The Infinity of Complete Riemannian
Manifolds under Yamabe Flow

Fei Yang*and Jingfang Shen'

Abstract

We study complete locally conformally flat Riemannian manifolds
M"™.We prove that the flatness of the infinity geometry can be pre-
served under the Yamabe flow. As an immediate application, the
asymptotic volume ratio of the manifold is a constant.

Key words: Yamabe flow, locally conformally flat, asymptotic vol-
ume ratio.

1 Introduction

The geometric flow has been proved to be an effective tool in the study
of the geometry and topology of Riemannian manifolds. For a complete Rie-
mannian manifold, RS.Hamilton[1] has defined several geometric invariants
such as the aperture

, diamS
a = limsup ————
s—oo 28
where S is the sphere of radius s around an origin, the set of points whose
distancd to the origin is s,
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the asymptotic volume ratio
L Bs P
v = lim —( (P))
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where V(B;(P)) is the volume of a ball of radius s around an origin,

and the asymptotic scalar curvature ratio

A = limsup Rs>.
S§— 00

Hamilton has proved that the above invariants are constants for complete
solutions to the Ricci Flow under some conditions. A natural question is,
how about the conclusions of the manifold under other geometric flows. Here
we consider the complete solution of Yamabe Flow that g(t) evolves under
the flow equation
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Let M be a smooth complete locally conformally flat Riemannian n-
manifold, we will represent the curvature tensors in an orthonormal frame
and evolve the frame so that it remains orthonormal. Let V be a vec-
tor field over M isomorphic to the tangent bundle T'M. The frame F =
{F,--- ,Fy,--- ,F,} of V is given by F, = F'-Z locally with the iso-

—Ryg (1.1)

) a dz? :
morphism F!. At initial time ¢ = 0, we can choose F! such that F' =
{F\,---,F,,-+-,F,} is an orthonormal frame. Then evolve F! by the equa-
tion 9 )
—F!= —_RF"
o ¢ 2 ¢
Then the frame F = {Fy,--- , F,,---, F,} will remain orthonormal for all

times since the pull back metric on V'
hay = 95 FLF}

remains constant in time.
From now on, we will use indices a,b,--- on a tensor to denote it’s com-
ponents in the evolving orthonormal frame. In the frame we have:

Raped = FIF)FFFLR i

a aaF‘bZ 7 i 1k

w=F D + T FoFy
0

D,V = —Ve4Teph
8ZEZ + ib

DV = FyD;V*
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where I'§, is the metric connection of V' with the metric hq, and (F)') =
(F))~1. By direct computation, D;Fy = 0 and D;h,, = 0.
Now we state our main theorem.

Theorem 1.1 Suppose we have a solution to the Yamabe Flow on a complete
locally conformally flat n-manifold with bounded curvature, If |Rm| — 0 as
s — 0o at initial time t = 0, then it will remains true for t > 0.

Theorem 1.2 Under the assumption of Theorem 1.1, if the manifold has
nonnegative Ricci curvature, then the asymptotic volume ratio of the manifold
1S a constant.

2 Preliminary

As the metric changes under the Yamabe Flow, the distance on the man-
ifold will change. At first, e give the bound on the changing distance.

Lemma 2.1 If (M",g(t)) is a complete solution to the Yamabe Flow and
|Rm(z,t)| < K for a nonnegative constant K, then we have

o~ (n=DK(t1—to) < d@:é’ttl(ﬂ?o,xl) < (n—DK(t1—to)
= disty, (o, x1) —
for ty >ty and any xg, 1 € M.
Proof: Since
|Rm(z,t)] < K

on M x [0,T], we get
R(z.0) < n(n — DK

on M x [0,T]. Thus
0
|agz‘j($,t)| < |Rgij(x,t)] <n(n—1)Kgi(z,t)
That is,

= 1)K giy(t) < 2

agij(x, t) < n(n—1)Kg;(x,t)



Thus we get
e R g (2, 0) < gijla,t) < e VR (2, 0)

and
e_(”_l)ths(Q) < dsf < e(”_l)ths(z)

Now we have

—(n—1)Kt

e Yo(xo, 1) < (o, 1) < e(nfl)Kt’Vo(l'o?%l)

for any zg,2z; € M, where 7;(xo,z1) represents the length of the minimal
geodesic that join xy and x,. [

Lemma 2.2 [4] If (M™,g) is locally conformally flat, then under Yamabe
Flow,

(]) atRijkl = (n_1)ARijkl_RRz’jkl+—(n,12)2 (Bikgjl+legik_Bilgjk_Bjkgil)7
(2) 0:Rij = (n — 1)ARy; + 15 By,
(3) R = (n—1)AR+ R?

where By; = (n — 1) |Ric|” g;j + nRR;; — n(n — )R}, — R?g;;.

In the proof of the main theorem, we need a global derivative estimate
for the curvature.

Lemma 2.3 If (M™,g(t)) is a complete locally conformally flat solution to
the Yamabe Flow and
|[Rm(z,t)] < K

for a nonnegative constant K, then the covariant derivative of the curvature
15 bounded by
|IDRm| < CK/Vt

and the k' covariant derivative of the curvature is bounded by

|D¥Rm| < CLK/t2.



Proof:From Lemma?2.1.2 we have

%Rm =(n—1)ARm+ Rm x Rm.

where the symbol A x B denotes any tensor product of two tensors A and B
when we do not need the precise expression.
It follows that

%(DRm) = (n—1)A(DRm)+ Rm x (DRm).

and
9 2 2 2 3
§|Rm| < (n—1)A|Rm|* —2(n — 1)|DRm/|* + C|Rm)|

0

E|DRm|2 < (n—1)A|DRm|* —2(n — 1)|D*Rm|* + C|Rm| - |DRm/|?
for some constant C' depending only on the dimension n.

Then we can follow the proof in Shi’s derivative estimates of Ricci flow,
choose a test function with slight modification. [

3 Proof of the main theorem

Proof of Theorem 1.1: Suppose |Rm| < K for some constant K. Since
|[Rm| — 0 as s — oo, for every ¢ > 0 we can find ¢ < oo such that |[Rm| < e
for s > 0.

The curvature tensor evolves by a formula

DiRm = (n — 1)ARm + Rm x Rm
which gives a formula
%|Rm|2 = (n — 1)A|Rm|* — 2|DRm|* + Rm * Rm x Rm
and an estimate
%|Rm|2 < (n—1)A|Rm|* + Cy|Rm|?

for some constant C; depending only on the dimension.



Then choose a smooth function ¢ at ¢t = 0 such that
o=K?fs<o
o =c%ifs > 20
-0 < Dp <0
|D%¢| > p>0

for some constant § > 0 and constant p > 9.
Now define ¢ for ¢ > 0 by solving the scalar heat equation

dp
a5t (n—1)A¢

in the Laplacian of the metric evolving by the Yamabe Flow. By the maxi-
mum principle we still have |p| < &% everywhere for ¢ > 0.
The derivative D, evolves by the formula

DDy = Dy(F'D;p)

1 . .
= SREDip+ FiDDig
1 : .
= §RF;DZ-g0 +(n—1)F,D;Ap
1 : .
= §RFéDi<p +(n—1)F,D;(¢g"" Dy, D)

1 . .
= §RF;DZ-90 + (n = D F g™ (DyD; D0 4 Rimnig™ V)
1 .
= (n—1)ADyp + 51D — (n — 1)F'Ryg" V)
hence
5,
alDwIQ < (n—1)ADg|* = 2(n — 1)|D*¢]? + C1 K| Dyl

for some constant C'; > 0 depending only on the dimension.
Let us put
F =t|Dpl* + |o*

and compute

OF L9 L9,
5 | Dy +t'§|DS@| +§|90|
< (IDe? + t[(n — 1)AIDg|* + C1K|Dpl?] 4 (n — 1) A|Dy|?
—2(n — 1)| Dy)|?



and
AF = tA|Dp> + A|p|?

thus

F
88_75 <(n—1)AF —[]2(n—1)—1—tC,K]|Dgl|?
Then if t < QC”K, we have
oF
— < (n—-1)AF
g = =1

and the maximum of F' decreases.
At initial time ¢t = 0, F = |p|*> = &%, hence F' < ¢? for t > 0. Thus
Dol < & - for 0 <t < &P
Then We consider the second derivative D,Dyp.

DiD,Dyp = Dt(FéDiDb@)
1 . .
= —RF,D;Dyp+ F,D;D,Dyp

2
1 . . 1 ) .

= SREFDDjp + FiDi(SRE D + F/ D Djy)
1 o 1. .

= iRF;FngDJ(,O + §F;Fg (DZR . DJQD + RDlDJ(p)
—f-DanA(p

AD.Dyp = ¢"D;D;D,Dyp
= ¢YF"F}'D;D;D,, Dy
g”anFI;nDz(DmDJDnSO ijnDlSO)
G EME DDy DDy — 7 EEP Di( R, Digp)
_ z]FmFb (D D;D, D; i — RmmD ngO — RimanDp()O>
—gYF"ErD; (RzmnDlgO)
= ¢'F"F}'D,,(D,DiDjp — R, . Dyp)
_gich:an (RfmnD D]()O + Rzmj‘D Dp(p) Z]F(:”anD (RémnDlSO)

= DanAQO - gZ]anFng (Rzn]Dlw)
G F (R, DyDy + B, DaDyp) — g7 F F Dy, Di)

imn Jmn



Now we have
1 o 1
D,D,Dyp = AD,Dyp+ —RFZFb]DZ-ngD + 2F;FJ(D R-Djpo+ RD,D;p)
_gZ]ananD (Rin]Dlgp) UFJan (RfmnD D]SO + RZTTL]D DPQO)

—g" F ' Di(Rj, Digp)

Jmn

Since the curvature is bounded, the solution to the evolution equation of
the orthonormal frame remains bounded on finite time interval [0,y]. We
can denote the upper bound as an nonnegative constant M. Thus we have
the inequality

0 1
5102@2 < (n—1)AD*o” + ;C2M|D290\2

where % comes from the local derivative estimate in Lemma?2.3.
Now we put
G = t*| D% + | Dy|?

and compute

oG 0 0
— = 2t|D%p|? + *=|D?*p|* + = |Dy|?
T |Dp|” + 8t| ol +0t| ol
1
< 2|D%p + £[(n — 1) A|D*p]? + ;CzMID%F]

+(n — DA[Dp|* — 2(n — 1)| D*¢|* + C1 K| De|*

and
AG = t*A|D*¢|* + A|Dy)|?
thus
O < (0= DA+ (24 1K) D — 20— D% + CLK| D

Since |Dp| < 6 < p < |D?*p| at t = 0, there is a constant t1 > 0 such that
|Dy| < |D?p| when 0 < t < t;. Then if t < min{;252 t4,t,}, we have

5+Ca T
oG
ot~

and the maximum of the function GG decreases from the maximum principle.
Denote min{ ;23 5tCs K, to,t1} by to from now on.

<(n—-1)AG
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At time ¢ = 0, G = |Dy|* < 6, hence for ¢ > 0 also. Thus [D%p| < 2 for
0<t<ts.
Since |Ap|? < n|D?p|* and ¢ solves the equation 22 = (n — 1) Ay,

2o, _ oo
ot

t
for 0 <t <ty where C3 = y/n(n —1).

Thus for every point P € M — B;—(0, 20),
[p(P,t) = (P, 0)] < C3dInt

for 0 < t < t,, we can take
2

5
d S 03 In tg

so that C3dInt < &2 for 0 < t < t5. Then ¢ < 2¢? at times 0 < t < t5 on
M — Bt:()(O, 20’)

Notice that distances may expand, but from Lemma 2.1.1 we have s(0)e~("~D&* <
s(t) < 5(0)e~DEL This gives us a constant Cy such that if s > Cy - 20 at P
at t < to, then s > 20 and ¢ < 22 at P at time t.

Now at initial time t = 0, |[Rm|?> < M? = pif s < o, and |[Rm|]?> < e < ¢
if s > 0. Thus |[Rm|?* < ¢ everywhere at t = 0.

Since 9
g\RmF < (n — 1D)A|Rm|* + C|Rm|?
we have 5
E]Rmﬁ < (n—1)A|Rm|* + CK|Rm/|?
while P
a(ecmso) = (n = 1)A(e“™p) + CK (e“Fp)

so |[Rm|* < e“Ktp on M — B,;—o(O,20) from the maximum principle.
For t < ty, this gives |Rm|? < Cs¢p for some constant Cs depending only
on the dimension. Hence at time ¢ we have

|Rm|? < Cge?

for s > Cgp where the constant C' depends only on the dimension and is
independent of . Thus |[Rm| — 0 for t <5 as s — o0.
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Since the time interval can always be advanced by 5, we get the result.
O

Now we can follow get Theorem 1.2 immediately.

Proof of Theorem 1.2: Let M"™ be a complete manifold under the
assumption of Theorem 1.1 and has nonnegative Ricci curvature. Choose an
origin O € M and by the Bishop-Gromove volume comparison theorem,

. Vol(B(O,s))
STL
is nonincreasing. Denote w,, the volume of the unit ball in the n-dimensional
Euclidean space. We have

Vol(B(O
STL
frome the Bishop-Gromove volume comparison theorem. For any > 0 and
s > 0, consider the annulus

Asss = {z € M"os <dy(z,0) < s}
~ B,(0,9) - B,(0,5)

Using Lemma 3.5 in [3](also Lemma B.40 in [2]), the distance of any two
points changes as

0 1
= Idist - - Rd
8t[ ity (7, Y)] 5 S /7 s

> —dn(n—- 1)K

N

where the inequality above comes from the upper bound of |Rm| and Prop
1.94 in [2].

Now consider the volume of the annulus and follow the proof of Prop 8.37
in [2], we can get the result immediately. OJ
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