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MEAN CURVATURE FLOW OF HIGHER CODIMENSION

IN HYPERBOLIC SPACES

KEFENG LIU, HONGWEI XU, FEI YE, AND ENTAO ZHAO

Abstract. In this paper we investigate the convergence for the mean curva-
ture flow of closed submanifolds with arbitrary codimension in space forms.
Particularly, we prove that the mean curvature flow deforms a closed subman-
ifold satisfying a pinching condition in a hyperbolic space form to a round
point in finite time.

1. Introduction

In this paper, we study the convergence of the mean curvature flow of subman-
ifolds in space forms. Let F : Mn → F

n+d(c) be a smooth immersion from an
n-dimensional closed Riemannian manifold Mn to an (n+d)-dimensional complete
simply connected space form F

n+d(c) with constant sectional curvature c. Consider
a one-parameter family of smooth immersions F : M × [0, T ) → F

n+d(c) satisfying
{

∂
∂t
F (x, t) = H(x, t),

F (x, 0) = F (x),
(1.1)

where H(x, t) is the mean curvature vector of Ft(M) and Ft(x) = F (x, t). We call
F : M × [0, T ) → F

n+d(c) the mean curvature flow with initial value F .
The mean curvature flow was proposed by Mullins [17] to describe the formation

of grain boundaries in annealing metals. In [3], Brakke introduced the motion of
a submanifold by its mean curvature in arbitrary codimension and constructed a
generalized varifold solution for all time. For the classical solution of the mean cur-
vature flow, most works have been done on hypersurfaces. Huisken [11, 12] showed
that if the initial hypersurface in a Riemannian manifold is uniformly convex, then
the mean curvature flow converges to a round point in finite time. Later, Huisken
[13] extend this result to hypersurfaces satisfying a pinching condition in a sphere.
Many other beautiful results have been obtained, and there are various approaches
to study the mean curvature flow of hypersurfaces (see [6, 7], etc.). For the mean
curvature flow of submanifolds in higher codimension, some special cases have been
studied, see [19, 20, 21, 22, 23, 24] etc. for example. Recently, Andrews-Baker
[1] proved a convergence theorem for the mean curvature flow of closed submani-
folds satisfying a pinching condition in the Euclidean space. In [2], Baker proved
a convergence result for the mean curvature flow of submanifolds in a sphere. In
this paper, we study the mean curvature flow of closed submanifolds in hyperbolic
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spaces and extend the convergence result in [1, 2] to the mean curvature flow of
arbitrary codimension in space forms.

Theorem 1.1. Let F : Mn → F
n+d(c) be a smooth closed submanifold in a hyper-

bolic space with constant curvature c < 0. Assume F satisfies

|A|2 ≤
{

4
3n |H |2 + n

2 c, n = 2, 3,
1

n−1 |H |2 + 2c, n ≥ 4.
(1.2)

Then the mean curvature flow with F as initial value converges to a round point in
finite time.

As an immediate consequence of Theorem 1.1, we obtain the following differen-
tiable sphere theorem.

Corollary 1.2. Let F : Mn → F
n+d(c) be a smooth closed submanifold in a

hyperbolic space with constant curvature c < 0. Assume F satisfies

|A|2 ≤
{

4
3n |H |2 + n

2 c, n = 2, 3,
1

n−1 |H |2 + 2c, n ≥ 4.

Then M is diffeomorphic to the unit n-sphere.

Remark 1.3. This differentiable sphere theorem was also obtained by Gu and Xu
[10, 25] provided the submanifold is simply connected. In fact, they proved the
sphere theorem for submanifolds in a Riemannian manifold by using a different
method. For more sphere theorems of submanifolds, we refer the readers to [1, 2,
9, 10, 16, 18, 25, 28], etc.

Combining Theorem 1.1 and the convergence results in [1, 2], we obtain the
following theorem.

Theorem 1.4. Let F : Mn → F
n+d(c) be a smooth closed submanifold in a com-

plete simply connected space form with |H |2 + n2c > 0. Assume F satisfies

|A|2 ≤
{

4
3n |H |2 + 1

12 [7n− 4 + sgn(c)(n− 4)]c, n = 2, 3,
1

n−1 |H |2 + 2c, n ≥ 4.
(1.3)

Then either Ft(M) converges to a round point in finite time, or c > 0 and Ft(M)
converges to a total geodesic sphere in F

n+d(c) as t → ∞.

Remark 1.5. For c > 0, |H |2 + n2c > 0 is automatically satisfied. For c = 0,
|H |2 + n2c > 0 is equivalent to that the mean curvature is nowhere vanishing. For
c < 0, |H |2 + n2c > 0 is implied by condition (1.3).

Remark 1.6. For c > 0, the maximal existence time of the mean curvature flow
may be finite or infinite. For c ≤ 0, the mean curvature flow with a closed initial
submanifold always has finite maximal existence time.

2. Basic equations

Let F : M × [0, T ) → F
n+d(c) be a smooth mean curvature flow with initial

closed immersion F0 : M → F
n+d(c). Denote by g(t) and dµt the induced metric

and the volume form on M . Let A and H be the second fundamental form and
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the mean curvature vector of M in F
n+d(c), respectively. We shall make use of the

following convention on the range of indices.

1 ≤ i, j, k, · · · ≤ n, 1 ≤ A,B,C, · · · ≤ n+ d and n+ 1 ≤ α, β, γ, · · · ≤ n+ d.

As in [1, 3], we consider the evolution on the spatial tangent bundle. Choose a
local orthonormal frame {ei} for the spatial tangent bundle and a local orthonormal
frame {να} for the normal bundle. Let {ωi} be the dual frame of {ei}. Then A

and H can be written as

A =
∑

i,j,α

hijαωi ⊗ ωj ⊗ να =
∑

i,j

hijωi ⊗ ωj, H =
∑

α

Hανα.

We have the following evolution equations.

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2R1 + 4c|H |2 − 2nc|A|2,(2.1)

∂

∂t
|H |2 = ∆|H |2 − 2|∇H |2 + 2R2 + 2nc|H |2,(2.2)

where

R1 =
∑

α,β

(

∑

i,j

hijαhijβ

)2

+ |R⊥|2,(2.3)

|R⊥|2 =
∑

i,j,α,β

(

∑

p

(

hipαhjpβ − hjpαhipβ

))2

,(2.4)

R2 =
∑

i,j

(

∑

α

Hαhijα

)2

.(2.5)

The contracted form of Simons’ identity for traceless second fundamental form
Å := A− 1

n
g ⊗H is

1

2
△|Å|2 = h̊ij∇i∇jH + |∇Å|2 + Z + nc|Å|2.(2.6)

Here

Z = −R1 +
∑

i,j,p,α,β

Hαhipαhijβhpjβ .(2.7)

We also have the following inequality.

|∇A|2 ≥ 3

n+ 2
|∇H |2.(2.8)

3. Preserved curvature pinching condition

Now we prove that the pinching condition (1.2) is preserved under the mean
curvature flow with arbitrary codimension in the hyperbolic space.

Lemma 3.1. For c < 0 and n ≥ 2, if the initial immersion satisfies (1.2), then
this condition is preserved along the mean curvature flow.
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Proof. We consider Q = |A|2 − α|H |2 − βc, where the constants

α ≤
{

4
3n , n = 2, 3,
1

n−1 , n ≥ 4,
and β ≥

{

n
2 , n = 2, 3,

2, n ≥ 4.

By (2.1) and (2.2) we have

∂

∂t
Q = △Q− 2(|∇A|2 − α|∇H |2)

+2R1 − 2αR2 − 2nc|Å|2 − 2n

(

α− 1

n

)

c|H |2.(3.1)

We only have to show that if Q = 0 at a point x ∈ M , then

2R1 − 2αR2 − 2nc|Å|2 − 2n

(

α− 1

n

)

c|H |2 ≤ 0

holds at x. We also have H 6= 0 at x. Choose {να} such that νn+1 = H
|H| . Let

AH =
∑

i,j hij,n+1ωi ⊗ ωj. Set ÅH = AH − |H|
n
Id and |ÅI |2 = |Å|2 − |ÅH |2.

We replace |H |2 with |Å|2−βc

α− 1

n

. Then

2R1 − 2αR2 − 2nc|Å|2 − 2n

(

α− 1

n

)

c|H |2

≤2|ÅH |2 − 2

(

α− 1

n

)

|ÅH |2|H |2 + 2

n
|ÅH |2|H |2 − 2

n

(

α− 1

n

)

|H |4

+ 8|ÅH |2|ÅI |2 + 3|ÅI |2 − 2nc(|ÅH |2 + |ÅI |2)− 2n

(

α− 1

n

)

c|H |2

=

(

6− 2

n(α− 1
n
)

)

|ÅH |2|ÅI |2 +
(

3− 2

n(α− 1
n
)

)

|ÅI |4

+

(

2β − 4n+
2β

n(α− 1
n
)

)

c|ÅH |2 + 4

(

β

n(α− 1
n
)
− n

)

c|ÅI |2

− 2β

(

β

n(α− 1
n
)
− n

)

c2.

(3.2)

By the definition of α and β, we know that the right hand side of (3.2) is nonpositive
for n ≥ 2. This completes the proof of the lemma. �

For ǫ > 0, set

αǫ =

{

4
3n+nǫ

, n = 2, 3,
1

n−1+ǫ
, n ≥ 4,

and βǫ =

{

n
2 (1 + ǫ), n = 2, 3,

2(1 + ǫ), n ≥ 4.

If the initial immersion satisfies |A|2 < 4
3n |H |2 + n

2 c for n = 2, 3, and |A|2 <
1

n−1 |H |2 + 2c for n ≥ 4, then there exists an ǫ > 0 such that |A|2 ≤ αǫ|H |2 + βǫc

holds on M0. From the proof of Lemma 3.1, this inequality also holds for t > 0.
On the other hand, if |A|2 = 4

3n |H |2 + n
2 c for n = 2, 3, or |A|2 = 1

n−1 |H |2 + 2c for
n ≥ 4 holds somewhere on M0, then by the maximum principle, we see that either
the equality holds everywhere on M0, or the strict inequality holds everywhere for
t > 0. For the first case, we have ∇A = 0 and ÅI = 0 on M0. By [8], M0 lies
in an (n + 1)-dimensional total geodesic submanifold of Fn+d(c). Since ∇A = 0,
from Theorem 4 of [15], M0 is either locally isometric to an Euclidean space, or
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locally isometric to a product F
k(c1) × F

n−k(c2) for some c1 > 0, c2 < 0 and
k = 0, · · · , n. Since M0 is closed, we see that M0 is a totally umbilical sphere.
Then |A|2 ≤ αǫ|H |2 + βǫc holds on M0 for some ǫ > 0. For the second case, we see
that after a short time, we also have |A|2 ≤ αǫ|H |2 + βǫc for some ǫ > 0. Hence,
we may assume that |A|2 ≤ αǫ|H |2 + βǫc for some ǫ ∈ (0, 1) and t ≥ t0 > 0.

4. Pinching of Å along the mean curvature flow

Assume that c < 0. We prove a pinching estimate for the traceless second
fundamental form, which guarantees that Mt becomes spherical along the mean
curvature flow.

Theorem 4.1. There are positive constants C0 and σ0 independent of t such that

|Å|2 ≤ C0|H |2−σ0(4.1)

holds along the mean curvature flow.

Proof. We consider the function fσ = |Å|2
(a|H|2+βǫc)1−σ , where σ ∈ (0, 1) and

a =

{

1
3n+nǫ

, n = 2, 3
1

n(n−1+ǫ) , n ≥ 4.

Notice that

a|H |2 + βǫc−
(

(

αǫ −
1

n

)

|H |2 + βǫc

)

≥ ǫ

3n+ nǫ
|H |2

≥ ǫ

3n+ nǫ
· β(−c)

> 0

(4.2)

for n = 2, 3, and

a|H |2 + βǫc−
(

(

αǫ −
1

n

)

|H |2 + βǫc

)

≥ ǫ

n(n− 1 + ǫ)
|H |2

≥ ǫ

n(n− 1 + ǫ)
· β(−c)

> 0

(4.3)

for n ≥ 4. So fσ is well-defined. From (4.2) and (4.3) we also have

a|H |2 + βǫc ≥ b|H |2,(4.4)

where

b =

{

ǫ
3n+nǫ

, n = 2, 3
ǫ

n(n−1+ǫ) , n ≥ 4.
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By a similar computation as in [1], we have

∂

∂t
fσ =△fσ +

2a(1− σ)

a|H |2 + βǫc
〈∇|H |2,∇fσ〉

− 2

(a|H |2 + βǫc)1−σ

(

|∇A|2 − 1

n
|∇H |2 − a|Å|2

a|H |2 + βǫc
|∇H |2

)

− 4a2σ(1 − σ)

(a|H |2 + βǫc)2
fσ|H |2 ·

∣

∣

∣
∇|H |

∣

∣

∣

2

− 2aσfσ
a|H |2 + βǫc

|∇H |2

+
2

(a|H |2 + βǫc)1−σ

(

R1 −
1

n
R2 −

aR2|Å|2
a|H |2 + βǫc

− nc|Å|2

− an(1− σ)c|Å|2|H |2
a|H |2 + βǫc

)

+
2aσR2fσ

a|H |2 + βǫc
.

(4.5)

By (2.8), we have

|∇A|2 − 1

n
|∇H |2 − a|Å|2

a|H |2 + βǫc
|∇H |2

≥
(

3

n+ 2
− 1

n
−

a
(

(αǫ − 1
n
)H2 + βǫc

)

a|H |2 + βǫc

)

|∇H |2

≥
(

3

n+ 2
− 1

n
− a

)

|∇H |2

:= ǫ∇|∇H |2.

(4.6)

Here ǫ∇ is a positive constant for n ≥ 2.
We also have the following estimate.

R1 −
1

n
R2 −

aR2|Å|2
a|H |2 + βǫc

≤ R1 −
1

n
R2 −

R2|Å|2
|H |2

= R1 −
R2|A|2
|H |2

≤ |ÅH |4 − 2

( |A|2
|H |2 − 2

n

)

|ÅH |2|H |2 − 2

n

( |A|2
|H |2 − 1

n

)

|H |4

− 4|ÅH |2|ÅI |2 −
3

2
|ÅI |4

≤ 0.

(4.7)

In (4.7) we have used the pinching condition |A|2 ≤ αǫ|H |2 + βǫc < αǫ|H |2 for
ǫ ∈ (0, 1).
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By (4.4), we have

− nc|Å|2 − an(1− σ)c|Å|2|H |2
a|H |2 + βǫc

≤− nc|Å|2 − an(1− σ)c|Å|2(a|H |2 + βǫc)

b(a|H |2 + βǫc)

≤− nc|Å|2 − anc

b
|Å|2

:= b̄|Å|2.

(4.8)

For the last term of right hand side of (4.5), we have by (4.4)

2aσR2fσ

a|H |2 + βǫc
≤ 2aσ|H |2|A|2fσ

a|H |2 + βǫc
≤ 2aσ

b
|A|2fσ := b̃σ|A|2fσ.(4.9)

Combining (4.5), (4.6), (4.7), (4.8) and (4.9), we have

∂

∂t
fσ ≤ △fσ +

2a(1− σ)

a|H |2 + βǫc
〈∇|H |2,∇fσ〉 −

2ǫ∇
(a|H |2 + βǫc)1−σ

|∇H |2

+ 2b̄fσ + b̃σ|A|2fσ.
(4.10)

To deal with the last term of the right hand side of (4.10), we need the following
estimate.

Proposition 4.2. There exists a positive constant ε independent of t such that

Z + nc|Å|2 ≥ ε|Å|2(a|H |2 + βǫc)(4.11)

holds for t ≥ t0.

Proof. By the argument in the proof of Lemma 5.4 in [2], we only have to show

− βǫ

αǫ − 1
n

(

1

n
− n− 2

2n(n− 1)

)

+ n ≤ 0.

This is true by our choice of αǫ and βǫ. �

Proposition 4.3. For any η > 0, p ≥ 2 and t ≥ t0, we have

∫

Mt

fp
σ(a|H |2 + βǫc)dµt ≤

2pη + 5

bε

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt

+
2(p− 1)

bηε

∫

Mt

fp−2
σ |∇fσ|2dµt.

(4.12)
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Proof. We have the following estimate.

2

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
Zdµt + 2nc

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|Å|2dµt

≤ 2(p− 1)

∫

Mt

fp−2
σ

(a|H |2 + βǫc)1−σ
|∇fσ||Å||∇H |dµt

+
2(n− 1)

n

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt

+ 4

∫

Mt

fp−1
σ

(a|H |2 + βǫc)2−σ
|H ||Å||∇H |2dµt

+ 4(1− σ)(p− 2)

∫

Mt

fp−1
σ

(a|H |2 + βǫc)
|H ||∇H ||∇fσ|dµt

+ 4

∫

Mt

fp
σ

(a|H |2 + βǫc)2
|H |2|∇H |2dµt.

(4.13)

Since |Å|2 ≤ fσ(a|H |2 + βǫc)
1−σ and fσ ≤ (a|H |2 + βǫc)

σ, by choosing σ ∈ (0, 1)
we have the following estimates.

2(p− 1)

∫

Mt

fp−2
σ

(a|H |2 + βǫc)1−σ
|∇fσ||Å||∇H |dµt

≤ 1− σ

η

∫

Mt

fp−2
σ |∇fσ|2dµt + (p− 1)η

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt,

(4.14)

4

∫

Mt

fp−1
σ

(a|H |2 + βǫc)2−σ
|H ||Å||∇H |2dµt

≤ 4

b

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt,

(4.15)

4(p− 2)

∫

Mt

fp−1
σ

a|H |2 + βǫc
|H ||∇H ||∇fσ|dµt

≤ (p− 2)

∫

Mt

1

a|H |2 + βǫc

(

2

η
fp−2
σ |H |2|∇fσ|2 + 2ηfp

σ |∇H |2
)

dµt

≤ 2(p− 2)

bη

∫

Mt

fp−2
σ |∇fσ|2dµt

+ 2(p− 2)η

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt,

(4.16)

4

∫

Mt

fp
σ

(a|H |2 + βǫc)2
|H |2|∇H |2dµt ≤

4

b

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt.(4.17)

In (4.15), (4.16) and (4.17) we have used (4.4).
By (4.11), we have

2

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
(Z + 2nc|Å|2)dµt

≥ 2ε

∫

Mt

fp
σ(a|H |2 + βǫc)dµt.

(4.18)
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Combining (4.13)-(4.18), we obtain

2ε

∫

Mt

fp
σ(a|H |2 + βǫc)dµt ≤

3pη + 10

b

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt

+
3(p− 1)

bη

∫

Mt

fp−2
σ |∇fσ|2dµt.

(4.19)

Dividing through by 2ε completes the proof. �

Now we show that the Lp-norm of fσ is bounded for sufficiently high p.

Lemma 4.4. For any p ≥ max{2, 8
bǫ∇

+ 1} and σ ≤ min
{

b2εǫ∇
10b̃αǫ

,
b2ε

√
ǫ∇

4b̃αǫ
√
p
, 1
2

}

, there

exist a constant C independent of t such that for all t ∈ [0, Tmax) where Tmax < ∞,
we have

(
∫

Mt

fp
σdµt

)
1

p

≤ C.(4.20)

Proof. For t ≥ t0, form (4.10), we have

∂

∂t

∫

Mt

fp
σdµt ≤

∫

Mt

pfp−1
σ

∂

∂t
fσdµt

≤ − p(p− 1)

∫

Mt

fp−2
σ |∇fσ|2dµt

+ 4(1− σ)p

∫

Mt

fp−1
σ

a|H |2 + βǫc
|H ||∇|H |||∇fσ|dµt

− 2pǫ∇

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt

+ 2b̄p

∫

Mt

fp
σdµt + b̃σp

∫

Mt

|A|2fp
σdµt.

(4.21)

As in (4.16), we have

4(1− σ)p

∫

Mt

fp−1
σ

a|H |2 + βǫc
|H ||∇|H |||∇fσ|dµt

≤ 2p

bµ

∫

Mt

fp−2
σ |∇fσ|2dµt + 2pµ

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt.

(4.22)

Substituting (4.22) to (4.21), letting µ = 4
b(p−1) and p ≥ max{2, 8

bǫ∇
+1} we obtain

∂

∂t

∫

Mt

fp
σdµt ≤ − p(p− 1)

2

∫

Mt

fp−2
σ |∇fσ|2dµt

− pǫ∇

∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt

+ 2b̄p

∫

Mt

fp
σdµt +

b̃σαǫp

b

∫

Mt

fp
σ(a|H |2 + βǫc)dµt.
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This together with (4.12) implies

∂

∂t

∫

Mt

fp
σdµt ≤ − p(p− 1)

(

1

2
− 2b̃σαǫ

b2ηε

)
∫

Mt

fp−2
σ |∇fσ|2dµt

−
(

pǫ∇ − (2pη + 5)b̃σαǫp

b2ε

)
∫

Mt

fp−1
σ

(a|H |2 + βǫc)1−σ
|∇H |2dµt

+ 2b̄p

∫

Mt

fp
σdµt.

(4.23)

Now we pick η = 4b̃αǫσ
b2ε

and let σ ≤ min
{

b2εǫ∇
10b̃αǫ

,
b2ε

√
ǫ∇

4b̃αǫ
√
p
, 1
2

}

. Then (4.23) reduces

to

∂

∂t

∫

Mt

fp
σdµt ≤ 2b̄p

∫

Mt

fp
σdµt.

This implies
∫

Mt

fp
σdµt ≤ e2b̄pt

∫

Mt0

fp
σdµt.(4.24)

If t ∈ [0, t0], by the smoothness of the mean curvature flow we see that
∫

Mt
fp
σdµt

is bounded. For t ≥ t0, we only have to show that Tmax is finite.

Lemma 4.5. The maximal existence time Tmax of the mean curvature flow is finite.

Proof. Fixed a point y ∈ F
n+d(c) and let r be the distance function on F

n+d(c)
from y. Denote also by r the composition r ◦ Ft. We may assume that r > 0 on
Mt for t ∈ [0, Tmax). In fact, if d = 1, we may choose y such that it is outside of a
geodesic ball in F

n+1(c) that encloses M0. By the maximum principle we see that y
doesn’t lies in any Mt. If d > 1, then the Haussdorff dimension of F (M × [0, Tmax))
is no more than n+1. So we can also pick a point y such that it doesn’t lies in any
Mt. In both cases, we have r > 0 on each Mt.

From [4], we know that

△r = 〈H, ∂r〉+ coc(r)(n − |∂T
r |2).(4.25)

Here coc(r) =
√
−c cosh(

√
−cr)

sinh(
√
−cr)

=
√
−c(e

√
−cr+e−

√
−cr)

e
√

−cr−e−
√

−cr
, ∂r is the gradient of r in

F
n+d(c), and ∂T

r is the tangent part of ∂r to Mt. Clearly we have coc(r) ≥
√
−c

and |∂T
r |2 ≤ 1.

On the other hand, since Ft satisfies (1.1), we have

∂

∂t
r = 〈H, ∂r〉.(4.26)

Combining (4.25) and (4.26) we obtain

∂

∂t
r = △r − coc(r)(n − |∂T

r |2).(4.27)

Suppose that r(0) < R. By the maximum principle we see that

r(t) < R− (n− 1)
√
−ct.(4.28)

Then Tmax < R
(n−1)

√
−c

, i.e., the maximal existence time of the mean curvature flow

is finite. �
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By Proposition 4.5, we finish the proof of Lemma 4.4.
�

Now we can proceed as in [11] or [14] via a Stampacchia iteration procedure to
complete the proof of Theorem 4.1.

�

5. A gradient estimate for the mean curvature

We establish a gradient estimate for the mean curvature flow, which will be used
to compare the mean curvature at different points of the submanifold. We also
assume that c < 0.

Theorem 5.1. For every η > 0, there exists a constant Cη independent of t such
that for all t ∈ [0, Tmax), there holds

|∇H |2 ≤ η|H |4 + Cη.(5.1)

Proof. By direct computation, we have

∂

∂t
|H |4 ≥ △|H |4 − 12|H |2|∇H |2 + 4

n
|H |6 + 4nc|H |4,(5.2)

∂

∂t
|∇H |2 ≤ △|∇H |2 + C1|H |2|∇A|2 + C2|∇A|2,(5.3)

for constants C1 and C2 independent of t.
We also have the following estimate for sufficiently large positive constants N1

and N2 independent of t.

∂

∂t

(

(N1 +N2|H |2)|Å|2
)

≤ △
(

(N1 +N2|H |2)|Å|2
)

− 4(n− 1)

3n
(N2 − 1)|H |2|∇A|2

− 4(n− 1)

3n
(N1 − C(N2))|∇A|2

− C2(N1, N2)|Å|2(|H |4 + 1)− 2ncN1|Å|2.

(5.4)

In (5.4), C(N2) and C(N1, N2) are constants depending on N2 and N1, N2 respec-

tively. Consider the function f = |∇H |2 + (N1 +N2|H |2)|Å|2 − η|H |4. From (5.2),
(5.3) and (5.4), we have

∂

∂t
f ≤ △f − 4(n− 1)

3n
(N2 − 1)|H |2|∇A|2 − 4(n− 1)

3n
(N1 − C3(N2))|∇A|2

+ C4(N1, N2)|Å|2(|H |4 + 1) + 12η|H |2|∇H |2 − 4η

n
|H |6 − 4ncη|H |4.

(5.5)

Here we have consumed C1|H |2|∇A|2 + C2|∇A|2 by firstly choosing sufficiently
large N2 and secondly choosing sufficiently large N1. Notice that |∇H |2 ≤ n|∇A|2.
We can choose larger N2 and N1 depending on η to consume 12η|H |2|∇H |2 and

make the second, third terms of the right hand side of (5.5) negative. Since |Å|2 ≤
C0|H |2−σ0 for t ≥ t0 and |Å|2 is uniformly bounded for t ∈ [0, t0], using Young’s
inequality we get

C4(N1, N2)|Å|2(|H |4 + 1)− 4ncη|H |4 ≤ 4η

n
|H |6 + Cη.
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Here Cη is a constant depending on η and other quantities but independent of t.
Then we obtain

∂

∂t
f ≤ △f + C5.

Notice that Tmax is finite. Then the theorem follows from the maximum principle
and the definition of f . �

6. Convergence of MCF in a hyperbolic space

Theorem 6.1. Let F : Mn → F
n+d(c) be a smooth closed submanifold, where

n ≥ 2 and c < 0. Assume F satisfies

|A|2 ≤
{

4
3n |H |2 + n

2 c, n = 2, 3,
1

n−1 |H |2 + 2c, n ≥ 4.
(6.1)

Then Ft(M) converges to a round point in finite time.

Proof. By the curvature estimate in [5], we see that

Kmin(x) ≥
1

2

(

1

n− 1
− αǫ

)

|H |2(x) + 1

2
(2 − βǫ)c.

By our choices of αǫ and βǫ, and the preserved pinching condition, we see that there
exists a positive constant ε0 independent of t such that

Kmin(x) ≥ ε0|H |2.(6.2)

Since Tmax is finite, maxMt
|A|2 → ∞ as t → Tmax. By similar arguments as in

[1, 11, 12] we have
maxMt

|H|
minMt

|H| → 1 as t → Tmax, and Mt’s converge to a single point

o as t → Tmax. If we take a rescaling around o (since F
n+d(c) can be consider as

a linear space that isomorphic to R
n+d) such that the total area of the expanded

submanifolds are fixed, then the rescaled immersions converge to a totally umbilical
immersion as t → Tmax. �

When p = 1 and n = 3, we have the following proposition.

Proposition 6.2. Let F : M3 → F
4(c) be a smooth closed hypersurface in a

hyperbolic space with constant curvature c < 0. Assume F satisfies

|A|2 ≤ 1

2
|H |2 + 2c.

Then the mean curvature flow with F as initial value converges to a round point in
finite time.

Proof. If d = 1, then ÅI = 0. If we take α ≤ 1
n−1 and β ≥ 2 for all n ≥ 2, the

left hand side of (3.2) is nonpositive. Hence |A|2 ≤ 1
n−1 |H |2+2c is preserved along

the mean curvature flow for all n ≥ 2. When n = 3, if we set a = 1
3(2+ǫ) , then

ǫ∇ = 3
4 − 1

3 − a > 0, and Theorem 4.1 also holds. Then Theorem 5.1 follows. By
a similar argument as in the proof of Theorem 6.1, we get the convergence of the
mean curvature flow.

�
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Remark 6.3. When d = 1 and n = 3, the pinching condition |A|2 ≤ 1
2 |H |2 + 2c is

better than condition (6.1). In fact, we have 1
2 |H |2 + 2c− 4

9 |H |2 − 3
2c =

1
18 |H |2 +

1
2c > 0. Here we have used the fact that |H |2 + 9c > 0, which is implied by

|A|2 ≤ 1
2 |H |2 + 2c.
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