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MEAN CURVATURE FLOW OF HIGHER CODIMENSION
IN HYPERBOLIC SPACES

KEFENG LIU, HONGWEI XU, FEI YE, AND ENTAO ZHAO

ABSTRACT. In this paper we investigate the convergence for the mean curva-
ture flow of closed submanifolds with arbitrary codimension in space forms.
Particularly, we prove that the mean curvature flow deforms a closed subman-
ifold satisfying a pinching condition in a hyperbolic space form to a round
point in finite time.

1. INTRODUCTION

In this paper, we study the convergence of the mean curvature flow of subman-
ifolds in space forms. Let F' : M™ — F"*4(c) be a smooth immersion from an
n-dimensional closed Riemannian manifold M™ to an (n + d)-dimensional complete
simply connected space form F"?(c) with constant sectional curvature c. Consider
a one-parameter family of smooth immersions F : M x [0,T) — F"+4(c) satisfying

(11) { %F(,’E,t) = H(l‘,ﬁ),

F(z,0) = F(x),
where H(z,t) is the mean curvature vector of F;(M) and Fy(z) = F(x,t). We call
F: M x[0,T) = F*4(c) the mean curvature flow with initial value F'.

The mean curvature flow was proposed by Mullins [I7] to describe the formation
of grain boundaries in annealing metals. In [3], Brakke introduced the motion of
a submanifold by its mean curvature in arbitrary codimension and constructed a
generalized varifold solution for all time. For the classical solution of the mean cur-
vature flow, most works have been done on hypersurfaces. Huisken [111 [12] showed
that if the initial hypersurface in a Riemannian manifold is uniformly convex, then
the mean curvature flow converges to a round point in finite time. Later, Huisken
[13] extend this result to hypersurfaces satisfying a pinching condition in a sphere.
Many other beautiful results have been obtained, and there are various approaches
to study the mean curvature flow of hypersurfaces (see [6, [7], etc.). For the mean
curvature flow of submanifolds in higher codimension, some special cases have been
studied, see [19] 20, 2] 22|, 23] 24] etc. for example. Recently, Andrews-Baker
[1] proved a convergence theorem for the mean curvature flow of closed submani-
folds satisfying a pinching condition in the Euclidean space. In [2], Baker proved
a convergence result for the mean curvature flow of submanifolds in a sphere. In
this paper, we study the mean curvature flow of closed submanifolds in hyperbolic
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spaces and extend the convergence result in [Il 2] to the mean curvature flow of
arbitrary codimension in space forms.

Theorem 1.1. Let F': M™ — F"*4(c) be a smooth closed submanifold in a hyper-
bolic space with constant curvature ¢ < 0. Assume F satisfies

AIHI24+n —
(1.2 A < Il 4 Be =25,
L |H?+2¢, n>4.

Then the mean curvature flow with F' as initial value converges to a round point in
finite time.

As an immediate consequence of Theorem [T we obtain the following differen-
tiable sphere theorem.

Corollary 1.2. Let F : M™ — F"t4(c) be a smooth closed submanifold in a
hyperbolic space with constant curvature ¢ < 0. Assume F satisfies

ap < [P 30 n=23
T\ EIHP 2, n>4

Then M s diffeomorphic to the unit n-sphere.

Remark 1.3. This differentiable sphere theorem was also obtained by Gu and Xu
[10, 25] provided the submanifold is simply connected. In fact, they proved the
sphere theorem for submanifolds in a Riemannian manifold by using a different
method. For more sphere theorems of submanifolds, we refer the readers to [I} 2,
9, [10, 16, 18, 25| 28], etc.

Combining Theorem [[LT] and the convergence results in [I], 2], we obtain the
following theorem.

Theorem 1.4. Let F : M™ — F"*4(c) be a smooth closed submanifold in a com-
plete simply connected space form with |H|* +n2c > 0. Assume F satisfies

| H|? + L[Tn— 4 +sgn(c)(n —4)]e, n=2,3,
—L|H|? + 2, n> 4.

(13) 4P < {

Then either Fy(M) converges to a round point in finite time, or ¢ > 0 and Fy(M)
converges to a total geodesic sphere in F"+4(c) as t — oo.

Remark 1.5. For ¢ > 0, |H|?> + n%c > 0 is automatically satisfied. For ¢ = 0,
|H|?> + n?c > 0 is equivalent to that the mean curvature is nowhere vanishing. For
c <0, |H|?> +n?c > 0 is implied by condition (L3).

Remark 1.6. For ¢ > 0, the maximal existence time of the mean curvature flow
may be finite or infinite. For ¢ < 0, the mean curvature flow with a closed initial
submanifold always has finite maximal existence time.

2. BASIC EQUATIONS

Let FF : M x [0,T) — F"*4(c) be a smooth mean curvature flow with initial
closed immersion Fy : M — F"*4(c). Denote by g(t) and du; the induced metric
and the volume form on M. Let A and H be the second fundamental form and
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the mean curvature vector of M in F"+4(c), respectively. We shall make use of the
following convention on the range of indices.

1<i,j,k,---<n, 1<ABC,--<n+d and n+1<a,8,7,--- <n-+d.

As in [I], B], we consider the evolution on the spatial tangent bundle. Choose a
local orthonormal frame {e;} for the spatial tangent bundle and a local orthonormal
frame {v,} for the normal bundle. Let {w;} be the dual frame of {e;}. Then A
and H can be written as

A= Z hijawi ®Wj R Vo = Zhijwi ®Wj, H = ZHQVQ.
i,J, 1,7 o

We have the following evolution equations.

d
(2.1) gﬂMQ:AMF—%VAF+M%+4@HP—%@AR
a 2 2 2 2
(2.2) o[ HI? = AlH* = 2|VH[* + 2R, + 2nclH?,
where
2 12
(2.3) Ry = Z (Zhijahijﬁ) + BRI,
a,B i,
2
(2.4) B2 = 30 (D2 (hinahivs — hapahins) )
ij,a,8 P
2
(2.5) Ry=)Y (Z Hahija) .
%,7 a

The contracted form of Simons’ identity for traceless second fundamental form
A=A- % g® H is

1 o o o o
(2.6) §A|A|2 =hi;ViV;H + |VA|2 +Z+ nc|A|2.
Here
(2.7) Z=-R+ Z Hohipahijghpjs-
1,J,p,c, 8

We also have the following inequality.

3
25 2
(2.8) VAP > S [VHP.

3. PRESERVED CURVATURE PINCHING CONDITION

Now we prove that the pinching condition (L2]) is preserved under the mean
curvature flow with arbitrary codimension in the hyperbolic space.

Lemma 3.1. For ¢ < 0 and n > 2, if the initial immersion satisfies (I.3), then
this condition is preserved along the mean curvature flow.
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Proof. We consider Q = |A|? — a|H|? — B¢, where the constants

i - 2 =
o< 371, n =23, and B>02 n=2,3,
n>4 2, n > 4.

T

By (21) and ([Z2) we have
0

5@ = AQ-2(VAP —alVHP)

)

o 1
(3.1) +2R; — 2Ry — 2nc|A|? — 2n <a - —>C|H|2.
n
We only have to show that if @ = 0 at a point x € M, then
o 1
2R; — 2Ry — 2nc|A)? — 2n(a - —)C|H|2 <0
n
holds at z. We also have H # 0 at x. Choose {v,} such that v, = %‘ Let
A =Y hijnrwi ® wy. Set Ay = Ay — Z1d and |A7[? = |A]2 - |Ag[.
We replace |H|? with Moi—lm. Then

o 1
2R; — 2Ry — 2nc|A|? — 2n (a - —)C|H|2
n

. 1 o 2 2 1
<olduf? - 2(a 2 )lAuPP + 2 Ple - 2 (o 1)t

o o o o o 1
+8|Ag?|Ar]? + 3|Af|* — 2nc(|Am|* + |A1]?) — 2n (a - E)C|H|2

B (o Yt (3= i
__H(T_%)|H||I|+ _H(T_%)lll
2 o o

— 25(”(%_%) —n)c2.

By the definition of o and 8, we know that the right hand side of (3.2]) is nonpositive
for n > 2. This completes the proof of the lemma. O

For € > 0, set

4 _ n —
Qe = SnJlrne7 n=2,3, and f. = 5(1 + 6), n=23,
e =>4, 2(1+e€), n>4.

If the initial immersion satisfies |A|? < z-|H|? + Z¢ for n = 2,3, and |A]* <
—L-|H|?> 4 2c for n > 4, then there exists an e > 0 such that |A]* < a|H|* + Bcc
holds on Mj. From the proof of Lemma [3.1] this inequality also holds for ¢ > 0.
On the other hand, if |A]* = SL|H|? + Zc¢ for n = 2,3, or |A]> = 15 |H|* + 2¢ for
n > 4 holds somewhere on My, then by the maximum principle, we see that either
the equality holds everywhere on My, or the strict inequality holds everywhere for
t > 0. For the first case, we have VA = 0 and A; = 0 on My. By [8], My lies
in an (n + 1)-dimensional total geodesic submanifold of F**¢(c). Since VA = 0,
from Theorem 4 of [15], My is either locally isometric to an Euclidean space, or
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locally isometric to a product F¥(c;) x F* ¥(cy) for some ¢; > 0, ca < 0 and
k =0,---,n. Since My is closed, we see that My is a totally umbilical sphere.
Then |A|?> < a|H|? + Bec holds on M, for some € > 0. For the second case, we see
that after a short time, we also have |A|? < a|H|? + Bcc for some € > 0. Hence,
we may assume that |A|? < a.|H|* + Bec for some € € (0,1) and ¢ >ty > 0.

4. PINCHING OF A ALONG THE MEAN CURVATURE FLOW

Assume that ¢ < 0. We prove a pinching estimate for the traceless second
fundamental form, which guarantees that M; becomes spherical along the mean
curvature flow.

Theorem 4.1. There are positive constants Cy and o independent of t such that
(4.1) |A]? < Co|H[*~°

holds along the mean curvature flow.

Proof. We consider the function f, = (a|H|2‘f¢‘: g where o € (0,1) and
1
; =23
a = 3n+717,5 n
n(n—1+e€)’ n=4

Notice that

> |m?
(42) — 3n+ ne
€
> . B(—
> e B(-0)
0

for n = 2,3, and

alH|? 4 Bec — ((ozE - %)|H|2 + ﬂéc>

(4.3) = n(n—1+e)| I
> m - B(=c)
>0

for n > 4. So f, is well-defined. From ([@2]) and ([&3]) we also have
(4.4) alH? + Bec > b|H|?,

where

£ n > 4.

b_{Sn-ei-ne’ TL:2,3
n(n—1+e€)’
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By a similar computation as in [I], we have

0 2a(1 — o) 5
a.lo =A o 7ro . o H ) o
5ile =0 +a|H|2+ﬁ€c<v| %,V /o)
2 2 1 2 a|/i|2 2
P (VAR IV v
4ac(1 — o) 9 2 2a0 f» 9
(4.5) _(alHl2+ﬂEc>2f”|H| "Wﬂ‘ _alf‘ll2+ﬂec|VH|
' 2 1 aRy|AJ? -
+mmw+mma(m o2 GHE + e "M
an(1 — o)c|A]2|H|?
alH|? + Bec
2CLUR2fU
alH|? + Bec’

By (2.8), we have

al A?
alH|? + Bec
3 1 ol D pe)
2( Lo
n
1

1
VAP~ —|VHP - v

H2
n+ 2 alH|? 4 Bec >|V |

2( S —a>|VH|2
n+2 n

ev|VH|?.

Here ey is a positive constant for n > 2.
We also have the following estimate.

1 aRy| Al
R — =Ry — ——L__
YR G[HPZ A Bec
1 Ry| A2
<Ry ——Ry—
1 2 |H|2
Ry| A2
(4.7) B =

o AR 2\, 2 /1A 1
< |Ag|* -2 AP _ 2 AgP|H)? = = — = |J|H|*
< Ml - 2( {7 - 2) 1 AuPir? - 2 (15 - 1))
o o 3 .
— 4 AuPlAL? = 1AL

<0.

In (£7) we have used the pinching condition |A|? < a|H|? + Bec < a|H|? for
e€ (0,1).
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By (£4), we have

an(1 — o)c|A|2| H|?

el A2 -
nel4| alH|? + Bec
: 1—0)c|A]*(al H? + Bec)
< _ 2 an(
(4.8) < —neld| b(a|H[? + Bec)

< —nelAP? — == AP

= bAJ%.
For the last term of right hand side of (&), we have by (4]

2 2 ~
2a0Rafo _ 2a0|HPIAPS, _ 299 ARf, = bol A2,

4.9
(4.9) alH|? + Bec = alHP2+Bc — b

Combining (£5), ([@6), (1), [@8) and (@9), we have

0 2a(1 — o)
— < [
Jo < Bfo + alH|? + Bec

(4.10) Ot
+2bf5 + bo A f5.

2€v
(alH|? + fec)!

(VIHP,Vfq) - — |VH?

To deal with the last term of the right hand side of ([@I0]), we need the following
estimate.

Proposition 4.2. There exists a positive constant € independent of t such that
(4.11) Z + nc|A]? > e|A]*(a|H|? + Bec)
holds for t > tg.

Proof. By the argument in the proof of Lemma 5.4 in [2], we only have to show

Be 1 n—2
_ - <0.
ac—1\n  2n(n-1) s
This is true by our choice of a, and f. O

Proposition 4.3. For anyn >0, p > 2 and t > ty, we have
2p77—|—5/ fpt
P(alH|* + Bec)dpy < B
fo'(a’| | +ﬂ C) Mt = be M, (a|H|2+ﬁ€c)1

2(p—1 _
$ 202D gy e,
ne M,

— |[VH[?dp,
(4.12) M



8 KEFENG LIU, HONGWEI XU, FEI YE, AND ENTAO ZHAO

Proof. We have the following estimate.

9 fp*l 7d 5 fp71 A 2d
ag —"_ pas
/Mt (a|H|2 +/Béc)lfa' ot nc/]wt (a|H|2 _|_/BEC)170-| | 1223

22 o
<2(p-1 < Vi ||A|IVH|d
<2 1) [l VAUV Hldi

2(n—1) fe! 2
+ " /Mt (a|H|2+ﬁ€C)17‘7|vH| dpg

(4.13)

5! o
w4 [ G e HIAIVA P

i
+4(1 - -2 —2——|H||VH||V f,|d
( U)(p )/I\/[t (a|H|2+ﬁ€c)| || || f | 1327
I8 2 2
4 ———— | H|*|VH|*du;.
+ ,/]\4t (Q|H|2+ﬂec)2| | | | Mt

Since |A|2 < fy(alH|?> + Bec)' =7 and f, < (a|H|?> + Bec)?, by choosing o € (0,1)
we have the following estimates.

p—2 .
20 =) |l e IV ANV H
M

(4.14) alH? + Bec)!
R F5 NV o +(p—1)n/ e IVH|*dp
- Ju 7’ o | dpu w, (a|H|2 + Bec)l=° "
st ) )
4/M (G|H|2+560)2—0|H||A|IVH| dus
(4.15) - g/ o1 -
T b Jm, (alH[? + Bee)t e fhts
fe!
e /M i+ g TIVHIY foldp
1 5
<02 [ e (S P 20V i
(4.16) : )
2(p—2 -
B % M, fg 2|Vf0|2d,ut
fe! ,
+2(p—2)n/M (Q|H|2+/BEC)170|VH| dut,

P 5 5 4 / fr-1 ,
4.17) 4 —_Jo  \HPAVHdu, < = P —
( ) /Mt (a|H|? + ﬂéc)2| | | | Ht = b M, (a|H? + ﬂéc)lfgl | Mt

In (£15), (@I16) and (£I7) we have used (L.4).
By ([@II), we have

fet 712

2 / i (Z + 2ne| A]?)dpe
(alH|? + Bec)t7

(4.18) M

> 25/ fP(alH|* + Bec)dps.
My



MEAN CURVATURE FLOW OF HIGHER CODIMENSION 9

Combining (13)-@I8), we obtain

3 + 10 p—1
2 [ f2(alH[ + Bec)dpy < 2 / 2f |V H|*dp,
M Mt G|H| + ﬁ )
(4.19) ( 1)
5_2|Vfo|2d,ut-
Dividing through by 2e completes the proof. (I

Now we show that the LP-norm of f, is bounded for sufficiently high p.

2 b2
Lemma 4.4. For any p > max{2, > e T 1} and ¢ < min { ?O%ZZ, 45}@, %}, there

exist a constant C' independent of t such that for all t € [0, Tyax) where Tpax < 00,
we have

(4.20) ([ seaw) <c.

Proof. For t > tg, form (£I0), we have

0 0
P < [ pre s fedi
M, My

p
< —pp—1) / 1221 o P
e
4 15 IV £l
. 1— [ S— A
(1:21) HA = [ IHIVIHIIY ol

2! 2
-2 VH|*d
pPeEY /Mt ((I|H|2 +ﬁ€c)l—0'| | Mt

w2y [ frduction [ AP f3d
M, M

As in ([£I0), we have

fg !
41 -0 —2—|HI||VI|HI|||V fo|dw
( )p/,a|[[|2 Bec| || | ||| f | t

(4.22) -
<22 [ vy, Py +2pu/ fe~ [VH|*du
e bu M, o o t M, (Q|H|2+ﬂ50)170’ t-
Substituting (£22)) to (A21)), letting u = ( iy and p > max{2, ;=—+ 1} we obtain
3] -1 _
O ppawe< POV g pay,
M, My
Jo VH|%d
— pev /Mt (a|H|2+BeC)1_‘T| |“dput
_ boor,
vt [ g+ T [ pralHP + Bl
M, M
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This together with (@I2]) implies
(4.23)

o 1 2boa
— Py < —plp—1)[ = — 222 P27 £ 124
fRdue < —p(p )<2 [ )/M fE2IV fol “dpn

ot M,
(2pn + 5)boacp / f2t )
— — g H|*d
(pev b2z M, (a|H|2 +550)1*‘7 |V | e

+2l3p/ fEdyy.
My

7 2
Now we pick n = 4292 and let o < min{bzsJ bevew l}. Then ([2Z3) reduces

bZe 10ba. ’ 4bacy/p’ 2

to

o _

= | fFdpe <2bp | fdp.

(9t M, M,
This implies
(4.24) fodpy < 2P [ Py,

M Mz,

If t € [0, to], by the smoothness of the mean curvature flow we see that fMt fPduy
is bounded. For t > ty, we only have to show that Ty, is finite.

Lemma 4.5. The mazximal existence time Tyax of the mean curvature flow is finite.

Proof. Fixed a point y € F"¢(c) and let 7 be the distance function on F"*9(c)
from y. Denote also by r the composition r o F;. We may assume that » > 0 on
M, for t € [0, Tinax)- In fact, if d = 1, we may choose y such that it is outside of a
geodesic ball in F**1(c) that encloses My. By the maximum principle we see that y
doesn’t lies in any M,. If d > 1, then the Haussdorff dimension of F(M X [0, Tnax))
is no more than n+ 1. So we can also pick a point y such that it doesn’t lies in any
M;. In both cases, we have r > 0 on each Mj.
From [4], we know that

(4.25) Ar = (H,0,) + coc(r)(n — [0]']?).
Here co.(r) = \/fncho(sg(_—‘/:_;r) = ‘/__:\(/;\/:_:tfr), O, is the gradient of 7 in
F+d(c), and O is the tangent part of 9, to M;. Clearly we have co.(r) > /—c
and |07 |2 < 1.

On the other hand, since F; satisfies (), we have

0
4.26 —r = (H,0).
(4.26) Or=tma)
Combining (£25) and ([£26) we obtain
0

(4.27) Tl Ar — co.(r)(n — [0F]?).

Suppose that 7(0) < R. By the maximum principle we see that
(4.28) r(t) < R—(n—1)y/—ct.

Then Thax < #, i.e., the maximal existence time of the mean curvature flow
is finite. [l
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By Proposition [£.5], we finish the proof of Lemma [£.4]
O

Now we can proceed as in [11] or [I4] via a Stampacchia iteration procedure to
complete the proof of Theorem E.11
O

5. A GRADIENT ESTIMATE FOR THE MEAN CURVATURE

We establish a gradient estimate for the mean curvature flow, which will be used
to compare the mean curvature at different points of the submanifold. We also
assume that ¢ < 0.

Theorem 5.1. For every n > 0, there exists a constant C,, independent of t such
that for all t € [0, Timax), there holds

(5.1) VH]? < nlH[* + C,.
Proof. By direct computation, we have
0 4
(5.2) §|H|4 > NH* —12|HPVH|]? + E|H|6 + 4nc|H|?,
0
(5.3) &|VH|2 < AIVH|?> + C1|H|?IVA]? + Co|[VAP?,

for constants C7 and C5 independent of ¢.
We also have the following estimate for sufficiently large positive constants N;
and N> independent of t.

(5.4)
g (04 NalHP)LAR ) < (4 NalHP)LAR ) - 20D, - )PP
2Dy, - cvivar

— Co(Ny, No)|AP(|H|* + 1) — 2neN, | A2

In (&4), C(N3) and C(Ny, Na) are constants depending on N and Ny, Nj respec-
tively. Consider the function f = |VH|? + (N1 + Na|H|?)|A]?2 — n|H|*. From (£.2),
B3) and B4), we have

n

O p<ar- Y, —nmpwap - Do oy var

(5.5)
) 4
+ Co(Ny, No)|AR(H|* + 1) + 120 H2|VH|? — —:|H|6 — dnen|H|%.

Here we have consumed Ci|H|?|VAJ? + C3|VA|? by firstly choosing sufficiently
large Ny and secondly choosing sufficiently large N;. Notice that [VH|? < n|V A|?.
We can choose larger Ny and N; depending on 7 to consume 12n|H|?|VH|? and
make the second, third terms of the right hand side of (5.5) negative. Since |A[2 <
ColH[>7°0 for t > to and |A[? is uniformly bounded for ¢ € [0, o], using Young’s
inequality we get

. 4
Ca(Ny, No)|AP(JH[* + 1) — dnen|H|* < £|H|6 +C,.
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Here C), is a constant depending on n and other quantities but independent of t.
Then we obtain

0
—f<A .
(f%f_ f+Cs

Notice that Ti,ax is finite. Then the theorem follows from the maximum principle
and the definition of f. O

6. CONVERGENCE OF MCF IN A HYPERBOLIC SPACE

Theorem 6.1. Let F : M™ — F"*4(c) be a smooth closed submanifold, where
n>2 and c <0. Assume F satisfies

AHI24+n —
(6.1) AP < sl HI +5¢ n=23
T |5 HP +2¢, n>4

Then Fy (M) converges to a round point in finite time.

Proof. By the curvature estimate in [5], we see that

1 1

Kmin(z) > 3 (m - ae) |H|?(x) + %(2 — Be)e.

By our choices of a, and j., and the preserved pinching condition, we see that there
exists a positive constant £y independent of ¢ such that

(62) Kmin(:v) Z EQ|H|2.

Since Thax is finite, maxyy, |A|? — 0o as t — Thax. By similar arguments as in

[T, [T, 2] we have < H]

, . .
Wi TH] 1 as t = Tiax, and M;’s converge to a single point

0 as t — Tyax. If we take a rescaling around o (since F"*%(c) can be consider as
a linear space that isomorphic to R"*¢) such that the total area of the expanded
submanifolds are fixed, then the rescaled immersions converge to a totally umbilical
immersion as t — Tmax. [l

When p =1 and n = 3, we have the following proposition.

Proposition 6.2. Let F : M? — F*(c) be a smooth closed hypersurface in a
hyperbolic space with constant curvature ¢ < 0. Assume F satisfies

1
|A]? < 5|H|2 + 2c.

Then the mean curvature flow with F as initial value converges to a round point in
finite time.

Proof. If d = 1, then ;11 = 0. If we take a < ﬁ and 8 > 2 for all n > 2, the
left hand side of (3.2) is nonpositive. Hence |A|?> < —L-|H|? + 2c is preserved along
the mean curvature flow for all n > 2. When n = 3, if we set a = ﬁ, then
ev = 2 — 2 —a > 0, and Theorem E.T] also holds. Then Theorem (1] follows. By

a similar argument as in the proof of Theorem [6.I] we get the convergence of the
mean curvature flow.

O



Remark 6.3. When d = 1 and n = 3, the pinching condition |A|? <
better than condition @.I). In fact, we have §|H|? +2c — 5|H|* — 3

1
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H|*+2cis

1
2 1 2
c=15|HI* +

3¢ > 0. Here we have used the fact that |H|? + 9¢ > 0, which is implied by

|A|?2 < L H|* + 2.
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