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1 Generalized Ricci flow I: Local existence and

uniqueness

Chun-Lei He∗, Sen Hu†, De-Xing Kong‡ and Kefeng Liu§

Abstract

In this paper we investigate a kind of generalized Ricci flow which pos-

sesses a gradient form. We study the monotonicity of the given function

under the generalized Ricci flow and prove that the related system of par-

tial differential equations are strictly and uniformly parabolic. Based on

this, we show that the generalized Ricci flow defined on a n-dimensional

compact Riemannian manifold admits a unique short-time smooth solu-

tion. Moreover, we also derive the evolution equations for the curvatures,

which play an important role in our future study.

Key words and phrases: Generalized Ricci flow, uniformly parabolic system,

short-time existence, Thurston’s eight geometries.

1 Introduction

In the early eighties R. Hamilton introduced the Ricci flow to construct canon-

ical metrics for some manifolds. Since then many mathematicians, including

Hamilton, Yau, Perelman and others, developed many tools and techniques to

study the Ricci flow. The latest developments confirmed that the Ricci flow
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approach is very powerful in the study of three-manifolds. In fact, a complete

proof of Poincare’s conjecture and Thurston’s geometrization conjecture has

been offered in Cao-Zhu’s paper [3] and others after Perelman’s breakthrough.

It is useful to observe that, in Perelman’s work [10], a key step is to introduce

a functional for a metric g and a function f on a manifold M

W (g, f) =

∫

M3

d3x
√
ge−f(R + |∇f |2).

The variation of this functional generates a gradient flow which is a system of

partial differential equations

ġij = −2(Rij +∇i∇jf),

ḟ = −(R+△f).

If we fix a measure for the conformal class of metrics efds2 of a metric, i.e.,

let dm = e−fdV be fixed, then we get back to the original Ricci flow after we

apply a transformation of diffeomorphism generated by the vector field ∇if to

the metric. In this way, we express the Ricci flow as a gradient flow. Dynamics

of a gradient flow is much easier to handle. The functional generating the flow

gives a monotone functional along the orbit of the flow automatically. If the

flow exists for all time, then it shall flow to a critical point which leads to the

existence of a canonical metric. Even for a flow which does not exist for all

time, the generating functional helps very much in the analysis of singularities.

Perelman’s above idea came from physics. Ricci flow arises as the first order

approximation of the renormalization flow of a sigma model. Since there are

many kinds of sigma models, it would be interesting to try some other models.

Indeed such a generalization was made by physicists in [11]. For a three-manifold

M3, they proposed to add a U(1) gauge field with potential 1-form A and

field strength F which are coupled as a Maxwell-Chern-Simons theory. The

corresponding action given by [6] or [5] reads

S =

∫

M

d3x
√
ge−f(−χ+R+ |∇f |2)− 1

2
e−fH ∧ ∗H − e−fF ∧ ∗F.
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The U(1) gauge field A is a one-form potential whose field strength F = dA.

The Wess-Zumino field B is a two-form potential whose field strength H = dB,

f is a dilaton. In their paper, they find that Thurston’s eight geometries appear

as critical points of the above functional. Furthermore they show that there

are no other critical points. So basically critical points of the above functional

are eight geometries of Thurston. They also propose to study the gradient flow

of the functional S as a generalization of the Ricci flow. Unfortunately, they

modify the gradient flow in a way to change sign for the variable of gauge fields.

Although the modified flow shares the same set of critical points they lost the

important monotone property (along an orbit).

In addition, we are also able to consider a flow for a similar functional for a

four-dimension manifold

S1 =

∫

M

d4x
√
ge−f(χ+R+ |∇f |2)− 1

2
e−fH ∧ ∗H − e−fF ∧ ∗F +

e

2
F ∧ F

where e is the Euler number e(η) of the bundle η. The corresponding flow is

given by


















































∂gij
∂t

= −2[Rij +∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk],

∂Bij

∂t
= ef∇k(e

−fHk
ij),

∂Ai

∂t
= −ef∇k(e

−fF k
i ),

∂f

∂t
= χ− 2R− 3△f + |∇f |2 + 1

3
H2 +

3

2
F 2.

The generalization to four-manifolds is probably more interesting. It may

offer a systematic way to study four-manifolds.

The success of studying three-manifolds relies on a program proposed by

Thurston, i.e., his geometrization conjecture. He conjectures and proves for

several large classes of three-manifolds, that every three-manifold can be decom-

posed into pieces of three-manifolds of canonical metrics, i.e., those manifolds

carrying one of the eight geometries of Thurston.

For four-dimension manifolds the critical points of S1 might play a similar

role as building blocks of smooth four-dimension manifolds. It would be inter-
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esting to study those critical points and to study what other four manifolds one

can get by performing surgeries and gluing on those manifolds. We shall address

this problem in the future.

As a first step, we shall show that the flow does exist. We shall also prove that

the modified system of partial differential equations are strictly and uniformly

parabolic.

The paper is organized as follows. Section 2 is devoted to the proof of local

existences and uniqueness. In section 3 we study the monotonicity of S under

the modified flow. In Section 4 we investigate the equations for the critical

points of S and point out that fields F and H do not provide any help for the

case of compact manifold but maybe play an important role for the noncompact

case. In Section 5, we derive the evolution equations for the curvatures, which

play an important role in our future study.

2 Local Existences and Uniqueness

In this section, we mainly establish the short-time existence and uniqueness

result for the gradient flow (6), (7) and (8) on a compact 3-dimensional manifold

M . It is known that the gradient flow (6), (7) and (8) is a system of second

order nonlinear weakly parabolic partial differential equations. By the proof of

the local existence and uniqueness of the Ricci flow (for example see [3] [4], ),

we can obtain a modified evolution equations by the diffeomorphism ϕ of M ,

which is a strictly parabolic system. Then, by the standard theory of parabolic

equations, the modified evolution equations has a uniqueness solution.

Let us choose a normal coordinate {xi} around a fixed point x ∈ M such

that
∂gij
∂xk

= 0 and gij(p) = δij .

Theorem 2.1 (Local existences and uniqueness) Let (M, gij(x)) be a three-

dimensional compact Riemannian manifold. Then there exists a constant T > 0
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such that the evolution equations


































∂gij
∂t

= −2[Rij −
1

4
HiklH

kl
j − F k

i Fjk],

∂Ai

∂t
= −∇kF

k
i ,

∂Bij

∂t
= ∇kH

k
ij .

(1)

has a unique smooth solution on M × [0, T ) for every initial fields.

Lemma 2.1 For each gauge equivalent class of a gauge field A, there exists an

A
′

such that d(∗A′

) = 0.

The lemma can be proved by the Hodge decomposition.

Proof. For each one-form A, by the Hodge decomposition, there exists an

one-form A0, a function α and a two-form β such that

A = A0 + dα+ d∗β,

dA0 = 0, d∗A0 = 0.

Let A′ = A− dα. A′ is in the same gauge equivalent class of A. Since d(∗A0) =

0, d(∗d∗β) = 0, then we have d(∗A′) = 0. �

Lemma 2.2 The differential operator of the right hand of (7) with respect to

the gauge equivalent class of a gauge field A is uniformly elliptic.

Proof. Let A = Aidx
i be a gauge field. By Lemma 4.1 we can choose an A

′

in the gauge equivalent class of A such that d(∗A′

) = 0. We still denote A′ as

A . Since d(∗A) = 0, we have dd∗A = 0, then
3
∑

k=1

∂2Ak

∂xk∂xi
= 0, ∀ i = 1, · · · , 3.

Noting that F = dA and Fij =
∂Aj

∂xi
− ∂Ai

∂xj
, We have

∂Ai

∂t
= −∇kF

k
i = −∇k(g

klFil) = −gkl(
∂2Al

∂xk∂xi
− ∂2Ai

∂xk∂xl
) = gkl

∂2Ai

∂xk∂xl
.

The right hand side of above equation is clearly elliptic at point x. If we apply

a diffeomorphism to the metric it won’t change the positivity property of the

second order operator of the right hand side. �

Now let us consider the equation for Bij .
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Lemma 2.3 For each gauge equivalent class of a B-field B, i.e., a two-form B

on M , there exists a B
′

such that d(∗B′

) = 0.

Proof. Again we use the Hodge decomposition. For a two-form B, there exist

a one-form α, a two-form B0 and a three-form β such that

B = B0 + dα+ d∗β,

dB0 = 0, d∗B0 = 0.

Let B
′

= B − dα. Since B
′

is in the same gauge equivalent class of B, we

have d(∗B′

) = 0. �

Lemma 2.4 The differential operator of the right hand side of (8) with respect

to the gauge equivalent class of a B-field B is uniformly elliptic.

Proof. Let us consider the equation for B-field. Without loss of generality, we

assume d(∗B) = 0. Thus dd∗B = 0. Then
3
∑

k=1

(
∂2Bki

∂xk∂xj
+

∂2Bjk

∂xk∂xi
) = 0, ∀ i, j =

1, · · · , 3. We have

∂Bij

∂t
= ∇kH

k
ij = gkl(

∂2Bij

∂xk∂xl
+

∂2Bjl

∂xk∂xi
+

∂2Bli

∂xk∂xj
) = gkl

∂2Bij

∂xk∂xl
.

The right hand side is clearly elliptic at the point x. If we apply a diffeomorphism

to the metric it does not change the positivity property of the second order

operator of the right hand side. �

Suppose ĝij(x, t) is a solution of the equations (1), and ϕt : M → M is a

family of diffeomorphisms of M . Let

gij(x, t) = ϕ∗
t ĝij(x, t),

where ϕ∗
t is the pull-back operator of ϕt. We now want to find the evolution

equations for the metric gij(x, t).

Denote

y(x, t) = ϕt(x) = {y1(x, t), y2(x, t), · · · , yn(x, t)}

in local coordinates. Then

gij(x, t) =
∂yα

∂xi

∂yβ

∂xj
ĝαβ(y, t)
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and

∂

∂t
gij(x, t) =

∂

∂t

[

ĝαβ(y, t) ·
∂yα

∂xi
· ∂y

β

∂xj

]

=
∂yα

∂xi

∂yβ

∂xj

∂

∂t
ĝαβ(y, t) +

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t

∂

∂yγ
ĝαβ(y, t)

+ĝαβ(y, t)
∂

∂xi
(
∂yα

∂t
)
∂yβ

∂xj
+ ĝαβ(y, t)

∂yα

∂xi

∂

∂xj
(
∂yβ

∂t
) .

Since

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t

∂

∂yγ
ĝαβ =

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t
gkl

∂

∂yγ
(
∂xk

∂yα
∂xl

∂yβ
)

=
∂yβ

∂t

∂2xk

∂yα∂yβ
∂yα

∂xi
gjk +

∂yα

∂t

∂2xk

∂yα∂yβ
∂yβ

∂xj
gik ,

Γk
jl =

∂yα

∂xj

∂yβ

∂xl

∂xk

∂yγ
Γ̂γ
αβ +

∂xk

∂yα
∂2yα

∂xj∂xl
,

then

∂yα

∂xi

∂yβ

∂xj
ĤαρδĤ

ρδ
β = HiklH

kl
j ,

∂yα

∂xi

∂yβ

∂xj
F̂ ρ
α F̂βρ = F k

i Fjk .

Therefore, in the normal coordinate, we have

∂

∂t
gij(x, t) =

∂

∂xi
(
∂yα

∂t
)
∂yβ

∂xj
gkl

∂xk

∂yα
∂xl

∂yβ
+

∂yα

∂xi

∂

∂xj
(
∂yβ

∂t
)gkl

∂xk

∂yα
∂xl

∂yβ
+

∂yα

∂t

∂

∂xi
(
∂xk

∂yα
)gjk

+
∂yβ

∂t

∂

∂xj
(
∂xk

∂yβ
)gik +

∂yα

∂xi

∂yβ

∂xj

[

−2(R̂αβ − 1

4
ĤαρδĤ

ρδ
β − F̂ ρ

α F̂βρ)

]

=
∂

∂xi
(
∂yα

∂t

∂xk

∂yα
)gjk +

∂

∂xj
(
∂yβ

∂t

∂xk

∂yβ
)gik − 2Rij +

1

2
HiklH

kl
j + 2F k

i Fjk

= −2Rij +∇i(
∂yα

∂t

∂xk

∂yα
gjk) +∇j(

∂yβ

∂t

∂xk

∂yβ
gik) +

1

2
HiklH

kl
j + 2F k

i Fjk .

If we define y(x, t) = ϕt(x) by the equations










∂yα

∂t
=

∂yα

∂xk
(gjl(Γk

jl − Γ̃k
jl)),

yα(x, 0) = xα

(2)

and Vi = gikg
jl(Γk

jl − Γ̃k
jl), we get the following evolution equations for the

pull-back metric










∂

∂t
gij(x, t) = −2Rij +∇iVj +∇jVi +

1

2
HiklH

kl
j + 2F k

i Fjk,

gij(x, 0) = g̃ij(x),

(3)
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where g̃ij(x) is the initial metric and Γ̃k
jl is the connection of the initial metric.

The initial value problem (2) can be rewritten as










∂yα

∂t
= gjl(

∂2yα

∂xj∂xl
+

∂yβ

∂xj

∂yγ

∂xl
Γ̂α
βγ − ∂yα

∂xk
Γ̃k
jl) ,

yα(x, 0) = xα.

(4)

Equation (4) is clearly a strictly parabolic system. Then, we have

∂

∂t
gij(x, t) =

∂

∂xi

{

gkl
∂gkl
∂xj

}

− ∂

∂xk

{

gkl(
∂gjl
∂xi

+
∂gil
∂xj

− ∂gij
∂xl

)

}

+
∂

∂xi

{

gjkg
pq 1

2g
km(

∂gmq

∂xp
+

∂gmp

∂xq
− ∂gpq

∂xm
)

}

+
∂

∂xj

{

(gikg
pq 1

2g
km(

∂gmq

∂xp
+

∂gmp

∂xq
− ∂gpq

∂xm
)

}

+
1

2
HiklH

kl
j + 2F k

i Fjk

= gkl
∂2gij
∂xk∂xl

+
1

2
HiklH

kl
j + 2F k

i Fjk .

As a result, from the original equations, we can obtain


































∂gij(x, t)

∂t
= gkl

∂2gij
∂xk∂xl

+
1

2
HiklH

kl
j + 2F k

i Fjk,

∂Ai

∂t
= gkl

∂2Ai

∂xk∂xl
,

∂Bij

∂t
= gkl

∂2Bij

∂xk∂xl
.

(5)

Let

u1 = g11, u2 = g12, u3 = g13, u4 = g22, u5 = g23, u6 = g33,

u7 = A1, u8 = A2, u9 = A3, u10 = B12, u11 = B13, u12 = B23 .

The above equations can be rewritten as the following form

∂ui

∂t
=

∑

j k l

aikjl
∂2uj

∂xk∂xl
+(lower order terms) (k, l = 1, 2, 3; i, j = 1, 2, · · · , 12),

in which

aikjl = gkl (j = i), aikjl = 0 (j 6= i) (i = 1, · · · , 12),

For arbitrary ξ ∈ R
4×11 \ {0}, we have

∑

ijkl

aikjlξ
i
kξ

j
l =

∑

kl

∑

i

gklξikξ
i
l > 0.

Summarize the above discussions, we have the following lemma.
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Lemma 2.5 The differential operator of the right hand side of (5) with respect

to the metric g is uniformly elliptic.

Proof of Theorem 4.1. Noting Lemmas 4.2, 4.4, 4.5 and the compactness

property of M, and using the standard theorem of partial differential equa-

tions (see [1], [2], [7]), we can immediately obtain the local existence of smooth

solution of the modified system (5) with the initial value

gij(x, 0) = g̃ij(x), Ai(x, 0) = Ãi(x), Bij(x, 0) = B̃ij(x).

In turn the solution of the gradient flow (1) can be obtained from (4) (or (2)).

The proof of the existence of smooth solution is completed.

Now we argue the uniqueness of the solution of the gradient flow (1).

By Lemma 4.2, 4.4 and the standard theorem of partial differential equations,

we can obtain the uniqueness of A and B . For any two solutions ĝ
(1)
ij and ĝ

(2)
ij

of the gradient flow (1) with the same initial data, we can solve the initial value

problem (4) (or (2)) to get two families ϕ(1) and ϕ(2) of diffeomorphisms of M .

Thus we get two solutions

g
(1)
ij (·, t) = (ϕ

(1)
t )∗ĝ

(1)
ij (·, t), g

(2)
ij (·, t) = (ϕ

(2)
t )∗ĝ

(2)
ij (·, t),

to the modified evolution (5) equations with the same initial value gij(x, 0) =

g̃ij(x). The uniqueness result for the strictly parabolic equation implies that

g
(1)
ij = g

(2)
ij . Since the initial value problem (4) is clearly a strictly parabolic sys-

tem, the corresponding solutions ϕ(1) and ϕ(2) of (4) must agree. Consequently,

the metrics ĝ
(1)
ij and ĝ

(2)
ij must agree also. Thus, we have proved Theorem. �

Remark 2.1 we are also able to consider a flow for a similar functional for a

four-dimension manifold

S1 =

∫

M

d4x
√
ge−f(χ+R+4|∇φ|2)− ǫH

2
e−fH ∧∗H − ǫF e

−fF ∧∗F +
e

2
F ∧F

where e is the Euler number e(η) of the bundle η. The corresponding flow is
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given by



















































∂gij
∂t

= −2[Rij +∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk],

∂Bij

∂t
= ef∇k(e

−fHk
ij),

∂Ai

∂t
= −ef∇k(e

−fF k
i ),

∂f

∂t
= χ− 2R− 3△f + |∇f |2 + 1

3
H2 +

3

2
F 2.

By the same argument, we can obtain the same results in section 3-4.

3 The Monotonicity Formula

Let M be a n-dimensional compact Riemannian manifold with metric gij , the

Levi-Civita connection is given by the Christoffel symbols

Γk
ij =

1

2
gkl

{

∂gjl
∂xi

+
∂gil
∂xj

− ∂gij
∂xl

}

,

where (gij) is the inverse of (gij). The Riemannian curvature tensors read

Rk
ijl =

∂Γk
jl

∂xi
− ∂Γk

il

∂xj
+ Γk

ipΓ
p
jl − Γk

jpΓ
p
il, Rijkl = gkpR

p
ijl.

The Ricci tensor is the contraction

Rik = gjlRijkl

and the scalar curvature is

R = gijRij .

For each field we shall consider the gauge equivalent classes of fields. Two

metrics g1, g2 are in the same equivalent class if and only if they are differ

by a diffeomorphism, i.e., there exists a diffeomorphism f : M → M such that

g2 = f∗g1. Two gauge fields A1 and A2 are equivalent if and only if there exists a

function α on M such that A2 = A1+dα. Two B-fields B1 and B2 are equivalent

if and only if there exists an one-form β on M such that B2 = B1 + dβ.

10



From the first variation of S, we can obtain the flow equations



















































∂gij
∂t

= −2[Rij +∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk],

∂Bij

∂t
= ef∇k(e

−fHk
ij),

∂Ai

∂t
= −ef∇k(e

−fF k
i ),

∂φ

∂t
= χ− 2R− 3△f + |∇f |2 + 1

3
H2 +

3

2
F 2.

If ϕt is a one-parameter group of diffeomorphisms generated by a vector field

∇f , we have
∂gij
∂t

= −2(Rij −
1

4
HiklH

kl
j − FikF

k
j ),

∂Ai

∂t
= −∇kF

k
i +

∂

∂xi
(∇kfAk),

∂Bij

∂t
= ∇kH

k
ij +

∂

∂xi
(∇kfBkj) +

∂

∂xj
(∇kfBik).

Let Ã = A− dβ where
∂β

∂t
= ∇kfAk, then F̃ = F and

∂Ãi

∂t
= −∇kF̃

k
i .

Similarly, let B̃ = B + dω where
∂ωi

∂t
= ∇kfBik, then

∂B̃ij

∂t
= ∇k(H̃

k
ij).

Because A and Ã (B and B̃) are in the same gauge equivalent class, we still

denote Ã (B̃) as A (B). Now we consider the flow equation

∂gij
∂t

= −2(Rij −
1

4
HiklH

kl
j − FikF

k
j ), (6)

∂Ai

∂t
= −∇kF

k
i , (7)

∂Bij

∂t
= ∇k(H

k
ij). (8)
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Theorem 3.1 Let gij , Ai, Bij and f evolve according to the coupled flow



















































∂gij
∂t

= −2[Rij −
1

4
HiklH

kl
j − F k

i Fjk],

∂Bij

∂t
= ∇kH

k
ij ,

∂Ai

∂t
= −∇kF

k
i ,

∂f

∂t
= χ− 2R− 3△f + 2|∇f |2 + 1

3
H2 +

3

2
F 2.

Then

dS

dt
=

∫
[

(−χ+R− |∇f |2 + 2△f − 1

12
H2 − 1

2
F 2)2 + 2(Rij +∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk)
2

+ 2(∇kF
k

i − F k
i ∇kf)

2 +
1

2
(∇kH

ij
k −H ij

k ∇kf)
2

]

e−fdV.

In particular S is nondecreasing in time and the monotonicity is strict unless

we are on the critical points.

Proof.

dS

dt
=

∫

d3x
√
ge−f(

1

2
gij

∂gij
∂t

− ∂f

∂t
)(−χ+R+ 2△f − |∇f |2 − 1

12
H2 − 1

2
F 2)

+

∫

d3x
√
ge−f ∂gij

∂t
(−Rij −∇i∇jf +

1

4
HiklH

kl
j + F k

i Fjk)

+

∫

d3x
√
ge−f ∂Ai

∂t
(−2∇k(F

k
i e−f)ef ) +

∂Bij

∂t
(
1

2
∇k(H

k
ije

−f )ef )

=

∫

(△f − |∇f |2)(−χ+R− |∇f |2 + 2△f − 1

12
H2 − 1

2
F 2)e−fdV

+

∫

[−χ+R− |∇f |2 + 2△f − 1

12
H2 − 1

2
F 2]2e−fdV

+

∫

2(Rij +∇i∇jf − 1

4
HiklH

kl
j − FikF

k
j )2e−fdV

+

∫

−2∇i∇jf(Rij +∇i∇jf − 1

4
HiklH

kl
j − FikF

k
j )e−fdV

+

∫

2(∇kF
k

i − F k
i ∇kf)

2e−fdV +

∫

1

2
(∇kH

k
ij −Hk

ij∇kf)
2e−fdV

+

∫

2F k
i ∇kf(∇kF

k
i − F k

i ∇kf)e
−fdV +

∫

1

2
Hk

ij∇kf(∇kH
k
ij −Hk

ij∇kf)e
−fdV.

By the similar argument of Ricci flow, we have
∫

(△f − |∇f |2)(R− |∇f |2 + 2△f)e−fdV = 2

∫

∇i∇jf(∇i∇jf +Rij)e
−fdV.

12



And noting the following properties

∇mFij +∇jFmi +∇iFjm = 0,

∇mHijk = ∇iHmjk +∇jHimk +∇kHijm,

we have
∫

(△f − |∇f |2)(−χ− 1

12
H2 − 1

2
F 2)e−fdV

=

∫

gij(∇i∇jf −∇if∇jf)(−χ− 1

12
H2 − 1

2
F 2)e−fdV

=

∫

gij∇if∇j(χ+
1

12
H2 +

1

2
F 2)e−fdV

=

∫

gij∇if(
1

6
∇jHpklH

pkl +∇jFklF
kl)e−fdV

=

∫

gij∇if(
1

6
(∇pHjkl +∇kHpjl +∇lHpkj)H

pkl + (−∇kFlj −∇lFjk)F
kl)e−fdV

=

∫

gij∇if(
1

2
∇pHjklH

pkl + 2∇kFjlF
kl)e−fdV

=

∫

(−1

2
gij∇p∇ifHjklH

pkl − 2gij∇k∇ifFjlF
kl)e−fdV

+

∫

1

2
gijHjkl∇if(−∇pH

pkl +∇pfH
pkl)e−fdV +

∫

2gij∇ifFjl(∇kfF
kl −∇kF

kl)e−fdV

=

∫

2∇i∇jf(−
1

4
HiklH

kl
j − FikF

k
j )e−fdV +

∫

1

2
∇kfH

k
ij(H

p
ij∇pf −∇pH

p
ij)e

−fdV

+

∫

2∇kfF
k

i (F k
i ∇kf −∇kF

k
i )e−fdV.

Combining with the above argument, we finish the proof.

Let u = e−f be the lowest eigenfunction of the Schrodinger operator, i.e.

(R− 1

12
H2 − 1

2
F 2 − 4∆)u = λu,

or,

R− 1

12
H2 − 1

2
F 2 + 2∆f − |∇f |2 = λ.

It minimizes the functional

S(g,A,B, f) =

∫

M

dV e−f/2(R− 1

12
H2 − 1

2
F 2 − 4∆)e−f/2/

∫

M

e−fdV.

13



We have a new functional

λ(g,A,B) = inf{f |
∫
M

e−fdV=1}S(g,A,B, f).

Let λ(t) = λ(g(t), A(t), B(t)), we have

dλ

dt
=

∫

M

(|Rij+∇i∇jf−
1

4
HikjH

kl
j −FikF

k
j |2+

1

4
|∇kHkij−Hkij∇kf |2+|∇kF

k
i −F k

i ∇kf |2)e−fdV.

We have then (see also [9]):

1) λ(t) is monotone, i.e. dλ(t)
dt ≥ 0.

2) Critical points of (*) are the same as critical points of λ.

4 Critical points

Consider the functional

S =

∫

M

d3x
√
ge−f(−χ+R+ |∇f |2)− 1

2
e−fH ∧ ∗H − e−fF ∧ ∗F

=

∫

d3x
√
ge−f (−χ+R+ |∇f |2 − 1

12
H2 − 1

2
F 2).

(9)

Its first variation can be expressed as follows

δS =

∫

d3x
√
ge−f (

1

2
gijδgij − δf)(−χ+ R+ 2△f − |∇f |2 − 1

12
H2 − 1

2
F 2)

+

∫

d3x
√
ge−fδgij(−Rij −∇i∇jf +

1

4
HiklH

kl
j + F k

i Fjk)

+

∫

d3x
√
ge−fδAi(−2∇k(F

k
i e−f)ef ) + δBij(

1

2
∇k(H

k
ije

−f)ef ).

(10)

The U(1) gauge field A is a one-form potential whose field strength F = dA. The

Wess-Zumino field B is a two-form potential whose field strength H = dB, η is

the volume form, f is a dilaton. And in 3-dimension manifold, the field strength

is proportional to the Levi-Civita tensor Hµνρ = H(x)ηµνρ, where H(x) is a

scalar field and ηµνρ = ǫµνρ/
√
g is the completely skewsymmetric Levi-Civita

tensor. Therefore, the critical points satisfy the following equations

Rij +∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk = 0, (11)

14



∇k(F
k

i e−f ) = 0, (12)

∇k(H
k
ije

−f ) = 0, (13)

− χ+R+ 2△f − |∇f |2 − 1

12
H2 − 1

2
F 2 = 0. (14)

Suppose M is a compact Riemannian manifold. From (12) and (13), we can

obtain F = H = 0 at the critical points of the general Ricci flow on M . In fact,
∫

M

F 2e−fdV =

∫

M

F ijFije
−fdV =

∫

M

F ij(∇iAj −∇jAi)e
−fdV

= 2

∫

M

F ij∇iAje
−fdV = −2

∫

M

∇i(F
ije−f )AjdV = 0,

∫

M

H2e−fdV =

∫

M

HijkHijke
−fdV =

∫

M

Hijk(∇kBij +∇iBjk +∇jBki)e
−fdV

= 3

∫

M

Hijk∇iBjke
−fdV = −3

∫

M

∇i(H
ijke−f )BjkdV = 0.

Remark: Although the fields F and H do not provide any help in the study

of critical points of general Ricci flow for compact Riemannian manifold, they

maybe play an important role for the noncompact case.

5 Evolution of Curvatures

By virtue of the curvature tensor evolution equations of the Ricci flow, we can

obtain the curvature tensor evolution equations under the gradient flow (1). Let

us choose a normal coordinate system {xi} around a fixed point x ∈ M such

that
∂gij
∂xk

= 0 and gij(p) = δij .

Theorem 5.1 Under the gradient flow (1), the curvature tensor satisfies the

evolution equation

∂

∂t
Rijkl = △Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)− gpq(RpjklRqi +RipklRqj +RijplRqk +RijkpRql)

+
1

4
[∇i∇l(HkpqH

pq
j )−∇i∇k(HjpqH

pq
l )−∇j∇l(HkpqH

pq
i ) +∇j∇k(HipqH

pq
l )]

+
1

4
gmn(HkpqH

pq
m Rijnl +HmpqH

pq
l Rijkn)

+∇i∇l(F
p

k Fjp)−∇i∇k(F
p

j Flp)−∇j∇l(F
p

k Fip) +∇j∇k(F
p

i Flp)

+ gmn(F p
k FmpRijnl + F p

m FlpRijkn),
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where Bijkl = gprgqsRpiqjRrksl and △ is the Laplacian with respect to the evolv-

ing metric.

Proof. At the point x ∈ M , which we has chosen a normal coordinate system

such that
∂gij
∂xk

= 0, we compute

∂

∂t
Γh
jl =

1

2

∂

∂t
ghm

(

∂gml

∂xj
+

∂gmj

∂xl
− ∂gjl

∂xm

)

+
1

2
ghm

[

∂

∂xj
(
∂gml

∂t
) +

∂

∂xl
(
∂gmj

∂t
)− ∂

∂xm
(
∂gjl
∂t

)

]

,

∂

∂t
Rh

ijl =
∂

∂xi

(

∂

∂t
Γh
jl

)

− ∂

∂xj

(

∂

∂t
Γh
il

)

= −1

2
ghpgqm

∂gpq
∂t

(

∂2gml

∂xi∂xj
+

∂2gmj

∂xi∂xl
− ∂2gjl

∂xi∂xm

)

+
1

2
ghpgqm

∂gpq
∂t

(

∂2gml

∂xj∂xi
+

∂2gmi

∂xj∂xl
− ∂2gil

∂xj∂xm

)

+
1

2
ghm

[

∂2

∂xi∂xl

(

∂gmj

∂t

)

− ∂2

∂xi∂xm

(

∂gjl
∂t

)

− ∂2

∂xj∂xl

(

∂gmi

∂t

)

+
∂2

∂xj∂xm

(

∂gil
∂t

)]

=
1

2
ghm

[

∂2

∂xi∂xl

(

∂gmj

∂t

)

− ∂2

∂xi∂xm

(

∂gjl
∂t

)

− ∂2

∂xj∂xl

(

∂gmi

∂t

)

+
∂2

∂xj∂xm

(

∂gil
∂t

)]

− ghp
∂gpq
∂t

Rq
ijl ,

∂

∂t
Rijkl =

∂

∂t
Rh

ijlgkh +Rh
ijl

∂

∂t
gkh

=
1

2

[

∂2

∂xi∂xl

(

∂gkj
∂t

)

− ∂2

∂xi∂xk

(

∂gjl
∂t

)

− ∂2

∂xj∂xl

(

∂gki
∂t

)

+
∂2

∂xj∂xk

(

∂gil
∂t

)]

,

then we have

∂

∂t
Rijkl =

∂2

∂xi∂xk
Rjl −

∂2

∂xi∂xl
Rkj +

∂2

∂xj∂xl
Rki −

∂2

∂xj∂xk
Ril

+
1

4

[

∂2

∂xi∂xl
(HkpqH

pq
j )− ∂2

∂xi∂xk
(HjpqH

pq
l )− ∂2

∂xj∂xl
(HkpqH

pq
i ) +

∂2

∂xj∂xk
(HipqH

pq
l )

]

+
∂2

∂xi∂xl
(F p

k Fjp)−
∂2

∂xi∂xk
(F p

j Flp)−
∂2

∂xj∂xl
(F p

k Fip) +
∂2

∂xj∂xk
(F p

i Flp)

, I1 +
1

4
I2 + I3.

By the identity (see [3])

∇i∇kRjl −∇i∇lRjk −∇j∇kRil +∇j∇lRik

= △Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)− gpq(RpjklRqi +RipklRqj)

and

∇i∇kRjl =
∂2Rjl

∂xi∂xk
−Rml

∂

∂xi
Γm
kj −Rjm

∂

∂xi
Γm
kl ,
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we have

I1 = ∇i∇kRjl +Rml
∂

∂xi
Γm
kj +Rjm

∂

∂xi
Γm
kl −∇i∇lRkj −Rkm

∂

∂xi
Γm
lj −Rmj

∂

∂xi
Γm
lk

−∇j∇kRil −Rml
∂

∂xj
Γm
ki −Rim

∂

∂xj
Γm
kl +∇j∇lRki +Rkm

∂

∂xj
Γm
li +Rmi

∂

∂xj
Γm
lk

= ∇i∇kRjl −∇i∇lRjk −∇j∇kRil +∇j∇lRik −RkmRm
ijl +RmlR

m
ijk

= △Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)− gpq(RpjklRqi +RipklRqj +RijplRqk +RijkpRql),

where Bijkl = gprgqsRpiqjRrksl.

Now we compute I2.

It is easily verified that

∇i∇k(HjpqH
pq

l ) =
∂2

∂xi∂xk
(HjpqH

pq
l )−HmpqH

pq
l

∂

∂xi
Γm
kj−HjpqH

pq
m

∂

∂xi
Γm
kl .

As a result, we obtain

I2 = ∇i∇l(HkpqH
pq

j ) +HmpqH
pq

j

∂

∂xi
Γm
lk +HkpqH

pq
m

∂

∂xi
Γm
lj −∇i∇k(HjpqH

pq
l )

−HmpqH
pq

l

∂

∂xi
Γm
kj −HjpqH

pq
m

∂

∂xi
Γm
kl −∇j∇l(HkpqH

pq
i )−HmpqH

pq
i

∂

∂xj
Γm
lk

−HkpqH
pq

m

∂

∂xj
Γm
li +∇j∇k(HipqH

pq
l ) +HmpqH

pq
l

∂

∂xj
Γm
ki +HipqH

pq
m

∂

∂xj
Γm
kl

= ∇i∇l(HkpqH
pq

j )−∇i∇k(HjpqH
pq

l )−∇j∇l(HkpqH
pq

i ) +∇j∇k(HipqH
pq

l )

+HkpqH
pq

m Rm
ijl +HmpqH

pq
l Rm

jik

= ∇i∇l(HkpqH
pq

j )−∇i∇k(HjpqH
pq

l )−∇j∇l(HkpqH
pq

i ) +∇j∇k(HipqH
pq

l )

+ gmn(HkpqH
pq

m Rijnl +HmpqH
pq

l Rijkn) .

Now it remains to compute the last term. The following identity

∇i∇k(F
p

j Flp) =
∂2

∂xi∂xk
(F p

j Flp)− F p
m Flp

∂

∂xi
Γm
kj − F p

j Fmp
∂

∂xi
Γm
kl

yields

I3 = ∇i∇l(F
p

k Fjp) + F p
m Fjp

∂

∂xi
Γm
lk + F p

k Fmp
∂

∂xi
Γm
lj −∇i∇k(F

p
j Flp)

− F p
m Flp

∂

∂xi
Γm
kj − F p

j Fmp
∂

∂xi
Γm
kl −∇j∇l(F

p
k Fip)− F p

m Fip
∂

∂xj
Γm
lk

− F p
k Fmp

∂

∂xj
Γm
li +∇j∇k(F

p
i Flp) + F p

m Flp
∂

∂xj
Γm
ki + F p

i Fmp
∂

∂xj
Γm
kl

= ∇i∇l(F
p

k Fjp)−∇i∇k(F
p

j Flp)−∇j∇l(F
p

k Fip) +∇j∇k(F
p

i Flp)

+ gmn(F p
k FmpRijnl + F p

m FlpRijkn) .
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Combining the above discussions, we complete the proof of the theorem. �

Theorem 5.2 The Ricci curvature satisfies the following evolution equation

∂

∂t
Rik = △Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk

+
1

4
gjl[∇i∇l(HkpqH

pq
j )−∇i∇k(HjpqH

pq
l )−∇j∇l(HkpqH

pq
i ) +∇j∇k(HipqH

pq
l )]

+
1

4
gmn(HkpqH

pq
m Rin − gjlHmpqH

pq
l Rijkn)

+ gjl[∇i∇l(F
p

k Fjp)−∇i∇k(F
p

j Flp)−∇j∇l(F
p

k Fip) +∇j∇k(F
p

i Flp)]

+ gmn(F p
k FmpRin − gjlF p

m FlpRijkn).

Proof. By Theorem 5.1, we can compute

∂

∂t
Rik =

∂

∂t
Rijklg

jl +Rijkl
∂

∂t
gjl =

∂

∂t
Rijklg

jl − gjpglqRijkl
∂

∂t
gpq

= gjl[△Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)− gpq(RpjklRqi +RipklRqj +RijplRqk

+RijkpRql)] + 2gjpglqRijklRpq

+
1

4
gjl[∇i∇l(HkpqH

pq
j )−∇i∇k(HjpqH

pq
l )−∇j∇l(HkpqH

pq
i ) +∇j∇k(HipqH

pq
l )]

+
1

4
gjlgmn(HkpqH

pq
m Rijnl +HmpqH

pq
l Rijkn)−

ǫH
2
Rijklg

jpglqHpmnH
mn

q

+ gjl[∇i∇l(F
p

k Fjp)−∇i∇k(F
p

j Flp)−∇j∇l(F
p

k Fip) +∇j∇k(F
p

i Flp)]

+ gmn(F p
k FmpRin + gjlF p

m FlpRijkn)− 2ǫFRijklg
jpglqF m

p Fqm

= △Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk

+
1

4
gjl[∇i∇l(HkpqH

pq
j )−∇i∇k(HjpqH

pq
l )−∇j∇l(HkpqH

pq
i ) +∇j∇k(HipqH

pq
l )]

+
1

4
gmn(HkpqH

pq
m Rin − gjlHmpqH

pq
l Rijkn)

+ gjl[∇i∇l(F
p

k Fjp)−∇i∇k(F
p

j Flp)−∇j∇l(F
p

k Fip) +∇j∇k(F
p

i Flp)]

+ gmn(F p
k FmpRin − gjlF p

m FlpRijkn). �

Theorem 5.3 The scalar curvature satisfies the following evolution equation

∂

∂t
R = △R+ 2|Ric|2 + 1

2
gjlgik[∇i∇l(HkpqH

pq
j )−∇i∇k(HjpqH

pq
l )]

+ 2gjlgik[∇i∇l(F
p

k Fjp)−∇i∇k(F
p

j Flp)]− gipRik

(

1

2
HpmnH

kmn + 2FpmF km

)

.
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Proof. By a direct calculation, we have

∂

∂t
R =

∂

∂t
Rikg

ik +Rik
∂

∂t
gik =

∂

∂t
Rikg

ik −Rikg
ipgkq

∂

∂t
gpq

= gik(△Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk) + 2gipgkqRikRpq

+
1

4
gjlgik[∇i∇l(HkpqH

pq
j )−∇i∇k(HjpqH

pq
l )−∇j∇l(HkpqH

pq
i ) +∇j∇k(HipqH

pq
l )]

+
1

4
gikgmn(HkpqH

pq
m Rin − gjlHmpqH

pq
l Rijkn)−

1

2
gipgkqRikHpmnH

mn
q

+ gikgjl[∇i∇l(F
p

k Fjp)−∇i∇k(F
p

j Flp)−∇j∇l(F
p

k Fip) +∇j∇k(F
p

i Flp)]

+ gikgmn(F p
k FmpRin − gjlF p

m FlpRijkn)− 2gipgkqRikF
m

p Fqm

= △R+ 2|Ric|2 + 1

2
gjlgik[∇i∇l(HkpqH

pq
j )−∇i∇k(HjpqH

pq
l )]

+ 2gjlgik[∇i∇l(F
p

k Fjp)−∇i∇k(F
p

j Flp)]− gipRik

(

1

2
HpmnH

kmn + 2FpmF km

)

. �
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