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Abstract

We study complete locally conformally flat Riemannian manifolds
Mn.We prove that the flatness of the infinity geometry can be pre-
served under the Yamabe flow. As an immediate application, the
asymptotic volume ratio of the manifold is a constant.
Key words: Yamabe flow, locally conformally flat, asymptotic vol-
ume ratio.

1 Introduction

The geometric flow has been proved to be an effective tool in the study
of the geometry and topology of Riemannian manifolds. For a complete Rie-
mannian manifold, RS.Hamilton[1] has defined several geometric invariants
such as the aperture

α = lim sup
s→∞

diamSs

2s

where Ss is the sphere of radius s around an origin, the set of points whose
distancd to the origin is s,
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the asymptotic volume ratio

v = lim
s→∞

V (Bs(P ))

sn

where V (Bs(P )) is the volume of a ball of radius s around an origin,
and the asymptotic scalar curvature ratio

A = lim sup
s→∞

Rs2.

Hamilton has proved that the above invariants are constants for complete
solutions to the Ricci Flow under some conditions. A natural question is,
how about the conclusions of the manifold under other geometric flows. Here
we consider the complete solution of Yamabe Flow that g(t) evolves under
the flow equation

∂

∂t
g = −Rg (1.1)

Let M be a smooth complete locally conformally flat Riemannian n-
manifold, we will represent the curvature tensors in an orthonormal frame
and evolve the frame so that it remains orthonormal. Let V be a vec-
tor field over M isomorphic to the tangent bundle TM . The frame F =
{F1, · · · , Fa, · · · , Fn} of V is given by Fa = F i

a
∂

∂xi locally with the iso-
morphism F i

a. At initial time t = 0, we can choose F i
a such that F =

{F1, · · · , Fa, · · · , Fn} is an orthonormal frame. Then evolve F i
a by the equa-

tion
∂

∂t
F i

a =
1

2
RF i

a

Then the frame F = {F1, · · · , Fa, · · · , Fn} will remain orthonormal for all
times since the pull back metric on V

hab = gijF
i
aF

j
b

remains constant in time.
From now on, we will use indices a, b, · · · on a tensor to denote it’s com-

ponents in the evolving orthonormal frame. In the frame we have:

Rabcd = F i
aF

j
b F k

c F l
dRijkl

Γa
jb = F a

i

∂F i
b

∂xj
+ Γi

jkF
i
aF

k
b

DiV
a =

∂

∂xi
V a + Γa

ibV
b

DbV
a = F i

bDiV
a
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where Γa
jb is the metric connection of V with the metric hab, and (F a

i ) =
(F i

a)
−1. By direct computation, DiF

i
b = 0 and Dihab = 0.

Now we state our main theorem.

Theorem 1.1 Suppose we have a solution to the Yamabe Flow on a complete
locally conformally flat n-manifold with bounded curvature, If |Rm| → 0 as
s →∞ at initial time t = 0, then it will remains true for t ≥ 0.

Theorem 1.2 Under the assumption of Theorem 1.1, if the manifold has
nonnegative Ricci curvature, then the asymptotic volume ratio of the manifold
is a constant.

2 Preliminary

As the metric changes under the Yamabe Flow, the distance on the man-
ifold will change. At first, e give the bound on the changing distance.

Lemma 2.1 If (Mn, g(t)) is a complete solution to the Yamabe Flow and
|Rm(x, t)| ≤ K for a nonnegative constant K, then we have

e−(n−1)K(t1−t0) ≤ distt1(x0, x1)

distt0(x0, x1)
≤ e(n−1)K(t1−t0)

for t1 > t0 and any x0, x1 ∈ M .

Proof : Since
|Rm(x, t)| ≤ K

on M × [0, T ], we get
|R(x, t)| ≤ n(n− 1)K

on M × [0, T ]. Thus

| ∂
∂t

gij(x, t)| ≤ |Rgij(x, t)| ≤ n(n− 1)Kgij(x, t)

That is,

−n(n− 1)Kgij(x, t) ≤ ∂

∂t
gij(x, t) ≤ n(n− 1)Kgij(x, t)
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Thus we get

e−(n−1)Ktgij(x, 0) ≤ gij(x, t) ≤ e(n−1)Ktgij(x, 0)

and
e−(n−1)Ktds2

0 ≤ ds2
t ≤ e(n−1)Ktds2

0

Now we have

e−(n−1)Ktγ0(x0, x1) ≤ γt(x0, x1) ≤ e(n−1)Ktγ0(x0, x1)

for any x0, x1 ∈ M , where γt(x0, x1) represents the length of the minimal
geodesic that join x0 and x1. �

Lemma 2.2 [4] If (Mn, g) is locally conformally flat, then under Yamabe
Flow,

(1) ∂tRijkl = (n−1)4Rijkl−RRijkl+
1

(n−2)2
(Bikgjl+Bjlgik−Bilgjk−Bjkgil),

(2) ∂tRij = (n− 1)4Rij + 1
n−2

Bij,

(3) ∂tR = (n− 1)4R + R2,

where Bij = (n− 1) |Ric|2 gij + nRRij − n(n− 1)R2
ij −R2gij.

In the proof of the main theorem, we need a global derivative estimate
for the curvature.

Lemma 2.3 If (Mn, g(t)) is a complete locally conformally flat solution to
the Yamabe Flow and

|Rm(x, t)| ≤ K

for a nonnegative constant K, then the covariant derivative of the curvature
is bounded by

|DRm| ≤ CK/
√

t

and the kth covariant derivative of the curvature is bounded by

|DkRm| ≤ CkK/t
k
2 .
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Proof :From Lemma2.1.2 we have

∂

∂t
Rm = (n− 1)4Rm + Rm ∗Rm.

where the symbol A ∗B denotes any tensor product of two tensors A and B
when we do not need the precise expression.

It follows that

∂

∂t
(DRm) = (n− 1)4(DRm) + Rm ∗ (DRm).

and
∂

∂t
|Rm|2 ≤ (n− 1)4|Rm|2 − 2(n− 1)|DRm|2 + C|Rm|3

∂

∂t
|DRm|2 ≤ (n− 1)4|DRm|2 − 2(n− 1)|D2Rm|2 + C|Rm| · |DRm|2

for some constant C depending only on the dimension n.
Then we can follow the proof in Shi’s derivative estimates of Ricci flow,

choose a test function with slight modification. �

3 Proof of the main theorem

Proof of Theorem 1.1: Suppose |Rm| ≤ K for some constant K. Since
|Rm| → 0 as s →∞, for every ε > 0 we can find σ < ∞ such that |Rm| ≤ ε
for s ≥ σ.

The curvature tensor evolves by a formula

DtRm = (n− 1)4Rm + Rm ∗Rm

which gives a formula

∂

∂t
|Rm|2 = (n− 1)4|Rm|2 − 2|DRm|2 + Rm ∗Rm ∗Rm

and an estimate

∂

∂t
|Rm|2 ≤ (n− 1)4|Rm|2 + C1|Rm|3

for some constant C1 depending only on the dimension.
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Then choose a smooth function ϕ at t = 0 such that

ϕ = K2ifs ≤ σ

ϕ = ε2ifs ≥ 2σ

−δ ≤ Dϕ ≤ 0

|D2ϕ| ≥ ρ > 0

for some constant δ > 0 and constant ρ > δ.
Now define ϕ for t ≥ 0 by solving the scalar heat equation

∂ϕ

∂t
= (n− 1)4ϕ

in the Laplacian of the metric evolving by the Yamabe Flow. By the maxi-
mum principle we still have |ϕ| ≤ ε2 everywhere for t ≥ 0.

The derivative Daϕ evolves by the formula

DtDaϕ = Dt(F
i
aDiϕ)

=
1

2
RF i

aDiϕ + F i
aDtDiϕ

=
1

2
RF i

aDiϕ + (n− 1)F i
aDi4ϕ

=
1

2
RF i

aDiϕ + (n− 1)F i
aDi(g

mnDmDnϕ)

=
1

2
RF i

aDiϕ + (n− 1)F i
ag

mn(DmDiDnϕ + Rimnlg
ls∇sϕ)

= (n− 1)4Daϕ +
1

2
RDaϕ− (n− 1)F i

aRilg
ls∇sϕ)

hence

∂

∂t
|Dϕ|2 ≤ (n− 1)4|Dϕ|2 − 2(n− 1)|D2ϕ|2 + C1K|Dϕ|2

for some constant C1 > 0 depending only on the dimension.
Let us put

F = t|Dϕ|2 + |ϕ|2

and compute

∂F

∂t
= |Dϕ|2 + t · ∂

∂t
|Dϕ|2 +

∂

∂t
|ϕ|2

≤ (|Dϕ|2 + t[(n− 1)4|Dϕ|2 + C1K|Dϕ|2] + (n− 1)4|Dϕ|2

−2(n− 1)|Dϕ|2
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and
4F = t4|Dϕ|2 +4|ϕ|2

thus
∂F

∂t
≤ (n− 1)4F − [2(n− 1)− 1− tC1K]|Dϕ|2

Then if t ≤ 2n−3
C1K

, we have

∂F

∂t
≤ (n− 1)4F

and the maximum of F decreases.
At initial time t = 0, F = |ϕ|2 = ε2, hence F ≤ ε2 for t ≥ 0. Thus

|Dϕ| ≤ ε√
t

for 0 < t ≤ 2n−3
C1K

.
Then we consider the second derivative DaDbϕ.

DtDaDbϕ = Dt(F
i
aDiDbϕ)

=
1

2
RF i

aDiDbϕ + F i
aDiDtDbϕ

=
1

2
RF i

aF
j
b DiDjϕ + F i

aDi(
1

2
RF j

b Djϕ + F j
b DtDjϕ)

=
1

2
RF i

aF
j
b DiDjϕ +

1

2
F i

aF
j
b (DiR ·Djϕ + RDiDjϕ)

+DaDb4ϕ

4DaDbϕ = gijDiDjDaDbϕ

= gijFm
a F n

b DiDjDmDnϕ

= gijFm
a F n

b Di(DmDjDnϕ−Rl
jmnDlϕ)

= gijFm
a F n

b DiDmDnDjϕ− gijFm
a F n

b Di(R
l
jmnDlϕ)

= gijFm
a F n

b (DmDiDnDjϕ−Rp
imnDpDjϕ−Rp

imjDnDpϕ)

−gijFm
a F n

b Di(R
l
jmnDlϕ)

= gijFm
a F n

b Dm(DnDiDjϕ−Rl
injDlϕ)

−gijFm
a F n

b (Rp
imnDpDjϕ + Rp

imjDnDpϕ)− gijFm
a F n

b Di(R
l
jmnDlϕ)

= DaDb4ϕ− gijFm
a F n

b Dm(Rl
injDlϕ)

−gijFm
a F n

b (Rp
imnDpDjϕ + Rp

imjDnDpϕ)− gijFm
a F n

b Di(R
l
jmnDlϕ)
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Now we have

DtDaDbϕ = 4DaDbϕ +
1

2
RF i

aF
j
b DiDjϕ +

1

2
F i

aF
j
b (DiR ·Djϕ + RDiDjϕ)

−gijFm
a F n

b Dm(Rl
injDlϕ)− gijFm

a F n
b (Rp

imnDpDjϕ + Rp
imjDnDpϕ)

−gijFm
a F n

b Di(R
l
jmnDlϕ)

Since the curvature is bounded, the solution to the evolution equation of
the orthonormal frame remains bounded on finite time interval [0, t0]. We
can denote the upper bound as an nonnegative constant M . Thus we have
the inequality

∂

∂t
|D2ϕ|2 ≤ (n− 1)4|D2ϕ|2 +

1

t
C2M |D2ϕ|2

where 1
t

comes from the local derivative estimate in Lemma2.3.
Now we put

G = t2|D2ϕ|2 + |Dϕ|2

and compute

∂G

∂t
= 2t|D2ϕ|2 + t2

∂

∂t
|D2ϕ|2 +

∂

∂t
|Dϕ|2

≤ 2t|D2ϕ|2 + t2[(n− 1)4|D2ϕ|2 +
1

t
C2M |D2ϕ|2]

+(n− 1)4|Dϕ|2 − 2(n− 1)|D2ϕ|2 + C1K|Dϕ|2

and
4G = t24|D2ϕ|2 +4|Dϕ|2

thus

∂G

∂t
≤ (n− 1)4G + (2t + tC2K)|D2ϕ|2 − 2(n− 1)|D2ϕ|2 + C1K|Dϕ|2.

Since |Dϕ| ≤ δ < ρ ≤ |D2ϕ| at t = 0, there is a constant t1 > 0 such that
|Dϕ| ≤ |D2ϕ| when 0 < t ≤ t1. Then if t ≤ min{ 2n−3

2+C2K
, t0, t1}, we have

∂G

∂t
≤ (n− 1)4G

and the maximum of the function G decreases from the maximum principle.
Denote min{ 2n−3

2+C2K
, t0, t1} by t2 from now on.
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At time t = 0, G = |Dϕ|2 ≤ δ2, hence for t ≥ 0 also. Thus |D2ϕ| ≤ δ
t

for
0 < t ≤ t2.

Since |4ϕ|2 ≤ n|D2ϕ|2 and ϕ solves the equation ∂ϕ
∂t

= (n− 1)4ϕ,

|∂ϕ

∂t
| ≤ C3δ

t

for 0 < t ≤ t2 where C3 =
√

n(n− 1).

Thus for every point P ∈ M −Bt=0(O, 2σ),

|ϕ(P, t)− ϕ(P, 0)| ≤ C3δ ln t

for 0 < t ≤ t2, we can take

δ ≤ ε2

C3 ln t2

so that C3δ ln t ≤ ε2 for 0 < t ≤ t2. Then ϕ ≤ 2ε2 at times 0 < t ≤ t2 on
M −Bt=0(O, 2σ).

Notice that distances may expand, but from Lemma 2.1.1 we have s(0)e−(n−1)Kt ≤
s(t) ≤ s(0)e(n−1)Kt. This gives us a constant C4 such that if s ≥ C4 · 2σ at P
at t ≤ t2, then s ≥ 2σ and ϕ ≤ 2ε2 at P at time t.

Now at initial time t = 0, |Rm|2 ≤ M2 = ϕ if s ≤ σ, and |Rm|2 ≤ ε2 ≤ ϕ
if s ≥ σ. Thus |Rm|2 ≤ ϕ everywhere at t = 0.

Since
∂

∂t
|Rm|2 ≤ (n− 1)4|Rm|2 + C|Rm|3

we have
∂

∂t
|Rm|2 ≤ (n− 1)4|Rm|2 + CK|Rm|2

while
∂

∂t
(eCKtϕ) = (n− 1)4(eCKtϕ) + CK(eCKtϕ)

so |Rm|2 ≤ eCKtϕ on M −Bt=0(O, 2σ) from the maximum principle.
For t ≤ t2, this gives |Rm|2 ≤ C5ϕ for some constant C5 depending only

on the dimension. Hence at time t we have

|Rm|2 ≤ C6ε
2

for s ≥ C6ρ where the constant C depends only on the dimension and is
independent of ε. Thus |Rm| → 0 for t ≤ t2 as s →∞.
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Since the time interval can always be advanced by t2, we get the result.
�

Now we can follow get Theorem 1.2 immediately.
Proof of Theorem 1.2: Let Mn be a complete manifold under the

assumption of Theorem 1.1 and has nonnegative Ricci curvature. Choose an
origin O ∈ M and by the Bishop-Gromove volume comparison theorem,

s 7→ V ol(B(O, s))

sn

is nonincreasing. Denote ωn the volume of the unit ball in the n-dimensional
Euclidean space. We have

AV R(g) ≤ V ol(B(O, s))

sn
≤ ωn

frome the Bishop-Gromove volume comparison theorem. For any δ > 0 and
s > 0, consider the annulus

Aδs,s
.
= {x ∈ Mn|δs ≤ dg(x, O) ≤ s}
= Bg(O, s)−Bg(O, δs)

Using Lemma 3.5 in [3](also Lemma B.40 in [2]), the distance of any two
points changes as

∂

∂t
[distg(t)(x, y)] = −1

2
sup

γ

∫
γ

Rds

≥ −4n(n− 1)K
1
2

where the inequality above comes from the upper bound of |Rm| and Prop
1.94 in [2].

Now consider the volume of the annulus and follow the proof of Prop 8.37
in [2], we can get the result immediately. �
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