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Abstract

In this paper, we prove the light-likeness of bordlines of smooth extremal surfaces of mixed

type in general physical space-times, and for the case of the (1 + 2)-dimensional Minkowski space

R1+2, we improve a Gu’s theorem on the light-likeness of bordlines of extremal surfaces in R1+2.

As a consequence, we show that a curve moving in a physical space-time keeps its like-property

and the bordline only exists when its world sheet at the initial time has light-like points. This

implies that any extremal surface of mixed type is generated by an “initial curve of mixed type”.
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1 Introduction

The theory of minimal surfaces in the n-dimensional Euclidean space and Riemannian manifolds has

its roots in the calculus of variations developed by Euler and Lagrange in the 18-th century which was

promoted by the famous Plateau problem. There are plenty of deep and beautiful results obtained by

many mathematicians. This theory plays an important role in general relativity, the theory of black

hole, particle physics, fluid mechanics and so on. In a space-time, since the metric is not positive

definite, a surface can be space-like, time-like, light-like or of mixed type. A surface is called an

extremal surface of mixed type (ESMT) if it is a connected C2 surface with vanishing mean curvature

and containing a space-like part and a time-like part simultaneously. To the authors’ knowledge, only a

few results on ESMT has been known. By the classical Legendre transformation, Gu constructs many

complete extremal surfaces of mixed type with explicit expressions by using representation formulas

of the space-like extremal surfaces and time-like extremal surfaces and gives a method to construct

the ESMT globally (see [2, 3, 6]). In [5], Gu shows that the space-like parts and the time-like parts

of the ESMT are separated by a null curve and that the solution is analytic in a neighborhood of this

curve and not only in the part where the equations are elliptic. Moreover, Gu [6] proves that there

exist complete extremal surfaces of mixed type which have a given number of time-like spans and a

given number of annular ends. In [4], Gu considers a special case of boundary problems for extremal

surfaces of mixed type in R1+2 such that these problems could be considered as the counterparts of the

famous Plateau problem for minimal surfaces in the Euclidean space R3 and shows that there exists a

mixed-type extremal surface (with some modification) which passes through a given null curve. To do

so, the author reduces the boundary problem to a special case of the Riemann-Hilbert problems for

holomorphic functions, and then by the corresponding classical result he proves the existence of the

solution of the boundary problem. Here we particularly point out that, Gu [6] shows that an ESMT

R1+2 without flat point on the bordline is analytic around the bordline and the bordline is an analytic

null curve.

In this paper, we investigate the geometric properties of bordlines of smooth ESMT in general

space-times. The paper is organized as follows. In Section 2, we extend Gu’s theorem in [6] for

ESMT in R1+2 to general flat space-time, i.e., the Minkowski space-time R1+(1+n). However, in our

theorem, we do not require Gu’s assumption that there is no flat point on the bordline. In Section 3,

we introduce a new system which governs the ESMT in the general curved space-time L and extend

our above result to the case L . In order to illustrate our result, Section 4 is devoted to an intuitive

example. In Appendix, we improve Gu’s result in R1+2 on the light-likeness of bordlines without Gu’s

assumption.
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2 Flat space-time —Minkowski space R1+(1+n)

Let (t, x, y) = (t, x, y1, ..., yn) be points in the (1 + (1 + n))-dimensional Minkowski space R1+(1+n)

with the Lorentz metric

ds2 = −dt2 + dx2 + dy2. (2.1)

For simplicity, we consider the equation for the extremal surface which takes the following form

y = ϕ(t, x). (2.2)

Let

u = ϕx, v = ϕt. (2.3)

Define

∆(u, v) = 1 + |u|2 − |v|2 − |v|2|u|2 + ⟨v, u⟩2. (2.4)

Due to the vanishing mean curvature, the equation of ESMT in R1+(1+n) reads

(1 + |u|2)O − 2⟨u, v⟩P − (1 − |v|2)Q = 0, (2.5)

where
O = ∆(u, v)vt + (1 + |u|2)⟨v, vt⟩v − ⟨u, v⟩⟨u, vt⟩v − ⟨u, v⟩⟨v, vt⟩u − (1 − |v|2)⟨u, vt⟩u,

P = ∆(u, v)vx + (1 + |u|2)⟨v, vx⟩v − ⟨u, v⟩⟨u, vx⟩v − ⟨u, v⟩⟨v, vx⟩u − (1 − |v|2)⟨u, vx⟩u,

Q = ∆(u, v)ux + (1 + |u|2)⟨v, ux⟩v − ⟨u, v⟩⟨u, ux⟩v − ⟨u, v⟩⟨v, ux⟩u − (1 − |v|2)⟨u, ux⟩u.

(2.6)

Assume that Σ is an extremal surface of mixed type in R1+(1+n). The bordline ℓ of Σ is a curve

on Σ on which it holds that

∆(u, v) = 1 + |u|2 − |v|2 − |v|2|u|2 + ⟨v, u⟩2 = 0. (2.7)

The main result in this section is the following theorem.

Theorem 2.1 Let Σ be a connected C2 extremal surface of mixed type in R1+(1+n). If ℓ is a bordline

of Σ, then ℓ is light-like.

Proof. Suppose that ℓ can be expressed by (t, x(t), y(t, x(t))). Since ℓ is a bordline of Σ, then on ℓ,

the conditions (2.5) and (2.7) are satisfied. Thus, it suffices to show that the length of tangent vector

of ℓ is zero everywhere. Equivalently, it suffices to prove that

1 = ẋ2 + ẏ2, (2.8)

where ẏ = dy(t,x(t))
dt .
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In fact, noting (2.3), we obtain from (2.8) that

ẋ2 + |v|2 + |u|2ẋ2 + 2⟨u, v⟩ẋ − 1 = 0. (2.9)

On the other hand, differentiating (2.7) with respect to t leads to

⟨u, ϕtx⟩ + ⟨u, ϕxx⟩ẋ − ⟨v, ϕtt⟩ − ⟨v, ϕtx⟩ẋ − |v|2⟨u, ϕtx⟩ − |v|2⟨u, ϕxx⟩ẋ − |u|2⟨v, ϕtt⟩−

|u|2⟨v, ϕtx⟩ẋ + ⟨u.v⟩(⟨v, ϕtx⟩ + ⟨v, ϕxx⟩ẋ + ⟨u, ϕtt⟩ + ⟨u, ϕtx⟩ẋ) = 0.

(2.10)

For the sake of simplicity, we introduce the following notations k = 1 + |u|2, l = ⟨u, v⟩, m = 1 − |v|2, a = ⟨v, ϕtt⟩, b = ⟨u, ϕtt⟩,

c = ⟨v, ϕtx⟩, d = ⟨u, ϕtx⟩, e = ⟨v, ϕxx⟩, f = ⟨u, ϕxx⟩.
(2.11)

Then (2.5) becomes

F ,k(kav − lbv − lau − mbu) − 2l(kcv − ldv − lcu − mdu)−

m(kev − lfv − leu − mfu) = 0.

(2.12)

It follows from (2.7) that

∆ = km + l2 = 0. (2.13)

By (2.10), we obtain

ẋ =
md − ka + lc + lb

−mf + kc − le − ld
. (2.14)

Substituting (2.14) into (2.9) leads to

ẋ2+|v|2 + |u|2ẋ2 + 2⟨u, v⟩ẋ − 1

=k

(
md − ka + lc + lb

−mf + kc − le − ld

)2

+ 2l

(
md − ka + lc + lb

−mf + kc − le − ld

)
− m

=
1

(−mf + kc − le − ld)2
[k(md − ka + lc + lb)2 + 2l(md − ka + lc + lb)

(−mf + kc − le − ld) − m(−mf + kc − le − ld)2].

(2.15)

A direct calculation gives

k(md − ka + lc + lb)2 + 2l(md − ka + lc + lb)(−mf + kc − le − ld) − m(−mf + kc − le − ld)2

=k3a2 + kl2b2 + (3kl2 − mk2)c2 + (km2 − 3ml2)d2 − ml2e2 − m3f2 − 2k2lab − 4k2lac+

(2kl2 − 2mk2)ad + 2kl2ae + 2mklaf + 4kl2bc + (2mkl − 2l3)bd − 2l3be − 2ml2bf+

(6mkl − 2l3)cd + (2kml − 2l3)ce + (2km2 − 2ml2)cf − 4ml2de − 4m2ldf − 2m2lef.

(2.16)
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On the other hand, noting (2.12) we have

0 = F 2 =k2(kv − lu)2a2 + k2(lv + mu)2b2 + 4l2(−kv + lu)2c2 + 4l2(lv + mu)2d2+

m2(kv − lu)2e2 + m2(lv + mu)2f2 − 2k2(kv − lu)(lv + mu)ab+

4kl(kv − lu)(−kv + lu)ac + 4kl(kv − lu)(lv + mu)ad − 2mk(kv − lu)2ae+

2mk(kv − lu)(lv + mu)af − 4kl(lv + mu)(−kv + lu)bc − 4kl(lv + mu)2bd+

2mk(lv + mu)(kv − lu)be − 2km(lv + mu)2bf + 8l2(−kv + lu)(lv + mu)cd+

4ml(−kv + lu)2ce + 4lm(−kv + lu)(lv + mu)cf + 4ml(lv + mu)(−kv + lu)de+

4ml(lv + mu)2df + 2m2(−kv + lu)(lv + mu)ef.

(2.17)

Thus, using the condition (2.13), we can easily check that the coefficients of the right-side of (2.16) is

proportional to the coefficients of the right-side of (2.17). Noting (2.12), i.e., F = 0, we observe that

the left-side of (2.16) equals to zero. This implies that the bordline is light-like. Thus, Theorem 2.1

is proved. �

For a light-like curve C in R1+(1+n), without loss of generality, we assume that it can be param-

eterized as C(x) = (t(x), x, y(x)), where y = (y1, ..., yn). According to the definition of light-likeness,

we have

−
(

dt

dx

)2

+ 1 +
(

dy

dx

)2

= 0, (2.18)

that is, (
dt

dx

)2

= 1 +
(

dy

dx

)2

≥ 1. (2.19)

This implies that
dt

dx
≥ 1 or

dt

dx
≤ −1,

namely,

−1 ≤ dx

dt
≤ 1. (2.20)

Hence we can extend C toward the plane {t = 0} and C
∩
{t = 0} ̸= ∅.

From the above discussion, it is obvious that the bordline of the ESMT, which is generated by a

curve moving in the Minkowski space-time R1+(1+n) goes across the plane {t = 0}.

Remark 2.1 Theorem 2.1 implies that the bordline of ESMT in the 1+(1+n)-dimensional Minkowski

space-time passes through the plane {t = 0}. It means that a bordline exists only in the case when the

initial curve is “of mixed type”.

Theorem 2.2 A relativistic string in the Minkowski space-time R1+(1+n) will not meet a light-like

point when it moves physically in R1+(1+n), provided that its world sheet is regular.

Remark 2.2 By Theorem 2.1, we observe that arbitrary two bordlines will not meet together.
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3 General curved space-time

This section is devoted to the discussion on bordlines of extremal surfaces of mixed type in a enveloping

space-time (N , g̃), which is described by a given general Lorentzian manifold. We shall extend

Theorem 2.1 to the case of arbitrary Lorentz manifold. Denoting a two-dimensional extremal sub-

manifold by M , we may choose the local coordinates (ζ0, ζ1) in M . For simplicity, we also denote

ζ0 = t, ζ1 = θ. Let a position vector in the space-time (N , g̃) be

X(t, θ) = (x0(t, θ), x1(t, θ), · · · , xn(t, θ)). (3.1)

Let

xA
µ =

∂xA

∂ζµ
and xA

µν =
∂2xA

∂ζµ∂ζν
(A = 0, 1, · · · , n; µ, ν = 0, 1), (3.2)

then the induced metric of the sub-manifold M can be written as g = (gµν), where

gµν = g̃ABxA
µ xB

ν (A,B = 0, 1, · · · , n; µ, ν = 0, 1). (3.3)

By the vanishing mean curvature, we may define the equations for extremal surface of mixed type in

the general curved space-times in the following way (see He and Kong [8])

g11x
C
tt − 2g01x

C
tθ + g00x

C
θθ + g11Γ̃C

ABxA
t xB

t − 2g01Γ̃C
ABxA

t xB
θ + g00Γ̃C

ABxA
θ xB

θ = 0, (3.4)

where Γ̃C
AB stands for the connections of the metric g̃.

Remark 3.1 This definition is given based on the following two reasons:

(I) In the flat Minkowski space-time, the equation (3.4) is reduced to the equation (2.5).

(II) We recall that the basic equations governing the motion of a p-dimensional extended object in

(N , g̃) read

gµν
(
xC

µν + Γ̃C
ABxA

µ xB
ν − Γρ

µνxC
ρ

)
= 0 (C = 0, 1, · · · , n), (3.5)

where g−1 , (gµν) is the inverse of the metric g, Γ̃C
AB and Γρ

µν stand for the connections of the metric

g̃ and the induced metric g, respectively.

Based on Aurilia and Christodoulou’s work [1], He and Huang [7] proved that any solution to (3.4)

which describe the motion of a relativistic string and membrane also satisfies (3.5), and if the sub-

manifold M is time-like or space-like, (3.5) can be reduced to (3.4) by wave coordinate or harmonic

coordinate, respectively. Moreover, the solutions to (3.4) and (3.5) with the same Cauchy data are

diffeomorphic.

The bordline ℓ is a curve on M along which

∆ , detg = g00g11 − g2
01 = 0. (3.6)
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Theorem 3.1 Let M be a connected C2 extremal surface of mixed type in N . If ℓ is a bordline of

M , then it is light-like.

Proof. We parameterize the bordline as

C(t) = (x0(t, θ(t)), ..., xn(t, θ(t))). (3.7)

Differentiating (3.7) gives

Ċ(t) = (x0
t + x0

θ θ̇, ..., x
n
t + xn

θ θ̇). (3.8)

In order to prove the theorem, it suffices to show that C is a null curve, i.e.,

g̃ij(xi
t + xi

θ θ̇)(x
j
t + xj

θ θ̇) = 0. (3.9)

By previous notations, we rewrite (3.9) as

H = g̃ijx
i
0x

j
0 + 2g̃ijx

i
0x

j
1θ̇ + g̃ijx

i
1x

j
1θ̇

2 = 0, (3.10)

that is,

H = g00 + 2g01θ̇ + g11θ̇
2 = 0. (3.11)

On the one hand, differentiating (3.6) gives the expression of θ̇ as follows

∂

∂t
detg =

∂

∂t
[g̃AB g̃CD(xA

0 xB
0 xC

1 xD
1 − xA

0 xB
1 xC

0 xD
1 )]

=
∂g̃AB

∂E
(xE

0 + xE
1 θ̇)g̃CDxA

0 xB
0 xC

1 xD
1 + g̃AB

∂g̃CD

∂E
(xE

0 + xE
1 θ̇)xA

0 xB
0 xC

1 xD
1 +

g̃AB g̃CD(xA
00 + xA

01θ̇)x
B
0 xC

1 xD
1 + g̃AB g̃CDxA

0 (xB
00 + xB

01θ̇)x
C
1 xD

1 +

g̃AB g̃CDxA
0 xB

0 (xC
01 + xC

11θ̇)x
D
1 + g̃AB g̃CDxA

0 xB
0 xC

1 (xD
01 + xD

11θ̇)−
∂g̃AB

∂E
(xE

0 + xE
1 θ̇)g̃CDxA

0 xB
1 xC

0 xD
1 − g̃AB

∂g̃CD

∂E
(xE

0 + xE
1 θ̇)xA

0 xB
1 xC

0 xD
1 −

g̃AB g̃CD(xA
00 + xA

01θ̇)x
B
1 xC

0 xD
1 − g̃AB g̃CDxA

0 (xB
01 + xB

11θ̇)x
C
0 xD

1 −

g̃AB g̃CDxA
0 xB

1 (xC
00 + xC

01θ̇)x
D
1 − g̃AB g̃CDxA

0 xB
1 xC

0 (xD
01 + xD

11θ̇)

=0.

(3.12)

On the other hand, after a series of rotations and symmetry of index, we get

I1 + θ̇I2 = 0, (3.13)

where

I1 =
∂g̃AB

∂E
g̃CDRACRBDxE

0 + 2g̃AB g̃CD(xA
01x

C
0 − xA

00x
C
1 )RBD (3.14)

and

I2 =
∂g̃AB

∂E
g̃CDRACRBDxE

1 + 2g̃AB g̃CD(xA
11x

C
0 − xA

01x
C
1 )RBD, (3.15)
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in which

Rab = xa
1xb

0 − xa
0xb

1. (3.16)

Substituting (3.13), (3.14) and (3.15) into (3.11) leads to

Ĥ = g11I
2
1 − 2g01I1I2 + g00I

2
2 = 0. (3.17)

A direct calculation gives

Ĥ =g11I
2
1 − 2g01I1I2 + g00I

2
2

=
∂g̃AB

xE
g̃CD

∂g̃FG

∂xM
g̃KLRACRBDRFKRGL(g11x

E
0 xM

0 − 2g01x
E
0 xM

1 + g00x
E
1 xM

1 )

+ 2g̃AB g̃CD
∂g̃FG

∂xM
g̃KLRBDRFKRGL[(g11x

C
0 xM

0 − 2g01x
C
0 xM

1 − g00x
C
1 xM

1 )xA
01+

(2g01x
C
1 xM

1 − g11x
C
1 xM

0 )xA
00 + g00x

C
0 xM

1 xA
11]

+ 2
∂g̃AB

∂xE
g̃CD g̃FGg̃KLRACRBDRGL[(g11x

E
0 xK

0 + 2g01x
E
0 xK

1 − g00x
E
1 xK

1 )xF
01+

(g00x
E
1 xK

0 − 2g01x
E
0 xK

0 )xF
11 − g11x

E
0 xK

1 xF
00]

+ 4g̃AB g̃CD g̃FGg̃KLRBDRGL[xA
01x

F
01(g11x

C
0 xK

0 + 2g01x
C
0 xK

1 + g00x
C
1 xK

1 )+

xA
00x

F
01(−g11x

C
1 xK

0 − 2g01x
C
1 xK

1 ) + xA
01x

F
00(−g11x

C
0 xK

1 )+

xA
00x

F
00(g11x

C
1 xK

1 ) + xA
01x

F
11(−2g01x

C
0 xK

0 − g00x
C
1 xK

0 )+

xA
00x

F
11(2g01x

C
1 xK

0 ) + xA
11x

F
11(g00x

C
0 xK

0 ) + xA
11x

F
01(−g00x

C
0 xK

1 )].

(3.18)

Let

f i = g11x
i
00 − 2g01x

i
01 + g00x

i
11 + g11Γ̃i

ABxA
0 xB

0 − 2g01Γ̃i
ABxA

0 xB
1 + g00Γ̃i

ABxA
1 xB

1

= (g11x
i
00 − 2g01x

i
01 + g00x

i
11) + Γ̃i

AB(g11x
A
0 xB

0 − 2g01x
A
0 xB

1 + g00x
A
1 xB

1 ).
(3.19)

Then we have

4g̃iE g̃jF (g00x
E
1 xF

1 − 2g01x
E
0 xF

1 + g11x
E
0 xF

0 )f if j

=4g̃iE g̃jF Γ̃i
ABΓ̃j

CD(g11x
E
0 xF

0 − 2g01x
E
0 xF

1 + g00x
E
1 xF

1 )

(g11x
A
0 xB

0 − 2g01x
A
0 xB

1 + g00x
A
1 xB

1 )(g11x
C
0 xD

0 − 2g01x
C
0 xD

1 + g00x
C
1 xD

1 )

+ 8g̃iE g̃jF Γ̃i
AB(g00x

E
1 xF

1 − 2g01x
E
0 xF

1 + g11x
E
0 xF

0 )

(g11x
A
0 xB

0 − 2g01x
A
0 xB

1 + g00x
A
1 xB

1 )(g11x
j
00 − 2g01x

j
01 + g00x

j
11)

+ 4g̃iE g̃jF (g00x
E
1 xF

1 − 2g01x
E
0 xF

1 + g11x
E
0 xF

0 )

(g2
11x

i
00x

j
00 − 4g01g11x

i
01x

j
00 + 2g00g11x

i
11x

j
00 + 4g2

01x
i
01x

j
01 − 4g00g01x

i
11x

j
01 + g2

00x
i
11x

j
11).

(3.20)

By the condition (3.6), we have

Ĥ = 4g̃iE g̃jF (g00x
E
1 xF

1 − 2g01x
E
0 xF

1 + g11x
E
0 xF

0 )f if j . (3.21)

Noting (3.4), we observe f i ≡ 0,∀i = 0, 1, 2, 3, 4. Thus, we get Ĥ = 0. This proves the theorem. �
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4 An example

In this section, we use an example constructed by Lü [9], which is essentially due to Gu [3], to illustrate

a visual sight of how a bordline act on the ESMT.

The example by [9] is as follows:

Part I: Time-like part

The time-like part is given by
z = 1

2 (λ2 + µ2),

x = λsinλ + cosλ + µsinµ + cosµ,

y = −λcosλ + sinλ − µcosµ + sinµ.

(4.1)

See Figure 1.

Figure 1: The time-like surface in (x, y, z)-plane

Part II: Light-like part, i.e., bordline

The bordline is given by 
z = θ2,

x = 2θsinθ + 2cosθ,

y = −2θcosθ + 2sinθ.

(4.2)

See Figure 2.

Part III: Space-like part

The space-like part is given by
z = θ2 − σ2,

x = 2θsinθcosh2σ + 2cosθcoshσ − 2σcosθsinhσ,

y = −2θcosθcoshσ − 2σsinθsinhσ + 2sinθcoshσ.

(4.3)

See Figure 3.
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Figure 2: The bordline in (x, y, z)-plane

Figure 3: The space-like surface in (x, y, z)-plane
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5 Appendix

In this section, we give a simple proof of Gu’s theorem in the Minkowski space-time R1+2, in our proof

we do not require Gu’s assumption that there is no flat point on the borderline.

Let (x, y, z) be points in R1+2, the corresponding Lorentz metric reads

ds2 = −dz2 + dx2 + dy2. (5.1)

For simplicity, we consider the graph case: z = f(x, y), denote it by Σ. Due to the vanishing mean

curvature of extremal surface, the equation for ESMT reads

(1 − p2)t + 2pqs + (1 − q2)r = 0, (5.2)

where

p = zx, q = zy, r = zxx, s = zxy, t = zyy. (5.3)

The bordline ℓ of Σ is a curve on Σ on which it satisfies

p2 + q2 = 1. (5.4)

The space-like regions and time-like regions are separated by bordlines.

The main result in this section is the following theorem.

Theorem 5.1 Let Σ be a connected C2 extremal surface of mixed type in R1+2 which is governed by

(5.2), with t ∈ [0,∞). If ℓ ∈ Σ is a bordline, then it is light-like.

Proof. We suppose ℓ is given by (x, y(x), z(x, y(x))). Because ℓ is a bordline, then the conditions

(5.2) and (5.4) holds on ℓ ∈ Σ. Thus, it suffices to show that the length of the tangent vector of ℓ is

zero everywhere. That is, it suffices to prove

−
(

dz(x, y(x))
dx

)2

+ 1 + (ẏ)2 = 0, (5.5)

by (5.3),

−(p + qẏ)2 + 1 + ẏ2 = 0. (5.6)

Differentiating (5.4) along ℓ gives

p(r + sẏ) + q(s + tẏ) = 0, (5.7)

equivalently,

ẏ =
−qs − pr

ps + qt
. (5.8)

Noting (5.2) and (5.4) lead to

s =
−q2t − p2r

2pq
. (5.9)
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Substituting (5.7) and (5.9) into (5.6) yields

−(p + qẏ)2 + 1 + ẏ2

=
1

(ps + qt)2

[
−

(
− p

2q
r +

q

2p
t

)2

+
(
−p2

2q
r +

q

2
t

)2

+
(

p

2
r − q2

2p
t

)2
]

=
1

(ps + qt)2

[(
p2

4q2
− p2

4
− p4

4q2

)
r2 +

(
−1

2
+

q2

2
+

p2

2

)
rt +

(
q2

4p2
− q4

4p2
− q2

4

)
t2

]
= 0.

(5.10)

The proof is completed.

Similar argument to the extremal surface of mixed type taking the form y = φ(t, x), given by the

trajectory of a moving curve in the Minkowski space-time R1+2, we obtain

ℓ
∩

{t = 0} ≠ ∅.

Remark 5.1 Theorem 5.1 implies that the bordline of ESMT in the (1+2)-dimensional Minkowski

space-time passes through the plane {t = 0}. It means that a bordline exists only in the case when

“the initial curve is of mixed type”.

Theorem 5.2 A relativistic string in the Minkowski space-time R1+2 will not meet a light-like point

when it moves physically in R1+2, provided that its world sheet is regular.

Remark 5.2 The conclusion of Remark 2.2 still keeps true in the present situation.
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