structure of weight n consists of the data of a Hodge Riemann
bilinear form () over Z, which is symmetric for even n, skew symetric for odd n, such that

(3) Q(H""* H™ ) =0 unless k=n—r,

(4) i* Qv 1) >0 ifv e H kv £0.

In terms of the Hodge filtration F™* C --- C F° = Hc, the relations (@) and (@) can be
written as

(5) Q (Fk, Fn—k—i—l) _ 0’
(6) Q (Cv,0) >0 if v #0,

where C is the Weil operator given by Cv = i?* "y when v € H*"F,
The classifying space or the period domain D for polarized Hodge structures with Hodge
numbers {hF"=k}n_ is the space of all such Hodge filtrations

D={F"C---CF’=Hc|dimF" = f* (5) and (@) hold} .
The compact dual D of D is
D={F"C---CF’=Hc|dimF* = f* and () hold} .
The classifying space or the period domain D C D is an open subset. §
From the definition of classifying space we naturally get the Hodge bundles over D by

associating to each point in D the vector spaces {F*}r_, in the Hodge filtration of that
point. Without confusion we will also denote by F* the bundle with F* as the fiber, for
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each 0 < k < n. In the rest of this paper, we may simply use Hodge structure to mean
polarized Hodge structure of weight n.
Let {F™ C --- C F°} be a point in D, then the tangent space of D at this point is

@ Hom(F*, He). We are interested in the horizontal tangent space @ Hom(F*, F*~1) at
k=0 k=0
this point.

Given a complex manfiold S, a variation of Hodge structure of the given Hodge numbers
and polarization on H¢ is a holomorphic map
®: S—D,

such that the tangent map satisfies the Griffiths transversality:

©, : TS — @5 Hom(F*, F¥).
k=0
The map P is called a period map on S. One denotes the image of any point p € S by
O(p)={F}CcF'c---CF}}.

We introduce several notations before we get to the definition of the polarized and
marked Calabi-Yau type manifolds. We denote by Plf the projection from the horizontal
tangent space @, Hom(F!, ') of the classifying space to Hom(EF, F*~1) at p € S
according to the decomposition:

PY . @ Hom(F;, Fi™') — Hom(Fy, i),
1=0

and denote the projection from @;_, H;;”_i to Hg_k’k at p € S by P;_k’k according to
the given Hodge decomposition:

n
kn—k . i,n—i kn—k
Byt (D Hy" T Hy
i=0
foreach 0 <k <n-—1.

2.2. Calabi-Yau type manifolds. We generalize the definition of Calabi-Yau type man-
ifolds in [9] as follows,

Definition 2.1. Let M be a simply connected compact complex projective manifold of
dimec M =n and L be an ample line bundle over M with ¢i(L) be the Kdhler class on M.
We call M a manifold of Calabi-Yau type if

(1) The middle dimensional Hodge numbers are similar to that of a Calabi-Yau man-
ifold, that is, there exists some [n/2] < s < n, such that

RES(M) =1,  and h¥" (M) =0 fors >s.

(2) For any generator [Q)] € H¥"*(M), the contraction map
- Ho’l(M, Tl,OM) N Hs—l,n—s—l—l(M)
[£] = [p202]

is an isomorphism, where € is a 0-closed (s,n — s)-form.
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(3) H*"=*(M) = H3"=*(M), and H**(M)=0.

This paper mainly considers the polarized and marked Calabi-Yau type manifold, which
consists of a triple (M, L, {71, - ,vm}) with a Calabi-Yau type manifold M of dim¢ M =
n, an ample line bundle L over M and a basis {71, ,7vm} of the integral cohomology
group modulo torsion H"(M,Z)/Tor. In the rest of the paper we will use the Chern form
w € ¢1(L) of the line bundle L as the Kéhler form on M. It is well known that each triple
(M, L,{v1,- - ,7vm}) gives a polarized Hodge structure on the primitive cohomology group
H} (M,C). For details of polarized Hodge structure on primitive cohomology group of
Kéhler manifolds, we refer the reader to Chapter 7.1 in [23].

Notice that if a manifold M is of Calabi-Yau type, then Hs " =5*1(M) = H*=H"=s+1(M).
To show this, it is enough to show that the image of the contraction map is in Hj~'"=5t1 (M),
which is proved in the following proposition. This is because condition (2]) in Definition
2.1l gives that the contraction map

O Ho’l(M, Tl,OM) SN Hs_l’n_s+1(M), [90] — [(,O_JQ]

is an isomorphism.

For this reason, we simply use H"(M,C) and H®"*(M) to denote the primitive
cohomology groups H?.(M,C) and HE™*(M) respectively. And the Hodge numbers
hEr=k = dim Hl’f,z"_k(M ) are the dimensions of the primitive cohomology groups. By
using these notations, we don’t change the condition (1) and condition (2]) in Definition

2.1

Proposition 2.2. Let M be a Calabi- Yau type manifold. Let the contraction map and
[ € H3"*(M) be as in Definition (21, then for any [¢] € H* (M, T"°M), Q] €
ng—l,n—s-l-l(M)'

Proof. 1t is sufficient to show that there exists a smooth (s,n — s+ 1) form -, such that
w A (pQ) = dv. Since [Q] € H5 (M), there exists a smooth (s +1,n — s) form 3, such
that w A Q = 0B. First we shall show the following two identities:

(1). A(paB) = 0;
(ii). pa(w A Q) = (pow) ANQ+w A (p).

To show (i), denote ¢ = > .¢'0;, with ¢’ = ngoé—.dzj; g = 3,8z, and B! =
> 8%z ;. Then

ApB) = Z Z @' A BEA((=1)710;1dz))

= Z Z dg' A B A ((—1)10,0dzr) + Z Z o' NOBT A ((—1)1110; 1dzy)
- Z Z o AOBTA (1)1, dzy).

The last identity is due to the property that [p] € H%'(M, T*°M), which gives dp = 0.
Then we have the identity (i),

0108 = ¢ Z&ﬁfdz, ZZQ@ ABB A (—)1H18,0dz;) = D(pf).

7
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For (i), we denote w = Y, whdz;, with w* = 3. wg‘?d?j; Q = > ,0dz, and QF =
>, Qdz;. Then we have

wi(w A Q) =@i( ZZwkdzk/\QldzI)

:_ZZZ (" Aw) A (8;0dzi) A QU dzr + (— "”ZZZW dzi, A (9" AQY) A (05adzr)
- (—ZZ(@Z /\wk)(ﬁinzk)> A <Z Qldz1>
+ (Zwkdzk> A ( MZZ (¢’ /\QI 0_1d2’[))
k

= (puw) A Q2+ w A (p).

Moreover, since [pw] € H*?(M) = H*°(M) = 0, there exists a € H*'(M), such that
paw = Oda. The fact that Q is a holomorphic (s,n — s)-form implies that 0Q = 0.
Combining all the above properties together, we get

0(paf) = 0108 = pi(w A Q) = (paw) A+ w A (pQ)
=0aANQ+wA (paQ) =0a A Q+wA (paf)
=J(a A Q)+ w A (9Q).

Therefore if we set v = o8 — a A€, we get w A (pQ) = 7. O

From the definition, one can see that a simply connected Calabi-Yau manifold is of
course of Calabi-Yau type. Therefore the results presented in this paper can be applied
to simply connected Calabi-Yau manifolds. In the rest of paper, one may consider simply
connected Calabi-Yau manifolds as our special cases. We remark that one may refer to
[9] for many interesting examples of Calabi-Yau type manifolds of Fano type.

2.3. Moduli space and Teichmiiller space. The moduli space M of polarized complex
structures on a given differential manifold X is a complex analytic space consisting of
biholomorphically equivalent pairs of complex structures and ample line bundles (M, L).
Let us denote by [M, L] the point in M corresponding to a pair (M, L), in which M is a
complex manifold diffeomorphic to X and L is an ample line bundle on M. If there is a
biholomorphic map f between M and M’ with f*L’ = L, then [M, L] = [M', L] € M.

We can similarly define the Teichmiiller space T of polarized complex structure by
replacing the pair (M, L) by a triple (M, L, {71, - ,7m)}, where {71, - ,7x,)} is a basis
of H"(M,Z)/Tor. For two triples (M, L,{v1, - ,vm}) and (M', L', {~1,---,7..)}), if
there exists a biholomorphic map f: M — M’ with

L =1L
f*vi=r; for 1<i<m,

then [M, L, {v, - ,vm)} = [M', L', {~,---,7..)}]. For simplicity we use [M, L,~] to
denote the triple [M, L, {71, -+ ,Ym)}]-
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In this paper we further assume that the Teichmiiller space T of polarized marked
Calabi-Yau type manifolds is a smooth connected complex manifold, and there exists a
versal family

U =T

containing the polarized and marked Calabi-Yau type manifold (M, L,{v1, - ,vm}) as a
fiber. Recall that a family of compact complex manifolds 7 : U — T is versal at a point
p € T if it satisfies the following conditions:

(1) If a complex analytic family ¢ : V — S of compact complex manifolds, a point
s € 8, and a bi-holomorphic map fy : V = 17!(s) - U = 7 !(p) are given,
then there exists a holomorphic map ¢ from a neighbourhood N of the point s to
T and a holomorphic map f : ¢ *(N) — U such that they satisfy the following

conditions:
9(s) = p,
f|L*1(s) = f0>
with the following commutative diagram
SN L
N——T.
(2) For all g satisfying the above condition, the tangent map (dg), is uniquely deter-

mined.

If a family 7 : U — T is versal at every point p € T, then it is a versal family on 7. In
this case the family :=*(N) — N is complex analytically isomorphic to the pull back of
the family 7 : U — T by the holomorphic map g.

The versal family 7 : U — T is local Kuranishi at any point p € 7, and this implies
that the Kodaira-Spencer map

ko TOOT — HYY (M, T M,),

for each p € T is an isomorphism. We refer the reader to page 8-10 in [18], page 94 in
[14] or page 19 in [22], for more details about versal families and local Kuranishi families,
and Chapter 4 in [12] for more details about deformation of complex structures and the
Kodaira-Spencer map.

For a polarized Calabi-Yau type manifold (M, L), let

Aut(M,L)={a: M — M| a"L=1L}
be the group of biholomorphic maps on M preserving the polarization L. We have a
natural representation of Aut(M, L),
o: Aut(M,L) — Aut(H"(M,7Z))
o at.

The following theorem tells us that the Techmiiller space of polarized and marked Calabi-
Yau type manifolds described as above is simply connected.
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Theorem 2.3. The Techmiiller space T of polarized and marked Calabi-Yau type mani-
folds is simply connected.

Proof. Suppose T is not simply connected, and T is the universal cover of 7 with covering
map

T %—)T

For each point p = [M, L,~] in T the pre-image is 7T7:_1(p) —{pliel}cTand|I|>1.

Let #: U — T be the pull back family of 7 : U — T with the following commutative
diagram,

I
Then 7 : U — T is also a versal family of polarized and marked Calabi-Yau type
manifolds.

Then for each different ¢ and j € I, there exists an element « in the deck transformation
group of the covering map, such that a(p;) = p;. Because 7x(p;) = 7x(p;) = [M, L,],
this a can be viewed as a biholomorphic map on M which preserves the marking . That
means « € ker(o). In the following lemma, we will show that we can extend the action
of ker o to U, which leaves T fixed and also fixing the polarization on each fiber of the

family, thus induces the action of ker o on T. Furthermore, we will show in the following
corollary that the action of ker o on 7 is a trivial action.

\1<—:

Lemma 2.4. Let (M, L,7) be a ﬁber of the versal family T : U — T. Then for any

« € ker o, there is an extension a on u leaving the base space T fixed and also fixing the
polarization on each fiber of the family.

Proof. Let p € T be a point in the Teichmiiller space with 7 1(p) = (M, L,v). The local
universality of the family 7 : U — T shows that there exists a nelghbourhood U, of

p € T with holomorphic morphisms & : #%(U,) — U and f : U, — T, such that the
following diagram is commutative,

7A‘i_l(Up)a—>u
U, — T

To show a leaves the base space T fixed, it is sufficient to show that f is the identity
on U,. Indeed f(p) = p from the definition of f, suppose f is not an identity on U,.

Then the tangent map f, : T,U, — Tp% is not identity either. By the identification of
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T,U, = T, T with H*Y(M,T*°M) we have the following commutative diagram,

~ f,:l
1,0 1,0
T U,

l |

HONM, M) H"Y(M,T°M)

l |

Hs—l,n—s—i—l(M) a* Hs—l,n—s—i—l(M).

But a € ker(o) implies the map o* : H* b =sT(M) — H*=Ln=s+t1(M) is an identity.
This contradicts the assumption that f, is not identity.

Next we show that for each ¢ € U, the biholomorphic map &, on the fiber M, preserves
the polarization L. Because H?(M,Z) is a discrete group, we have that, for any point
q € Uy,

o (L) = (@) = o (L).

The simply connected property of M implies holomorphic line bundles on M are uniquely
determined by the first Chern class. Therefore for any ¢ € U, we have a;(L) = L.

Now let us define a sheaf & on the base space T as follows, for any open set U C T, we
assign the group I(U) to be all the biholomorphic maps «a,, : 7 *(U) — 7 (U) which
leaves the open set U fixed and preserving the polarization on each fiber. In another word
for any o, € (U), we have the following commutative diagram,

07

AU )

A

U—" [

and for each point ¢ € U, the restriction of a,, on the fiber M, = 7~ !(g) preserves the
polarization L over M,. If V' C U is open then the restriction map of the sheaf is given

by,
res: (U) = (V)

oy —r O‘U|%,1(V) .

From the local extension result discussed as above, we have that for any point p € %,
there exists a neighborhood U, C T such that any a € ker o on M, can be extended to
the family 77*(U,). This means the restriction map

res: (U,) — kero
Oy, aU‘Mp

is an isomorphism. Therefore the sheaf S is a locally constant sheaf. Using the fact that
T is simply connected and Proposition 3.9 in [24], we have < is a constant sheaf. This
means (7)) = kero, so for each point p € 7 and « € kero, there is a global section
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& € (T such that @ M, = a. By the definition of the sheaf &, we have the commutative
diagram,
U—"-1u
T
And restricted to each fiber M, the morphism &y, preserves the polarization L. O]

We remark that we are using the argument in Lemma 2.6 in [19] for the first part of
proof of Lemma 2.4l As a corollary of above lemma we have the following result, which
will be useful in the proof of Theorem 2.3l

Corollary 2.5. The action of ker(c) on T is trivial.

Proof. For each element @ € ker(o), we have a global extension & acts on the family u
with the commutative diagram

TR

T-L-T
Then «a acts on 7 by the holomorphic map [ : 7: — 7. But Lemma 24 implies that f
is an identity map. Therefore the action of o on T is trivial. O

But the deck transformation ao: 7 — T can also be viewed as a biholomorphic map
a Zj — ZJ .
This is the extension of the bi-holomorphic map a : M — M, but the Corollary shows
that the global extension « : U — U should leave the T fixed, this contradicts the fact

that a(p;) = p; # pi-
O

2.4. The period map on the Teichmiiller space. As mentioned in Section 2.2 in
the rest of the paper, we simply use H"(M,C) and H*"~%(M) to denote the primitive
cohomology groups Hp (M,C) and Hlﬁz”_k(]\/[ ) respectively. And the Hodge numbers
hEn—F = dim H;,“;"_k(M ) are the dimensions of the primitive cohomology groups. By
using these notations, we don’t change the condition (Il) and condition (2]) in Definition
211

For any point p € T, let M, be the fiber of the family = : ¢ — T at p, which is a
polarized and marked Calabi-Yau type manifold. Since the Teichmiiller space is simply
connected and we have fixed the basis of the middle cohomology group modulo torsions, we
can use this to identify H" (M, C) for all fibers on 7, and thus get a canonical trivial bun-
dle H*(M,,C) x T. We have similar identifications for H"(M,, Q) and H"(M,,Z)/Tor.
The Hodge numbers {h*"=5 ps=bn=stl ... pn=ss1 of M, are indepentdent to the choice
of p € T. Therefore we have corresponding data of H"(M,C), H"(M,Z),{h*"~*} and
the intersection form on H™(M,C) on a given polarized and marked Calabi-Yau type
manifolds.
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Let D be the period domain defined as in Section 2.1l The period map
o: T =D

from the Teichmiiller space of polarized and marked Calabi-Yau type manifolds to the
period domain is defined by assigning each point p € 7 the Hodge structure on M,,.

We denote ®(p) = {F*(M,) C --- C F"*(M,)}, F*(M,) by F} and H*"~*(M,) by
H;f’"_k for convenience.

Recall that we have described general period maps in Section 2.1l Here we remark
that period maps have several nice properties, the reader may refer to Chapter 10 in [23]
for details. Among these properties, the one we are most interested in is the following
Griffiths transversality on the period map ® : 7 — D from the Teichmiiller space of
polarized and marked Calabi-Yau type manifolds to the period domain, that is, for any
p€T and v € Tpl’OT, the tangent map satisfies,

(7) D, (v) € @ Hom (FF/FF, FE/FF),

k=n—s
where [*T! = 0, or equivalently

¢.(v) € € Hom(F), Ff™),

k=n—s

such that for any v € T)°T and [o] € F,

®.(v)([e]) = [£(v)aa].
For the period map on the Teichmiiller space of polarized and marked Calabi-Yau type
manifold, we have the following property.

Proposition 2.6. For any p € T and any generator [,] of F;, the tangent map ®., the
map

Byod,: T)°T = H"(M,,T""M,) — Hom(F;, F;~'/F;) = Hy~ b=
s an isomorphism.
Proof. The first isomorphism
TOT = H%' (M, T"M,)
follows from the condition for Kuranishi families that the Kodair-Spencer map is an
isomorphism. The second isomorphism
s s—1 S\ ~v s—1,n—s+1

Hom(F,, F;7"/F)) = H, +

follows from the condition on Calabi-Yau type manifold that dim F;; = 1. This isomor-

phism is determined by the choice of the generator [€2,].
Now it is clear that the map

P; o (I)* . Ho’l(Mp, Tl,OMp> — H;—l,n—s—i—l
is given by contraction
P; o (I)*(U) = [K(U)—JQP]’
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This contraction map is an isomorphism by second condition in the definition of Calabi-
Yau type manifolds. The proof is complete. 0J

To end this section, we introduce corresponding notations for the Hodge bundles for
Calabi-Yau type manifolds. Hodge bundles over T are the pull-backs of the Hodge bundles
over D through the period map. For convenience, we still denote them by F*, for each
n—s<k<s Wewill also denote by Plf the projection from H"(M,,C) to Flf with
respect to the Hodge filtration on M, and P;_’“k the projection from H™(M,,C) to
Hg_kvk according to the Hodge decomposition on M,,.

3. HOLOMORPHIC AFFINE STRUCTURE ON THE TEICHMULLER SPACE

In this setion we will construct a holomorphic affine structure on the Teichmiiller space
of polarized and marked Calabi-Yau type manifolds. In Section 3.1, we will give a brief
review on definitions and some basic properties of affine manifolds and affine maps. One
may refer to page 215 of [13], page 231 of [25], page 141 of [2] for more details. In Section
3.2l we construct a local coordinate system around each point of the Teichmiiller space T
of polarized and marked Calabi-Yau type manifolds, which gives the Kuranishi coordinate
cover on 7. In Section 3.3 we prove that this Kuranishi coordinate cover is a holomorphic
affine cover, thus it gives the holomorphic affine structure on the Teichmiiller space.

In this section, we will freely use the notations of the Hodge numbers, Hodge decom-
positions and Hodge filtrations from the definition of Calabi-Yau type manifolds in the
previous section.

3.1. Affine manifolds and affine maps.

Definition 3.1. Let M be a differentiable manifold of real dimension n, if there is a
coordinate cover {(Us, ¢;); i € I} of M satisfying that pg = p; o o' is a real affine
transformation on R™, whenever U; N Uy is not empty, then we call that {(U;, ¢;); i € I}
s a real affine coordinate cover on M and it defines a real affine structure on M.

Similarly one can define the concepts of holomorphic affine coordinate cover and holo-
morphic affine structure on a complex manifold M:

Definition 3.2. Let M be a complex manifold of complex dimension n, if there is a
coordinate cover {(U;, ¢;); i € I} of M satisfying that i = p; 0 ;" is a holomorphic
affine transformation on C", whenever U;NUy, is not empty, then we call that {(U;, ;); i €
I} is a holomorphic affine coordinate cover on M and it defines a holomorphic affine
structure on M.

We have the following concept of the holomorphic flat connection, which is one-to-one
correspondent to the holomorphic affine structures on a complex manifold. For details
about this, we refer the reader to page 216 of [13], page 233-234 of [25] or page 140 of [2].
The proof for the one-to-one correspondence between holomorphic flat connections and
holomorphic affine structures can be found in page 217-219 of [13] or Section 3 of [25].

Let M be a complex manifold, and I'(M, T M) denote the space of smooth sections of
the tangent bundle of M. A linear connection V on M is defined to be a bilinear map

['(M, TM) x T(M,TM) = T(M,TM), (X,Y) VxY

satisfying the following conditions,



14 XIAOJING CHEN, FENG GUAN, AND KEFENG LIU

(1) nyX = nyX;
(i) Vv fX = f(VyX) + Y (f)X
for any f € C>(M).
A linear connection V is called a holomorphic linear connection if the following two
more conditions are satisfied,
(iii) (VyX)H0 = Vy X1O,
(iv) If V and W are complex holomorphic vector fields defined on an open subset
U C M, then Vy,/V is also holomorphic on U.

A holomorphic linear connection V is called a holomorphic flat connection if the fol-

lowing two additional conditions are satisfied,
(v) VxY = VyX = [X,Y];

(Vi) Vva - VyVX - V[Xy} =0.

Condition (v) and (vi) is saying that a holomorphic flat connection V is a holomorphic
linear connection which is torsion-free and has zero curvature.

Now let us consider affine maps between holomorphic affine manifolds.

Let M and M’ be two holomorphic affine manifolds with holomorphic coordinate covers
{Ui, ¢;} and {V},4,} respectively. They both have natural holomorphic flat connections
according to the one-to-one correspondence between holomorphic flat connections and
holomorphic affine structures. Let f: M — M’ be a smooth map. We call f: M — M’
a holomorphic affine map if the induced map f, : TM — TM' maps every horizontal
curve into a horizontal curve, that is, f maps each parallel vector field along each curve
v(t) of M into a parallel vector field along the curve f((t)). Especially if the tangent

vector field Efy(t) is parallel along 7(t), then the image of this vector field is also parallel

along f(v(t)), that is, f maps geodesics on M to geodesics on M’. Since the geodesics
on an affine manifold are straight lines in the holomorphic affine coordinate charts, we
deduce that a smooth map f: M — M’ is a holomorphic affine map if and only for any
f71(V;) N U; # 0, the following map
(8) vio fowrt s iV NUL) = (V)
is a holomorphic affine transformation. Here o;(f~'(V;) N U;) and ¢;(V;) are both open
sets in complex Euclidean spaces.

In particular, for later use, we mention the following theorem about the extension of

holomorphic affine maps, which is the holomorphic analogue of Theorem 6.1 in [11]. We
refer the reader to page 252-255 of [11] and Section 4 of [8] for the proof.

Theorem 3.3. Let M be a connected, simply connected holomorphic affine manifold and
M’ be a complete holomorphic affine manifold. Then any holomorphic affine map frr on
a connected open subset U of M into M’ can be uniquely extended to a holomorphic affine
map f on M into M'.

3.2. Local holomorphic coordinates on the Teichmiiller space. For any fixed point
p € T, we choose orthonormal bases {n} and {n:, - ,ny} of H>"™* and Hj~'m=st!
respectively. Let U, be a small neighbourhood around p, and [€2,] be a local holomorphic
section of the Hodge bundle F* = H*"~% i.e.

Q) : U, = F*=H>"",
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such that [Q,](q) € F; = H;"~*. Without loss of generality we also assume [€2,](p) = no.
Since as complex vector spaces, H"(M,, C) = H"(M,, C) for any ¢q € U, we have

9) P () (q)) = ao(q)no,

(10) Pyt ([, (q) = ar(@)m + -+ - + an(q)n,

for certain holomorphic functions a;(¢) in g. This gives us a collection of local holomorphic
functions on U,

(11) 7t Uy = C, 7i(q) = ai(q)/ao(q), for1<i<N.

In particular, 7;(p) =0 for 1 <i < N.
In the following proposition we will show that these functions actually give a local
holomorphic coordinate system on U,.

Proposition 3.4. The holomorphic map on U,

Py = (T1, - ,TN) Up—>(CN

P

1s a local embedding.

Proof. The proof follows directly from Proposition [Z.6] which shows that
By o®, : T,°T — Hy~ '™

is an isomorphism. Let {¢;,--- ,ty} be an arbitrary local holomorphic coordinate system
around p, then we have the Jacobian matrix [Oa;/ 8tj]f.vj:0 which is non-singular at p. This
means {aj, -+ ,ay} gives a local holomorphic coordinate system around p.

Since 7; = a;/ag, we have
8aia 8a0a
or, ot; ° oty _

i 9 5 I for1<i<N.
oT; (p) = da;
o, =
a local holomorphic coordinate system around p. This proves that the map Py, 1s a local
embedding. 0

Since ag(p) = 1, and a;(p) = 0, thus (p). Therefore {my,---, 7y} also gives

Notice that the definition of these coordinate functions depends on the choices of the
basis {no, 1, ,nn} of Hy"*@ H;_l’”_s“. We call such local holomorphic coordinates
{71, ,7n} the local holomorphic coordinates associated to {no,m1, - ,nn}-

In general, for any point ¢ € T, by choosing bases of H;"™* and Hg_lvn_sﬂ, we can
define such a local holomorphic coordinate (U, {01, -+ ,on}) around ¢ in the same way.
We call the collection {(Uy, {01, ,0n}),q € T} constructed in this way the Kuranishi
coordinate cover over 7, and each local holomorphic coordinate system (U, {o1,- - ,0n})
a Kuranishi coordinate chart around q.

For p € T, by using the Kuranishi coordinate chart (U,, {71, -- ,7n}), we can express a
holomorphic class in H;»"™* at each point g € U, in the following Taylor expansion form:

(12) [ (@) = [ W) (a)/ao(q) = 1o + Tu(@)m + - - -+ 7w (@)nv + 9(q).
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with g(q) € P H;‘k’"_s“f. This gives us a local holomorphic section of F** on U),:
=2

[Q]CJ,T] : UP - FS? q = [Q]C),T](q)
We call [Q7 ] the local canonical section of F'* around the point p in the local holomorphic
coordinate system (U, {71, - ,7n}).

To close this subsection, we remark that different choices of the bases of H;"™* @
H;_l’"_sﬂ won’t affect the affine structure that we will show on the Teichmiiller space T
of polarized and marked Calabi-Yau type manifolds in the following sense.

For a fixed point p € T, we can construct, as in Section [3.2, the local holomorphic
coordinate charts (U, {7, --,7n}) and (U,, {7{,---,7n}) associated to two different

bases {no, 1, - ,mn} and {ng,m, -+, ny} of H>3"° @ H;_l’"_SH respectively, then we
can conclude:

Lemma 3.5. The transition map between (Uy,, {7, -+ ,7n}) and (Uy,{7{,--- ,7n}) is a
holomorphic affine map.

Proof. Let A be the N x N matrix, such that (ny,---,nn) = (01, -+, ny)A, and 1y = eny,
for some ¢ € C. Using the same notations as in (9), (I0) and (II), we define

7, =a;/ap, and T, =a./ay, for1l<i<N.

Then we have the canonical holomorphic classes [€25 ](¢) and [ ](¢) at ¢ € U, expressed
in different local holormorphic coordinates, respectively:

[ 1(a) = [Q](q)/ao(q) =m0 + T(q)m + -+ n(q)ny + 9(q),

[ 1(a) = [l(a) /ag(@) = no + (@) + -+ + (@) nv + 9'(q),
with g(q), ¢'(q) € @;__, H*"~*. Thus, we have

[€%,)(q) = ao(q) (770 + Tl + g(q)> = ap(q (n& + Z HOLE ))

i=1
By comparing the coeflicients of (s,n — s) type part of [,](q), we get,
ao(q)eny = ao(q)no = ag(q)1p,

thus ap(q) _

ao(q)
By comparing the coeflicients of the (s — 1,n — s + 1) type part of [€2,](¢), we get,

(7717"' 7”N)(T17"' 7TN>T :C(niv 7n§V>(T{7 7T]/V>T :C(nlv"' 777N)A(7'{7 7T],V)T’
which implies

(71, -+ ,TN)T = cA(r,- - ,T]/V)T.

Thus the transition map between (7q,---,7x)T and (7{,---,74)T is cA, which is holo-
morphic affine. This completes the proof of the lemma. 0]
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3.3. Holomorphic affine structure on the Teichmiiller space 7.
We say an orthonormal basis

£ = {50,51,“' EN, ’ngl’... >€fk—1>"' ’gfn,HQ’... ,gfn,sﬂ_l’gfn,s_l}
of H"(M,C) is an adapted basis for the given Hodge decomposition
Hn(M, (C) — [sns D Hs—l,n—s+1 DD Hn—s+1,s—1 D Hn_s’s,
if it satisfies
F*/F* = HY7F = Spang {&pre, -+, &1}

Recall in Section 21}, we can identify a point ®(p) = {F; C F;~' C --- C F}~*} € D
with its Hodge decomposition €;_, Hllf’”_k. Thus we have the notion of an adapted
basis for the Hodge decomposition ®(p) for each p € T. In the rest of the paper, we will
write an adapted basis for the Hodge decomposition of H" (M, C) at each point p € T in
the row vector form,

é-: (507517' T 75]\/7 o 7£fk+17 o 7£fk—17' te 7£f”*3+27 e 7£f”*3+1—17£f”*3—1)'

Recall that a square matrix T' = [T*#], with each T a submatrix, is called a block
lower triangular matrix if 7% is zero matrix whenever v < 3. We use T}; to denote the
entries of the matrix 7.

Let ® : T — D be the period map from the Teichmiiller space of polarized and marked
Calabi-Yau type manifolds to the period domain. For a fixed point p € T, we construct
the local holomorphic coordinate system (Up, {1, -, 7n}) around p associated to a given
basis {&(p), &1(p), -+, En(p)} of Hy™™* @ Hy~ "1 as in Section We complete the

basis {&o(p),&1(p), -+ ,&n(p)} to an adapted basis {&o(p), -« ,&m—1(p)} for the Hodge
decomposition of ®(p). Then we will have the following lemma.

Lemma 3.6. For an adapted basis {&o(7), -+ ,&m_1(T)} for the Hodge decomposition of
O(7) for any T € Uy, there exists a non-singular block lower trangular matriz T(T) such
that

(&o(7), -+, &m(7)) = (Co(p), -+ Em—1 ()T (7).

Proof. This lemma is a direct corollary of the Griffiths transversality for the period map
from the Teichmiiller space of polarized and marked Calabi-Yau type manifolds to the
period domain. In this proof, we identify the notation for a point 7 € U, with its
corresponding coordinates in the local coordinate system (U, {11, --Tn}).

Consider a local holomorphic family of adapted bases {{, -+ , &1} for the Hodge de-
compositions of the Hodge structures over U,, obtained by trivializing the Hodge bundles
in a small neighbourhood of p, such that {{y(p),- - ,&n_1(p)} is the given adapted basis
for the Hodge decomposition of ®(p). That is, for any 7 € U, {&(7), -+, &me1(7)} gives
an adapted Hodge basis for the Hodge decomposition of ®(7). We need to show that
for any 7 € U,, the adapted basis {&(7),- - ,&n—1(7)} for the Hodge decomposition of
®(7) given by this local holomorphic family is differed from {&y(p), - ,&n—1(p)} by a
non-singular block lower triangular matrix. Let

{(FPCcF'C.. - C %) = (1)
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be the Hodge filtration determined for the Hodge decomposition of ®(7). Then the
Griffiths transversality implies that
0

(13) g(FTk/FTkH) C FFY/FF foralln—s<k<s

where the quotient bundle F*/F*+1 is a holomorphic vector bundle over 7 and has the
relation F*/Fk+l = frkn=Fk,

For each f*1 < j < f* —1, we have &;(7) € FF/F*! = H*"=F and by using (I3), we
get

%5]’(7_) € FF=1/pk = gk=tn=ktl for cach 1 <1< N.
-
With the convention of multiple derivative notations, we get

o k—|I| / k41— k—|I|,n—k—+|1

ij(T) € Frll pret=ll — gh=lln=k+lIl for each |I]| > 0.

ol
Thus we can write W@(T) as a linear combination of {&prs1-11(7), - -+, Epemin1_1(7)}:
I ,

(14) W@-(T) = Z T7;(7)&i(7), for each [I| >0

fk+1*‘1‘§i§fk*‘1‘—1

where T};(7)’s are holomorphic functions in 7.

Now let us look at the Taylor expansion of &;(7) at p for all f*1 < j < fF¥ —1. We
get, for |7| < € small,

]
1 =Y e =Y Y e |

[1]>0 =0 \ feti-MI<i< fh-lTl—1

(16) = ) T;(n)&(p).

> fr
where if |I| = d for some d > 0, then for any f*1=4 < < f8=4 — 1 we write
Ty(r) = > Tj(p)r.
=

Thus by taking all n — s < k < s, (1) gives us a m x m matrix 7'(7), such that

(17) (&(7), -+ &m1(7)) = (&o(p), -+ Em—1(P))T'(7)

If we set the blocks of T'(7) in the following: for each 0 < «, 8 < 2s — n, the (a, 8)-th
block T of T(7), is

(18) T = [Ty(7)]

frotstlgisfrats 1, foAtHLG < f oAt

then from (I6]), we see that for any 0 < 8 < 2s—n, and f=PF1+s < j < f=0Fs—1 Tii(7) =
0if i < f7A1 — 1 namely if f7oT < f=rs+l then 7% = 0. As fF =3, bt~
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is decreasing with respect to k, we have when 3 > o, T%? = 0. Thus we concludes that
T'(7) has the following form,

A 0 - 0 0 0 |
x TH o0 ... 0 0 0
* x T2 ... 0 0 0
* * * . T2s—n—2,2s—n—2 0 0
% * * . * T2s—n—172s—n—1 0
| x * D * * T2s—m2s—n i

which means that 7'(7) is a block lower triangular matrix. Moreover, as vector spaces, FI?
and F qo are the same, thus as the transition matrix between two bases of the same vector
space, T'(T) is obviously non-singular. This completes the proof of Lemma O

Here we remark that in [8], we have used column vector for the adapted basis for the
Hodge decomposition of ®(p), while in this paper we use row vector for the adapted basis
of ®(p). Due to such different conventions, the form of matrix 7'(7) in this lemma and
c(q) in Lemma 4.5 of [§] should be transpose to each other.

Let ® : 7 — D be the period map from the Teichmiiller space of polarized and marked
Calabi-Yau type manifolds to the period domain. For a fixed point p € T, we construct
the local holomorphic coordinate system (Up, {r1,--- ,7n}) around p associated to a given
basis {10, n1,- -+ ,nn} of Hy"™* @ Hy~ '™~ as in Section We complete the basis
{no,m, -+ ,nn} to an adapted basis {ng, -+ - , Mm_1} for the Hodge decomposition of ®(p).

In Lemma [3.6] we require 7 € U, where U, is a small neighbourhood of p as the Taylor
expansion (@) holds for |7| small. However, by using the connectedness of 7, we can
prove the following corollary.

Corollary 3.7. For an adapted basis {Co, - , (-1} for the Hodge decomposition of ®(q)
for any q € T, there exists a non-singular block lower trangular matriz T such that

(Gorrr  Cnt) = (v -+ )T

Proof. Since T is connected, there exists a smooth curve 7(s) connecting p = (0) and
¢ = (1) and moreover we can choose

OISO<81<"'<8d_1<Sd:1,
such that for all 0 <1 < d, y(s141) € Uy, With U,y small enough.

Let (Uy(sy), {Tl(l), e ,T](Vl))} is the local holomorphic coordinate system associated to a
basis

{&o(v(s1), &a(v(s0), -+, En (1))}

of H>" * @ Hjéll)’"_sﬂ as defined in Section B.2] such that

v(s1)
(Tl(O)v' o 77-](\/('))) = (Tlv' T 7TN>7

{&(v(50)): &1(7(50)), - En(v(50) } = {mo, s -+, w
{&(v(s4), E1(v(54)), -+, En((5a))} = {Cos Cus - -+ 5 G-
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For simplicity, we will denote v(s;) = b.
For each 0 < [ < d, we complete the basis {{y(b;), - ,&n(b)} to an adapted basis
{&(br), -+, &m1(by)} for the Hodge decomposition of ®(b;), such that

(19)  (&o(bo), -+ Em=1(bo)) = (Mos -+ s m—1);  (€0(ba), -+, &m=1(ba)) = (Co, -+ ; Cm—1).

Since b; € Up,_,, we can apply Lemma for any 1 < [ < d to get that there exists a
non-singular block lower triangular matrix 7'(b;) such that:

(&o(br), -+ &mo1(b)) = (Co(bi=1), -+ s &ma1(bi—1)) T (by).

Then using this formula repeatedly, together with (I9), we get that the transition ma-
trix between the two adapted bases {(p, - ,(n-1} and {no, -+ ,nm_1} for the Hodge
decompositions of ®(p) and P(q):

(g(]u e 7Cm—1) = (7]07 e 7nm—1)T(b1)T(b2) o 'T(bd—l) : T(bd)

Denoting T' = T'(b1)T(by) - - - T'(bg—1) - T'(bg), we get,

(COa e >Cm—l) = (770> e anm—l)T'

For each 0 <[ < d, T'(f;) is a non-singular block lower triangular m x m matrix, thus so
is T'. This completes the proof of the corollary. O

From the proof of this corollary, one gets similar formulas as in () of the transforma-
tion between the adapted bases {ng, - ,nm-1} and {(p, -+, (n_1} in terms of the entries
of the matrix T', i.e. for eachn — s <k <s:

(20) G= Y Tym, for fF'<j<f—1.

ika‘H

Recall that we have defined a local canonical holomorphic section [Q2¢ ] on U,, and we
expressed the local canonical class [Q25 |(¢) € H;"~° in the Taylor expansion form (I2)
by using the local holomorphic coordinates (U, {m1,---,7n}). Using the condition that
hy"~* =1, we can show the following proposition:

Proposition 3.8. Fixp € T and (U, {11, - ,7~n}) the Kuranishi coordinate chart asso-
ciated to a fized basis {no,m,- - ,Nn} of Hy"™° @ H;_l’”‘s“, then for any q € U,, and
any [©4] € HZ"~°, there exists a constant A € C such that

CAEP{() (770 + milg)n + g(q)>

i=1
with g(q) € @y Hy F"751H,

Proof. Since dim¢ H;"~* = 1, and both [ ](¢q) and [©,] belong to Hy"~*, there exists
a complex number A\ such that,

[O4] = A2, 1(a))-
Using ([I2)), we get the conclusion. O
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Note that in the above proposition, if we let [©,] vary holomorphically in ¢, then X also
depends on ¢ holomorphically. But we will not need this property in this paper.

Next we will use Lemma B.5, Corollary 3.7, and Proposition 3.8 to prove that the
transition maps in the Kuranishi coordinate cover as constructed in Section on the
Teichmiiller space of polarized and marked Calabi-Yau type manifolds are actually affine
maps. This is given in the following theorem.

Theorem 3.9. The Kuranishi coordinate cover on T is a holomorphic affine coordinate
cover, thus it defines a global holomorphic affine structure on T .

Proof. We use the same notations as in Corollar 3.7l Let p, ¢ € T, and U,, U, the
corresponding small neighbourhoods of p and ¢, with U, N U, # 0. Suppose that

(Up,{m1,--- ,7n}) is the local holomorphic coordinate system associated to the basis
Mo, M-+ ,nn} of H3"=5 @ Hs~tn=s+1 and (U,, {1, - ,on}) is the local holomorphic
P P q
coordinate system associated to the basis {(y, (i, -+, (n} of H¥" @ H3~ 175+ a5 defined
Y q q

in Section We complete these two bases to adapted bases {19, 1, , N, Tm—1}
and {Co, (1, (N, , Gno1} for the Hodge decompositions of ®(p) and ®(gq) respec-
tively.

We shall prove the theorem by dividing it into the following two cases.

Case 1: When p = q, if {ng, -+ ,nn} and {(o, - - - , (5} are the same, then the transition
map between the coordinates is just the identity map, thus a holomorphic affine map.
Otherwise, according to Lemma B.5, the transistion map is a holomorphic affine map.

In particular, this also tells us that we can use any choice of the orthonormal basis
of Hy"™* & H;_l’”‘s“ around a fixed point p € T for our discussion about the global
holomorphic affine structure on 7.

Case 2: When p # ¢, for any point r € U, N U,, let us compute the transition
map between its coordinates in U, and U, which we denote by {7 (r),---,7n(r)} and
{o1(r), -+ ,on(r)} respectively.

Let [Q _](r) € H"™® be the canonical (s,n — s) class defined by (IZ) in the local
coordinates (U,, {7, -+ ,7n}) around p,

(21) [0 ](r) =m0 + ZT] i+ Y gl (r)m,

I>N+1
where 7(r) is the coordinate of r in {Up, (11, ,7n) }
Similarly, let [ ](r) € H>"~* be the canonical (s,n — s) class defined by (I2) in the

local coordinates (Uy, {01, ,0on}) around g,

(22) [ ,1(r) = Go + ZUJ'(T)CJ' Z filo (7)),

I>N+1

where o(r) is the coordinate of r in {U,, (61, -+ ,0n)}.
Since [ ](r) and [Qg ,](r) are both in H"~* applying Proposition B.8, we get that
there exists A € C, such that:

(23) 770+ZTg rni+ Y alr (@+Zo—] NG+ Y. filo )

I>N+1 I>N+1
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On the other hand, by Corollar B.7] there exists a non-singular block lower triangular
m X m matrix 7', such that:

(24) (€0, 5 Gm1) = (0, =+ ) T

According to (20), we can write [24]) explicitly as follows,

G= Y Tym, foreach fF'<j< ff—1

iz it

and for each n — s < k <'s. Thus (23]) can be written as

mt Yo HEn+ Y alrn

=)\ (ZTiom +Z <Uj(7“)ZTij77i> + Z <fl(g(r)) Z Tijﬁj)) .

By comparing the coefficients of 7, we get A = Ty,'. Projecting both sides of the above
equation to H3~h"*+! we get:

Z 73(r)n; = A <Z Tiomi + Z (Uj (r) Z%m))
=\ <Z (Tjo + Z Ui(r)Tj,-> nj> '

By comparing the coefficients for each 7;, 1 < j < N, and substituting A\ = T},,', we get

N
T(]()Tj(’f’) = 7}0 + Z O'Z(T)CT]Z
i=1

That is,
mi(r) Ty Ty - Tin o1(r)
(25) TOO = _I_ .. o . P N
Tn(T) Tno Tni -+ Tnwn on(r)

Since for all 0 < 4,7 < N, T;; are constants depending only on p and ¢, thus (23]
shows that the transition map between (71(r),---,7n(r))? and (oy(r), -+ ,on(r))T for
any r € U, N U, is an affine map. This completes the proof of this theorem. O

In the next section, we shall use this global affine structure on 7 to show that there
exists a global affine coordinate system on the Teichmiiller space of polarized and marked
Calabi-Yau type manfolds, and then prove the global Torelli theorem on the Teichmiiller
space.
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4. GLOBAL TORELLI THEOREM ON THE TEICHMULLER SPACE

In this section, we prove the global Torelli theorem on the Teichmiiller space T of
polarized and marked Calabi-Yau type manifolds. The proof is based on the construction
of the global holomorphic flat coordinates on 7. In Section .1l we use the holomorphic
affine structure constructed in Section [ to prove the existence of global holomorphic
flat coordinates on the Teichmiiller space T of polarized and marked Calabi-Yau type
manfolds, which induces a natural holomorphic affine embedding from the Teichmiiller
space into CV = H3~1=s+1 In Section .2} we use the global holomorphic flat coordinates
on T to prove Theorem (4] which is the global Torelli theorem on the Teichmiiller space
of polarized and marked Calabi-Yau type manifolds.

4.1. The holomorphic affine embedding from 7 into CV = H3~1"~5t1, First recall
that in Section B.2, we constructed the Kuranishi coordinate cover on the Teichmiiller
space T, that is, for each p € T, we defined a local holomorphic coordinate chart
(Up,{m1,--- ,7n}) around p which is associated to a chosen bases {no} and {n,---,nn}
of H3"~* and H;~ "™ >t respectively. By setting o, (@) = (T1(q), - ,7n ()T, for any
q € Uy, we then get a local holomorphic embedding around p,

. N ~ s—1,n—s+1 ~ 71,0
Py Up—= CN 2 I8 ~ 10T,

Here recall that we make the identification H~'"~**1 = CV by fixing the orthonormal
basis {11, -+ ,nn} of H;_l’"_SH. Because the holomorphic affine structure on 7 is defined
by the Kuranishi coordinate cover, we have that the local holomorphic coordinate map
Py, + Up = CN = Hy~'7=t1 is an affine map on U,. Then by applying Theorem B.3 we
get the following lemma:

Lemma 4.1. There exists a unique global holomorphic affine extension
Py : 7‘_) CN ~ H;—l,n—s-l—l

of Pu, s such that when restricted on Uy, pplu, = Pu, -

The theorem below will give us the global holomorphic affine coordinates on 7 and
consequently the global holomorphic embedding of 7 into CV = H5~1"=5+1 Recall that
in Section B3] we showed that the Kuranishi coordinate cover gives us a holomorphic
affine structure on the Teichmiiller space T of polarized and marked Calabi-Yau type
manifolds. By the discussion in Section 3.1 we have a corresponding global holomorphic
affine connection V on 7. We shall use this global holomorphic affine connection V and
the assumption that 7 is simply connected to construct the global holomorphic coodinate
functions. We then prove that it agrees with p,.

Theorem 4.2. The holomorphic affine map p, : T — CN = H5=1"=5t1 s q holomorphic
affine embedding.

Proof. The proof is mainly to show p, is given explicitly by a global holomorphic flat
coordinates.

To construct the global holomorphic coordinate system ¢ = (t1,- -+ ,ty) on T, we start
from a point p € T, and the local holomorphic coordinate system (U,, {71, - ,7n})
around p as defined in Section Then we will follow the discussions as in page 217 of
[13]. Because (U, {m,---,7n}) is a local holomorphic coordinate chart, the holomorphic
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vector fields {9/07,---,0/07n} form a local parallel frame of T'°U, with respect to
the holomorphic flat connection V on 7. Because T is simply connected and that the
holomorphic connection is torsion-free and flat, we can extend this local parallel frame,
by parallel transports, to a global holomorphic parallel frame {Vi,---, Vx} of TH0T. We
denote by {6y, ,0x} the dual frame of {V;,---,Vy} defined by the condition

9,(‘/]) :51']" for 1 SZ,] SN

We shall show the following two properties:

(i) {0y, --,60n} is a global holomorphic parallel frame of the holomorphic cotangent
bundle 707
(ii) The differential forms 6y, -- 0y are closed holomorphic (1,0)-forms on 7.

In fact, to show (i), we use the fact that the affine connection V is holomorphic. Because
V is holomorphic, the parallel frame {V1,-- -, Vy} is a global holomorphic frame of 747
This implies that the dual frame {6y, -- 0y} is a global parallel holomorphic frame of
T*°T , which also gives that df; is a (2, 0)-form on T, for each 1 < i < N.

For (ii), notice the fact that V is torsion-free implies that the parallel holomorphic
vector fields are commutative, i.e. [Vi, V)] = Vy, Vi — ViV, =0for 1 < k.l < N. Then
we get

d0;(Vi, Vi) =Vi(0:(V1)) — Vi(0:(Vk)) — 0:([Vi, Vi])
=Vi(6a) — Vi(6ir) — 6;(0)
—0,  for1<ikI<N.

This shows that the (2,0) part of each df; is zero. Together with the above discussion
that df; is a (2, 0)-form, we get that df; = 0 for each 1 <i < N.

Because T is simply connected, these closed forms {6y, --- , 0y} are exact. This implies
that there are holomorphic functions {t1,--- , ¢y} uniquely defined on 7 such that

dt; =0; and t;(p)=0,

foreach 1 <¢ < N.

By (i), these globally defined holomorphic functions {¢;,--- ,tx} satisfy that their dif-
ferentials {dty,- - ,dtx} give a global parallel frame of the holomorphic cotangent bundle
of T, hence dt; A --- A dty is never zero. Therefore given a local holomorphic coordi-
nate system around any point ¢ € T, the Jacobian of the functions {t1,--- ,¢x} in this
local holomorphic coordinate system is nondegenerate. With this discussion, one can con-
clude that the functions {¢,--- ,ty} form a local holomorphic coordinate system when
restricted to a holomorphic coordinate chart around ¢, for each g € T. Therefore we can
conclude that t = (t1,--- ,ty)T defined in this way is a holomorphic embedding from 7~
to CV as it forms a global holomorphic coordinate system for 7.

Next we prove that (¢, ,tx)? = p,, and conclude t = (t1,--- ,tx)7 is an affine map
since p, is affine.
Notice that dt; = 0; = dr; on U,, then by the uniqueness of {¢;,--- ,tx}, we have

ti(q) =7(q) for qeU,, 1<i<N.
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By Lemma 1] there exists a unique global holomorphic affine map p, : T — CV =
Hy~tn=s*+1 that extends p,, , and when restricted to U, we have

pi(q) =7(q) for qeU,, 1<i<N,

where we write p,(q) = (p1(q), -+, pn(q))T € CN. Note that for each 1 < i < N, the
coordinate function ¢; and p; are both globally defined holomorphic functions on 7, and
they agree on an open subset U, C T, thus they must agree on the whole T, i.e.

pi(q) =ti(q) for g€ T, 1<i<N.
By combining the above discussions we conclude that the holomorphic affine map

. N ~ s—1,n—s+1
pp: T —C" = H) ,

which can also be given by the global holomorphic flat coordinates p, =t = (t1, -+ ,tx)7,
is a holomorphic affine embedding. This completes the proof of this theorem . 0J

Since we have obtained p, by extending the local holomorphic map Py, + Up = CcN
around p with p,(p) = 0, we will also call these global coordinates t = p, = {t1,--- ,tn}
on 7T a global holomorphic flat coordinate system centered at p.

As an alternative description of the construction of this global holomorphic flat co-
ordinate (tq,---,ty), which we only briefly describe, is by directly patching the local
holomorphic coordinate charts through affine transformations to get the global holomor-
phic affine coordinates. Both approaches are essentially equivalent, they crucially depend
on the fact that the Teichmiiller space T of polarized and marked Calabi-Yau type mani-
folds is a simply connected holomorphic affine manifold. In the following construction we
will use affine transformations and standard obstruction theory.

Let {(Uy, ¢q) : ¢ € T} be the Kuranishi coordinate cover on 7, where

g = pu, = (11, - ,TJqV)T: Uq—>(CN

denotes the local holomorphic coordinate map constructed in Section Notice we
slightly changed the notations of the local holomorphic coordinates just for making the
argument here cleaner. We denote by Aff(C") the group of holomorphic affine transfor-
mations from CV to CV.

Because the Kuranishi coordinate cover on 7T is a holomorphic affine coordinate cover,
we have that the transition map ¢, o (p;l € Aff(CY) for each ¢ and ¢’ in T whenever
U,NUy; # 0. Let us fix a point p € T and the holomorphic coordinate chart {77, -, 7n}
around p. Then we can choose an A, € Aff(C") for each coordinate chart (U,, ¢,), such
that

Ajop,=Ayopy whenever U,NU, # 0;
A,=1d on U,.

By using uniqueness of the analytic continuation of holomorphic functions, or repeating
the standard argument that a flat vector bundle on a simply connected space is a trivial
bundle, see for examples the discussions in [I1], Corollary 9.2 in Section 9 of Chapter II,
and Theorem 4.1 in Section 4 of Chapter V, we know that the obstruction to make the
above choices is in Hom (71 (7), Aff(CY)), where (7)) denotes the fundamental group of
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the Teichmiiller space 7. Because T is simply connected, the obstruction vanishes. This
implies that we may choose a new coordinate cover,

Uy g=Ag09) : ¢ €T},

such that

gotpyt =1Id  for UNUy #0.
This gives us the global holomorphic flat coordinates which agree with {7, -+, 7y} on
U,.

To close this subsection we describe the local exponential map from CV to T, where
we identify CV with T°°T and Hj~""~**! the identification is described in Section
We shall also show that it is an inverse map of the affine embedding p, : U, — CN =
H;—l,n—s-l—l.

One can define the exponential map on the holomorphic tangent space of a holomorphic
affine manifold as follows. Let M be an N dimensional complex manifold with a holo-
morphic flat connection V, which is defined in Section B.Il Then for each point p € M
and a basis {Xi, -, Xy} of the holomorphic tangent space T, pl’OM , we have the unique

local holomorphic coordinate functions {t;,--- ,tx} around p, such that
0
—1, = X, for each 1.
atl |P

Definition 4.3. Let M be a holomorphic affine manifold. For each pair (p,{X1, -, Xn})
as described above, the holomorphic map

exp : Tpl’OM — M,
> X (te )T

on a neighbourhood of 0 € T M is called the exponential map according to (p,{X1,---, Xn}).

In particular, the Teichmuller space 7 of polarized and marked Calabi-Yau type mani-
fold is a holomorphic affine manifold. Recall that for a given point p € T and a generator
[€2,] of H¥"~*, the holomorphic tangent space T, 0T = H'(M,, T"°M,) is identified with
Hz=tn=s+1 by the isomorphism

O Ho’l(Mp, Tl,OMp) — H;—l,n—s-i—l

(o] = [p2y).
If we fix bases {no} and {ny,--- ,nn} of H*"~* and H3~ "5t respectively, we will have
the local holomorphic coordinate chart given by the holomorphic functions {7, -, 7y}

in a neighbourhood U, of p as constructed in Section 3.2l Then according to the definition
of holomorphic exponential map, we have

exp : Tpl’OT = H;_l’"_s“ ~CcN 5T

N
with exp(>_ 7im;) = (71, -+ ,7n)T, which is the holomorphic exponential map according

i=1
to the point p and the basis {7} and {7, -+ ,nx}.
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On the other hand, the local coordinate map of the local holomorphic coordinate system
Pu, U, — CVN ~ H;_l’”_SH,

N

with p,(7i,- -+ ,7n) = Y. 7im; is clearly the inverse of the above holomorphic exponential
i=1
map.

4.2. Proof of the global Torelli theorem.
Theorem 4.4. The period map ® : T — D is globally injective.

Proof. For any p € T, we can construct a local holomorphic coordinate (U, {71, - ,7n})
accociated to a fixed basis {ny, m1, -+ ,nn } of H;’”_SEBH;_L”_S“ respectively as in Section
B2l We complete this basis {ng, -+ ,nn} to an adapted basis {no,n1, - , 0N, s Tm—1}
for the Hodge decomposition of ®(p).

Recall that in Section 1] we extend the local holomorphic coordinate map

Py, = (71, ,TN)T U, — CN ~ H;_l’”_s“
to a global homolomorphic flat coordinate system
pp= (t1, - tn)' T — CN = H;_l’"_s“,

with (¢1(p), -+, tx(p))T = 0, which is a global holomorphic affine embedding.

For any other point ¢ € T, we have local holomorphic coordinates (U, {01, ,0n})
associated to a fixed Hodge basis {(o, (1, - ,Cn} of Hy" ™ @ Hg_l’"_sﬂ as defined
in Section 3.2 We can also complete the basis {(y, (1, -+ ,(y} to an adapted basis
{Co,C1,+ - ,CNy -+, (m_1} for the Hodge decomposition ®(q).

We can similarly extend the local holomorphic coordinate map

pUq — (0-1’ . ,O'N)T . Uq - CN ~ H;—l,n—s—i—l
to a global homolomorphic flat coordinate map
T N ~ s—1ln—s
pq:(tllv,th) T—>(C :Hq 1 +17

with (#(q), -+, (q))T = 0, which is a global holomorphic affine embedding.
Applying the similar arguments as in Lemma and Corollary B.7, we take a smooth
curve 7(s) to connect p = v(0) and ¢ = (1), and moreover we can choose

0=s59<87 < -+ <8g_1 < 8g=1,

such that y(s;41) € Uy(,). For each 0 <1 < d, the local holomorphic coordinate chart
(Us(s) {Tl(l), e ,T](\?}) is as defined in Section [3.2] which is associated to a fixed basis

{&(v(s0)), &1 (¥(s0), -+, En(v(s)} of HI® @ HI K ™" such that (77, -+, 7\")T =
(i, ,7v)7, (71(@’... 77—](\?))T = (o1, ,on)T, and

{€0(7(50)): &1(7(50)), -+ Ex(Y(s0))} = {mos s+ }

{&(7(50)). &1(¥(50))+ » Ex(7(50)} = {Cos G 1 v}

For simplicity, we denote v(s;) = b;.
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For each local holomorphic coordinate chart (U, {Tl(l), e ,T](\?}), we can extend the
local holomorphic coordinate map
l l ~ s—1,n—s+1
pUbl :(Tl()f" ’TJ(\T))T: sz %CN:HbL "

to a global holomorphic affine coordinate map,
oo = (E0, o YT T o N = et

with (tgl)(bl), e ,tg\l,)(bl))T = 0, which is a global holomorphic affine embedding.

For each 0 < | < d, we complete the basis {&(b;),&1(by), - ,&n(b)} to an adapted
basis {&o(by), -+ ,&m—1(b;)} for the Hodge decomposition of ®(b;), such that

(€o(bo)s s &m—1(b0)) = (M0; =+ s Mm—1) and (o(ba), -+, Em—1(ba)) = (Cos 5 Gm-1)-
Since b, € Up,_,, we apply Lemma for each 0 < | < d to get that there exists a
non-singular block lower triangular matrix 7'(f;), such that
(26) (&o(br), -+ &m—1(lr)) = (obi-1), -+ s Em—1(b1—1))T'(by).
We take T = T'(by)T'(bg) - - - T'(ba—1)T'(bg), which is a non-singular block lower triangular

matrix, then

(COv e 7<.m—1) = (7]07 e 77]m—1)T-
Since Uy, N Uy, _, # (), we use the same argument as in the proof of Theorem to get:

(27)

n V)] [To®) Tu(b) - Tiw(b) ][00
TOO(bl) : = : + : , 1 €Uy NU,_,.
Tj(é_l)(r) Tno(br) Tyi(be) -+ Tw(b) 7-](\? (r)
Since ty) = T;l) on Uy, for all 0 <1 <d,1 <3 <N, we have for any r € U, NU,,_,:
H7V0)] [Tw®) Tu) - Tin() 1 [80)
(0] o] L Twb) o Tw(b) |40

Because Too(bl)ty) is globally defined holomorphic functions on 7, so is Tjo(b;) +

ZiN:1 Tji(bl)ty), for each 0 <1 < d,1 < j < N. By (25), they agree on an open sub-
set Uy, N Uy,_, C T, therefore they must be the same on the whole 7, that is, for any
r €T, (28) holds.

We now compute the transition map between ¢t and ¢’. If we take i = (1, tgl), cee tE\l,))T =
(1,tM)T and set the blocks of T'(b;) and T as in the proof of Lemma [3.6], then (28) can
be written,

& 00 [ubo] = [ o oy ] o]

If we take
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then (29) can be written as
(30) Too(bl) = T(bl)
Thus we get the following formula for the transition map between 79 and f(d),
Too(by) - - - - Too(b)E” =T(by) - -+ - - T(ba)t?.

Note that since T'(h;)’s are all block lower triangular matrices, we have

00 0]

Too(by) - - - - - Too(ba) =T%°, and  T(by)----- T(bg) = [ 710 Ll

By taking ¢ =t = (t;,--- ,ty), and tD = ¢ = (|, --- ,t)y), we get:
(31) Tty - i) =T + TV, )T

Here 799 T and T! are respectively the (0, 0), (1,0) and (1, 1) block of the non-singular
block lower triangular matrix 7'.

Now we can prove ® : 7 — D is injective by showing that ®(p) = ®(q) implies p = q.
Indeed, if ®(p) = P(q), then the non-singular block lower triangular matrix 7" is then a
block diagonal matrix. In particular, we have T%° = 0. Without loss of generality, we
can choose (o = 1y to get T%° = 1. Therefore in (3], we have

(tla T >tN)T = Tl’l(t,b e >t§V)T
with T%! non-singular. Thus

(t1(p), -+ tw(p)" = (0, ,0)" = THH(#(p), -t (p)"-

and TH! being non-singular implies that (#)(p),---,ty(p))Y = (0,---,0)T. But by
the assumption (#;(q), -+ ,ty(¢))" = (0,---,0)7 and Theorem which tells us that
(th, -+, ty)T gives an embedding from 7 into CV, we get that p = ¢. This completes our
proof. O

5. APPLICATIONS

In Section 5.1l based on the idea of a letter from Schmid to the authors [17], we describe
a geometric way to relate the holomorphic affine structure on the Teichmiiller space of
polarized and marked Calabi-Yau type manifolds to the orbit N in D of the unipotent
group. We define a Hodge completion T of the Teichmiiller space of polarized and marked
Calabl-Yau type manifolds, and extend the period map to ® : T — N, — D. In Section
| we further assume that the moduli space of polarized Calabi-Yau type manifolds is
smooth and the global monodromy group acts on the period domain freely. Then we use
the global Torelli theorem on Teichmiiller space of polarized and marked Calabi-Yau type
manifolds to show that the period map on the moduli space of polarized Calabi-Yau type
manifolds is a covering map onto its image. As a consequence, we derive that the generic
Torelli theorem on the moduli space of polarized Calabi-Yau type manifolds implies the
global Torelli theorem on the moduli space of polarized Calabi-Yau type manifolds.

Again in this section, we will use the general conventions as defined in Section 2.1l
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5.1. Unipotent orbit and the Hodge completion of the Teichmiiller space. Let
us first review some properties about the classifying space D for general polarized Hodge
structure, and then restrict to our Calabi-Yau type manifold case. We refer the reader
for more details to Section 2 and Section 3 in [16].

The orthogonal group of the bilinear form () in the definition of Hodge structure is a
linear algebraic group, defined over Q. The group of the C-rational points is,

Gc ={g9 € GL(Hc)| Q(gu, gv) = Q(u,v) for all u,v € H¢}.

which acts on D. As one can check in [5] that G¢ acts transitively on D.
The group of real points in G¢ is

Gr = {g € GL(Hg)| Q(gu, gv) = Q(u,v) for all u,v € Hg}.

which acts as a group of automorphisms on D. Again one can use simple arguments in
linear algebra to conclude that Gy acts transitively on D.

Consider a variation of Hodge structure ® : S — D from a complex manifold S to
the classifying space as defined in Section 2.1l Let us fix a point p € S, with the image
0=:®(p) ={FF}}_y € D. The points pe S and o€ D C D may be referred as the base
points or reference points. We also fixed an adapted basis {7, -, 9m_1} for the Hodge
decomposition of ®(p). With the fixed adapted basis {7, -+ ,mm_1} at the base point,
one obtains matrix representations for elements in G¢ and Grg.

First, let us exhibit D and D as quotients of G¢ and Gg. Notice that a linear transfor-
mation g € G¢ preserves the reference point precisely when gﬂfC = Flf. Thus this gives
the identification

(32) D ~G¢/B, with B={ge€ Gc|gEl=FF, for any k}.

Notice that this isomorphism is a complex holomorphic isomorphism. In fact, with the
identification (32]) the identity coset and the base point o correspond to each other. As
a quotient of a complex Lie group by a closed complex Lie subgroup, G¢/B has the
structure of complex manifold.

Similarly, one obtains an analogous identification

D~ Gg/V < D, with V = GrN B,

where the embedding corresponds to the inclusion Ggr/V = Gr/Gr N B C G¢/B.

Next let us express the holomorphic tangent space of D and D as quotients of Lie
algebras.

The Lie algebra g of the complex Lie group G¢ can be described as

g ={X € End(H¢)| Q(Xu,v) + Q(u, Xv) =0, for all u,v € Hc}
={X € End(He)| XQ+ QX" =0}.
It is a simple complex Lie algebra, which contains gy = {X € g| XHg C Hg} as a real
form, i.e. g = go @ igo. With the inclusion Ggr C G, go becomes Lie algebra of Gg. One
observes that the reference Hodge structure { H"*}7_ of H¢ induces a Hodge structure

of weight zero on End(H¢). It can be checked that the subspace g C End(H¢) carries a
sub-Hodge structure of weight zero, namely,

(33) g= @gk’_k, with g& =% = {X e g|XH;7"_’" C H;Jrkm—r—k}
keZ
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Since the Lie algebra of B consists of those X € g that preserves the reference Hodge
filtration {F}}}_,, according to the decomposition (33), one has

(34) b=

k>0
The Lie algebra v of V' is thus
(35) b=goNb=goNbNb=gyng"°
As an observation, we notice that
(36) Ad(g)(g" ™) c Py, forge B
i>k

In terms of matrix representation with the fixed base point and fixed adapted basis
at the base point, elements in B C G¢ are of non-singular block upper triangular, and
elements in V' C Gy are of non-singular block diagonal. From (B4]), one can see that any
element in b C g is a block upper triangular matrix. Similarly from (BH), elements in
b C go are block diagonal matrices.

With the above discussion, one gets that the holomorphic tangent space of D = G¢ /B
at p is naturally isomorphic to g/b, i.e.

(37) THD = g/b.
Because of (34)),
(38) baog /b Cg/b

defines an Ad(B)-invariant subspace. By left translation via Gg, it gives rise to a G-
invariant holomorphic subbundle of the holomorphic tangent bundle T 01,0[) at the base
point. It will be denoted by T; ’,?D, and will be referred to as holomorphic horizontal
tangent bundle at the base point. One can check that this construction does not depend
on the choice of the base point 0o € D.

As another interpretation of this holomorphic horizontal bundle at the base point 0 € D,
one has:
(39) T3 D ~T,°D @ Hom(ES/Ey B [FF2).

k>1

The horizontal tangent subbundle at the reference point o, restricted to D, determines a
subbundle T1 0D of the holomorphic tangent bundle 7D of D at the reference point.

The GC-mvarlace of T D implies the Gg-invariance of T 0D
Now let us take a mlpotent Lie subalgebra of g:

ng = @g_k’k

k>1
with its corresponding unipotent Lie subgroup in Gg,

N; = exp(ny).
With the above descriptions ([B3) and (34]) of the g and b respectively, one gets
(40) g/b=n.
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In terms of matrix representation with the fixed base point and fixed adapted basis
at the base point, the elements in n, are block lower triangular matrices in g with the
diagonal blocks being all zeros. Correspondingly, elements in N, are block lower triangular
matrices in G¢ with the diagonal blocks being all identities.

Note that N, is defined to be a subgroup in G¢, but we can also view N, as a subset
in D as follows:

N, = N, ( base point ) = N,B/B C D,

that is, we identify an element ¢ € N, with [¢] = ¢B € D. Without causing confusion,
we denote by N, the unipotent orbit of the base point under the action of the unipotent
group N,. In the rest of the paper, we will view N, as a subset of D in this way.

Using the identification (37), (B8) and (@), and the property that D C D open, we get
the following isomorphisms and an affine embedding:

To0D=T,’D=b®g "' /b g/b=n,.

In short, we get the following affine embedding,
T;’,?D — ny.

We now restrict our discussions to the case of Calabi-Yau type manifolds.

By the interpretation (B39), as well as the Griffiths transversality, we know that for the
period map ® : 7 — D from the Teichmiiller space of polarized and marked Calabi-Yau
type manifolds to the period domain, we have

O.(T)°T) C T, D
at the base point. Moreover, together with Proposition 2.6, we have the following isomor-
phisms and affine embeddings,
(41) Hy 't = Pro @ (THOT) — @ (T)°T) C T, D=bd®g "' /b — g/b=n,.

For the base point p € T, we can define a local holomorphic coordinate chart (U, 7, -+, 7n)
around p as in Section B2 associated to the fixed basis {no, - - -, nn} of HS"S@HS =15t
We then get a local holomorphic affine embedding

(42) P, Up = CN = Hy=bn=stl = 70T
by letting p,, (¢) = (11(q), -+ . 7n(q)) for any ¢ € U,. Combining (41]) and ({@2), we have

the following inclusion

Up

P ©
U,© CN¢ n,
We shall define a map ¢y, : U, — N, and use the matrix representation to show that

the following diagram is commutative:

Pu.
| S N¢ ¥
P C ny

RN e

D N,

N\

D.
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First, we can choose any adapted basis {(p, - , (1} for the Hodge decomposition of
®(q), and by Lemma 3.6, we know that there exists a non-singular block lower triangular
matrix 7'(¢q), such that

(C()v e 7<.m—1) = (7]07 U 7nm—1)T(q)
More explicitly, if we denote v = 2s — n, then T'(q) has the following form,

A 0 0 e 0 0 0
™0 T 0 e 0 0 0
%0 %! T .. 0 0 0

Tﬁ/.—270 T'y;2,1 T7;2,2 . T“/—.Zv—? 0 0
Ty-1L0 py-L1 py=12 0 py=ly=2 =Lyl 0
7.0 T:1 T2 .. T2 Tvy=1 v

In terms of matrix representation, we let W denote the set of all block lower triangular
matrices in G¢, then one can see that T(q) € W. Moreover, since ®(q) € D = Gg/V,
thus [T'(q)] € D, i.e. there exists X € B, such that T'(q) X € Gg. Therefore we can firstly
define

Yy, Uy =W, q—T(q).
and then we can define j : W — N, by sending T'(q) to the following element in N,

I 0 e 0 0
(T00)=110 T e 0 0
i(T(q)) = : : : L | €N,
(T0,0>—1T'y—1,0 (Tl,l)—lT'y—l,l . T 0
(TO,O>—1T7,O (T1,1>—1T'y,1 . (T,fy—l,fy—l)—lT'y;y—l T

Actually, the map j is simply the quotient map W — W/W N B.
Now we can define vy, as the composition map:

’QDUp:jO’lZUpZUp—)N_,_.

With the above description about vy, , one can easily see that the above local diagram
is commutative. In particular,

Py, o Up — CcV, g~ (T

We make a remark about the choices of the adapted bases for ®(q). If we choose
different adapted basis ({(,---,(}, ;) for the Hodge decomposition of ®(q), then we
still get a non-singular block lower triangular matrix 7°(¢)’, such that (¢}, --,¢l,_1) =
(Mo, -+ ,mm—1)T(q)’. As another adapted basis of the Hodge decomposition for ®(q), there
exists C' € V, such that ({},---,{,_1) = (Co," -, Gm—1)C, which gives ((p, - ,(m-1)C =
(7707 e 7nm—1)T(q)/‘ On the other hand> (CO? e 7<m—1) = (7707 e 7nm—1)T(q)? therefore
T(q)'C~' = T(q). Thus we conclude that as an element in D = Gg/V, [T(q)C™'] =
[T(¢q)] € D. Therefore since we view N, C D, the map Yy, : Uy — Ny doesn’t depend
on the choices of the adapted bases for the Hodge decomposition of ®(q).

Now let us extend the local commutative diagram to a global commutative diagram.
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On one hand, recall that in Section [L.1] we extend py, to a global holomorphic affine
map,

(43) pp: T — CN = Hy=hrnosth
Now combining ({Il), (42)) and (43)), we have a global affine embedding:

Pp 14
TC CN¢ ny

with the affine structure on 7 defined in Section 3]

On the other hand we can also extend vy, : U, — N, in the following way. For any
point ¢ € T, we choose an adapted basis {(g, -, (;n_1} for the Hodge decomposition for
®(q), then by Corollary 3.7, we have a non-singular block lower triangular matrix 7'(q),
such that

(G0 5 Gn1) = (10, -+ 1) T (q)-

Therefore, using exactly the same definition as for ¢y, : U, — N, we can define a global
affine map

’Lpp . T — N_|_.
Moreover with the defnition of this ¢, we can define
P, T — CcV, g~ (77T,

If we write p, = (p1,- -+, pn) and p), = (p},- -+, ply), obviously by their definitions, we
have

pi=r, onl,

with U, C T open. As globally defined holomorphic functions, they must agree on the
whole T, i.e.

pi=p. onT.

Therefore we get the global commutative diagram:

Pp

)
TC CN¢ ny

N

Nk

D.

From this diagram, we can extend the period map on the Techmiilcer space of Calabi-
Yau type manifolds to the following map:

d:CN - N, — D.

Take T = ®~1(D), and we call it the Hodge completion of the Teichmiiller space 7T of
polarized and marked Calabi-Yau type manifolds. Notice that 7 D 7. Indeed, because
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®|7 = ®|7, we get ®(T) = ®(T) C D. Therefore (D) =T D T. As a restriction of
the affine embedding ¢ : CV — n, on the T, we get the following affine embedding,

P=¢lF: T —n, =C
with d = dimn,, as well as a map on 7 :
&:T - N, — D,
which is an extension of the period map ®.
In a subsequent paper we will study more detailed about the geometric properties of

this Hodge completion T of the Teichmiiller space T of polarized and marked Calabi-Yau
type manifolds.

5.2. The period map on the moduli space. In this subsection, we assume that
the moduli space of polarized Calabi-Yau type manifolds is smooth. Let Gz = {g €
Gc¢| gHz C Hyz}, then for the smooth moduli space M, we can consider the period map

dpr: M — DJT,

where I' = Image(m; (M) — Gz) denotes the global monodromy group which acts properly
and discontinuously on the period domain D.
For the two period maps ® and ® 4, we have the following commutative diagram,

T2 . D

M4 D,

where 7. : T — M is a covering map and d = mp o ®. The image of the period map
® 4 is an analytic subvariety of D/I". We refer the reader to page 156 of [6] for details of
the analyticity of the image of the period mapping.

Global Torelli problem on the moduli space M asks when ®,, is injective, and generic
Torelli problem asks when there exists an open dense subset U C M such that ® |y is
injective. In both cases we need to understand the global Torelli property of the period
map P, on the moduli space.

Furthermore, we assume I" acts on D freely, thus the quotient space D/T" is a smooth
analytic variety. Therefore the quotient map

mp: D— DT

is a covering map. We shall show in the following theorem that ® ., is a covering map onto
its image, and then conclude that generic Torelli theorem implies global Torelli theorem
on the moduli space of polarized Calabi-Yau type manifolds.

Theorem 5.1. Let M be the moduli space of polarized Calabi- Yau type manifolds. If M
18 smooth, and the global monodormy group I' acts on D freely, then the period map on
the moduli space ®pq : M — D/T is a covering map from M to its image in D/T". As a
consequence, if the period map on the moduli space ® g is generically injective, then it is
globally injective.

Proof. First, we show that ®,, is a covering map from M to its image in D/T". This relies
on the following lemma,
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Lemma 5.2. Let ®: T — D — D/T be the composition of ® and the covering map
D — D/T'. If there exist two points p1 # p2 € T such that O(p1) = O(p3), then there exist
V1 and Vs, which are neighbourhoods of py and py respectively, such that (ID(Vl) (ID(VQ)

Vin Ve =0, and the map

for each i = 1,2 is an isomorphism.

Proof of Lemmal522. By the argument at the begin of Section 2], we can identify a point
O(p) = {F; C F;7' € --- C F}*} € D with its the Hodge decomposition ®(p) =

{Hzl)g7n_k}Z=n—s'
Let ®(p;) = {Hgn_k}zzn_s and ®(p3) = {HE"F}s_ __be the corresponding Hodge

"y b2
decompositions. Then the condition ®(p;) = ®(p3) implies that there exists some v €
I' C Aut(H"(M,Z)), such that v - &(p;) = ®(p2).

We fix an adapted basis {770 ,7](1) e ,77](\}), ,nﬁ,}b)_l} for the Hodge decomposition of

®(py). Let
2) (2 2 2 1 1
{77(() )an§ )7 an](\f)a 7777(;1) 15 — {7 770 77 Té )a Y 77](\[)7 a’ynﬁn)—l}

Then {77(()2), ﬂgz), - ,77](3)7 . ,nm 1} forms an adapted basis for the Hodge decomposition
of ®(ps). '

Let (Ug,, {Tl(l), e T](\; )}) be the local holomorphic coordinate chart associated to the
basis {77(()2), . ,nN 1 of H%"_S@HI‘%_I’"_SH, for i = 1,2 respectively, which are defined

in Section 3.2 In this proof, we use the same notation for a point @ € Up, as its
corresponding coordinate in the local holomorphic coordinate (Up,, {T e ,T](\;)}). Then
Theorem (.2 shows that we have the following embeddings,

. _ N ~ s—l,n—s-l—l A _ N ~ s—1,n—s+1
pl.Up1—>C —H~ pg.Up2—>C _Hﬁz .

with pz(Tl(Z)v T 77—](\;)) = Z;V 1 j 77] ) for ¢ = L,2.
Because dimc Up, = dimc H;, s=hn=stl — Qime 7 and that p; is an embedding, we have
that the image pZ(U ) is open in H:~ bn=st 1 for each i = 1,2. This implies that - p (Ug;)

and (v - p1(Uz)) N p2(Up,) are also open in H_- b= SH. Together with the fact that
v p1(p1) = pa(p2) € (7 p1(Uz)) N p2(Us,) # 0, we get that there exists a neighbourhood
W of pa(ps) in H; =5 such that

W C (v p1(Uz)) N p2(Us)-
Let V; = pr (v W) C Ug and Vo = py (W) C Ug,, then the restriction maps
(44) ,01|{/j Vi w,
(45) P2l : Vy — w,

are biholomorphic maps since the p; and p, are embeddings. Then from the global
commutative diagram introduced in Section 5.1, we get the following composition maps,

exp -
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exp -

Oyl : Vo X We—s CN = g e N, D.

Notice that the composition maps from W to D in the above two maps are the same.
Together with the isomorphisms between V; =2 W and Vo =2 W as defined in (44]) and (43]),
We now can conclude that v - ®(Vy) = ®(V3), which implies (V) = ®(V3) = np(W). By

shrinking W properly, we can make ‘71 and V5 disjoint, and also we have that the map
OV S W2 (V)
for each 7 = 1,2 is an isomorphism. O

Notice that in the following commutative diagram:

T2 . D

M- DT,

since 7 and M are both smooth, the map 77 is a covering map. This implies that 77 is
a local isomorphism.

Now for any Hodge structure { H*"=*}¢_ '€ D/T, if the pre-image ®f ({H*"*}:_ ) =
{pi| i € I} is not empty. Take {p;|j € J} = n'({p; | i € I}). By Lemma 5.2 for each

Jj € J, we get V; C T which is a neighbourhood around p; such that

V= (V)
is an isomorphism, Ujf;} is a disjoint union, and all the 5(17}) are the same. Now take
{(Vil k € K} = {n.(V;)| 7 € J}. By shrinking the set W as in Lemma properly, we

can still make UV} a disjoint union, and the images ® (V) = wp(W), for any k, are
still all the same. Moreover, since 7. is covering map, the map

is still an isomorphism for each k& € K. Therefore the holomorphic map

is a covering map.
In particular, if the map @ : M — D (M) is generically injective, then g : M —
® (M) is a degree one covering map, which must be globally injective. 0

Note that in many cases it is possible to find a subgroup I'y of I", which is of finite index
in I', such that its action on D is free and D /I’y is smooth. In such cases we can consider
the lift &y, : Mo — D/T'y of the period map P, with M a finite cover of M. Then
our argument can be applied to prove that ®,4, is actually a covering map onto its image
for polarized Calabi-Yau type manifolds with smooth moduli spaces.

In this subsection, we require that the moduli space M of Calabi-Yau type manifolds
are smooth, and there are many nontrivial examples satisfying this requirement. As in
the special cases of simply connected Calabi-Yau manifolds, one may see from Popp [14],
Viehweg [22] and Szendroi [19] that the moduli spaces M of Calabi-Yau manifolds are
smooth.



38 XIAOJING CHEN, FENG GUAN, AND KEFENG LIU

REFERENCES

[1] A. Andreotti, On a theorem of Torelli. Amer. J. Math., Vol. 80, No. 4 (1958), pp. 801-828.
[2] L. Auslander, and L. Markus, Holonomy of flat affinely connected manifolds. Ann. Math., Second
Series, Vol. 62, No. 1 (1955), pp. 139-151.
[3] S. Barannikov and M. Kontsevich Frobenius manifolds and formality of Lie algebras of polyvector
fields. Internat. Math. Res. Notices, Vol. 1998, No. 4 (1998), pp. 201-215.
[4] S. Ferrara and J. Louis, Flat holomorphic connections and Picard-Fuchs identities from N = 2
supergravity. Phys. Lett. B, Vol 278, No 3 (1992), pp. 240-245.
[5] P. Griffiths, Periods of integrals on algebraic manifolds I, IT Amer. J. Math. 90(1968), pp. 568-626,
pp. 805-865.
[6] P. Griffiths, Periods of integrals on algebraic manifolds III Publ. Math. IHES. 38(1970), pp. 228-296.
[7] P. Griffiths, Topics in transcendental algebraic geometry, Volume 106 of Annals of Mathematics
Studies, Princeton University Press, Princeton, NJ, (1984).
[8] F. Guan, K. Liu and A. Todorov, A global Torelli Theorem for Calabi-Yau manifolds,
arXiv:1112.1163v2.
[9] A. Tliev and L. Manivel, Fano manifolds of Calabi-Yau type, preprint 2011
[10] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Iwanami Shoten Publishers and
Princeton University Press, (1987).
[11] S. Kobayashi and K. Nomizu, Foundation of differential geometry I, Wiley-Interscience, New York-
London, (1963).
[12] K. Kodaira and J. Morrow, Complex Manifolds, AMS Chelsea Publishing, Porvindence, RI, (2006),
Reprint of the 1971 edition with errata.
[13] Y. Matsushima, Affine structure on complex manifold. Osaka J. Math., Vol 5, No. 2 (1986), pp. 215
222.
[14] H. Popp, Moduli Theory and Classification Theory of Algebraic Varieties, Volume 620 of Lecture
Notes in Mathemathics, Springer-Verlag, Berlin-New York, (1977).
[15] L. I. Piatetski-Shapiro and I. R. Shafarevich, A Torelli theorem for algebraic surfaces of type K3.
USSR Izv. Ser. Math., Vol 5 (1971), pp. 547-588.
[16] W. Schmid, Variation of Hodge structure: the singularities of the period mapping. Invent. Math.,
Vol. 22, No.3—4 (1973), pp. 211-319.
[17] W. Schmid, Letter to the authors. 2009.
[18] Y. Shimizu and K. Ueno, Advances in moduli theory, Volume 206 of Translation of Mathematical
Monographs, American Mathematics Society, Providence, Rhode Island, (2002).
[19] B. Szendréi, Some finiteness results for Calabi-Yau threefolds. Journal of the London Mathematical
Society, Second series, Vol. 60, No. 3 (1999), pp. 689-699.
[20] R. Torelli, Sulle Varieta’ di Jacobi I, II. Rendiconti R. Accad. ei Lincei, Vol. 22, No.2 (1913), pp. 98—
103, 437-441.
[21] M. Verbitsky, A global Torelli theorem for hyperkéhler Manifolds. Preprint |arXiv:0908.4121 v6.
[22] E. Viehweg, Quasi-projective moduli for polarized manifolds, Volume 30 of Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin,
(1995).
[23] C. Voisin, Hodge theory and complex algebraic geometry I, Cambridge Universigy Press, New York,
(2002).
[24] C. Voisin, Hodge theory and complex algebraic geometry II, Cambridge Universigy Press, New York,
(2002).
[25] A. Vitter, Affine structures on compact complex manifolds. Invent. Math., Vol. 17 (1972), pp. 231—
244.
[26] A. Weil, Sur le théoréme de Torelli. Séminaire N.Bourbaki, Vol. 4 (1995), Exp. No. 151, pp. 207-211.
[27] A. Weil, Final Report on Contract 18(603)-57, Scientific Works. Collected Papers, vol. II (1958),
pp- 390-395, 545-547.


http://arxiv.org/abs/1112.1163
http://arxiv.org/abs/0908.4121

39

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT LOS ANGELES, LOS ANGELES,
CA 90095-1555, USA
E-mail address: xjchen@math.ucla.edu

DEPARTMENT OF MATHEMATICS,UNIVERSITY OF CALIFORNIA AT LOS ANGELES, LOS ANGELES,
CA 90095-1555, USA

E-mail address: fguan@math.ucla.edu

CENTER OF MATHEMATICAL SCIENCES, ZHEJIANG UNIVERSITY, HANGZHOU, ZHEJIANG 310027,
CHINA; DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT LOS ANGELES, LOS ANGE-
LES, CA 90095-1555, USA

E-mail address: 1iu@math.ucla.edu, liu@cms.zju.edu.cn



	1. Introduction
	2. The period map on the Teichmüller space
	2.1. Classifying space of polarized Hodge structures
	2.2. Calabi-Yau type manifolds
	2.3. Moduli space and Teichmüller space
	2.4. The period map on the Teichmüller space

	3. Holomorphic affine structure on the Teichmüller space
	3.1. Affine manifolds and affine maps
	3.2. Local holomorphic coordinates on the Teichmüller space
	3.3. Holomorphic affine structure on the Teichmüller space T

	4. Global Torelli theorem on the Teichmüller space
	4.1. The holomorphic affine embedding from T into  CN .5-.5.5-.5.5-.5.5-.5Hs-1,n-s+1p
	4.2. Proof of the global Torelli theorem

	5. Applications
	5.1. Unipotent orbit and the Hodge completion of the Teichmüller space
	5.2. The period map on the moduli space

	References

