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A GEOMETRIC HEAT FLOW FOR VECTOR FIELDS

YI LI AND KEFENG LIU

Abstract. This is an announcement of our work [5] on introduc-
ing and studying a geometric heat flow to find Killing vector fields
on closed Riemannian manifolds with positive sectional curvature.
We study its various properties, prove the global existence of the
solution of this flow, discuss its convergence and possible applica-
tions, and its relation to the Navier-Stokes equations on manifolds.
We will study the similar flow in [6] to find holomorphic vector
fields on Kähler manifolds.
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1. A geometric heat flow for vector fields

Recently, we have witnessed the power of geometric flows in studying
lots of problems in geometry and topology. In this announcement we
introduce a geometric heat flow for vector fields on a Riemannian man-
ifold and study its varies properties. The detail paper [5] will appear
soon.
Throughout this paper, we adopt the Einstein summation and no-

tions as those in [2]. All manifolds and vector fields are smooth; a
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2 YI LI AND KEFENG LIU

manifold is said to be closed if it is compact and without boundary.
We shall often raise and lower indices for tensor fields.

1.1. Deformation tensor field of a vector field. Let (M, g) be
a closed and orientable Riemannian manifold. To a vector field X
we associate its deformation (0, 2)-tensor field Def(X), which is an
obstruction of X to be Killing and is locally defined by

(1.1) (Def(X))ij +
∇iXj +∇jXi

2
,

where ∇ denotes the Levi-Civita connection of g. Equivalently, it is
exactly (up to a constant factor) the Lie derivative of g along the vector
fieldX , i.e., LXg. We say thatX is a Killing vector field ifDef(X) = 0.
Consider the L2-norm of Def(X):

(1.2) L(X) +

∫

M

|Def(X)|2dV,

where dV stands for the volume form of g and | · | means the norm
of Def(X) with respect to g. Clearly that the critical point X of L
satisfies

(1.3) ∆LBX
i +∇idiv(X) +Ri

jX
j = 0.

Here and henceforth, ∆LB + gij∇i∇j is the Laplace-Beltrami operator
of g and Rij denotes the Ricci curvature of g.

1.2. A geometric heat flow for vector fields. Motivated by (1.3),
we introduce a geometric heat flow for vector fields:

(1.4) ∂t(Xt)
i = ∆LB(Xt)

i +∇idiv(Xt) +Ri
j(Xt)

j , X0 = X,

where X is a fixed vector field on M and ∂t +
∂
∂t

is the time derivative.

If we define Ric♯, the (1, 1)-tensor field associated to Ric, by

g
(

Ric♯(X), Y
)

+ Ric(X, Y ),

where X, Y are two vector fields, then Ric♯ is an operator on the space
of vector fields, denoted by C∞(M,TM), and the flow (1.4) can be
rewritten as

(1.5) ∂tXt = ∆LBXt +∇div(Xt) + Ric♯(Xt).

In 1952, Yano (e.g., [12, 13, 14]) showed that a vector fieldX = X i ∂
∂xi

is a Killing vector field if and only if it satisfies

(1.6) ∆LBX
i +Ri

jX
j = 0, div(X) = 0.
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His result depends on an integral formula, now called Yano’s integral
formula,

(1.7) 0 =

∫

M

[

Ric(X,X)− |∇X|2 + 2|Def(X)|2 − |div(X)|2
]

dV,

which holds for any vector field X . This integral formula lets us define
so-called the Bochner-Yano integral for every vector field X :

(1.8) E(X) +

∫

M

[

|∇X|2 + |div(X)|2 − Ric(X,X)
]

dV.

Consequently, Yano’s integral formula implies that E(X) is always non-
negative and E(X) = 2L(X) for every vector field X . On the other
hand, Watanabe [10] proved that X is a Killing vector field if and only
if E(X) = 0, and hence if and only if L(X) = 0.
Yano’s equations (1.6) induces a system of equations, called the

Bochner-Yano flow:

(1.9) ∂t(Xt)
i = ∆LB(Xt)

i +Ri
j(Xt)

j , div(Xt) = 0.

Notice that Yano’s equation (1.6) (resp., Bochner-Yano flow (1.9)) is a
special case of our equation (1.3) (resp., our flow (1.4)).

1.3. Main results. Now we can state our main results to the flow
(1.4).

Theorem 1.1. (Long-time existence)Suppose that (M, g) is a closed
and orientable Riemannian manifold. Given an initial vector field, the
flow (1.4) exists for all time.

The main method on proving above theorem is the standard ap-
proach in PDEs and an application of Sobolev embedding theorem.
After establishing the long-time existence, we can study the conver-
gence problem of the flow (1.4).

Theorem 1.2. (Convergence)Suppose that (M, g) is a closed and
orientable Riemannian manifold. If X is a vector field, there exists a
unique smooth solution Xt to the flow (1.4) for all time t. As t goes
to infinity, the vector field Xt converges uniformly to a Killing vector
field X∞.
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To prove Theorem 1.2, we need some basic properties of the func-
tional E :

E(Xt) ≥ 0,

d

dt
E(Xt) = −2

∫

M

|∂tXt|
2dV ≤ 0,

E(Xt) = −
d

dt

(

1

2

∫

M

|Xt|
2dV

)

.

The first one directly follows from (1.7). Since the flow (1.4) is the
gradient flow of the functional E , the rest are clearly. Those properties
show that

∫

M

|∇Xt|
2 dV ≤ E(X) + max

1≤i,j≤m

(

max
M

Rij

)

·

∫

M

|X|2dV,

therefore, ∇Xt ∈ L2(M, g). On the other hand
∫

M
|Xt|

2 ≤
∫

M
|X|2, we

conclude that ||Xt||H1(M,g) ≤ C1 for some positive constant C1 depend-
ing only on (M, g) and X . By the regularity of parabolic equations and
the flow itself, we obtain ||∂tXt||Hℓ(M,g) ≤ Cℓ for a positive constant Cℓ

that depends only on (M, g), X , and ℓ, for each integer ℓ. From
∫ ∞

0

∫

M

|∂tXt|
2dV ≤

1

2
E(X),

we can find a sequence {ti} of time so that ||∂tXt|t=ti ||L2(M,g) → 0. By
Sobolev embedding theorem and the regularity theorem, there exists a
smooth vector field X∞ satisfying

∆LBX∞ +∇div(X∞) + Ric♯(X∞) = 0.

Remark 1.3. As Professor Cliff Taubes remarked that Theorem 1.1
and 1.2 also follow from an eigenfunction expansion for the relevant
linear operator that defines the flow (1.4), which gives a short proof of
those two theorems.

Theorem 1.2 does not give us a nontrivial Killing vector field. For
example, if X is identically zero, then by the uniqueness theorem the
limit vector field is also identically zero. When the Ricci curvature is
negative, Bochner’s theorem implies that there is no nontrivial Killing
vector field.
To obtain a nonzero Killing vector field, we have the following crite-

rion.

Proposition 1.4. Suppose that (M, g) is a closed and orientable Rie-
mannian manifold and X is a vector field on M . If Xt is the solution
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of the flow (1.4) with the initial value X, then

(1.10)

∫ ∞

0

E(Xt)dV < ∞.

Let

(1.11) Err(X) +
1

2

∫

M

|X|2dV −

∫ ∞

0

E(Xt)dt.

Therefore Err(X) ≥ 0 and X∞ is nonzero if and only if Err(X) > 0.

For the moment, we introduce the following notions:

uk(t) +

∫

M

∣

∣∇kXt

∣

∣

2
dV,

vk(t) +

∫

M

∣

∣∇kdiv(Xt)
∣

∣

2
dV.

Here k is a nonnegative integer. An interesting result in this paper is
the following estimates:

Theorem 1.5. Given integers k ≥ 0 and ℓ ≥ 2. If Xt is a solution of
the flow (1.4), then

∣

∣

∣
u
(ℓ)
k (t)

∣

∣

∣
≤

k+2ℓ
∑

i=0

A
(ℓ)
k,iui(t) +

k+2ℓ
∑

i=0

B
(ℓ)
k,ivi(t),(1.12)

∣

∣

∣
v
(ℓ)
k (t)

∣

∣

∣
≤

k+2ℓ−1
∑

i=0

C
(ℓ)
k,ivi(t) +

k+2ℓ−1
∑

i=0

D
(ℓ)
k,iui(t)(1.13)

for some uniform positive constants A
(ℓ)
k,i, B

(ℓ)
k,i , C

(ℓ)
k,i , and D

(ℓ)
k,i, depending

only on m, (M, g), i, k, and ℓ. Here u
(ℓ)
k (t) and v

(ℓ)
k (t) denote the ℓ-th

derivative of uk(t) and vk(t), respectively. For ℓ = 1, we have more
precise estimates:

|u′
k(t)| ≤

k+1
∑

i=0

A
(1)
k,iui(t) +

k+1
∑

i=0

B
(1)
k,i vi(t),

|v′k(t)| ≤
k+1
∑

i=0

C
(1)
k,i vi(t) +

k+1
∑

i=0

D
(1)
k,iui(t).
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Proof. (Sketch) From the flow (1.4), we can prove

|u′
k(t)| ≤ 2uk+1(t) + Ck

∫

M

∣

∣∇kXt

∣

∣

∣

∣∇k+1div(Xt)
∣

∣ dV

+

k
∑

i=0

C
(1)
k−i

∫

M

∣

∣∇k−iXt

∣

∣

∣

∣∇kXt

∣

∣ dV,

|v′k(t)| ≤ 4vk+1(t) +
k

∑

i=0

C
(2)
i

∫

M

∣

∣∇k−idiv(Xt)
∣

∣

∣

∣∇kdiv(Xt)
∣

∣ dV

+
k+1
∑

i=0

C
(3)
i

∫

M

∣

∣∇k+1−iXt

∣

∣

∣

∣∇kdiv(Xt)
∣

∣ dV,

for some positive constants Ck, C
(1)
i , C

(2)
i , and C

(3)
i , depending only on

(M, g) and the related indices. Using the notation of uk(t) and vk(t),
and the Cauchy-Schwarz inequality, we can prove the theorem for ℓ = 1.
Similarly, we can treat with the higher derivatives, but, here, we need
a complicated and careful analysis. �

1.4. The normalization solutions. When the initial vector field is
nonzero, a standard method in PDEs shows that

Proposition 1.6. Suppose that (M, g) is a closed and orientable Rie-
mannian manifold and Xt solves (1.4) with the initial value X. If X
is nonzero, then for any finite t, Xt is nonzero.

By this proposition, we can normalize Xt to define

(1.14) Yt +
Xt

[u(t)]1/2
, u(t) + u0(t) =

∫

M

|Xt|
2dV.

Clearly that
∫

M
|Yt|

2dV = 1 and Yt satisfies

(1.15) ∂t(Yt)
i = ∆LB(Yt)

i +∇idiv(Yt) +Ri
j(Yt)

j + E(Yt)(Yt)
i.

Furthermore, we can prove

Theorem 1.7. Suppose that (M, g) is a closed and orientable Rie-
mannian manifold. If Xt is the solution of the flow (1.4) with a nonzero
initial value X, then the vector field Yt, defined by (1.14), converges
uniformly to a nonzero vector field Y∞ satisfying

∫

M
|Y∞|2dV = 1.

The above theorem tells us evenXt goes to zero, the quotientXt/u
1/2(t)

goes to a nonzero vector field. Formally, we have X∞ = u
1/2
∞ Y∞.
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1.5. A connection to the Navier-Stokes equations. A surprising
observation is that our flow (1.4) is very close to the Navier-Stokes
equations [1, 9](without the pressure) on manifolds

(1.16) ∂tXt +∇Xt
Xt = div(St), div(Xt) = 0,

where St + 2Def(Xt) is the stress tensor of Xt. By an easy computa-
tion we can write (1.16) as
(1.17)

∂t(Xt)
i + (∇Xt

Xt)
i = ∆LB(Xt)

i +∇idiv(Xt) +Ri
jX

j , div(Xt) = 0.

Compared (1.4) with (1.17), we give a geometric interpolation of the
right (or the linear) part of the Navier-Stokes equations on manifolds.
When the Ricci tensor field is identically zero, our flow (1.4) keeps

the property that div(Xt) = 0. Indeed, we can prove the following
formula:

d

dt

(
∫

M

|div(Xt)|
2dV

)

= −4

∫

M

|∇div(Xt)|
2 dV

− 4

∫

M

Ric (Xt,∇div(Xt)) dV,

from which we see that if Ric ≡ 0 then

d

dt

(
∫

M

|div(Xt)|
2dV

)

= −4

∫

M

|∇div(Xt)|
2 dV ≤ 0.

Thus the flow (1.4) keeps
∫

M
div|(Xt)|

2dV = 0 and hence keeps div(Xt)
= 0.
As a consequence of the non-negativity of E we can prove that

Theorem 1.8. Suppose that (M, g) is a closed and orientable Rie-
mannian manifold. If Xt is a solution of the Navier-Stokes equations
(1.17), then

(1.18)
d

dt

(
∫

M

|Xt|
2dV

)

= −2E(Xt) ≤ 0.

In particular

(1.19)

∫

M

|Xt|
2dV ≤

∫

M

|X0|
2dV.

The similar result was considered by Wilson [11] for the standard
metric on R

3.
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2. A conjecture to the flow and its application

Before stating a conjecture to the flow (1.4), we shall look at a simple
case that (M, g) is an Einstein manifold with positive sectional curva-
ture and the solution of (1.4) is the sum of the initial vector field and
a gradient vector field. That is, we assume

Rij =
R

m
gij, m ≥ 3, Xt = X +∇ft,

where ft are some functions on M . By a theorem of Schur, the scalar
curvature R must be a constant. In this case the flow (1.4) is equivalent
to

(2.1) ∇

(

∂tft − 2∆LBft −
2R

m
ft

)

= X†,

where

(2.2) X†
+ ∆LBX +∇(div(X)) + Ric♯(X)

is the vector field associated to X . Clearly that the operator † is not
self-adjoint on the space of vector fields, with respect to the L2-inner
product with respect to (M, g).

2.1. Einstein manifolds with positive scalar curvature. If (M, g)
is an m-dimensional Einstein manifold with positive scalar curvature,
then we can prove that the limit vector field converges to a nonzero
Killing vector field, provided the initial vector field satisfying some
conditions. We first give a L2-estimate for ft.

Proposition 2.1. Suppose that (M, g) is an m-dimensional closed and
orientable Einstein manifold with positive scalar curvature R, where
m ≥ 3. Let X be a nonzero vector field satisfying X† = ∇ϕX for some
smooth function ϕX on M . Then for any given constant c, the equation

(2.3) ∂tft = 2∆LBft +
2R

m
ft + ϕX , f0 = c,

exists for all time. Moreover,

(i) we have

(2.4)

∫

M

ftdV =

[

c · Vol(M, g) +
m

2R

∫

M

ϕXdV

]

e
2R

m
t−

m

2R

∫

M

ϕXdV.

Setting

cX + −
m

2R · Vol(M, g)

∫

M

ϕXdV,
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yields
∫

M

ftdV = −
m

2R

∫

M

ϕXdV, if c = cX .

(ii) the L2-norm of ft is bounded by

(2.5) ||ft||2 ≤
||ϕX ||2

2
(

λ1 −
R
m

) +

[

c · Vol(M, g)−
||ϕX||2

2
(

λ1 −
R
m

)

]

e−2(λ1−
R

m)t,

where ||·||2 means ||·||L2(M,g) the L
2-norm with respect to (M, g),

and λ1 stands for the first nonzero eigenvalue of 9M, g).

For a moment, we put

a(t) +

∫

M

ftdV, b(t) +

∫

M

|ft|
2dV.

Then, the equation (2.3) implies that

a′(t) =
2R

m
a(t) +

∫

M

ϕXdV,

and

b′(t) = −4

∫

M

|∇ft|
2dV +

4R

m
b(t) + 2

∫

M

ftϕXdV

≤ −4

(

λ1 −
R

m

)

b(t) + 2b1/2(t)||ϕX ||L2(M,g).

By a theorem of Lichnerowicz, we have that λ1 ≥ R
m−1

> R
m
. Hence

(2.3) and (2.4) follow immediately.
Consequently, we have the following

Theorem 2.2. Suppose that (M, g) is an m-dimensional closed and
orientable Einstein manifold with positive scalar curvature R, where
m ≥ 3. Let X be a nonzero vector field satisfying the following two
conditions:

(i) X† is a gradient vector field, and
(ii) X is not a gradient vector field.

Then the flow (1.4) with initial value X converges uniformly to a
nonzero Killing vector field.

2.2. A conjecture and its applications. By Bochner’s theorem, any
Killing vector field on a closed and orientable Riemmanian manifold
with negative Ricci curvature is trivial. Hence, based on a result in the
Einstein case, we propose the following conjecture.
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Conjecture 2.3. Suppose that M is a closed Riemannian manifold
with positive sectional curvature. For some initial vector field and a
certain Riemannian metric g of positive sectional curvature, the flow
(1.4) converges uniformly to a nonzero Killing vector field with respect
to g.

Our study shows that we may need to change to a new metric, which
still has positive sectional curvature, to get the nonzero limit which is
a Killing vector field with respect to this new metric. For this purpose
we have computed variations of the functional L or E relative to the
new metric, as well as the Perelman-type functional for our flow.
Obviously a solution of this conjecture immediately answers the fol-

lowing long-standing question of Yau [8].

Question 2.4. Does there exist an effective S1-action on a closed man-
ifold with positive sectional curvature?

Assuming Conjecture 2.3, we can deduce several important corollar-
ies. We first recall the well-known Hopf’s conjectures.

Conjecture 2.5. If M is a closed and even dimensional Riemannian
manifold with positive sectional curvature, then the Euler characteristic
number of M is positive, i.e., χ(M) > 0.

Conjecture 2.6. On S2×S2 there is no Riemannian metric with pos-
itive sectional curvature.

For the recent development of Hopf’s conjectures, we refer to [7,
8]. A simple argument shows that Conjecture 2.5 and 2.6 follow from
Conjecture 2.3.

Corollary 2.7. Conjecture 2.3 implies Conjecture 2.5.

Proof. From [4] we know that the Killing vector field X must have zero,
and the zero sets consist of finite number of totally geodesic submani-
folds {Mi} of M with the induced Riemannian metrics. Moreover each
Mi is even dimensional and has positive sectional curvature. Hence we
have χ(M) =

∑

i χ(Mi). By induction, we obtain χ(M) > 0. �

Hsiang and Kleiner [3] showed that if M is a 4-dimensional closed
Riemannian manifold with positive sectional curvature, admitting a
nonzero Killing vector field, then M is homeomorphic to S4 or CP

2.
Consequently, S2 × S2 does not admit a Riemannian metric, whose
sectional curvature is positive, with a nontrivial Killing vector field.
Therefore

Corollary 2.8. Conjecture 2.3 implies Conjecture 2.6.
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