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A note on modular forms and generalized
anomaly cancellation formulas

Kefeng Liu and Yong Wang

Abstract

By studying modular invariance properties of some characteristic forms, we
prove some new anomaly cancellation formulas which generalize the Han-Zhang
and Han-Liu-Zhang anomaly cancellation formulas
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1 Introduction

In 1983, the physicists Alvarez-Gaumé and Witten [AW] discovered the ”miraculous
cancellation” formula for gravitational anomaly which reveals a beautiful relation be-
tween the top components of the Hirzebruch L-form and A-form of a 12-dimensional
smooth Riemannian manifold. Kefeng Liu [L] established higher dimensional ”mirac-
ulous cancellation” formulas for (8k+4)-dimensional Riemannian manifolds by devel-
oping modular invariance properties of characteristic forms. These formulas could be
used to deduce some divisibility results. In [HZ1], [HZ2], for each (8k+4)-dimensional
smooth Riemannian manifold, a more general cancellation formula that involves a
complex line bundle was established. This formula was applied to spin® manifolds,
then an analytic Ochanine congruence formula was derived. In [CH1], Qingtao Chen
and Fei Han obtained more twisted cancellation formulas for 8k and 8k+4 dimensional
manifolds and they also applied their cancellation formulas to study divisibilities on
spin manifolds and congruences on spin® manifolds. Recently, Han, Liu and Zhang
generalized the anomaly cancellation formulas to cases that an auxiliary bundle as
well as a complex line bundle are involved with non conditions on the first Pontryagin
forms being assumed in [HLZ]. On the other hand, motivated by the Chern-Simons
theory, in [CH2|, Qingtao Chen and Fei Han computed the transgressed forms of
some modularly invariant characteristic forms, which are related to the elliptic gen-
era. They studied the modularity properties of these secondary characteristic forms
and relations among them. In [W], Wang generalized the Chen-Han cancellation for-
mulas to the case that a complex line bundle is involved. One naturally asks if there
exist more cancellation formulas similar to the Han-Liu-Zhang cancellation formulas.
In this note, we derive more these type cancellation formulas.

This paper is organized as follows: In Section 2, we review some knowledge on
characteristic forms and modular forms that we are going to use. In Section 3, we
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generalize the Han-Liu-Zhang cancellation formulas to the (a,b) type cancellation
formulas. In Section 4, we prove some general cancellation formulas involving two
complex line bundles. In Section 5, we study modular invariance properties of some
characteristic forms on odd dimensional manifolds.

2 characteristic forms and modular forms

The purpose of this section is to review the necessary knowledge on characteristic
forms and modular forms that we are going to use.

2.1 characteristic forms. Let M be a Riemannian manifold. Let V™ be the
associated Levi-Civita connection on TM and RT™™ = (VTM)2 he the curvature of
VTM et A(TM,VTM) and L(TM,VTM) be the Hirzebruch characteristic forms
defined respectively by (cf. [Z])

V-1 pTM
A(TM, V™M) = det? ( i 1 )

sinh( % RTM)

7 ™ 1 \/2—__1RTM
L(TM,V*'*") = det2 T . (2.1)
tanh(%RTM)

Let E, F be two Hermitian vector bundles over M carrying Hermitian connection
VE VE respectively. Let R¥ = (V)2 (resp. RF = (V!)?2) be the curvature of
VE (resp. VF). If we set the formal difference G = E — F, then G carries an
induced Hermitian connection V& in an obvious sense. We define the associated
Chern character form as

ch(G,VY) = tr lexp(—_lRE)] —tr [exp(—_lRF)] . (2.2)
27 27
For any complex number ¢, let

A(E) =Cly +tE+t2 N2 (E) +---, Si(E) = C|y +tE +t*S*(E) + - -

denote respectively the total exterior and symmetric powers of E, which live in
K (M)[[t]]. The following relations between these operations hold,

(2.3)

Moreover, if {w;}, {w}} are formal Chern roots for Hermitian vector bundles £, F’
respectively, then

ch(Ad(E)) = (1 + e¥t). (2.4)
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Then we have the following formulas for Chern character forms,

1 [L(1 + evit)

ch(S;(E)) = L=t ch(A(E = F)) = La+ Eny

(2.5)

If W is a real Euclidean vector bundle over M carrying a FEuclidean connection
VW, then its complexification We = W @ C is a complex vector bundle over M car-
rying a canonical induced Hermitian metric from that of W, as well as a Hermitian
connection V¢ induced from VW. If E is a vector bundle (complex or real) over
M, set E = E — dimE in K(M) or KO(M).

2.2 Some properties about the Jacobi theta functions and modular forms
We first recall the four Jacobi theta functions are defined as follows( cf. [C]):

(1= )1 = VTTogi) (1 — 2V, (2.6)

—

Il
—

O(v,7) = 2qésin(7rv)
j

01(v, 7) = 25 cos(mv) T][(1 = @) (1 + 2™ 1gi) (1 4 27V Tvgi)), (2.7)

—,

1

J

bav,7) = TI0 = )1 — =V loghy(1 — Vg (o)
j=1
v.m) = [[10 - )1+ Vg a4 e Tgoh )

1

J

where ¢ = e2™V=IT with 7 € H, the upper half complex plane. Let
~ 00(v,T)

/ v=0- 2.1
007 =200, (210)
Then the following Jacobi identity (cf. [Ch]) holds,
0'(0,7) = w01(0,7)02(0,7)85(0, 7). (2.11)

a b
Denote SLo(Z) = {( e d ) | a,b,e,d € Z, ad — bec = 1} the modular group. Let

S = ( 10 _01 ), T = ( 01 1 ) be the two generators of SLy(Z). They act on

H by St = —%, Tt = 7+ 1. One has the following transformation laws of theta
functions under the actions of S and T' (cf. [C]):

O(v,7+1) = eﬂTﬁH(v,T), 0(v, —1) = —— T
-

1
A (A

1
)2 e’r\/__lTUQH(Tv,T); (2.12)

1

)2 e”\/__lTUQHQ(TU,T); (2.13)

\]

O1(v, 7+ 1) = eWTﬁHl(v,T), 91(1),—%) = (\/__1



o

Os(v, 7+ 1) = 03(v,7), 6Oa(v, —1) = ( T >§ e”\/__lT”291(Tv,T); (2.14)
T

e
Oy(v, 7+ 1) = Oy(v, 7), 93(1),—%) _ <\/T__1> VT 1), (2.15)
00,7 +1) = =0 (v,7), 00, —%) _ \/%—1 (\/L__l) 00,7, (2.16)

Definition 2.1 A modular form over I', a subgroup of SLy(Z), is a holomorphic
function f(7) on H such that

ar +b
ct +d

flom) = 1 (5550 = xa)er + )5 (), v9=< ‘ 2)er, (2.17)

where x : I' — C* is a character of I'. k is called the weight of f.
Let

To(2) = {( o0 ) € SLy(Z) | ¢ =0 (mod 2)},
0 a b —
r’'e) = e d € SLy(Z) | b=0 (mod 2) ¢,
be the two modular subgroups of SLs(Z). It is known that the generators of I'o(2)

are T, ST?ST, the generators of I'Y(2) are ST'S, T2STS (cf.[C]).
Let E5(7) be Eisenstein series which is a quasimodular form over SL(2,Z), satis-

fying:
ar +b\ 9 6y —1lc(er + d)
B (m - d) — (er + d)*Es(r) o td (2.18)
In particular, we have
Ey(1 +1) = Ey(7), (2.19)
1 v—1
Eg(_;) =12Ey(1) — g — L (2.20)

If T is a modular subgroup, let Mg(I") denote the ring of modular forms over T’
with real Fourier coefficients. Writing 6; = 0;(0,7), 1 < j < 3, we introduce four
explicit modular forms (cf. [L]),

1 1

() = 5 (0 +08), e1(r) = 10804,
1 1

Go(7) = =2 (01 +63), ea(r) = —0105.
8 16

They have the following Fourier expansions in q%:
Bi(r) =1 +6 (=1
17_1_‘_ q+ 7617—_E_q+ )



1

o) = —5 ~BaE o, ea) =gt 4o,
where the ” ---” terms are the higher degree terms, all of which have integral coeffi-
cients. They also satisfy the transformation laws,
1 1
52(—;) :T251(T), 62(—;) :T4€1(T), (2.21)

Lemma 2.2 ([L]) 01(7) (resp. €1(7)) is a modular form of weight 2 (resp. 4) over
To(2), 62(7) (resp. e2(7)) is a modular form of weight 2 (resp. 4) over T'°(2) and
moreover Mg (T'°(2)) = R[62(7), e2(7)].

3 A generalization of the Han-Liu-Zhang cancellation
formulas

Let M be a 4k dimensional Riemannian manifold and V be a rank 2[ real vector
bundle on M. Let a, b be two integers. Set

©1(Tc M, Ve, a,b) :@ (TeM) ® ®/\q (Vo)"
n=1 m=1
®A 3 ( ®A 3V

Oy(TeM, Ve, a,b) = ® (TeM) @ (® Ngm (VE))

®/\ 1 ®/\ qs C 7 (3'1)

Clearly, ©1(TcM, Ve, a,b) and ©y(TcM, Ve, a,b) admit formal Fourier expansion in
1
q2 as

@l(TCM7VC7a7b) = AO(TCMa VC,CL,b) +A1(TCM7VC'7avb)q% + oy

Os(Te M, Ve, a,b) = Bo(TeM, Ve, a,b) + Bi(Te M, Ve, a,b)g? + -+ -, (3.2)

where the A; and B; are elements in the semi-group formally generated by Hermitian
vector bundles over M. Moreover, they carry canonically induced Hermitian connec-
tions. Let {£27iy, } be the formal Chern roots of V. If V' is spin and A(V) is the
spinor bundle of V', one know that the Chern character of A(V') is given by

!
ch(A(V)) = [ (e™ + e ™).
v=1
In the following, we do not assume that V' is spin, but still formally use ch((A(V))%)
for the short-hand notion of (TT',_,(e™¥ + e~™%))% which is a well-defined cohomol-
ogy class on M. Let p; denote the first Pontryagin class. If w is a differential form



over M, we denote w*¥) its top degree component. Define virtual complex vector
bundle b, (TcM,Vc,a,b) on M, 0<r < [%], via the equality

(3]

B4
Ox(Te M, Ve, a,b) = 3 bp(86)5 2} mod g 7~ K(M)[[g?]l.  (3.3)
r=0
Then N
bo = (—1)*C, by = —24(—1)Fk — aVe. (3.4)

Define degree 4k — 4 differential forms 8,.(TcM, Vg, a,b) on M, 0 < r < [%], via
the equality

{62_14E2(T)[p1(TM)_(a+2b)Pl(V)] -1

(4k—4)
A b
o T —(a s o) AT M)((AV)))eh(O:(Te M, Ve, a, b))}

(5]

SE

I+1 .

=3 (85)F ey mod ¢ 2 QUTD()[[g2]) (3.5)
r=0
It is easy to calculate that
. e21[P1(TM)—~(a+2b)p1 (V)] _ 1;1 A . (4k—4)
= (— TM 1% , 3.6

= (—1)* ez_upl(TM)_(“”b)pl(V”—1ﬁ TADCh((A VN eh(—aVi — 24k (4k—4)
e {pl(TM)_(a+2b)p1(V) (TM)ch((A(V))")ch(—aVe — )} .
(3.7)

Our main results in this section include the following theorem.

Theorem 3.1 "
{A@y v™en((a vy} ™

5]
— Y glamblk-6r {fl(TM, VTM)ch((A(V))b)ch(br)}(4k)
r=0

= [p1(TM) — (a+20)p1(V)]B(VTM, VY a,b), (3.8)
where
(5]
B(VTM, VV, a, b) _ Z 2(a—b)l+k—6rﬁr
r=0

o35 PLTM)—(a+26)p1 (V)] _ 1 ) (4k—4)
- { (T — (@ 5 pr (V) T M)h(AV) )} : (3.9)



Proof. Let {£2m\/—1z;| 1 < j < 2k} be the Chern roots of Tc M . Set

Qi(7) = {ezr POl @M=t V) 4701, v TM )eh (A(V))*)ch(01(ToM, Ve, a,b)) |

(3.10)
—~ 4k
Qua(r) = { AT M, V"M )eh((A(V)))ch (Oa(TeM, Vera. )} (3.11)
o3 B2 (1) [p1 (TM)—(at+2b)p1 (V)] _ 1
Qa(7) =
p1(TM) — (a+2b)p1(V)
R ) (4k—4)
AU VTV )(AV))eb(@xToM Vesab) b (3.12)
Direct computations show that
1 2k .60, 7)
Q1 (7) = 294 { 3 B2(0)lp1 (TM)~(a20)p (V) 200, 7)
. 9(1’]’,7’)
7=1
(4k)
ﬁ 0%y 7) 05y 7) 059 7) (3.13)
= 01(0,7) 03(0,7) 65(0,7) ' '
Similarly, we have
Q2(7) + [p1(TM) — (a + 2b)p1 (V)] Q2(7)
2k
_ ot )y B0l (M) —(at+2)p (V)] [ 7T 290 7)
j=1 0(33]'77_)
(4k)
| ( T 08, 7) B (4. 7) 9§<yy,7>>} | (3.14)
bt 65(0,7) 911’(0,7') 03(0,7’)

By (2.12)-(2.16) and (2.19)-(2.20), then @Q1(7) is a modular form of weight 2k over
I'9(2), while Qa(7) + [p1(T'M) — (a + 2b)p1(V)]Q2(7) is a modular form of weight 2k
over I''(2) . Moreover, the following identity holds,

Qﬂ—%) = 2070 (Qo(7) + [p1(TM) — (a+ 2b)p1 (V)] Qa(7)). (3.15)

Observe that at any point x € M, up to the volume form determined by the
metric on T, M, both Q;(7), and Q2(7) + [p1(T'M) — (a+2b)p1(V)]Q2(7) can be view
as a power series of ¢g2 with real Fourier coefficients. By Lemma 2.2, we have

(4k)

Qa(r) 1 (TM)—(a-20)p1 (V)] @a(7) = hio(852) 1 (852) e+ s (8524251

(3.16)
where each h,., 0 < r < [%], is a real multiple of the volume form at x. By the
definitions of b, and f,, we have

e = {A@ILTTB(AV))eh(b)} " + 1 (M) — (0 + 2 (V)5 (317)

7
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By (2.21) (3.15) and (3.16), we get
k
Qu(r) = 200! [ho(&sl)’“ + R (861)F 26y 4+ - + h[g1<861)’f‘2[§]e[f]] L (318)

By comparing the constant term in (3.18), we get
{ e P20 (T ~(e 200 (V) (70, 07 M ey A(V))a)}(‘“f’

(4k

(5]
= 3 20700 (AT YT (A1) eh(b)} "+ [ (TM) = (a+ 21 (V)]B, )
r=0

(3.19)
So we get Theorem 3.1. O

Remark. By Theorem 3.1, if M is a 4k dimensional spin manifolds and V is a 2[
dimensional spin vector bundle over M, then we have

/M L (TM) — (a + 20)pr (VB(YTM VY a,b), (3.20)

is an integer. When a = 1, b = 0, we get the Han-Liu-Zhang cancellation formula.
By the direct computations, we have
Corollary 3.2 When dimM = 4, the following identity holds

{A@M, 7™ (AW )H Y + 20950 LR, v ™Men(a v}

= =2 [py(TM) — (a+ 20)p1 (V). (3.20)
Corollary 3.3 When dimM = 8, the following identity holds

{A@y,v™en((a (v}

— {2 DI AL VM ) (A (V) )eh (V) + 20-DLATM, T M)eh(A(V) )

e21[P1(TM)—(a+2b)p1 (V)] _
p1(TM) — (a+ 2b)p (V)
2 PATM, VM) h(A(V)") = aA(TM, VM )ch((A(V))")eh(Ve)

~A@M Y M en((A ) (3.21)

= [p1(TM) — (a + 2b)p1 (V)] {

Let & be a rank two real oriented Euclidean vector bundle over M carrying with
an Euclidean connection V&. Set

O1(Te M, Ve, éc,a,b) = R) Sgn(TeM) @ R) Agm(aVe — 2¢)
n=1

m=1

8



®®A L (BVe + €0) B@n 30V +éc).

s=1
O(Te M, Ve, ¢, a,b) ® W(TeM) @ ® Agm (Ve + E¢)
n=1 m=1
® ® /\q L (BVe + &0) © ® A L (aVe — 260), (3.22)
s=1

Clearly, ©1(Tc M, Ve, &c, a,b) and O2(Te M, Ve, &c, a,b) admit formal Fourier expan-
sion in q% as

61(T0M7 VCa&Cvavb) = AO(TCMa VC)&Cvavb) +A1(TCM7V07£C7a7b)q% +

@2(T0M7 VC,SC,CL, b) = BO(TCM7 VC7§Cua7 b) + Bl(TCM7 VCuSCuaa b)q% + - T
(3.23)
Let ¢ = 2my/—1u be the Euler form of £. Set

(48)
Ch(@l(TC’Ma VCu 607 a, b))

(3.24)
N N c (4k)
Qa(7) = {A(TM, v )cosh(—)ch((A(V))b)ch(Gg(TcM, Ve, &, a, b))} , (3.25)

~ e21 22D P (TM)=(a+20)pr (V)] AT M, WTM )ch((A(V))2)
Qi(r) = 2(¢
cosh®(§)

. ok Ea (Do (TM)—(a+20)p1 (V)] _ 1
Q3(7T) =
p1(TM) — (a+2b)p1(V)

R c (4k)
-A(TM,vTM)cosh(§)ch((A(V))b)ch((ag(TcM,Vc,gc,a,b))} , (3.26)

Define virtual complex vector bundle ET(TCM, Ve,a,b) on M, 0 <r < [%], via the
equality

5] o (5141 . 1
62(TCM7 Ve, éesa, b) = ZbT(852) ng mod ¢~ 2 K(M)HQQH (327)
r=0

MIzr

Define degree 4k — 4 differential forms BT(TCM, Ve, ,€c,a,b) on M, 0 <r < [%], via
the equality

{ez—ﬂEz(T)[Pl(TM)—(aHb)m Ml -1

(4k—4)
T — (@ T (V) A(TM)ch((A(V)) )cosh( )Ch(@g(TcM Ve, &co,a, b))}

[k
(5141

—Zﬂr (862)" s mod ¢z QW=D (M)[[g2]). (3.28)

Then similar to Theorem 3.1, we get



Theorem 3.4

{A@M, VM )eh((A(V))) }(‘““’
cosh?(%)
(5] N (k)

— 3 olabitk—6r {A(TM, VTM)cosh(%)ch((A(V))b)ch(br)}
r=0

= [p1(TM) — (a+ 2b)pr(V)IB(VTM VY a,b), (3.29)

where

(5]
B(VTM, VV, V£7 a, b) — Z 2(a—b)l+k—6rﬂr

{ei[pl(TM)—(a—l-%)pl(V)} 1 E(TM, VIM)ch((A(V))?) }(4k—4) 530

p1(TM) — (a+ 2b)p1(V) coshz(g)

4 The anomaly cancellation formulas involving two com-
plex line bundles

Let &, & be two rank two real Euclidean vector bundle with Euclidean connections
Ve, V¢ Set

o0

01(TcM, Ve, éc, £6) =® w(Te M) ®®A (Ve — 2¢¢)

n=1 m=1

o
®®/\T 3 (€0) ®®A o3& &
ro1

62(TCM7 VC?&C)&C’ ® q" TCM ® ® Ngm éC)
n=1 m=1
2N -3 () QA Vo - 20), (4.1)
r=1 s=1
Set
15 B2 (T)[p1(€)—p1(EN) A(T M VIMch(A(V (4k)
PI(T) = o (2 c : )C ( ( ))Ch(@l(TCMy‘/CvéC)g/C)) )
cosh”(§)
(4.2)
. (4k)
Po() = { AT, 9™ yeosh(§)eh(Oa(TcM Vs e} (49)

Py e13 B2(T)p1(€)—p1(€N] _ 1
T =
’ 1) = p1(€)

10



(4k)
A(TM, VTM)cosh( )ch(®2(TcM Vc,gc,éc))} ; (4.4)

Define virtual complex vector bundle b,.(TcM, Vg, &,€) on M, 0 < r < [%], via
the equality

(L1471

"¥es mod g T K(M)[[g2)].  (4.5)

62(TCM7 VCaévé =

i Mwm

Then B B _ —
bo = (—D*C, by = —24(—DFk +2¢c + &0 — Ve. (4.6)

Define degree 4k — 4 differential forms §,.(TcM, Ve, &,€) on M, 0 < r < [%], via
the equality

el—lez(T)[pl(ﬁ)—Pl(ﬁl)} _ 1,@(TM b c h(Os (T M, V, ’ R
cosh(=)c Vo, &,
p1(&) —p1(&) ) (2) e o&e)

(5]
=3 B(85)" e mod g U= (11)[[gF]) (4.7)

T

M
l\DlR‘

It is easy to calculate that

2 _ e%[m(f)—m(ﬁ’)]_lgTM . (4k—4) L8
o= g AT ) s
T el—z[m(&)—m(&’n_lgTM (Vb 4 9E 2 T (4k—4)
=t { @ i) ATM)eosh(G)eh(=24k + 260 + € - C>} =
(4.9)
We have
2k / 1
Py(r) = 21 e1B20p1(&)=pr(&)] [ xézno T (UHH )
j=1 J =
02(0,7) 05w/, 7) o, )\ |
<e%< 7) 05(0,7) 92<o,7>>} (4.10)
Similarly,
Py(7) + [p1(&) — pr () P3(7) = 13 B2(T)[p1(§)—p1(€")] ] 2;0'(0,7)
j=1 9(3}]‘,7')
ﬁ y”’ 0500, 7) O3(u', 7) 01 (v, 7) w (4.11)
ke 03(u,7) 03(0,7) 61(0,7) ) )



We assume that pi(T'M) = p1(V), then we have Pi(7) is a modular form of weight
2k over I'¢(2), while Po(7) + [p1(§) — p1(£')] P3(7) is a modular form of weight 2k over
I'%(2) . Moreover, the following identity holds,

Pi(=) = 27 (Py(r) + [p1(6) — pr(€)] (7)) (412

So similar to the discussions in Section 3, we get

Theorem 4.1 If p1(TM) = p1(V), then

{ A(TM, V™M) ch(A(V)) }(4"“’
cosh?(§)

[5] R AN
— ) " otthor {A(TM, viM )cosh(g)ch(br)}
r=0

= [p1(&) — p(BVTM, vV, V¢, V), (4.13)
where
. G
B(VIM WV v V) = 3 ol k=g
r=0
[ enn©-m @) _ 1 A7M, VM) eh(A(V)) (4k=4)
p1(§) — p1(§’) coshz(g) )

(4.14)

Corollary 4.2 When dimM = 4, the following identity holds

Az, v e (v) | n S
{ cosh?(%) } +2Z+I{A(TM,VTM)COSh(§)}

= —2'72[p1(&) — p1(¢)]- (4.15)

Corollary 4.3 When dimM = 8, the following identity holds

AT, V™M )eh(a (V)" - J®
{ (T COSh22%)< ( >>} _y { A(TMNTM)COS%)}

R / N ()
—ol=4 {A(TM, VTM)cosh(%)ch@gc + & — VC)}
e1alP1(€)-p1(€)] _q
p1(§) — p1(ai’)

= [p1(&) — p1(&)] {

12



/
|2 A(T M, VTM)cosh(%) — A(TM, VTM)cosh( \eh (260 + &5 — Vo)

AT, VTM)ch(A(V))] }(8) ' (4.16)

cosh?( )

5 The odd dimensional case

In this section, Let M be a (4k-1)-dimensional manifold. In the definition (3.22),
we set a = 1, b = 0 and <I>1(VTM VY,V 1) = Qi(7), and ®o(VIM TV V4 1) =
Q2(7) + [p1(TM) — py(V )]Qg( ). Applying the Chern-Weil theory, we can express
®, Oy as follows:

T M
(I)l(VTM,VV,Vs, ) _ 2l€24E2(T)[p1(TM) pl(V)}d t3 <R 9/(0 T) ))

4 2 H(RTIVI

07 ot [ RO B a5 7)
det? < 61(0,7) )d t (9%(%77) 93(077-) 05(0, 7) )7 (5.1)
R™™ 90, 7) )

Am? g(BT7 1)

Do (VM VY Ve 7) = e21 B2 (NP{TM)=p1(V)] ot 3 <

0225, 7) 1 [ 05(0,7) Bs(4F B ol )
-det? <W>det ( 2 4 4 ) (5.2)

02(@’7—) 93(077—) 91(077_)

Next we consider the transgression of ® (V™M™ VvV V¢ 1), & (VM VYV VE 7).
about V¢. Let V?, Vg be two Euclidean connections on § and B = Vf V8, V=
V8 + (1 — t)V§. We have
q>1(vTM’ vV, V§7 T) - q>1(vTM7 vV, V(5)7 T)

=

1 1
— @d/() O (VIM TV V8 )tr

bo(Bh.7)  Os(Ehr)  Ou(En7)
(5.3)
We define
CSP (VM vV v V8, 7)
/ Rf / Rf / Rf
SRR B( 2<g§’”+93(§g§’”—291(‘::”)) "
m 62(ﬁ77—) 93(ﬁ77—) Hl(ﬁﬂ—)
(5.4)

which is in QOdd(M,C)[[ 3]]. Since M is 4k—1 dimensional, {C.S®,(VIM vV Vg,V )} k=1)

represents an element in H**~1(M, C)[[qz]]. Similarly, we can compute the trans-
gressed forms for ®5, and define
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CSDy(VTM vV VS V8, 7)

RS RS RS
/ @2 VTM VV v ) B <0é(ﬁ77-) + Hll(ﬁaT) _29é(ﬁ77—))] dt,

'3 '3
O03(1t, ) O1(at,7)  fo(pty,7)

~ 82

which also lies in QOdd(M,C)[[q%]] and its top component represents elements in
H¥*=1(M, C)[[q%]] Similar to Theorem 3.4 in [W], we have

Theorem 5.1 Let M be a 4k — 1 dimensional manifold and V™ be a connection
on TM and & be a two dimensional oriented Fuclidean real vector bundle with two
Euclidean connections Vf, Vg, then we have {CSq)l(VTM,VV,Vg,Vﬁ,T)}(‘lk_l) is
a modular form of weight 2k over T'y(2); {CS<I>2(VTM,VV,V8,Vﬁ,r)}(ﬂt’“—l) s a
modular form of weight 2k over T°(2); The following equalities hold,

{CS2y (VM VY, V5, Vi, 1)} = (2r)2K{CS (VM VY, VG, Vi, 7)Y,

Thus by Theorem 5.1, we can get a cancellation formula similar to Corollary 3.5
in [W].
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