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INTRODUCTION 1

INTRODUCTION

These notes grew out of lectures which I gave at a DMV-seminar in Blaubeu-
ren, Germany. My main aim is to present a proof of the rank rigidity for manifolds
of nonpositive sectional curvature and finite volume. Since my interest in the last
couple of years has shifted to singular spaces of nonpositive curvature, I take the
opportunity to include a short introduction into the theory of these spaces. An
appendix on the ergodicity of geodesic flows has been contributed by Misha Brin.

Let X be a metric space with metric d. A geodesic in X is a curve of con-
stant speed which is locally minimizing. We say that X has nonpositive Alexandrov
curvature if every point p ∈ X has a neighborhood U with the following properties:

(i) for any two points x, y ∈ U there is a geodesic σx,y : [0, 1] → U from x to y of
length d(x, y);

(ii) for any three points x, y, z ∈ U we have

d2(z, m) ≤ 1
2
(
d2(z, x) + d2(z, y)

)− 1
4
d2(x, y)

where σx,y is as in (i) and m = σx,y(1/2) is in the middle between x and y.
The second assumption requires that triangles in U are not fatter than the corre-
sponding triangles in the Euclidean plane R

2: if U is in the Euclidean plane then
we have equality in (ii). It follows that the geodesic σx,y in (i) is unique.

Modifying the above definition by comparing with triangles in the model sur-
face M2

κ of constant Gauss curvature κ instead of R
2 = M2

0 , one obtains the def-
inition of Alexandrov curvature KX ≤ κ. It is possible, but not very helpful, to
define KX and not only the latter inequality. Reversing the inequality in the trian-
gle comparison, that is, requiring that (small) triangles are at least as fat as their
counterparts in the model surface M2

κ , leads to the concept of spaces with lower
curvature bounds. The theory of spaces with lower curvature bounds is completely
different from the theory of those with upper curvature bounds.

Triangle comparisons are a standard tool in global Riemannian geometry. In
the Riemannian context our requirement (ii) is equivalent to nonpositive sectional
curvature and an upper bound κ for the sectional curvature respectively.

We say that X is a Hadamard space if X is complete and the assertions (i) and
(ii) above hold for all points x, y, z ∈ X . This corresponds to the terminology in the
Riemannian case. If X is a Hadamard space, then for any two points in X there is
a unique geodesic between them. It follows that Hadamard spaces are contractible,
one of the reasons for the interest in these spaces. There are many examples of
Hadamard spaces, and one of the sources is the following result, Gromov’s version
of the Hadamard-Cartan theorem for singular spaces.
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2 INTRODUCTION

Theorem A (Hadamard-Cartan Theorem). Let Y be a complete con-
nected metric space of nonpositive Alexandrov curvature. Then the universal cover-
ing space X of Y , with the induced interior metric, is a Hadamard space.

For X and Y as in Theorem A, let Γ be the group of covering transformations
of the projection X → Y . Since X is contractible, Y is the classifying space for
Γ. This implies for example that the homology of Γ is equal to the homology of
Y . The contractibility of X also implies that the higher homotopy groups of Y are
trivial and that indeed the homotopy type of Y is determined by Γ. This is the
reason why spaces of nonpositive curvature are interesting in topology. Since Γ acts
isometrically on X , the algebraic structure of Γ and the homotopy type of Y are
tied to the geometry of X .

The action of Γ on X is properly discontinuous and free, but for various
reasons it is also interesting to study more general actions. This is the reason that
we formulate our results below for groups Γ of isometries acting on Hadamard
spaces instead of discussing spaces covered by Hadamard spaces.

Here are several examples of Hadamard spaces and metric spaces of nonposi-
tive and respectively bounded Alexandrov curvature.

(1) Riemannian manifolds of nonpositive sectional curvature: the main exam-
ples are symmetric spaces of noncompact type, see [Hel, ChEb]. One particular
such space is X = Sl(n, R)/SO(n) endowed with the metric which is induced by
the Killing form. Every discrete (or not discrete) linear group acts on this space
(where n has to be chosen appropriately).

Many Riemannian manifolds of nonpositive curvature are obtained by using
warped products, see [BiON].

For Riemannian manifolds with boundary there are conditions on the second
fundamental form of the boundary - in addition to the bound on the sectional
curvature - which are equivalent to the condition that the Alexandrov curvature is
bounded from above, see [ABB].

(2) Graphs: Let X be a graph and d an interior metric on X . Then for an
arbitrary κ ∈ R, the Alexandrov curvature of d is bounded from above by κ if and
only if for every vertex v of X there is a positive lower bound on the length of the
edges adjacent to v.

This example shows very well one of the main technical problems in the theory
of metric spaces with Alexandrov curvature bounded from above - namely the
possibility that geodesics branch.

(3) Euclidean buildings of Bruhat and Tits: these are higher dimensional ver-
sions of homogeneous trees, and they are endowed with a natural metric (determined
up to a scaling factor) with respect to which they are Hadamard spaces. Similarly,
Tits buildings of spherical type are spaces of Alexandrov curvature ≤ 1. See [BruT,
Ti2, Bro].

(4) (p, q)-spaces with p, q ≥ 3 and 2pq ≥ p+q: by definition, a two dimensional
CW -space X is a (p, q)-space if the attaching maps of the cells of X are local
homeomorphisms and if

(i) every face of X has at least p edges in its boundary (when counted with
multiplicity);

(ii) for every vertex v of X , every simple loop in the link of v consisits of at least
q edges.
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If X is a (p, q)-space, then the interior metric d, which turns every face of X into a
regular Euclidean polygon of side length 1, has nonpositive Alexandrov curvature.

In combinatorial group theory, (p, q)-spaces arise as Seifert-van Kampen di-
agrams or Cayley complexes of small cancellation groups, see [LySc, GhSh, BB2].
The angle measurement with respect to the Euclidean metric on the faces of X
induces an interior metric on the links of the vertices of X , and the requirement
2pq ≥ p + q implies that simple loops in the links have length at least 2π. This
turns the claim that d has nonpositive Alexandrov curvature into a special case of
the corresponding claim in the following example.

If 2pq > p + q, then X admits a metric of Alexandrov curvature ≤ −1.
(5) Cones: Let X be a metric space. Define the Euclidean cone C over X to be

the set [0,∞)×X , where we collapse {0}×X to a point, endowed with the metric

dC((a, x), (b, y)) := a2 + b2 − 2ab cos(max{dX(x, y), π}) .

Then C has nonpositive Alexandrov curvature if and only if X has Alexandrov
curvature KX ≤ 1 and injectivity radius ≥ π. By the latter we mean that for every
two points x, y ∈ X of distance < π there is one and only one geodesic from x to
y of length d(x, y). In a similar way one can define the spherical and respectively
hyperbolic cone over X . The condition on X that they have Alexandrov curvature
≤ 1 and respectively ≤ −1 remains the same as in the case of the Euclidean cone,
see [Ber2, Gr5, Ba5, BrHa].

(6) Glueing: Let X1 and X2 be complete spaces of nonpositive Alexandrov
curvature, let Y1 ⊂ X1 and Y2 ⊂ X2 be closed and locally convex and let f : Y1 → Y2

be an isometry. Le X be the disjoint union of X1 and X2, except that we identify Y1

and Y2 with respect to f . Then X , with the induced interior metric, is a complete
space of nonpositive curvature.

For X1, Y1 given as above one may take X2 = Y1 × [0, 1], Y2 = Y1 × {0} and
f the identity, that is, the map that forgets the second coordinate 0. One obtains
a porcupine. Under the usual circumstances it is best to avoid such and similar
exotic animals. One way of doing this is to require that X is geodesically complete,
meaning that every geodesic in X is a subarc of a geodesic which is parameterized
on the whole real line. Although the geodesic completeness does not exclude porcu-
pines with spines of infinite length, it is a rather convenient regularity assumption
and should be sufficient for most purposes, at least in the locally compact case. Of
course one might wonder how serious such a restriction is and how many interesting
examples are excluded by it. A rich source of examples are locally finite polyhedra
with piecewise smooth metrics of nonpositive Alexandrov curvature and, in dimen-
sion 2, such a polyhedron always contains a homotopy equivalent subpolyhedron
which is geodesically complete and of nonpositive Alexandrov curvature with re-
spect to the induced length metric, see [BB3]. Whether this or something similar
holds in higher dimensions is open (as far as I know).

In Riemannian geometry, the difference between strict and weak curvature
bounds is very important and has attracted much attention. It is the contents of
rigidity theorems that certain properties, known to be true under the assumption
of a (certain) strict curvature bound, do not hold under the weak curvature bound,
but fail to be true only in a very specific way. Well known examples are the Maximal
Diameter Theorem of Toponogov and the Minimal Diameter Theorem of Berger (see
[ChEb]). In the realm of nonpositive curvature, the above mentioned rank rigidity
is one of the examples.
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Let X be a Hadamard space. A k-flat in X is a convex subset of X which is
isometric to Euclidean space R

k. Rigidity phenomena in spaces of nonpositive cur-
vature are often caused by the existence of flats. To state results connected to rank
and rank rigidity, assume now that M is a smooth complete Riemannian manifold
of nonpositive sectional curvature. Let γ : R → M be a unit speed geodesic. Let
J p(γ) be the space of parallel Jacobi fields along γ and set

rank(γ) = dimJ p(γ) and rank M = min rank(γ) ,

where the minimum is taken over all unit speed geodesics in M . Then

1 ≤ rankM ≤ rank(γ) ≤ dim M

and
rank(M1 × M2) = rankM1 + rank M2 .

The space J p(γ) can be thought of as the maximal infinitesimal flat containing the
unit speed geodesic γ. In general, J p(γ) is not tangent to a flat in M . However,
if M is a Hadamard manifold of rank k, then every geodesic of M is contained
in a k-flat [B.Kleiner, unpublished]. (We prove this in the case that the isometry
group of M satisfies the duality condition, see below.) If M is a symmetric space of
noncompact type, then rankM coincides with the usual rank of M and is given as

rankM = min{k | every geodesic of M is contained in a k-flat}
= max{k | M contains a k-flat} .

The second property is false for Hadamard manifolds. Counterexamples are easy to
construct.

Let X be a geodesically complete Hadamard space. The geodesic flow gt, t ∈ R,
of X acts by reparameterization on the space GX of complete unit speed geodesics
on X ,

gt(γ)(s) = γ(s + t) , s ∈ R .

We say that a unit speed geodesic γ : R → X is nonwandering mod Γ if there are
sequences of unit speed geodesics (γn : R → X), real numbers (tn) and isometries
(ϕn) of X such that γn → γ, tn → ∞ and ϕn ◦ gtn(γn) → γ. This corresponds
to the usual definition of nonwandering in X/Γ in the case where Γ is a group of
covering transformations and where geodesics in X/Γ are considered. In a similar
way we translate other definitions which refer, in their standard versions, to objects
in a covered space.

Following Chen and Eberlein [CE1] we say that a group Γ of isometries of
X satisfies the duality condition if any unit speed geodesic of X is nonwandering
mod Γ. If M is a Hadamard manifold and Γ is a properly discontinuous group of
isometries of M such that vol(M/Γ) < ∞, then Γ satisfies the duality condition.
This is an immediate consequence of the Poincaré Recurrence Theorem. The duality
condition is discussed in Section 1 of Chapter III. The technical advantages of this
notion are that it is invariant under passage to subgroups of finite index and to
supergroups and that it behaves well under product decompositions of X .
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Theorem B. Let M be a Hadamard manifold and Γ a group of isometries
of M satisfying the duality condition. Assume that the rank of M is one. Then we
have:
(i) [Ba1] Γ contains a free non-abelian subgroup;
(ii) [Ba1] the geodesic flow of M is topologically transitive mod Γ on the unit

tangent bundle SM of M ;
(iii) [Ba1] the tangent vectors to Γ-closed geodesics of rank one are dense in SM .
Moreover, if Γ is properly discontinuous and cocompact, then we have:
(iv) [Kn] the exponential growth rate of the number of Γ-closed geodesics of rank

one, where we count according to the period, is positive and equal to the topo-
logical entropy of the geodesic flow;

(v) [BB1], [Bu] the geodesic flow is ergodic mod Γ on the set R of unit vectors
which are tangent to geodesics of rank one;

(vi) [Ba3], [BaL1] the Dirichlet problem at M(∞) is solvable and M(∞) together
with the corresponding family of harmonic measures is the Poisson boundary
of M .

Assertions (i) - (iii) are proved in Section 3 of Chapter III. The version in
Chapter III is actually more general than the statements above inasmuch as we con-
sider locally compact, geodesically complete Hadamard spaces instead of Hadamard
manifolds.

Assertions (iv) and (v) are not proved in these notes. The main reason is the
unclear relation between proper discontinuity and cocompactness on the one hand
and the duality condition on the other in the case of general Hadamard spaces.

The ergodicity of the geodesic flow in SM/Γ for compact rank one manifolds,
claimed in [BB1, Bu] (and for compact surfaces of negative Euler characteristic in
[Pe2]), is based on an argument in [Pe1, 2] which contains a gap, and therefore
remains an open problem (even for surfaces). The main unresolved issue is whether
the set R has full measure in SM . In case of a surface of nonpositive curvature, R
consists of all unit vectors which are tangent to geodesics passing through a point
where the Gauss curvature of the surface is negative. Observe that R does have full
measure if the metric on M is analytic.

For M a Hadamard manifold with a cocompact group of isometries, the re-
lation of the rank one condition to the Anosov condition can be expressed in the
following way:
(1) M has rank one if M has a unit speed geodesic γ such that dimJ p(γ) = 1;
(2) the geodesic flow of M is of Anosov type if dimJ p(γ) = 1 for every unit speed

geodesic γ of M .
See [Eb4, 5] for this and other conditions implying the Anosov conditions for the
geodesic flow.

The proofs of the various assertions in (vi) in [Ba5] and [BaL1] use a discretiza-
tion procedure of Lyons and Sullivan (see [LySu, Anc3, BaL2, Kai2]) to reduce the
claims to corresponding claims about random walks on Γ. In Section 4 of Chapter
III we show that the Dirichlet problem at M(∞) is solvable for harmonic functions
on Γ if Γ is countable and satisfies the duality condition. We also discuss briefly
random walks and Poisson boundary of Γ.

Theorem B summarizes more or less what is known about rank one manifolds
(as opposed to more special cases). Rank one manifolds behave in many ways like
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manifolds of negative sectional curvature. Rank rigidity shows that higher rank is
an exceptional case.

Theorem C (Rank Rigidity). Let M be a Hadamard manifold and assume
that the group of isometries of M satisfies the duality condition. Let N be an irre-
ducible factor in the deRham decomposition of M with rankN = k ≥ 2. Then N
is a symmetric space of noncompact type and rank k. In particular, either M is of
rank one or else a Riemannian product or a symmetric space.

The breakthrough in the direction of this theorem was obtained in the papers
[BBE] and [BBS]. Under the stronger assumptions that M admits a properly discon-
tinuous group Γ of isometries with volM/Γ < ∞ and that the sectional curvature
of M has a uniform lower bound, Theorem C was proved in [Ba2] and, somewhat
later by a different method, in [BuSp]. The result as stated was proved by Eberlein
(and is published in [EbHe]). The proofs in [Ba2], [BuSp] and [EbHe] build on the
results in [BBE, BBS] and other papers and it may be somewhat difficult for a
beginner to collect all the arguments. For that reason it seems useful to present a
streamlined and complete proof in one piece. This is achieved (I hope) in Chapter
IV, where the details of the proof are given. That is, we show that the holonomy
group of M is not transitive on the unit sphere (at some point of M), and then the
Holonomy Theorem of Berger and Simons applies, see [Be, Si].

Theorems B and C, when combined with other results, have some striking
applications. We discuss some of them.

Theorem D. Let M be a Hadamard manifold and Γ a properly discontinuous
group of isometries of M with vol(M/Γ) < ∞. Then either Γ contains a free non-
abelian subgroup or else M is compact and flat and Γ a Bieberbach group.

This follows from Theorem A if the deRham decomposition of M contains
a factor of rank one (since the duality condition is preserved under products, see
Section 1 in Chapter III). If there is no such factor, then M is a symmetric space
by Theorem B. In this case, Γ is a linear group and the Free Subgroup Theorem of
Tits applies, see [Ti1].

The following application is proved in [BaEb].

Theorem E. Let M be a Hadamard manifold and let Γ be an irreducible
properly discontinuous groups of isometries of M such that vol(M/Γ) < ∞. Then
the property that M is a symmetric space of noncompact type and rank k ≥ 2
depends only on Γ.

The result in [BaEb] is more precise in the sense that explicit conditions on
Γ are given which are equivalent to M being a symmetric space of rank k ≥ 2.
The proof in [BaEb] relies on results of Prasad-Raghunathan [PrRa] and Eberlein
[Eb13] and will not be discussed here.

For the sake of completeness we mention the following immediate consequence
of Theorem E and the Strong Rigidity Theorem of Mostow and Margulis [Mos,
Mar1, 2].

Theorem F. Let M , M∗ be Hadamard manifolds and Γ, Γ∗ be properly dis-
continuous groups of isometries of M and M∗ respectively such that vol(M/Γ),
vol(M∗/Γ∗) < ∞. Assume that M∗ is a symmetric space of noncompact type and
rank k ≥ 2, that Γ∗ is irreducible and that Γ is isomorphic to Γ∗. Then M is a
symmetric space of noncompact type and, up to scaling factors, isometric to M∗.
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In the cocompact case this was proved earlier by Gromov [BGS] and (under
the additional assumption that M∗ is reducible) Eberlein [Eb12]. Today, Theorem
F does not represent the state of the art anymore, at least in the cocompact case,
where superrigidity has been established in the geometric setting. This development
was initiated by the striking work of Corlette [Co1, 2], and the furthest reaching
results can be found in [MSY]. Another recent and exciting development is the
proof of the non-equivariant Strong Rigidity Theorem by Kleiner and Leeb [KlLe].

Theorem C has the following important companion, proved by Heber [Heb].

Theorem G (Rank Rigidity for homogeneous spaces). Let M be an
irreducible homogeneous Hadamard manifold. If the rank of M is at least 2, then
M is a symmetric space of noncompact type.

Note that the isometry group of a homogeneous Hadamard manifold M satis-
fies the duality condition if and only if M is a symmetric space, see [Eb10, Wot1,2].
In this sense, the assumptions of Theorems C and G are complementary. In both
cases, the limit set of the group of isometries is equal to M(∞), and one might
wonder whether the rank rigidity holds under this weaker assumption. In fact, it
might even hold without any assumption on the group of isometries.

Another interesting problem is the question of extendability of Theorems B
and C to metric spaces of nonpositive Alexandrov curvature. As mentioned above
already, part of that is achieved for the results in Theorem B. However, we use the
flat half plane condition as in [Ba1,2] because there is, so far, no good definition
of rank in the singular case. To state some of the main problems involved, assume
that X is a geodesically complete and locally compact Hadamard space.

Problem 1. Assume that the isometry group of X satisfies the duality con-
dition. Define the rank of X in such a way that

(i) rankX = k ≥ 2 if and only if every geodesic of X is contained in a k-flat;
(ii) rankX = 1 implies some (non-uniform) hyperbolicity of the geodesic flow.

Problem 2. Assume that X is irreducible and that the group of isometries of
X satisfies the duality condition. Show that X is a symmetric space or a Euclidean
building if every geodesic of X is contained in a k-flat, k ≥ 2.

Problem 3. Assume that Γ is a cocompact and properly discontinuous group
of isometries of X . Show that Γ satisfies the duality condition.

Problems 1 - 3 have been resolved in the case of two dimensional simplicial
complexes with piecewise smooth metric and cocompact group of automorphisms,
see [BB3]. Kleiner has solved Problem 2 in the case rankX = dimX , cf. [Kl] (see
also [BB3, Bar] for the case dimX = 2).

Recalling the possible definitions of rank in the case of symmetric spaces we
get a different notion of rank,

Rank X = max{k | X contains a k-flat}

Clearly
rankX ≤ Rank X ≤ dimX .

If X is locally compact and the isometry group of X cocompact, then the following
assertions are equivalent: (i) X satisfies the Visibility Axiom of Eberlein-O’Neill;
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(ii) X is hyperbolic in the sense of Gromov; (iii) Rank X = 1, see [Eb1, Gr5]. If
X admits a properly discontinuous and cocompact group of isometries Γ, then

Rank X ≥ max{k | Γ contains a free abelian subgroup of rank k}

by the Flat Torus Theorem of Gromoll-Wolf and Lawson-Yau, see [ChEb, GroW,
LaYa, Bri2]. On the other hand, Bangert and Schroeder proved that Rank M is
the maximal integer k such Γ contains a free abelian subgroup of rank k if M is
an analytic Hadamard manifold and Γ a properly discontinuous and cocompact
group of isometries of M , see [BanS]. It is rather unclear whether this result can
be extended to the smooth or the singular case. For more on Rank we refer to the
discussion in [Gr6].

In these Lecture Notes, only topics close to the area of research of the author
are discussed. References to other topics can be found in the Bibliography. It would
be desirable to have complete lists of publications on the subjects of singular spaces
and nonpositive curvature. The Bibliography here is a first and still incomplete step
in this direction. For obvious reasons, papers about spaces of negative curvature
are not included unless they are closely related to topics discussed in the text.

I am very greatful to M. Brin for contributing the Appendix on the ergod-
icity of geodesic flows and drawing the figures. The assistance and criticism of
several people, among them the participants of the DMV-seminar in Blaubeuren
and S. Alexander, R. Bishop, M. Brin, S. Buyalo, U. Lang, B. Leeb, J. Previte and
P. Thurston, was very helpful when preparing the text. I thank them very much.
I am also grateful to Ms. G. Goetz, who TEXed the original manuscript and its
various revisions. The work on these notes was supported by the SFB256 at the
University of Bonn. A good part of the manuscript was written during a stay of the
author at the IHES in Bures-sur-Yvette in the fall of ’94.
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CHAPTER I

ON THE INTERIOR GEOMETRY OF METRIC SPACES

We discuss some aspects of the interior geometry of a metric space X . The
metric on X is denoted d, the open respectively closed metric ball about a point
x ∈ X is denoted B(x, r) or Br(x) respectively B(x, r) or Br(x).

Good references for this chapter are [Ri, AlBe, AlBN, Gr4, BrHa].

1. Preliminaries

A curve in X is a continuous map σ : I → X , where I is some interval. The
length L(σ) of a curve σ : [a, b] → X is defined as

(1.1) L(σ) = sup
k∑

i=1

d(σ(ti−1), σ(ti))

where the supremum is taken over all subdivisions

a = t0 < t1 < · · · < tk = b

of [a, b]. If ϕ : [a′, b′] → [a, b] is a homeomorphism, then L(σ ◦ ϕ) = L(σ). We say
that σ is rectifiable if L(σ) < ∞. If σ : [a, b] → X is a rectifiable curve, then σ|[t, t′]
is rectifiable for any subinterval [t, t′] ⊂ [a, b]. The arc length

s : [a, b] → [0, L(σ)], s(t) = L(σ | [a, t])

is a non-decreasing continuous surjective map and

σ̃ : [0, L(σ)] → X, σ̃(s(t)) := σ(t)

is well defined, continuous and of unit speed, that is,

L(σ̃|[s, s′]) = |s − s′| .

More generally, we say that a curve σ : I → X has speed v ≥ 0 if

L(σ|[t, t′]) = v|t − t′|
for all t, t′ ∈ I. A curve σ : I → X is called a geodesic if σ has constant speed v ≥ 0
and if any t ∈ I has a neighborhood U in I such that

(1.2) d(σ(t′), σ(t′′)) = v|t′ − t′′|
Typeset by AMS-TEX



10 ON THE INTERIOR GEOMETRY OF METRIC SPACES

for all t′, t′′ in U . We say that a geodesic c : I → X is minimizing if (1.2) holds for
all t′, t′′ ∈ I.

The interior metric di associated to d is given by

(1.3) di(x, y) := inf{L(σ) | σ is a curve from x to y }.

One can show that di is a metric, except that di may assume the value ∞ at some
pairs of points x, y ∈ X . We have

(di)i = di.

We say that X is an interior metric space if d = di. An interior metric space is
pathwise connected. It is easy to see that the usual distance function on a connected
Riemannian manifold is an interior metric. More generally we have the following
result.

1.4 Proposition. If X is complete and for any pair x, y of points in X and
ε > 0 there is a z ∈ X such that

d(x, z), d(y, z) ≤ 1
2
d(x, y) + ε ,

then X is interior.

The proof of Proposition 1.4 is elementary, see [Gr4, p.4]. We omit the proof
since we will not need Proposition 1.4.

We say that X is a geodesic space if for any pair x, y of points in X there is a
minimizing geodesic from x to y.

1.5 Proposition. If X is complete and any pair x, y of points in X has a
midpoint, that is, a point m ∈ X such that

d(x, m) = d(y, m) =
1
2
d(x, y) ,

then X is geodesic. More generally, if there is a constant R > 0 such that any pair
of points x, y ∈ X with d(x, y) ≤ R has a midpoint, then any such pair can be
connected by a minimizing geodesic.

Proof. Given x, y in X with d(x, y) ≤ R, we define a geodesic σ : [0, 1] → X
from x to y of length d(x, y) in the following way: choose a midpoint m between
x and y and set σ(1/2) = m. Now d(x, m), d(y, m) ≤ R and hence there are
midpoints m1 and m2 between x and σ(1/2) respectively σ(1/2) and y. Set σ(1/4) =
m1, σ(3/4) = m2. Proceeding in this way we obtain, by recursion, a map σ from
the dyadic numbers in [0, 1] to X such that

d(σ(s), σ(t)) = |s − t|d(x, y)

for all dyadic s, t in [0, 1]. Since X is complete, σ extends to a minimal geodesic
from x to y as asserted. �
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2. The Hopf-Rinow Theorem

We present Cohn-Vossen’s generalization of the Theorem of Hopf-Rinow to
locally compact interior metric spaces, see [Coh].

2.1 Lemma. Let X be locally compact and interior. Then for any x ∈ X there
is an r > 0 such that
(i) if d(x, y) ≤ r, then there is a minimizing geodesic from x to y;
(ii) if d(x, y) > r, then there is a point z ∈ X with d(x, z) = r and

d(x, y) = r + d(z, y).

Proof. Since X is locally compact, there is an r > 0 such that B(x, 2r) is
compact. For any y ∈ X there is a sequence σn : [0, 1] → X of curves from x to
y such that L(σn) → d(x, y) since X is interior. Without loss of generality we can
assume that σn has constant speed L(σn).

If d(x, y) ≤ r, then L(σn) ≤ 2r for n sufficiently large. Then the image of σn is
contained in B(x, 2r) and σn has Lipschitz constant 2r. Hence the sequence (σn) is
equicontinuous and has a convergent subsequence by the theorem of Arzela-Ascoli.
The limit is a minimizing geodesic from x to y, hence (i).

If d(x, y) > r, then there is a point tn ∈ (0, 1) such that d(σn(tn), x) = r. A
limit z of a subsequence of (σn(tn)) will satisfy (ii). �

We say that a geodesic σ : [0, ω) → X, 0 < ω ≤ ∞ is a ray if σ is minimiz-
ing and if limt→ω σ(t) does not exist. The most important step in Cohn-Vossen’s
argument is the following result.

2.2 Theorem. Let X be locally compact and interior. Then for x, y in X there
is either a minimizing geodesic from x to y or else a unit speed ray σ : [0, ω) → X
with σ(0) = x, 0 < ω < d(x, y), such that the points in the image of σ are between
x and y; that is, if z is in the image of σ, then

d(x, z) + d(z, y) = d(x, y).

Proof. Let x, y ∈ X and assume that there is no minimizing geodesic from
x to y. Let r1 be the supremum of all r such that there is a point z between x = x0

and y with d(x0, z) = r and there is a minimizing geodesic from x0 to z. Then
r1 > 0 by Lemma 2.1. We let x1 be such a point with δ1 = d(x0, x1) ≥ r1/2 and
σ1 a minimizing unit speed geodesic from x0 to x1. Since there is no minimizing
geodesic from x0 to y we have x1 	= y. Since x1 is between x0 and y, any point z
in the image of σ1 is between x0 and y. There is no minimizing geodesic σ from x1

to y since otherwise the concatenation σ1 ∗ σ would be a minimizing geodesic from
x = x0 to y. Hence we can apply the same procedure to x1 and obtain r2 > 0, x2

between x1 and y with δ2 = d(x1, x2) ≥ r2/2 and a minimizing unit speed geodesic
σ2 from x1 to x2. Since x2 is between x1 and y, any point in the image of σ1 ∗ σ2

is between x0 and y. In particular, σ1 ∗ σ2 is a minimizing unit speed geodesic and
x2 	= y. Proceeding inductively, we obtain a minimizing unit speed geodesic

σ = σ1 ∗ σ2 ∗ σ3 . . . : [0, δ1 + δ2 + δ3 + . . . ) → X
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such that all points on σ are between x and y. In particular, σ is minimizing. By
the definition of r1 we have

(r1 + r2 + . . . )/2 ≤ ω := δ1 + δ2 + . . . ≤ r1

It remains to show that σ is a ray. If this is not the case, the limit limt→ω σ(t) =:
x exists. Since there is no minimizing geodesic from x to y we have x 	= y. But then
there is a (short) minimizing unit speed geodesic σ : [0, r] → X with r > 0 such
that σ(0) = x and such that all the points on σ are between x and y. Then all
points on σ ∗ σ are between x and y and, in particular, r ≤ rn/2 for all n by the
definition of rn. This contradicts r > 0 and rn → 0. �

2.3 Theorem of Hopf-Rinow (local version). Let X be locally compact
and interior, and let x ∈ X and R > 0. Then the following are equivalent:
(i) any geodesic σ : [0, 1) → X with σ(0) = x and L(σ) < R can be extended to

the closed interval [0, 1];
(ii) any minimizing geodesic σ : [0, 1) → X with σ(0) = x and L(σ) < R can be

extended to the closed interval [0, 1];
(iii) B(x, r) is compact for 0 ≤ r < R.
Each of these implies that for any pair y, z of points in B(x, R) with d(x, y) +
d(x, z) < R there is a minimizing geodesic from y to z.

Proof. The conclusions (iii) ⇒ (i) and (i) ⇒ (ii) are clear. We prove (ii)
⇒ (iii). Let r0 ∈ (0, R] be the supremum over all r ∈ (0, R) such that B(x, r) is
compact. We assume r0 < R. Let (xn) be a sequence in B(x, r0). From (ii) and
Theorem 2.2 we conclude that there is a minimizing geodesic σn : [0, 1] → X from
x to xn. Then d(x, σn(t)) ≤ tr0 for 0 ≤ t ≤ 1, and by a diagonal argument we
conclude that σn | [0, 1) has a subsequence converging to a minimizing geodesic
σ : [0, 1) → X . By (ii), σ can be extended to 1 and clearly σ(1) is the limit of the
(corresponding) subsequence of (σn(1)) = (xn). Hence B(x, r0) is compact.

Since X is locally compact, there is an ε > 0 such that B(y, ε) is compact for
any y ∈ B(x, r0). But then B(x, r0 + δ) is compact for δ > 0 sufficiently small, a
contradiction to the definition of r0. �

2.4 Theorem of Hopf-Rinow (global version). Let X be locally com-
pact and interior. Then the following are equivalent:
(i) X is complete;
(ii) any geodesic σ : [0, 1) → X can be extended to [0, 1];
(iii) for some point x ∈ X, any minimizing geodesic σ : [0, 1) → X with σ(0) = x

can be extended to [0, 1];
(iv) bounded subsets of X are relatively compact.
Each of these implies that X is a geodesic space, that is, for any pair x, y of points
in X there is a minimizing geodesic from x to y. �

The local compactness is necessary. If X is the space consisting of two vertices
x, y and a sequence of edges σn of length 1 + 1/n, n ≥ 1, then X (with the obvious
interior metric) is a complete interior metric space; but X is not a geodesic space
since d(x, y) = 1.
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3. Spaces with curvature bounded from above

For κ ∈ R, we denote by M2
κ the model surface of constant curvature κ.

Motivated by corresponding results in Riemannian geometry, we will define upper
curvature bounds for X by comparing triangles in X with triangles in M2

κ .
A triangle in X consists of three geodesic segments σ1, σ2, σ3 in X , called

the edges or sides of the triangle, whose endpoints match (in the usual way). If
Δ = (σ1, σ2, σ3) is a triangle in X , a triangle Δ = (σ1, σ2, σ3) in M2

κ is called an
Alexandrov triangle or comparison triangle for Δ if L(σi) = L(σi), 1 ≤ i ≤ 3. A
comparison triangle exists and is unique (up to congruence) if the sides satisfy the
triangle inequality, that is

(3.1a) L(σi) + L(σj) ≤ L(σk)

for any permutation (i, j, k) of (1, 2, 3), and if the perimeter

(3.1b) P (Δ) = L(σ1) + L(σ2) + L(σ3) < 2π/
√

κ.

Here and below we use the convention 2π/
√

κ = ∞ for κ ≤ 0.

3.2 Definition. We say that a triangle Δ has the CATκ-property, or simply:
is CATκ, if its sides satisfy the inequalities (3.1a), (3.1b) and if

d(x, y) ≤ d(x, y)

for all points x, y on the edges of Δ and the corresponding points x, y on the edges
of the comparison triangle Δ in M2

κ .

In short, a triangle is CATκ if it is not too fat in Comparison to the Alexandrov
Triangle in M2

κ .

3.3 Lemma. Let Δ = (σ1, σ2, σ3) and Δ′ = (σ′
1, σ

′
2, σ

′
3) be triangles in X and

assume that σ3 = σ′
3 and that σ2 ∗ σ′

2 is a geodesic. If Δ′′ = (σ1, σ2 ∗ σ′
2, σ

′
1) has

perimeter < 2π/
√

κ and Δ, Δ′ are CATκ, then Δ′′ is CATκ.
Moreover, if the length of σ3 = σ′

3 is strictly smaller than the distance of the
pair of points on the comparison triangle Δ′′ in M2

κ corresponding to the endpoints
of σ3 = σ′

3, then the distance of any pair x, y of points on the edges of Δ′′, such
that x, y are not on the same edge of Δ′′, is strictly smaller than the distance of the
corresponding pair of points on Δ′′.

Proof. Match the comparison triangles Δ and Δ
′
in M2

κ along the sides σ3

and σ′
3. Let x be the vertex of σ3 = σ′

3 opposite to σ1 and σ′
1 respectively. Since

σ2 ∗ σ′
2 is a geodesic, we have

d(y, y′) = d(y, x) + d(x, y′)

for y ∈ σ2 and y′ ∈ σ′
2 sufficiently close to x. We claim that the interior angle of

Δ∪Δ
′
at x is at least π. If not, there is a point z on σ3 = σ′

3 different from x such
that the minimizing geodesic (in M2

κ) from y to y′ passes through z. But then

d(y, y′) = d(y, x) + d(x, y′) = d(y, x) + d(x, y′)

> d(y, z) + d(z, y′) ≥ d(y, z) + d(z, y′) ≥ d(y, y′),
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where we use, in the second line, that Δ and Δ′ are CATκ. Hence we arrive at a
contradiction and the interior angle at x is at least π. In particular, the sides of Δ′′

satisfy the triangle inequality (3.1a).
If the angle is equal to π, then Δ ∪ Δ

′
is the comparison triangle of Δ′′. In

this case it is clear that Δ′′ is CATκ. If the angle is strictly bigger than π, the
comparison triangle is obtained by straightening the broken geodesic σ2 ∗ σ′

2 of
Δ∪Δ

′
, keeping the length of σ1, σ

′
1, σ2 and σ′

2 fixed. Now let Q be the union of the
two triangular surfaces bounded by Δ and Δ

′
and denote by Qt the corresponding

surface obtained during the process of straightening at time t. The interior distance
dt of two points on the boundary of Qt, that is, the distance determined by taking
the infimum of the lengths of curves in Qt connecting the given points, is strictly
smaller than the distance ds of the corresponding points at a later time s. The proof
of this assertion is an exercise in the trigonometry of M2

κ . At the final time tf of
the deformation, Qtf

is a triangle in M2
κ of perimeter < 2π/

√
κ and, therefore, the

interior distance dtf
is equal to the distance in M2

κ . Hence the lemma follows. �

3.4 Lemma. Let x ∈ X and assume that any two points y, z ∈ Br(x) can be
connected by a minimizing geodesic in X. If r < π/2

√
κ and if all triangles in B2r(x)

with minimizing sides and of perimeter < 2π/
√

κ are CATκ, then Br(x) is convex;
more precisely, for all y, z ∈ Br(x) there is a unique geodesic σyz : [0, 1] → Br(x)
from y to z and σyz is minimizing and depends continuously on y and z.

Proof. We prove first that any geodesic σ : [0, 1] → Br(x) is minimizing.
Otherwise there would exist, by the definition of geodesics, a maximal tσ ∈ (0, 1)
such that σ1 = σ|[0, tσ] is minimizing and a δ > 0 with δ < tσ, 1 − tσ such that
σ|[tσ − δ, tσ + δ] is minimizing. Let σ2 = σ|[tσ, tσ + δ], y = σ(tσ), z1 = σ(tσ − δ) and
z2 = σ(tσ + δ). We have

(∗) d(z1, z2) = d(z1, y) + d(y, z2).

On the other hand, σ|[0, tσ + δ] is not minimizing by the definition of tσ. Let σ3 be
a minimizing geodesic from σ(0) to z2 = σ(tσ + δ). Then

(∗∗) L(σ3) < L(σ1) + L(σ2)

and σ3 is contained in B2r(x) since d(x, σ(0)) + d(x, z2) < 2r. Now the triangle
Δ = (σ1, σ2, σ3) has minimizing sides and is contained in B2r(x). In the comparison
triangle Δ of Δ we get from (∗∗) and (∗),

d(z1, z2) < d(z1, y) + d(y, z2)

= d(z1, y) + d(y, z2) = d(z1, z2),

a contradiction to Δ being CATκ. Hence σ is minimizing.
Now let y, z ∈ Br(x) and σ be a minimizing geodesic from y to z. Then σ

is contained in B2r(x) and σ together with minimizing geodesics from x to y and
x to z forms a triangle Δ in B2r(x) with minimizing sides. Since Δ is CATκ and
r < π/2

√
κ, any point on σ has distance < r to x; that is, σ is in Br(x). Now

Lemma 3.4 follows easily. �
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3.5 Remark. The assumptions and assertions in Lemma 3.4 are not optimal;
compare also Corollary 4.2 below.

3.6 Definition. For κ ∈ R, an open subset U of X is called a CATκ-domain
if and only if

(i) for all x, y ∈ U , there is a geodesic σxy : [0, 1] → U of length d(x, y);
(ii) all triangles in U are CATκ.

We say that X has Alexandrov curvature at most κ, in symbols : KX ≤ κ, if every
point x ∈ X is contained in a CATκ-domain.

For κ = 1, the standard example of a CATκ-domain is the open hemisphere in
the unit sphere. Euclidean space respectively (real) hyperbolic space are examples
of CATκ-domains for κ = 0 respectively κ = −1.

If U is a CATκ-domain, then, by the definition of CATκ, triangles in U have
perimeter < 2π/

√
κ. In particular, any geodesic in U has length < π/

√
κ. Otherwise

we could construct (degenerate) triangles of perimeter ≥ 2π/
√

κ. Since triangles in
U are CATκ, we conclude that the geodesic σxy as in (i) is the unique geodesic in
U from x to y and that σxy depends continuously on x and y. By the same reason,
if x ∈ U and if Br(x) ⊂ U for some r < π/2

√
κ, then Br(x) is a CATκ-domain.

3.7 Exercises and remarks. (a) If X is a Riemannian manifold, then the
Alexandrov curvature of X is at most κ iff the sectional curvature of X is bounded
from above by κ.

(b) Define a function KX on X by

KX(x) = inf{κ ∈ R|x is contained in a CATκ-domain U ⊂ X} .

Show that this function is bounded from above by κ if the Alexandrov curvature
of X is at most κ. (This is a reconciliation with the notation.)

(c) Let X be a geodesic space. Show that X has Alexandrov curvature at most
κ if every point x in X has a neighborhood U such that for any triangle in X with
vertices in U and minimizing sides the distance of the vertices to the midpoints
of the opposite sides of the triangle is bounded from above by the distance of the
corresponding points in the comparison triangle in M2

κ .
In [Ri], the interested reader finds a thorough discussion of the above and

other definitions of upper curvature bounds.

Now assume that U ⊂ X is a CATκ-domain. Let ε > 0 and let σ1, σ2 : [0, ε] →
U be two unit speed geodesics with σ1(0) = σ2(0) =: x. For s, t ∈ (0, ε) let Δst

be the triangle spanned by σ1|[0, s] and σ2|[0, t]. Let γ(s, t) be the angle at x of
the comparison triangle Δst in M2

κ . Then γ(s, t) is monotonically decreasing as s, t
decrease and hence

(3.8) ∠(σ1, σ2) := lim
s,t→0

γ(s, t)

exists and is called the angle subtended by σ1 and σ2. The angle function satisfies
the triangle inequality

(3.9) ∠(σ1, σ3) ≤ ∠(σ1, σ2) + ∠(σ2, σ3) .

The triangle inequality is very useful in combination with the fact that
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(3.10) ∠(σ−1
1 , σ2) = π if σ−1

1 ∗ σ2 is a geodesic .

Here σ−1
1 is defined by σ−1

1 (t) = σ1(−t), −ε ≤ t ≤ 0. The trigonometric formulas
for spaces of constant curvature show that we can use comparison triangles in M2

λ

as well, where λ ∈ R is arbitrary (but fixed), and obtain the same angle measure.
In particular, we have the following formula:

(3.11) cos(∠(σ1, σ2)) = lim
s,t→0

d2(σ1(s), σ2(t)) − s2 − t2

2st
.

If y, z ∈ U \ {x} and σ1, σ2 are the unit speed geodesics from x to y and z respec-
tively, we set ∠x(y, z) = ∠(σ1, σ2).

3.12 Exercise. In U as above let xn → x, yn → y, zn → z with x ∈ U and
y, z ∈ U \ {x}. Then ∠xn

(yn, zn) and ∠x(yn, zn) are defined for n sufficiently large
and

∠x(y, z) = lim∠x(yn, zn) ≥ lim sup ∠xn
(yn, zn).

In a CATκ-domain U , we can also speak of the triangle Δ(x1, x2, x3) spanned
by three points x1, x2, x3 since there are unique geodesic connections between these
points.

3.13 Proposition. Let U be a CATκ-domain, let Δ = Δ(x1, x2, x3) be a
triangle in U , and let Δ be the comparison triangle in M2

κ.
(i) Let αi be the angle of Δ at xi, 1 ≤ i ≤ 3. Then αi ≤ αi, where αi is the

corresponding angle in Δ.
(ii) If d(x, y) = d(x, y) for one pair of points on the boundary of Δ such that x, y

do not lie on the same edge, or if αi = αi for one i, then Δ bounds a convex
region in U isometric to the triangular region in M2

κ bounded by Δ.

Proof. The first assertion follows immediately from the definition of angles
since triangles in U are CATκ. The equality in (ii) follows easily from the last
assertion in Lemma 3.3. �

4. The Hadamard-Cartan Theorem

In this section, we present the proof of the Hadamard-Cartan Theorem for sim-
ply connected, complete metric spaces with non-positive Alexandrov curvature. Our
version of the theorem includes the ones given in [AB1] and [Ba5]; it was motivated
by a discussion with Bruce Kleiner. We start with a general result of Alexander
and Bishop [AB1] about geodesics in spaces with upper curvature bounds.

4.1 Theorem. If X is a complete metric space with KX ≤ κ, and if σ :
[0, 1] → X is a geodesic segment of length < π/

√
κ, then σ does not have conjugate

points in the following sense: for any point x close enough to σ(0) and any point y
close enough to σ(1) there is a unique geodesic σxy : [0, 1] → X from x to y close
to σ. Moreover, any triangle (σxy, σxz, σyz), where x is close enough to σ(0), y and
z are close enough to σ(1) and σyz is minimizing from y to z, is CATκ.

Proof. For 0 ≤ L ≤ L(σ) consider the following assertion A(L):
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Given ε > 0 small there is δ > 0 such that for any subsegment σ = x0y0 of σ of
length at most L and any two points x, y with d(x, x0), d(y, y0) < δ there is a unique
geodesic σxy from x to y whose distance from σ is less than ε. Moreover, |L(σxy)−
L(σ)| ≤ ε and any triangle (σxy, σxz, σyz), where d(x, x0), d(y, y0), d(z, y0) < δ and
where σyz is minimizing from y to z, is CATκ.

Let r > 0 be a uniform radius such that Br(z) is a CATκ-domain for any
point z on σ. Then A(L) holds for L ≤ r. We show now that A(3L/2) holds if A(L)
holds and 3L/2 ≤ L(σ) < π/

√
κ.

To that end choose α > 0 with L(σ) + 3α < π/
√

κ. Then L + 2α < 2π/3
√

κ
and therefore there is a constant λ < 1 such that for any two geodesics σ1, σ2 :
[0, 1] → M2

κ with σ1(0) = σ2(0) and with length at most L + 2α we have

(∗) d(σ1(t), σ2(t)) ≤ λd(σ1(1), σ2(1)), 0 ≤ t ≤ 1
2
.

Now let σ = x0y0 be a subsegment of σ of length 3l/2 ≤ 3L/2 and let ε > 0 be
given. Choose ε′ > 0 with ε′ < min{ε/3, α}, and let δ < δ′(1 − λ)/λ, where δ′ is
the value guaranteed by A(L) for ε′.

Subdivide σ into thirds by points p0 and q0. Let x, y be points such that
d(x, x0), d(y, y0) < δ. By A(L) there are unique geodesics σxq0 from x to q0 and
σp0y from p0 to y of distance at most ε′ to x0q0 respectively p0y0. Furthermore, their
length is in [l − ε′, l + ε′] and the triangles (x0q0, σxq0 , σxx0) and (p0y0, σp0y, σyy0)
are CATκ. Hence we can apply (∗) to the midpoints p1 of σxq0 and q1 of σp0y and
obtain

d(p0, p1), d(q0, q1) ≤ λ max{d(x, x0), d(y, y0)} < λδ < δ′.

By A(L) there are unique geodesics σxq1 from x to q1 and σp1y from p1 to y of
distance at most ε′ to x0q0 respectively p0y0. Furthermore, their length is in [l −
ε′, l+ε′] and the triangles (σxq0 , σxq1 , σq0q1) and (σp0y, σp1y, σp0p1) are CATκ. Hence
we can apply (∗) to the midpoints p2 of σxq1 and q2 of σp1y and obtain

d(p1, p2), d(q1, q2) ≤ λ max{d(q0, q1), d(p0, p1)} < λ2δ.

Hence by the triangle inequality

d(p0, p2), d(q0, q2) < (λ + λ2)δ < δ′.

Recursively we obtain geodesics σxqn
from x to the midpoint qn of σpn−1y and σpny

from the midpoint pn of σxqn−1 to y of distance at most ε′ to x0q0 respectively
p0y0. Their length is in [l − ε′, l + ε′] and the triangles (σxqn−1 , σxqn

, σqn−1qn
) and

(σpn−1y, σpny, σpn−1pn
) are CATκ. Furthermore, we have the estimates

d(pn−1, pn), d(qn−1, qn) < λnδ

and
d(p0, pn), d(q0, qn) < (λ + . . . + λn)δ < δ′.

In particular, the sequences (pn), (qn) are Cauchy. Since X is complete, they con-
verge. If p = lim pn and q = lim qn, then

d(p0, p), d(q0, q) ≤ λ

1 − λ
δ < δ′
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and hence, by A(L), the geodesics σxqn
and σpny converge to σxq and σpy. By

construction, p ∈ σxq and q ∈ σpy. Therefore, by the uniqueness of σpq, the geodesics
σxq and σpy overlap in σpq and combine to give a geodesic σxy from x to y. The
length of σxy is given by L(σxq) + L(σpy) − L(σpq), hence |L(σxy) − L(σ)| < ε by
A(L) and since ε′ < ε/3. The last assertion follows from Lemma 3.3 by subdividing
the triangle suitably. �

4.2 Lemma. Let X be a complete metric space with KX ≤ κ, and let σ0 :
[0, 1] → X be a geodesic segment of length L0 = L(σ0) < π/

√
κ. For ε > 0 with

L+2ε < π/
√

κ assume that the balls Bε(x0) and Bε(y0) are CATκ-domains, where
x0 = σ0(0) and y0 = σ0(1). Then there is a continuous map

Σ : Bε(x0) × Bε(y0) × [0, 1] → X

with the following properties:
(i) σxy = Σ(x, y, .) is a geodesic from x to y of length L(σxy) ≤ L0 + d(x, x0) +

d(y, y0) and σx0y0 = σ0;
(ii) any triangle (σxy, σxz, σ), where σ is the geodesic in Bε(y0) from y to z, is

CATκ.
Moreover, Σ is unique in the following sense: if σs, 0 ≤ s ≤ 1, is a homotopy of σ0

by geodesics with σs(0) = xs ∈ Bε(x0) and σs(1) = ys ∈ Bε(x1), then σs = σxsys
.

Proof. The assertion about the uniqueness is immediate from the uniqueness
assertion in Lemma 4.1. Now let x ∈ Bε(x0), y ∈ Bε(y0) and let

γ0 : [0, 1] → Bε(x0), γ1 : [0, 1] → Bε(y0)

be the geodesics from x0 to x respectively y0 to y. Let r0 ≥ 0 be the supremum
over all r ∈ [0, 1] such that there is a continuous map

Fr : [0, r]× [0, r]× [0, 1] → X

with Fr(0, 0, .) = σ0 and
(i’) σst = Fr(s, t, .) is a geodesic from γ0(s) to γ1(t) of length

L(σst) ≤ L0 + d(x0, γ0(s)) + d(y0, γ1(t));
(ii’) triangles (γ0 | [s1, s2]), σs1t, σs2t) and (σst1 , σst2 , γ1 | [t1, t2]) are CATκ.
The uniqueness assertion in Lemma 4.1 implies that Fr1 and Fr2 agree on their
common domain of definition for all r1, r2 ∈ [0, r0). Now L + 2ε < π/

√
κ, and

hence the circumference of triangles as in (ii’), for s1, s2 respectively t1, t2 small,
is uniformly bounded away from 2π/

√
κ. Comparison with triangles in M2

κ shows
that limr→r0 Fr =: Fr0 exists. It is clear that Fr0(0, 0, .) = σ0 and that Fr0 satisfies
(i’) and (ii’). This shows that the set J of r, for which a map Fr as above exists, is
closed in [0, 1]. On the other hand, J is open by Lemma 4.1. Hence r0 = 1.

We set Fxy = F1 and σxy = F1(1, 1, .). It follows from Lemma 4.1 and unique-
ness that Fxy, and hence σxy, depends continuously on x and y. Assertion (ii)
follows from Lemma 3.3. �

4.3 Corollary. Let X be a complete interior metric space with KX ≤ κ.
Let R ≤ π/

√
κ and assume that for any two points x, y with d(x, y) < R there is a

unique geodesic σxy : [0, 1] → X from x to y of length < R. Then
(i) L(σxy) = d(x, y) for all such x, y;
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(ii) each triangle in X of perimeter < 2R is CATκ.
In particular, BR/2(x) is a CATκ-domain for any x ∈ X.

Proof. Since X is interior, there is a curve c : [0, 1] → X from x to y of
length < R. By Lemma 4.2, such a curve c gives rise to a homotopy σs, 0 ≤ s ≤ 1,
such that σs(t) = c(t) for s ≤ t ≤ 1 and σs(t), 0 ≤ t ≤ s, is a geodesic from x to
c(s) which is not longer than c(t), 0 ≤ t ≤ s. In particular, σ1 is a geodesic from
x to y of length ≤ L(c) < R. Hence σ1 = σxy, independently of the choice of c.
Since X is interior we obtain L(σxy) = d(x, y), hence (i). The remaining assertions
of Corollary 4.3 follow easily. �

We now apply the above argument in the case of a family of curves. To avoid
asumptions on the lengths of the curves, we assume that the Alexandrov curvature
is nonpositive.

4.4 Lemma. Let X be a complete metric space with KX ≤ 0. Let f : K×I →
X be a continuous map, where K is a compact space and I = [0, 1]. Then there is
a homotopy F : I × K × I → X of f such that
(i) F (s, k, t) = f(k, t) for all k ∈ K and t ≥ s;
(ii) F (s, k, t), 0 ≤ t ≤ s, is a geodesic from f(k, 0) to f(k, s).
(iii) F (s, k, t), 0 ≤ t ≤ s, is not longer than f(k, t), 0 ≤ t ≤ s;
(iv) d(F (s, k, t), F (s, k′, t)) ≤ rd(f(k, 0), f(k′, 0)) + (1 − r)d(f(k, s), f(k′, s)), r =

t/s, if k and k′ are sufficiently close.

Proof. The existence of a map F satisfying (i) and (ii) is immediate from
Lemma 4.2. Since the Alexandrov curvature of X is nonpositive, (iii) and (iv) follows
from (ii) in Lemma 4.2. �

4.5 Theorem of Hadamard-Cartan. Let X be a simply connected com-
plete metric space with KX ≤ 0. Then for any pair x, y of points in X there is a
unique geodesic σxy : [0, 1] → X from x to y. Moreover, σxy is continuous in x and
y and L(σxy) = di(x, y), where di denotes the interior metric associated to d.

Proof. Let f : [0, 1] → X be a path from x to y. By Lemma 4.4 there is
a homotopy F of f such that σ = F (1, .) is a geodesic from x to y. This proves
existence. Note also that L(σ) ≤ L(f).

As for uniqueness, if σ0 and σ1 are geodesics from x to y, then there is a
homotopy f between them fixing the endpoints x and y. Consider the associated
map F as in Lemma 4.4. The uniqueness assertion in Lemma 4.2 implies F (1, 0, .) =
σ0 and F (1, 1, .) = σ1. Now

F (1, 0, 0) = F (1, 1, 0) = x and F (1, 0, 1) = F (1, 1, 1) = y

and therefore F (1, 0, .) = F (1, 1, .) by (iv) in Lemma 4.4. Hence σ0 = σ1.
We have proved that, for any pair x, y of points in X , there is a unique geodesic

σxy : [0, 1] → X from x to y. By Lemma 4.2, σxy is continuous in x and y. The
uniqueness of σ = σxy implies that L(σ) ≤ L(f), where f is any curve from x to y.
Hence L(σ) = di(x, y). �

5. Hadamard spaces

A Hadamard manifold is a simply connected, complete smooth Riemannian
manifold without boundary and with nonpositive sectional curvature. Following
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this terminology, we say that a metric space X is a Hadamard space if X is sim-
ply connected, complete, geodesic with KX ≤ 0. A Hadamard space need not be
geodesically complete, that is, we do not require that every geodesic segment of X
is contained in a geodesic which is defined on the whole real line.

The following elegant characterization of Hadamard spaces can be found in
the paper of Bruhat and Tits [BruT], see also [Bro,p.155].

5.1 Proposition. Let X be a complete metric space. Then X is a Hadamard
space if and only if for any pair x, y of points in X there is a point m ∈ X (the
midpoint between x and y) such that

d2(z, m) ≤ 1
2
(d2(z, x) + d2(z, y)) − 1

4
d2(x, y) for all z ∈ X.

Using Karcher’s modified distance function [Kar] one obtains a similar formula
characterizing complete geodesic spaces X with KX ≤ κ such that for any pair of
points x, y ∈ X with d(x, y) < R (for some fixed R > 0, R ≤ π/

√
κ) there is a

unique geodesic from x to y of length < R.

Proof of Proposition 5.1. Substituting x and y for z we see that m is in
the middle between x and y, d(x, m) = d(y, m) = 1

2d(x, y), hence X is geodesic,
see Proposition 1.5. It is also immediate that m is unique and varies continuously
with the endpoints, hence the geodesic connecting x and y is unique and varies
continuously with x and y. Therefore X is contractible and, in particular, simply
connected. Now if x, y, z are the vertices of a geodesic triangle in X , then the
inequality in Proposition 5.1 asserts that the distance of z to m is bounded by the
distance of z̄ to m̄ in the comparison triangle in the Euclidean plane. Therefore,
KX ≤ 0, compare Exercise 3.7. �

We now collect consequences of our discussion in the previous sections, in
particular of Proposition 3.13, Corollary 4.3 and the Theorem of Hadamard-Cartan.
The main property is that for any pair x, y of points in a Hadamard space X , there
is a unique geodesic σxy : [0, 1] → X connecting x and y.

5.2 Proposition. Let X be a Hadamard space and let Δ be a triangle in
X with edges of length a, b and c and angles α, β and γ at the opposite vertices
respectively. Then
(i) α + β + γ ≤ π;
(ii) c2 ≥ a2 + b2 − 2ab cos γ (First Cosine Inequality)
(iii) c ≤ b cosα + a cosβ (Second Cosine Inequality).
In each case, equality holds if and only if Δ is flat, that is, Δ bounds a convex
region in X isometric to the triangular region bounded by the comparison triangle
in the flat plane. �

The following formula is useful in connection with the Second Cosine Inequal-
ity, see [BGS] or respectively the corresponding argument in the proof of Theorem
II.4.3.

5.3 Proposition. Let X be a Hadamard space and let Δ be a triangle in X
with edges of length a, b and c and angles α, β and γ in the opposite vertices. Let αE

and βE be the angle in the Euclidean triangle ΔE spanned by two edges of length a
and b which subtend an angle of measure γE = π − α − β. Then

b cosα + a cosβ = cE cos(α − αE) = cE cos(β − βE)
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where cE is the length of the third edge of ΔE . In particular, b cosα +cos β = cE if
and only if Δ is flat.

Proof. Consider the function

f(s) = b cos s + a cos(α + β − s).

Then
f ′ = −b sin s + a sin(α + β − s) and f ′′ = −f.

By the Law of Sines, f assumes its maximum cE in αE and hence we have f(s) =
cE cos(s − αE), where cE is the length of the third edge in ΔE . �

5.4 Proposition. Let I be an interval, and let σ1, σ2 : I → X be two
geodesics in a Hadamard space X. Then d(σ1(t), σ2(t)) is convex in t.

Proof. Let t0 < t1 be points in I, and let σ : [t0, t1] → X be the geodesic
from σ1(t0) to σ2(t1). Since triangles in X are CAT0, we have, for t = 1

2 (t0 + t1),

d(σ1(t), σ2(t)) ≤ d(σ1(t), σ(t)) + d(σ(t), σ2(t))

≤ 1
2
d(σ1(t1), σ2(t1)) +

1
2
d(σ1(t0), σ2(t0)).

�

5.5 Remark. The convexity of d(σ1(t), σ2(t)) in t, for any pair of geodesics
σ1, σ2 in X , is not equivalent to X being a Hadamard space. For example, if X is
a Banach space with strictly convex unit ball, then geodesics are straight lines and
hence the above convexity property holds. On the other hand, a Banach space has
an upper curvature bound in the sense of Definition 3.6 if and only if it is Euclidean,
see [Ri].

We say that a function f on a geodesic space X is convex if f ◦ σ is convex
for any geodesic σ in X .

5.6 Corollary. Let X be a Hadamard space and C ⊂ X a convex subset.
Then

dC : X → R, dC(z) = d(z, C),

is a convex function. If C is closed, then for any z ∈ X there is a unique point
πC(z) ∈ C with d(z, πC(z)) = dC(z). The map πC is called the projection onto C;
it has Lipschitz constant 1.

Proof. Everything except for the existence of the point πC(z) is clear. Now
let (xn) be a sequence in C with d(z, xn) → dC(z). Since C is convex, the midpoint
m = mnl between xn and xl is also in C. Its distance to z satisfies the estimate in
Proposition 5.1, where we subsitute xn and xl for x and y. It follows that (xn) is
a Cauchy sequence. Now X is complete and C is closed, hence the sequence has a
limit and the limit is in C. By continuity, it realizes the distance from z to C. �
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5.7 Proposition. Let X be a Hadamard space and let � = (σ1, σ2, σ3, σ4)
be a quadrangle of four consecutive geodesic segments in X with interior angle αi

subtended by σi and σi+1 at their common vertex (where we count indices mod 4).
Then α1 + α2 + α3 + α4 ≤ 2π, and equality holds if and only if � is flat, that is,
� bounds a convex region isometric to a convex region in the flat plane bounded by
four line segments.

Proof. Subdivide � into two triangles by the geodesic from the initial point
of σ1 to the endpoint of σ2 and apply (i) of Proposition 5.2. �

We say that two unit speed rays σ1, σ2 : [0,∞) → X (respectively unit speed
geodesics σ1, σ2 : R → X) are asymptotic (respectively parallel) if d(σ1(t), σ2(t)) is
uniformly bounded.

5.8 Corollary. Let X be a Hadamard space.
(i) If σ1, σ2 : [0,∞) → X are asymptotic unit speed rays, then

∠σ1(0)(σ2(0), σ1(1)) + ∠σ2(0)(σ1(0), σ2(1)) ≤ π

and equality holds if and only if σ1, σ2 and the geodesic σ from σ1(0) to σ2(0)
bound a flat half strip: a convex region isometric to the convex hull of two
parallel rays in the flat plane.

(ii) (Flat Strip Theorem) If σ1, σ2 : R → X are parallel unit speed geodesics, then
σ1 and σ2 bound a flat strip: a convex region isometric to the convex hull of
two parallel lines in the flat plane. �
5.9. Proposition. Let X be a Hadamard space and σ : R → X a unit speed

geodesic. Then the set P = Pσ ⊂ X of all points in X which belong to geodesics
parallel to σ is closed, convex and splits isometrically as P = Q×R, where Q ⊂ X
is closed and convex and {q} × R is parallel to σ for any q ∈ Q.

Proof. The convexity of P follows immediately from the Flat Strip Theorem
5.8(ii). The closedness of P follows from the completeness of X . Now set q0 = σ(0)
and let x ∈ P . Then there is, up to parameterization, a unique unit speed geodesic
σx parallel to σ with x ∈ σx. Denote by qx the point on σx closest to q0 and choose
the parameter on σx such that σx(0) = qx. Let tx ∈ R be the unique parameter
value with x = σx(tx). It follows from the Flat Strip Theorem that qx (respectively
q0) is the unique point on σx (respectively σ) with d(σ(t), qx)− t → 0 (respectively
d(σx(t), q0) − t → 0) as t → ∞.

Now let y ∈ P and define qy and ty accordingly. Then we have

d(σy(t), qx) − t ≤ d(σy(t), σ(t/2))− t

2
+ d(σ(t/2), qx) − t

2

and hence, since d(σy(t), σ(t/2))− t/2 → 0 as t → ∞,

(∗) lim sup
t→∞

d(σy(t), qx) − t ≤ 0.

Similarly

(∗∗) lim sup
t→∞

d(σx(t), qy) − t ≤ 0.
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Now σx and σy are parallel and bound a flat strip. From (∗) and (∗∗) we conclude
that qy is the closest point to qx on σy and qx is the closest point to qy on σx. Hence
(don’t forget the flat strip)

d2(x, y) = d2(qx, qy) + (tx − ty)2.

Hence the assertion with Q = {qx | x ∈ P}. �
Following the presentation in [Bro], we now discuss circumcenter and circum-

scribed balls for bounded subsets in Hadamard spaces.

5.10 Proposition. Let X be a Hadamard space and let A ⊂ X be a bounded
subset. For x ∈ X let r(x, A) = supy∈A d(x, y) and set r(A) = infx∈X r(x, A).
Then there is a unique x ∈ X, the circumcenter of A, such that r(x, A) = r(A),
that is, such that A ⊂ B(x, r(A)).

Proof. Let x, y ∈ X and let m be the midpoint between them. Then

r2(m, A) ≤ 1
2
(r2(x, A) + r2(y, A)) − 1

4
d2(x, y) ,

see Proposition 5.1, and hence

d2(x, y) ≤ 2(r2(x, A) + r2(y, A)) − 4r2(m, A)

≤ 2(r2(x, A) + r2(y, A)) − 4r2(A) .

Now the uniqueness of the circumcenter is immediate. It also follows that a sequence
(xn) with r(xn, A) → r(A) is Cauchy. Now X is complete, hence we infer the
existence of a circumcenter. �

With similar arguments one obtains centers of gravity for measures on Hada-
mard spaces.

5.11 Exercise. Let X be a Hadamard space and let μ be a measure on X
such that g(x) =

∫
d2(x, y)μ(dy) is finite for one (and hence any) x ∈ X . Show that

g assumes its infimum at precisely one point. This point is called the barycenter or
center of gravity of μ.

Barycenters and circumcenters can also be defined in CATκ-domains; compare
[BuKa] for the discussion in the Riemannian case.
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CHAPTER II

THE BOUNDARY AT INFINITY

In this chapter, we present a variation of §§ 3–4 of [BGS]. We assume through-
out that X is a complete geodesic space. The various spaces of maps discussed are
assumed to be endowed with the topology of uniform convergence on bounded
subsets.

1. Closure of X via Busemann functions

On X we consider the space C(X) of continuous functions, endowed with the
topology of uniform convergence on bounded subsets. For x, y, z ∈ X we set

(1.1) b(x, y, z) = d(x, z) − d(x, y).

Then we have b(x, y, y) = 0 and

(1.2) |b(x, y, z)− b(x, y, z′)| ≤ d(z, z′),

and hence b(x, y, .) ∈ C(X). Furthermore

(1.3) |b(x, y, z)− b(x′, y, z)| ≤ 2d(x, x′)

and

(1.4) b(x, y, z)− b(x, y, y′) = b(x, y′, z).

For y ∈ X fixed we have the map

by : X → C(X), by(x) = b(x, y, .).

It follows from (1.3) that by is continuous and from (1.2) that by(x) has Lipschitz
constant 1 for all x ∈ X . If x, x′ ∈ X and, say, d(x′, y) ≥ d(x, y), then

by(x)(x′) − by(x′)(x′) ≥ d(x, x′),

and hence by is injective. In fact, by is an embedding since by(x) and by(x′) are
strictly separated if d(x, x′) is large. To see this suppose d(x′, y) ≥ 2d(x, y)+ 1 and
let z ∈ Br(x) be the point on the geodesic form x to x′ with d(x, z) = r := d(x, y)+1.
Then

by(x)(z) − by(x′)(z) = 1 − d(x′, z) + d(x′, y)

≥ 1 + d(x′, x) − d(x, y)− d(x′, z) = 2.

Typeset by AMS-TEX
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Now r depends only on x and not on x′. Hence by is an embedding.
We say that a sequence (xn) in X converges at infinity if d(xn, y) → ∞ and

by(xn) converges in C(X) for some y ∈ X . From (1.4) we conclude that this is
independent of the choice of y. Two such sequences (xn) and (x′

n) will be called
equivalent if limn→∞ by(xn) = limn→∞ by(x′

n) for one and hence any y ∈ X . We
denote by X(∞) the set of equivalence classes. For any ξ ∈ X(∞) and y ∈ X there
is a well defined function f = b(ξ, y, .) ∈ C(X), called the Busemann function at
ξ based at y, namely f = limn→∞ by(xn), where (xn) represents ξ. The sublevels
f−1(−∞, a) of f are called horoballs and the levels horospheres (centered at ξ).

Note that, by the above argument, X(∞) corresponds to the points in by(X)\
by(X). Hence the embedding by gives a topology on X(∞) and X = X ∪ X(∞).
Because of (1.4) this topology does not depend on the choice of y. With respect to
this topology, the function b extends to a continuous function

b : X × X × X → R

such that (1.2) and (1.4) still hold and b(x, y, y) = 0 for all x ∈ X and y ∈ X .

1.5 Remarks. (a) If X is locally compact, then X and X(∞) are compact.
For this note that we can apply the Theorem of Arzela-Ascoli since by(x) is nor-
malized by by(x)(y) = 0 and since by(x) has Lipschitz constant 1 for all x ∈ X .

(b) In potential theory, one uses Green’s functions G(x, y) to define the Martin
boundary in an analogous way. Instead of using differences b(x, y, z) = d(x, z) −
d(x, y), one takes quotients K(x, y, z) = G(x, z)/G(x, y).

2. Closure of X via rays

In this section, we add the assumption that X is a Hadamard space. We
describe the construction of X(∞) by asymptote classes of rays, introduced by
Eberlein-O’Neill [EbON].

We recall that a ray is a geodesic σ : [0, ω) → X, 0 < ω ≤ ∞, such that
σ is minimizing and such that limt→ω σ(t) does not exist. Since we assume that
X is complete, we have ω = ∞ for any unit speed ray in X . As in Section I.5
we say that two unit speed rays σ1, σ2 are asymptotic if d(σ1(t), σ2(t)) is bounded
uniformly in t. This is an equivalence relation on the set of unit speed rays in X ;
the set of equivalence classes is denoted X(∞). If ξ ∈ X(∞) and σ is a unit speed
ray belonging to ξ, we write σ(∞) = ξ.

Recall that d(σ1(t), σ2(t)) is convex in t. In particular, if σ1 is asymptotic to
σ2 and σ1(0) = σ2(0), then σ1 = σ2. Hence for any ξ ∈ X(∞) and any x ∈ X , there
is at most one unit speed ray σ starting in x with σ(∞) = ξ. Our first aim is to
show that, in fact, for each x ∈ X and each ξ ∈ X(∞) there is a unit speed ray σ
starting at x with σ(∞) = ξ.

2.1 Lemma. Let σ : [0,∞) → X be a unit speed ray and let ξ = σ(∞). Let
x ∈ X and for T > 0 let σT : [0, d(x, σ(T ))] → X be the unit speed geodesic from x
to σ(T ). Then, for R > 0 and ε > 0 given, we have, for S, T sufficiently large,

d(σS(t), σT (t)) < ε, 0 ≤ t ≤ R.

Hence σT converges, for T → ∞, to a unit speed ray σx,ξ asymptotic to σ. That is,
for R > 0 and ε > 0 given, we have, for T sufficiently large,

d(σx,ξ(t), σT (t)) < ε, 0 ≤ t ≤ R.
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Proof. Let αT = ∠σ(T )(x, σ(0)). Then αT → 0 since d(σ(0), σ(T )) = T →
∞. Hence, for α > 0 given, we have ∠σ(T )(x, σ(S)) ≥ π −α for T large and S > T .
Hence the assertion follows from a comparison with Euclidean geometry. �

The above lemma together with our previous considerations shows that for any
x ∈ X and any ξ ∈ X(∞) there is a unique unit speed ray σx,ξ : [0,∞) → X with
σx,ξ(0) = x and σx,ξ(∞) = ξ. For y ∈ X, y 	= x, we denote by σx,y : [0, d(x, y)] → X

the unique unit speed geodesic from x to y. On X = X ∪ X(∞) we introduce a
topology by using as a basis the open sets of X together with the sets

U(x, ξ, R, ε) = {z ∈ X|z 	∈ B(x, R), d(σx,z(R), σx,ξ(R)) < ε},
where x ∈ X, ξ ∈ X(∞). Recall that, by convexity, d(σx,z(R), σx,ξ(R)) < ε implies
that

d(σx,z(t), σx,ξ(t)) < ε, 0 ≤ t ≤ R.

The following lemma is an immediate consequence of Lemma 2.1.

2.2 Lemma. Let x, y ∈ X, ξ, η ∈ X(∞) and let R > 0, ε > 0 be given.
Assume η ∈ U(x, ξ, R, ε). Then there exist S > 0 and δ > 0 such that

U(y, η, S, δ) ⊂ U(x, ξ, R, ε).

�
This lemma shows that for a fixed x ∈ X the sets U(x, ξ, R, ε) together with

the open subsets of X form a basis for the topology of X. With respect to this
topology, a sequence (xn) in X converges to a point ξ ∈ X(∞) if and only if
d(x, xn) → ∞ for some (and hence any) x ∈ X and the geodesics σx,xn

converge to
σx,ξ. Note also that, for any x ∈ X , the (relative) topology on X(∞) is defined by
the family of pseudometrics dx,R, R > 0, where

(2.3) dx,R(ξ, η) = d(σx,ξ(R), σx,η(R)).

Our next aim is to show that X and X(∞) are homeomorphic to the corre-
sponding spaces in Section 1. To that end, let x0 ∈ X and R > 1 be given and as-
sume x1, x2 ∈ X satisfy d(x0, x1), d(x0, x2) > R. Let y1 = σx0,x1(R), y2 = σx0,x2(R)
and assume d(y1, y2) ≥ ε. By comparison with the Euclidean triangle we get

cos(∠y1(y2, x0)) ≥ ε

2R

since d(y1, x0) = d(y2, x0) = R. Now

∠y1(y2, x1) ≥ π − ∠y1(y2, x0)

since y1 is on the geodesic from x0 to x1, hence

cos(∠y1(y2, x1)) ≤ cos(π − ∠y1(y2, x0)) ≤ −ε

2R
.

From the First Cosine Inequality we obtain (for ε < 1)

d2(x1, y2) ≥ d2(x1, y1) + ε2 +
ε2

R
d(x1, y1) ≥ (d(x1, y1) +

ε2

2R
)2

and hence

(2.4) b(x1, x0, y2) − b(x2, x0, y2) ≥ ε2

2R

where b(xi, x0, .) is defined as in (1.1). From this we obtain the desired conclusion
about X and X(∞).
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2.5 Proposition. Let (xn) be a sequence in X with d(x0, xn) → ∞. Then
b(xn, x0, .) converges to a Busemann function f if and only if σx0,xn

converges to
a ray σ = σx0,ξ. Furthermore, we have f = bσ, where

bσ(x) := lim
t→∞(d(σ(t), x)− t).

Proof. If b(xn, x0, .) → f , then b(xn, x0, .) converges uniformly to f on
B(x0, R) for any R > 1 (by the choice of topology on C(X)). By (2.4), the se-
quence (σx0,xn

(R)) converges; hence σx0,xn
converges to a ray σ.

For the proof of the converse, note that for r > 0 and ε > 0 given, there is an
R > 0 such that

|b(y, x0, x) − b(z, x0, x)| < ε

for all x ∈ B(x0, r) if d(z, x0) > R and y = σx0,z(R). �

2.6 Exercise. There is the following intrinsic characterization of Busemann
functions in the case of Hadamard spaces: a function f : X → R is a Busemann
function based at x0 ∈ X if and only if
(i) f(x0) = 0; (ii) f is convex; (iii) f has Lipschitz constant 1; (iv) for any
x ∈ X and r > 0 there is a z ∈ X with d(x, z) = r and f(x) − f(z) = r.

This characterization of Busemann functions is a variation of the one given in
Lemma 3.4 of [BGS]. It has been suggested that a proof of Exercise 2.6 is included.
The interested reader finds it in Section 3 of Chapter IV. Exercise 2.6 will be used
in the discussion of fixed points of isometries.

3. Classification of isometries

Let X be a Hadamard space and let ϕ : X → X be an isometry. The function

dϕ : X → R, dϕ(x) = d(x, ϕ(x)),

is called the displacement function of ϕ. Since ϕ maps geodesics to geodesics, dϕ is
convex.

Definition 3.1. We say that ϕ is semisimple if dϕ achieves its mimimum in
X . If ϕ is semisimple and min dϕ = 0, we say that ϕ is elliptic. If ϕ is semisimple
and min dϕ > 0, we say that ϕ is axial. We say that ϕ is parabolic if dϕ does not
achieve a minimum in X .

Proposition 3.2. An isometry ϕ of X is elliptic iff one of the following two
equivalent conditions holds:

(i) ϕ has a fixed point; (ii) ϕ has a bounded orbit.

Proof. It is obvious that ϕ is elliptic iff (i) holds and that (i) ⇒ (ii). For the
proof of (ii) ⇒ (i), let B be the unique geodesic ball of smallest radius containing
the bounded orbit Y = {ϕn(x) | n ∈ Z}, see Proposition I.5.10. Now ϕ(Y ) = Y ,
hence ϕ(B) = B by the uniqueness of B. Therefore ϕ fixes the center of B. �
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Proposition 3.3. An isometry ϕ of X is axial iff there is a unit speed geo-
desic σ : R → X and a number t0 > 0 such that ϕ(σ(t)) = σ(t + t0) for all t ∈ R.
Such a geodesic σ will be called an axis of ϕ.

Now let ϕ be axial, let mϕ = min dϕ > 0 and set A = Aϕ = {x ∈ X |
dϕ(x) = mϕ}. Then A is closed, convex and isometric to C × R, where C ⊂ A
is closed and convex. Moreover, the axes of ϕ correspond precisely (except for the
parameterization) to the geodesics {c} × R, c ∈ C.

Proof. Suppose ϕ is axial and let x ∈ A. Consider the geodesic segment
ρ from x to ϕ(x) and let y be the midpoint of ρ. Then d(y, x) = d(y, ϕ(x)) =
d(x, ϕ(x))/2. Since d(ϕ(y), ϕ(x)) = d(y, x), we get

d(y, ϕ(y)) ≤ d(y, ϕ(x)) + d(ϕ(x), ϕ(y)) ≤ d(x, ϕ(x)).

Now x ∈ A, hence d(y, ϕ(y)) = d(x, ϕ(x)). Hence the concatenation of ρ with ϕ(ρ)
is a geodesic segment. Therefore

σ = ∪n∈Zϕn(ρ)

is an axis of ϕ. Hence there is an axis of ϕ through any x ∈ A. Clearly, any two
axes of ϕ are parallel. Hence A is closed, convex and consists of a family of parallel
geodesics. Therefore A is isometric to C × R as claimed, where C is a closed and
convex subset of X , see Proposition I.5.9. The other assertions are clear. �

Propostion 3.4. If X is locally compact and if ϕ is a parabolic isometry of
X, then there is a Busemann function f = b(ξ, y, .) invariant under ϕ, that is, ϕ
fixes ξ ∈ X(∞) and all horospheres centered at ξ are invariant under ϕ.

Proof. Let m = inf dϕ ≥ 0. For δ > m set

Xδ = {x ∈ X | dϕ(x) ≤ δ}.
Then Xδ is closed and convex since dϕ is convex. Moreover,

∩δ>mXδ = ∅
since ϕ is parabolic. Let x0 ∈ X and set

fδ(x) = d(x, Xδ) − d(x0, Xδ).

Then (i) fδ(x0) = 0; (ii) fδ is convex; (iii) fδ has Lipschitz constant 1; (iv) for any
x ∈ X\Xδ and r > 0 with r ≤ d(x, Xδ) there is a z ∈ X with d(x, z) = r and
fδ(x) − fδ(z) = r. Now apply the Theorem of Arzela-Ascoli and Exercise 2.6. �

4. The cone at infinity and the Tits metric

Throughout this section we assume that X is a Hadamard space. For ξ, η ∈
X(∞) we define the angle by

∠(ξ, η) = sup
x∈X

∠x(ξ, η).

Note that ∠ is a metric on X(∞) with values in [0, π]. The topology on X(∞)
induced by this metric is, in general, different from the topology defined in the
previous sections; to the latter we will refer as the standard topology.
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4.1 Proposition. (X(∞), ∠) is a complete metric space. Furthermore,
(i) if ξn → ξ with respect to ∠, then ξn → ξ in the standard topology;
(ii) if ξn → ξ and ηn → η in the standard topology, then

∠(ξ, η) ≤ lim inf
n→∞ ∠(ξn, ηn) .

Proof. Let (ξn) be a Cauchy sequence in X(∞) with respect to ∠. Let x ∈ X
and let σn = σx,ξn

be the unit speed ray from x to ξn. Given R > 0 and ε > 0,
there is N = N(ε) ∈ N such that ∠(ξn, ξm) < ε for all m, n ≥ N . Then

∠σn(R)(x, ξm) ≥ π − ∠σn(R)(ξn, ξm) ≥ π − ∠(ξn, ξm) > π − ε.

By comparison with the Euclidean plane,

dx,R(ξn, ξm) = d(σn(R), σm(R)) ≤ 2R tan
ε

2
.

Therefore (σn) converges to a unit speed ray σ and ξn → ξ := σ(∞) with respect
to the standard topology. Since N = N(ε) does not depend on x and R, we also
get ξn → ξ with respect to ∠. This proves (i) and that ∠ is complete. The proof of
(ii) is similar. �

4.2 Proposition. Let ξ, η ∈ X(∞). For x ∈ X, let σ = σx,ξ be the ray from
x to ξ. Then ∠σ(t)(ξ, η) and π−∠σ(t)(x, η) are monotonically increasing with limit
∠(ξ, η) as t → ∞. If

∠(ξ, η) < π and ∠x(ξ, η) = ∠(ξ, η),

then σ and the ray from x to η bound a flat convex region in X isometric to the
convex hull of two rays in the flat plane with the same initial point and angle equal
to ∠(ξ, η).

Proof. Let γ(t) = ∠σ(t)(ξ, η) and ϕ(t) = ∠σ(t)(η, σ(0)). Then we have γ(t)+
ϕ(t) ≥ π and ϕ(s) + γ(t) ≤ π for s > t. Hence

γ(t) ≤ γ(s) and ϕ(t) ≥ ϕ(s)

for s > t. In particular, limt→∞ γ(t) and limt→∞ ϕ(t) exist. By definition we have
limt→∞ γ(t) ≤ ∠(ξ, η). Now let y ∈ X and let ψ(t) = ∠y(σ(t), η), δ(t) = ∠σ(t)(y, η)
and ε(t) = ∠σ(t)(y, σ(0)). Then ε(t) → 0 and ψ(t) → ∠y(ξ, η) for t → ∞. Now

ψ(t) + δ(t) ≤ π and ε(t) + δ(t) + γ(t) ≥ π,

hence ψ(t) ≤ ε(t) + γ(t), hence ∠y(ξ, η) ≤ limt→∞ γ(t).
This proves the assertion about γ(t). Now

π − ϕ(t) ≤ γ(t) ≤ π − ϕ(s)

for s > t, hence we also obtain the assertion limt→∞(π − ϕ(t)) = ∠(ξ, η). The
last assertion of the lemma follows from the equality discussion in assertion (i) of
Corollary I.5.8 since γ(t) ≡ constant in that case, and hence ϕ(s) = π − γ(t) for
s > t. �
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4.3 Exercise. Let ξ, η ∈ X(∞) and assume ξ 	= η. Let σ0 and σ1 be the unit
speed rays from x to ξ and η respectively. Define angles

αs,t = ∠σ1(s)(σ0(t), x), βs,t = ∠σ0(t)(σ1(s), x).

Prove: π − αs,t − βs,t is monotonically increasing as s, t increase and

∠(ξ, η) = lim
s,t→∞π − αs,t − βs,t.

The second assertion also follows from the monotonicity and Theorem 4.4 below.

4.4 Theorem. Let ξ 	= η ∈ X(∞) and a, b > 0. For x ∈ X let σ0 and σ1 be the
unit speed rays from x to ξ and η respectively. Then c = limt→∞ d(σ0(at), σ1(bt))/t
is independent of the choice of x. In the Euclidean triangle with sides a, b, c and
angles α, β, γ in the opposite vertices A, B, C, see Figure 1, we have γ = ∠(ξ, η)
and

αt = ∠σ1(bt)(σ0(at), x) → α, βt = ∠σ0(at)(σ1(bt), x) → β.

For s ∈ (0, 1) given and E the point on c with d(E, B) = sc we have

lim
t→∞

1
t
d(x, ρt(s)) = e := d(C, E),

where ρt : [0, 1] → X is the geodesic from σ0(at) to σ1(bt). Furthermore, if e 	= 0,
then the geodesics σs,t : [0, et] → X with σs,t(0) = x and σs,t(et) = ρs(t) converge,
for t → ∞, to a unit speed ray σs from x such that ρt(s) → σs(∞), and ζ = σs(∞)
is the unique point in X(∞) with

∠(ζ, ξ) = ∠C(E, B), ∠(ζ, η) = ∠C(E, A).

Moreover,
lim

t→∞ ∠ρt(s)(σ0(at), x) = α′ := ∠E(B, C),

lim
t→∞ ∠ρt(s)(σ1(bt), x) = β′ := ∠E(A, C).
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Proof. The independence of c from x is immediate from the definition of
asymptoticity. For γx = ∠x(ξ, η) and c(t) = L(σt) = d(σ0(at), σ1(bt)), we have

(a2 + b2 − 2ab cos γx)
1
2 ≤ c(t)

t
≤ a cosβt + b cosαt

= ct,E cos(αt − αt,E) = ct,E cos(βt − βt,E) ≤ ct,E

= (a2 + b2 − 2ab cos(π − αt − βt))
1
2 ≤ (a2 + b2 − 2ab cos∠(ξ, η))

1
2 ,

where the inequalities in the first line follow from the Cosine Inequalities, see Propo-
sition I.5.2, the equalities in the second line from Proposition I.5.3, where αt,E and
βt,E are the angles and ct,E is the length of the third edge in the Euclidean triangle
with two edges of length a and b subtending an angle π−αt−βt, and the inequality
in the third line since

π − αt − βt ≤∠σ1(bt)(σ0(at), η) + ∠σ0(at)(σ1(bt), ξ)− π

≤∠σ0(at)(ξ, η) ≤ ∠(ξ, η).

Now c(t)/t tends to c and is independent of x. Since ∠(ξ, η) = supx∈X γx we get

c2 = a2 + b2 − 2ab cos∠(ξ, η)

and therefore ∠(ξ, η) = γ. Furthermore, we have π−αt−βt → ∠(ξ, η) and ct,E → c
as t → ∞. Now c 	= 0 and hence αt,E → α, βt,E → β. We conclude that αt →
α, βt → β as t → ∞. We also have

d(x, ρt(s)) ≤ d(x, ρt(s)),

where ρt : [0, 1] → R
2 is a line of length c(t) and where d(x, ρt(0)) = at, d(x, ρt(1)) =

bt. Now d(x, ρt(s))/t → e as t → ∞, therefore

lim sup
t→∞

1
t
d(x, ρt(s)) ≤ e.

On the other hand, we have

d2(x, ρt(s))
t2

≥ a2 + s2 c(t)2

t2
− 2as

c(t)
t

cos(αt)

by the First Cosine Inequality. Since αt → α and c(t)/t → c we conclude that

lim inf
t→∞

1
t
d(x, ρt(s)) ≥ e

and hence that d(x, ρt(s))/t → e at t → ∞.
We now prove that the geodesics σs,t converge to a ray as claimed. Given

ε > 0, there is T ≥ 0 such that

|c(t)
2

t2
− c2|, |2as

c(t)
t

cos αt − 2asc cosα| <
ε

2
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for all t ≥ T . Then we obtain for t > t′ ≥ T and r = t′/t,

d2(σ0(at′), ρt(s))
t2

≥ 1
t2

(a2(t − t′)2 + s2c(t)2 − 2a(t − t′)sc(t) cosαt)

≥ a2(1 − r)2 + s2c2 − 2a(1 − r)sc cosα − ε.

Now denote by αt the angle in the Euclidean triangle with side lengths a, b, c(t)/t
corresponding to αt. Then αt ≥ αt and αt → α. By enlarging T if necessary, we
also have

|2as
c(t)
t

cos αt − 2asc cosα| <
ε

2
for all t ≥ T . Since triangles in X are CAT0 we obtain, for t > t′ ≥ T ,

d2(σ0(at′), ρt(s))
t2

≤ 1
t2

(a2(t − t′)2 + s2c(t)2 − 2a(t − t′)sc(t) cosαt)

≤ a2(1 − r)2 + s2c2 − 2a(1 − r)sc cosα + ε.

An analogous estimate holds for d(σ1(bt′), ρt(s)). Euclidean comparison for the
triangle (σ0(at′), σ1(bt′), ρt(s)) shows that

d(ρ′
t(s), ρt(s)) ≤ ((1 − r)e + ε)t

for all t, t′ sufficiently large, where r = t′/t. On the other hand, d(x, ρt(s))/t → e
and hence the triangle inequality implies

d(ρ′
t(s), ρt(s)) ≥ ((1 − r)e − ε)t

for all t, t′ sufficiently large. In particular, up to the term εt (and ε can be chosen ar-
bitrarily small), the concatenation of the geodesic from x to ρt′(s) with the geodesic
from ρt′(s) to ρt(s) is a shortest connection from x to ρt(s). By comparison with Eu-
clidean geometry we conclude that for any R ≥ 0, the distance d(σs,t(R), σs,t′(R))
is arbitrarily small for all t, t′ sufficiently large. Hence the geodesic segments σs,t

converge to a ray σs. Note that σs has unit speed since d(x, ρt(s))/t → e and that
ρt(s) → σs(∞) = ζ by the very definition of the topology of X.

For t large, the triangle with vertices x, σ0(at), ρt(s) has sides of length ap-
proximately equal to at, sct, et. By comparison we get

∠x(ξ, ζ) = lim
t→∞∠x(σ0(at), ρt(s)) ≤ ∠C(B, E).

Similarly ∠x(η, ζ) ≤ ∠C(A, E). Clearly, ζ is independent of the choice of x and
hence

(∗) ∠(ξ, ζ) ≤ ∠C(B, E), ∠(η, ζ) ≤ ∠C(A, E).

Now
∠(ξ, ζ) + ∠(η, ζ) ≥ ∠(ξ, η) = ∠C(A, B),

hence we have equality in (∗).
Suppose nowe that ζ ′ ∈ X(∞) is a point with

(∗∗) ∠(ξ, ζ ′) = ∠C(B, E), ∠(η, ζ ′) = ∠C(A, E),
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and let σ′ be the unit speed ray from x to ζ ′. If ζ 	= ζ ′, then there is an ε > 0 such
that d(σ′(et), ρt(s)) ≥ εt for all t sufficiently large. By comparison with Euclidean
geometry we get that at least one of the following inequalities holds:

c2
0 = lim

t→∞
1
t2

d2(σ0(at), σ′(et)) ≥ s2c2 + ε2 or

c2
1 = lim

t→∞
1
t2

d2(σ1(bt), σ′(et)) ≥ (1 − s)2c2 + ε2.

However, by the first part of the proof we have

∠(ξ, ζ ′) =
a2 + e2 − c2

0

2ae
, ∠(η, ζ ′) =

b2 + e2 − c2
1

2be
.

Hence (∗∗) implies c2
0 = s2c2 and c2

1 = (1 − s)2c2. We conclude ζ = ζ ′.
As for the last claim, let

α(t) = ∠ρt(s)(σ0(at), x), β(t) = ∠ρt(s)(x, σ1(bt)).

Then α(t) + β(t) ≥ π. By comparison with Euclidean geometry, applied to the
triangles Δ(ρt(s), x, σ0(at)) and Δ(ρt(s), x, σ1(bt)) we get

lim sup
t→∞

α(t) ≤ α′ and lim sup
t→∞

β(t) ≤ β′ .

Now α′ + β′ = π, hence the claim. �
4.5 Exercise. Use the notation of Theorem 4.4 and assume that e 	= 0. Let F

be a point on the edge of length a on the Euclidean triangle such that d(C, F ) = ra
for some r ∈ (0, 1). Prove:

d(E, F ) = lim
t→∞

1
t
d(ρt(s), σ0(rat))

and corresponding assertions about the angles at F .

4.6 Corollary. If ξ, η ∈ X(∞) are points with ∠(ξ, η) < π, then there is a
unique minimizing geodesic in X(∞) (with respect to ∠) from ξ to η.

Proof. The existence of a geodesic from ζ to η follows from Proposition I.1.5
and Theorem 4.4, where we put a = b = 0, s = 1/2. The uniqueness follows from
the uniqueness of the point ζ in Theorem 4.4. �

The cone at infinity, C∞X , is the set [0,∞)× X(∞)/ ∼, where {0} × X(∞)
shrinks to one point, together with the metric d∞ defined by

(4.7) d∞((a, ξ), (b, η)) = a2 + b2 − 2ab cos∠(ξ, η).

That is, (C∞X, d∞) is the Euclidean cone over X(∞). We may also think of C∞X
as the set of equivalence classes of geodesic rays, where we do not require unit speed
and where we say that geodesic rays σ0 and σ1 are equivalent if d(σ0(t), σ1(t)) is
uniformly bounded in t. In the notation of Theorem 4.4 we have

d∞((a, ξ), (b, η)) = lim
t→∞

1
t
d(σ0(at), σ1(bt)).

In this sense, the geometry of X with respect to the rescaled metric d/t converges
to the geometry of C∞X as t → ∞.

Given x ∈ X and a sequence of geodesics σn : [0, tn] → X with speed vn ≥ 0
and σn(0) = x, we say that σn → (a, ξ) if tn → ∞, if vn → a and, if a 	= 0, if
σn(tn) → ξ.
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Theorem 4.8. (C∞X, d∞) is a Hadamard space.

Proof. Note that C∞X is simply connected since we can contract C∞X onto
the distinguished point x∞ = [{0} × X(∞)]. The metric d∞ is complete since ∠ is
a complete metric on X(∞).

We show now that d∞ is a geodesic metric. To that end, let (a, ξ), (b, η) ∈
C∞X . We want to show that there is a minimizing geodesic between these two
points. The only non-trivial case is a, b > 0 and 0 < ∠(ξ, η) < π. Choose x ∈ X
and let σ0, σ1 be the unit speed rays from x with σ0(∞) = ξ and σ1(∞) = η. Then,
in the notation of Theorem 4.4, the geodesics σs,t converge to geodesic rays σs of
speed es > 0, 0 ≤ s ≤ 1, and, by Theorem 4.4 and the definition of d∞, the curve
ρ(s) = (es, σs(∞)), 0 ≤ s ≤ 1, is a minimizing geodesic form (a, ξ) to (b, η). It is
immediate from Corollary 4.6 (or Theorem 4.4) that ρ is the unique minimizing
geodesic from (a, ξ) to (b, η).

It remains to show that C∞X is nonpositively curved. By Lemma I.3.4, it
suffices to consider triangles in C∞X with minimizing sides. Let Δ be such a triangle
and let (ai, ξi), 1 ≤ i ≤ 3, be the vertices of Δ. The only non-trivial case is ai > 0
and 0 < ∠(ξi, ξj) < π for i 	= j. Recall that the minimal geodesics ρi : [0, 1] → C∞X
from (ai, ξi) to (ai+1, ξi+1) are unique (indices are counted mod 3).

Let (e1, ζ1) = ρi(s1) and (e2, ζ2) = ρj(s2), where i 	= j and 0 < s1, s2 < 1. Let
σ1 and σ2 be the unit speed rays from a given point x ∈ X to ζ1 and ζ2 respectively.
By Theorem 4.4,

d∞((e1, ζ1), (e2, ζ2)) = lim
R→∞

1
R

d(σ1(e1R), σ2(e2R)).

Let σ̃k be the unit speed ray from x to ξk, 1 ≤ k ≤ 3. If ρk,t : [0, 1] → X denotes the
geodesic from σ̃k(akt) to σ̃k+1(ak+1t) , and if σ̂1,t respectively σ̂2,t are the geodesics
from x with σ̂1,t(e1t) = ρi,t(s1) respectively σ̂2,t(e2t) = ρj,t(s2), then, by Theorem
4.4,

σk(ekR) = lim
t→∞ σ̂k,t(ekR), k = 1, 2.

For t large, the triangle (ρ1,t, ρ2,t, ρ3,t) has sides of length approximately tlk, where
lk = L(ρk). Now let (ρ1, ρ2, ρ3) be the Euclidean comparison triangle of (ρ1, ρ2, ρ3)
and let dE = d(ρi(s1), ρj(s2)). Since X is a Hadamard space we conclude

d(ρi,t(s1), ρj,t(s2)) ≤ (dE + ε)t

where ε > 0 is given and t is sufficiently large. Hence
1
R

d(σ1(e1R), σ2(e2R)) = lim
t→∞

1
R

d(σ̂1,t(e1R), σ̂2,t(e2R))

≤ lim sup
t→∞

1
t
d(ρi,t(s1), ρj,t(s2)) ≤ dE .

It follows that triangles in C∞X are CAT0 and hence that C∞X is a Hadamard
space. �

4.9 Corollary. (X(∞), ∠) has curvature ≤ 1. More precisely,
(i) geodesics in X(∞) of length < π are minimal;
(ii) triangles in X(∞) of perimeter < 2π are CAT1.

Proof. The relation between distances in C∞X and angles in X(∞) is ex-
actly as the relation between distances in Euclidean space E3 and angles in the
unit sphere S2. �
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4.10 Lemma. Let X be a locally compact Hadamard space. In the notation of
Theorem 4.4 let a = b = 1 and assume that there is no geodesic in X from ξ to η.
Let ρt(st) be the point on ρt closest to x. Then d(x, ρt(st)) → ∞. If ζ ∈ X(∞) is
an accumulation point of ρt(st) for t → ∞, then

∠(ξ, ζ) = ∠(ζ, η) = γ/2.

Proof. Since X is locally compact and since there is no geodesic from ξ to η
we have d(x, ρt) → ∞ for t → ∞. From Theorem 4.4 we conclude d(x, ρt(1/2))/t →
cos(γ/2) < 1 and hence st 	= 0, 1. Therefore

∠ρt(st)(x, σ0(t)), ∠ρt(st)(x, σ1(t)) ≥ π/2.

Since (in the notation of Theorem 4.4) αt, βt → (π − γ)/2 we get

∠x(ξ, ζ), ∠x(ζ, η) ≤ γ/2.

The triangle inequality implies that we must have equality in these inequalities. �
Following Gromov, we denote by Td, the Tits metric, the interior metric on

X(∞) associated to the angle metric ∠. The name derives from its close relation-
ship with the Tits building associated to symmetric spaces. By definition, we have
Td(ξ, η) ≥ ∠(ξ, η) for all ξ, η ∈ X(∞).

4.11 Theorem. Assume that X is a locally compact Hadamard space. Then
each connected component of (X(∞), Td) is a complete geodesic space with curva-
ture ≤ 1. Furthermore, for ξ, η ∈ X(∞) the following hold:
(i) if there is no geodesic in X from ξ to η, then Td(ξ, η) = ∠(ξ, η) ≤ π;
(ii) if ∠(ξ, η) < π, then there is no geodesic in X from ξ to η and there is a unique

minimizing Td-geodesic in X(∞) from ξ to η; Td-triangles in X of perimeter
< 2π are CAT1;

(iii) if there is a geodesic σ in X from ξ to η, then Td(ξ, η) ≥ π, and equality holds
iff σ bounds a flat half plane;

(iv) if (ξn), (ηn) are sequences in X(∞) such that ξn → ξ and ηn → η in the
standard topology, then Td(ξ, η) ≤ lim infn→∞ Td(ξn, ηn).

Proof. The first assertion in (ii) and (iii) respectively is clear since ∠(ξ, η) =
π if there is a geodesic in X from ξ to η. If there is no geodesic in X from ξ to η,
then, by Lemma 4.10, there is a midpoint ζ in X(∞) between them with respect to
the ∠-metric. Now the ∠-metric on X(∞) is complete, see Proposition 4.1. Hence
we can construct an ∠-geodesic from ξ to η by choosing midpoints iteratively. Since
∠-geodesics are Td-geodesics, we obtain (i). The uniqueness assertion in (ii) follows
from the corresponding uniqueness assertion of midpoints in Theorem 4.4. The
completeness of Td also follows since the ∠-metric is complete, see Proposition 4.1.
We now prove (iv) and that each connected component of (X(∞), Td) is geodesic.
By the corresponding semicontinuity of ∠, see Proposition 4.1, we conclude from
(i) that (iv) holds if lim infn→∞ Td(ξn, ηn) < π. From (ii) we also get that for any
pair of points ξ, η ∈ X(∞) with Td(ξ, η) < π there is a minimizing Td-geodesic
from ξ to η. By induction we assume that this also holds when we replace π by
kπ, k ≥ 1. Now suppose lim infn→∞ Td(ξn, ηn) < (k + 1)π. By th definition of Td,
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there is a point ζn almost half way between ξn and ηn. Passing to a subsequence if
necessary, we assume ζn → ζ in the standard topology and obtain, by induction,

Td(ξ, η) ≤ Td(ξ, ζ) + Td(ζ, η)

≤ lim inf
n→∞ Td(ξn, ζn) + lim inf

n→∞ Td(ζn, ηn) ≤ lim inf
n→∞ Td(ξn, ηn).

In particular, Td(ξ, η) < (k + 1)π. There exists (another) sequence (ζn) such that

Td(ξ, ζn), Td(η, ζn) → Td(ξ, η)/2,

hence, by the semicontinuity, there is a point ζ with

Td(ξ, ζ) = Td(η, ζ) = Td(ξ, η)/2.

By the inductive hypothesis, there are minimizing Td-geodesics from ξ to ζ and ζ to
η. Their concatenation is a minimizing Td-geodesic from ξ to η. Hence we conclude
(iv) and that the components of (X(∞), Td) are geodesic spaces.

As for the statement about flat half planes in (iii), let ζ be a point with
Td(ζ, ξ) = Td(ζ, η) = π/2. Since

∠x(ζ, ξ) + ∠x(ζ, η) ≥ π

for any x on the geodesic (in X) from ξ to η and ∠x ≤ Td, we have

∠x(ζ, ξ) = ∠x(ζ, η) = π/2

for all such x. Now the rigidity part of Lemma I.5.8(i) applies.
The claims about the curvature bound and about triangles in (ii) are imme-

diate from Corollary 4.9. �
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CHAPTER III

WEAK HYPERBOLICITY

One of our main objectives in this chapter is the discussion of transitivity
properties of the geodesic flow and related topics. The first two sections are greatly
influenced by the work of Eberlein on geodesic flows in [Eb2, Eb3]. The third
section deals with the main results of the author’s thesis (published in [Ba1]),
but here in the context of Hadamard spaces instead of Hadamard manifolds. The
fourth section deals with applications to harmonic functions and random walks on
countable groups, compare [Ba3, BaL1]. Many of the ideas in Section 4 go back to
Furstenberg [Fu1, Fu2, Fu3].

Let X be a Hadamard space. We say that X is geodesically complete if every
geodesic segment of X is part of a complete geodesic of X , that is, a geodesic which
is defined on the whole real line. For X geodesically complete, we denote by GX the
set of unit speed geodesics of X , equipped with the topology of uniform convergence
on bounded subsets. The geodesic flow (gt) acts on GX by reparameterization,

gt(σ)(s) = σ(s + t) .

If X is a smooth manifold, then

GX → SX ; σ → σ̇(0)

defines a homeomorphism from GX to the unit tangent bundle SX of X . With
respect to this homeomorphism, the geodesic flow above corresponds to the usual
geodesic flow on SX (also denoted gt),

gt(v) = γ̇v(t), v ∈ SX,

where γv denotes the geodesic in X with γ̇v(0) = v.

1. The duality condition

In our considerations it will be important to have a large group of isometries.
Let X be a Hadamard space and Γ a group of isometries of X . Following Eberlein
[Eb2], we say that ξ, η ∈ X(∞) are Γ-dual if there is a sequence (ϕn) in Γ such
that ϕn(x) → ξ and ϕ−1

n (x) → η as n → ∞ for some (and hence any) x ∈ X .
Duality is a symmetric relation. The set of points Γ-dual to a given point in X(∞)
is closed and Γ-invariant. We say that Γ satisfies the duality condition if for any
unit speed geodesic σ : R → X the endpoints σ(−∞) and σ(∞) are Γ-dual. The
duality condition was introduced by Chen and Eberlein [CE1]. The condition is
somewhat mysterious, at least as far as Hadamard spaces are concerned (as opposed
to Hadamard manifolds). May be it is only reasonable for geodesically complete
Hadamard spaces.

Typeset by AMS-TEX
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1.1 Lemma [Eb2]. Let X be a geodesically complete Hadamard space, and let
σ, ρ : R → X be unit speed geodesics in X. Let (ϕn) be a sequence of isometries of
X such that ϕ−1

n (x) → σ(∞) and ϕn(x) → ρ(−∞) as n → ∞ for some (and hence
any) x ∈ X. Then there are sequences (σn) in GX and (tn) in R such that σn → σ,
tn → ∞ and ϕn ◦ gtn(σn) → ρ as n → ∞.

1.2 Remarks. (a) The converse to Lemma 1.1 is clear: let σ, ρ ∈ GX and
suppose there are sequences (σn) in GX , (tn) in R and (ϕn) of isometries of X such
that σn → σ, tn → ∞ and ϕn ◦ gtn(σn) → σ as n → ∞. Then ϕ−1

n (x) → σ(∞) and
ϕn(x) → ρ(−∞) as n → ∞ for one (and hence any) x ∈ X .

(b) Note that the assumption on the sequence (ϕn) in Lemma 1.1 only specifies
σ(∞) and ρ(−∞). Thus we may replace σ by any asymptotic σ′ ∈ GX and ρ by
any negatively asymptotic ρ′ ∈ GX , keeping the sequence (ϕn) fixed.

Since σn → σ and ϕ−1
n ◦ gtn(σn) → ρ we have

tn − d(σ(0), ϕ−1
n (ρ(0))) → 0 as n → ∞ .

For σ′ asymptotic to σ we also have

d(σ′(0), ϕ−1
n (ρ(0)))− d(σ(0), ϕ−1

n (ρ(0))) → b(σ(∞), σ(0), σ′(0))

as n → ∞. Hence we may replace the sequence (tn) by the sequence (t′n) given by

t′n = tn + b(σ(∞), σ(0), σ′(0)), n ∈ N ,

when replacing σ by σ′. A similar remark applies to geodesics ρ′ ∈ GX negatively
asymptotic to ρ.

Proof of Lemma 1.1. For m ≥ 0 and n ∈ N let σn,m : R → X be a unit
speed geodesic with

σn,m(−m) = σ(−m) and σn,m(tn,m + m) = ϕ−1
n (ρ(m)) ,

where
tn,m = d(σ(−m), ϕ−1

n (ρ(m)))− 2m.

Set N(0) = 1 and define N(m), m ≥ 1, recursively to be the smallest number
> N(m − 1) such that

d(σn,m(m), σ(m)) ≤ 1
m

and d(ϕn ◦ σn,m(tn,m − m), ρ(−m)) ≤ 1
m

for all n ≥ N(m). Note that such a number N(m) exists since ϕ−1
n (ρ(m)) → σ(∞)

and ϕn(σ(−m)) → ρ(−∞). Now set σn := σn,N(m) for N(m) ≤ n < N(m + 1). �
1.3 Corollary. Let X be a geodesically complete Hadamard space and Γ a

group of isometries of X satisfying the duality condition. Let σ, ρ : R → X be unit
speed geodesics in X with σ(∞) = ρ(∞). Then there are sequences (σn) in GX,
(tn) in R and (ϕn) in Γ such that σn → σ, tn → ∞ and ϕn ◦ gtn(σn) → ρ as
n → ∞.

Proof. Since Γ satisfies the duality condition, there is a sequence (ψn) of
isometries in Γ such that ψn(x) → ρ(∞) and ψ−1

n (x) → ρ(−∞) as n → ∞. Now
σ(∞) = ρ(∞), and hence Lemma 1.1 applies. �
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We say that a geodesic σ ∈ GX is nonwandering mod Γ (with respect to the
geodesic flow) if there are sequences (σn) in GX , (tn) in R and (ϕn) in Γ such
that σn → σ, tn → ∞ and ϕn ◦ gtn(σn) → σ. The set of geodesics in GX that are
nonwandering mod Γ is closed in GX and invariant under the geodesic flow and Γ.
It is clear that the endpoints of a geodesic σ ∈ GX are Γ-dual if σ is nonwandering
mod Γ. Vice versa, Lemma 1.1, applied in the case where X is geodesically complete
and σ = ρ, shows that a geodesic σ ∈ GX is nonwandering mod Γ if the endpoints
of σ are Γ-dual.

1.4 Corollary. Let X be a geodesically complete Hadamard space and Γ a
group of isometries of X. Then Γ satisfies the duality condition if and only if every
σ ∈ GX is nonwandering mod Γ. �

We say that a geodesic σ ∈ GX is Γ-recurrent if there exist sequences (tn) in
R and (ϕn) in Γ such that tn → ∞ and ϕn ◦ gtn(σ) → σ as n → ∞. The set of
Γ-recurrent geodesics in GX is invariant under the geodesic flow and Γ.

1.5 Corollary. Let X be a geodesically complete, separable Hadamard space
and Γ a group of isometries of X. Then Γ satisfies the duality condition if and only
if a dense set of geodesics σ ∈ GX is Γ-recurrent.

Proof. Since X is separable, the topology of X ,and hence also of GX , has a
countable base. Now Corollary 1.4 implies that the set of Γ-recurrent geodesics is
a dense Gδ-subset of GX if Γ satisfies the duality condition. The other direction is
clear. �

If X is a Hadamard manifold, then the Liouville measure on SX is invariant
under the geodesic flow. Hence, if Γ is a group of isometries of X that acts properly
discontinuously and such that vol(X/Γ) < ∞, then Γ satisfies the duality condi-
tion by the Poincaré recurrence theorem and Corollary 1.4. However, for a general
Hadamard space X , there is (so far) no natural invariant measure on GX with good
properties.

1.6 Question. Let X be a geodesically complete Hadamard space and Γ a
group of isometries of X . Does Γ satisfy the duality condition if it acts properly
discontinuously and cocompactly?

1.7 Problem/Exercise. Let X be a geodesically complete Hadamard space.
Construct measures on GX which are invariant under isometries and the geodesic
flow of X .

In the case of 2-dimensional polyhedra with piecewise smooth metrics, the
answer to Question 1.6 is affirmative, see [BB3]. In this reference, one also finds
a natural generalization of the Liouville measure for geodesic flows on polyhedra
with piecewise smooth metrics.

The following lemma and proposition are taken from [CE1] and [BBE] respec-
tively.

1.8 Lemma. Suppose ξ, η ∈ X(∞) are the endpoints of a geodesic σ : R → X.
Let (ϕn) be a sequence of isometries of X such that ϕn(x) → ξ and ϕ−1

n (x) → ζ ∈
X(∞) as n → ∞. Then ϕ−1

n (η) → ζ as n → ∞.

Proof. Let x = σ(0). Then ∠x(ξ, ϕn(x)) → 0 and hence

∠x(ϕn(x), η) ≥ π − ∠x(ξ, ϕn(x)) → π .
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By comparison with Euclidean geometry we get, for the metric dx,R as in (II.2.3),

dx,R(ϕ−1
n (x), ϕ−1

n (η)) = dϕn(x),R(x, η) → 0 ,

where R > 0 is arbitrary. Since ϕ−1
n (x) → ζ we conclude ϕ−1

n (η) → ζ. �
1.9 Proposition. Suppose X is geodesically complete and Γ satisfies the du-

ality condition. Let ξ ∈ X(∞). Then Γ operates minimally on the closure Γ(ξ) of
the Γ-orbit of ξ, that is, Γ(ζ) = Γ(ξ) for any ζ ∈ Γ(ξ).

Proof. It suffices to show that ξ ∈ Γ(ζ) for any ζ ∈ Γ(ξ). Since X is geodesi-
cally complete, there are geodesics σ, ρ : R → X with σ(∞) = ξ and ρ(∞) = ζ. Let
ξ′ = σ(−∞) and ζ ′ = ρ(−∞).

Since Γ satisfies the duality condition, ξ′ is Γ-dual to ξ and ζ ′ is Γ-dual to
ζ. Now ζ is Γ-dual to ξ′ because the set of points Γ-dual to ξ′ is Γ-invariant and
closed. By Lemma 1.8 this implies that ξ′ ∈ Γ(ζ ′).

Choose a sequence (ϕn) in Γ with ϕn(ζ ′) → ξ′. For m > 0, let σm be a complete
geodesic with σm(0) = σ(m) and σm(−∞) = ϕn(ζ ′), where n = n(m) ≥ m is
chosen so large that d(σm, σ(0)) ≤ 1. Then σm(∞) → ξ and σm(−∞) is Γ-dual to
σm(∞). Therefore σm(∞) is Γ-dual to ζ ′ = ϕ−1

n (σm(−∞)). Hence ζ ′ is Γ-dual to
ξ = limm→∞ σm(∞). Now Lemma 1.8 implies ξ ∈ Γ(ζ). �

1.10 Remark. The duality condition has other useful technical properties.
(1) Let X1 and X2 be Hadamard spaces with metrics d1 and d2 respectively

and let X be the Hadamard space X1 × X2 with the metric d =
√

d2
1 + d2

2. If Γ is
a group of isometries of X satisfying the duality condition such that any ϕ ∈ Γ is
of the form ϕ = (ϕ1, ϕ2), where ϕi is an isometry of Xi, i = 1, 2, then

Γ1 := {ϕ1 | there is an isometry ϕ2 of X2 with (ϕ1, ϕ2) ∈ Γ}
and the corresponding group Γ2 satisfy the duality condition. This is clear since
geodesics in X are pairs (σ1, σ2), where σ1 is a geodesic of X1 and σ2 is a geodesic
of X2. See [Eb10,16] for applications of this property in the case of Hadamard
manifolds.

Note that Γ1 and/or Γ2 need not act properly discontinuously even if Γ does.
Thus a condition like cocompactness + proper discontinuity does not share the
above property of the duality condition.

(2) Clearly the duality condition passes from a group Γ of isometries of a
Hadamard space X to a larger group of isometries of X . Vice versa, if X is geodesi-
cally complete and separable and if Δ is a subgroup of finite index in Γ, then Δ
satisfies the duality condition if Γ does [Eb10]. To see this, let σ ∈ GX be a Γ-
recurrent geodesic. Choose sequences (tn) in R and (ϕn) in Γ such that tn → ∞
and ϕn ◦ gtn(σ) → σ. Now Δ has finite index in Γ. Hence we may assume, after
passing to a subsequence, that ϕn = ψnϕ, where ϕ ∈ Γ is fixed and ψn ∈ Δ for all
n ∈ N. Then

σ′
n = ϕn ◦ gtn(σ) → σ

and
σm,n = (ψmψ−1

n ) ◦ gtm−tn(σ′
n) = ϕm ◦ gtm(σ) → σ .

Choose m = m(n) convenient to get that σm(n),n → σ. This shows that σ is
nonwandering mod Δ. Now the set of geodesics in GX which are nonwandering
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mod Δ is closed, and the set of Γ-recurrent geodesics in GX is dense in GX , see
Corollary 1.4. Hence Δ satisfies the duality condition.

We come back to the beginning of this section. We said there that we will
be in need of a large group of isometries, and we made this precise by introducing
the duality condition. One might think that the isometry group of a homogeneous
Hadamard manifold X is large; however, it is not in our sense, except if X is a
symmetric space (see [Eb10], Proposition 4.9).

1.11 Definition/Exercise/Question. Let X be a Hadamard space and Γ
a group of isometries of X . The limit set L(Γ) ⊂ X(∞) of Γ is defined to be the
set of all ξ ∈ X(∞) such that there is a sequence (ϕn) in Γ with limn→∞ ϕn(x) = ξ
for one (and hence any) x ∈ X . Show L(Γ) = X(∞)

(i) if there is a bounded subset B in X with ∪ϕ∈Γϕ(B) = X or
(ii) if X is geodesically complete and Γ satisfies the duality condition.

In many results below we assume that X is geodesically complete and that Γ sat-
isfies the duality condition. Can one (you) replace the duality condition by the
assumption L(Γ) = X(∞).

2. Geodesic flows on Hadamard spaces

2.1 Definition. Let X be a geodesically complete Hadamard space and Γ a
group of isometries of X . We say the geodesic flow of X is topologically transitive
mod Γ if for any two open non-empty subsets U, V in GX there is t ∈ R and ϕ ∈ Γ
such that gt(U) ∩ ϕ(V ) 	= ∅.

2.2 Remark. If X is separable, then the topology of X , and therefore the
topology of GX , has a countable base. Hence the geodesic flow is topologically
transitive mod Γ if and only if it has a dense orbit mod Γ: there is a σ in GX such
that for any σ′ in GX there are sequences (tn) in R and ϕn in Γ with ϕngtnσ → σ′.

After all our preparations we are ready for the following result from [Eb3].

2.3 Theorem. Let X be a geodesically complete, separable Hadamard space,
and let Γ be a group of isometries of X satisfying the duality condition. Then the
following are equivalent:
(i) gt is topologically transitive mod Γ;
(ii) for some ξ ∈ X(∞), the orbit Γ(ξ) is dense in X(∞);
(iii) for every ξ ∈ X(∞), the orbit Γ(ξ) is dense in X(∞);
(iv) X(∞) does not contain a non-empty Γ-invariant proper closed subset.

Proof. Clearly (iii) ⇔ (iv) and (iii) ⇒ (ii). The implication (i) ⇒ (ii) is
immediate from Remark 2.2 above. The implication (ii) ⇒ (iii) follows from Propo-
sition 1.9. It remains to prove (ii) ⇒ (i).

We let U(∞) respectively V (∞) be the set of points σ(∞) in X(∞) with
σ ∈ U respectively V . Then U(∞) and V (∞) are open and non-empty. Applying
(ii) we can assume U(∞) ⊂ V (∞). Let σ ∈ U . Then there is a geodesic ρ ∈ V with
ρ(∞) = σ(∞). Now Corollary 1.3 applies. �

2.4 Theorem. Let X be a geodesically complete and locally compact Hada-
mard space, and let Γ be a group of isometries of X satisfying the duality condition.
Then the following are equivalent:
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(i) the geodesic flow (gt) of X is not topologically transitive mod Γ;
(ii) X(∞) contains a non-empty Γ-invariant proper compact subset;
(iii) the geodesic flow (gt) of X admits a non-constant Γ-invariant continuous first

integral f : GX → R such that f(σ) = f(ρ) for all σ, ρ ∈ GX with σ(∞) =
ρ(∞) or σ(−∞) = ρ(−∞).

Each of these conditions implies that every geodesic of X is contained in a flat
plane, that is, a convex subset of X isometric to the Euclidean plane.

Proof. X is separable because X is locally compact. Hence (i) ⇔ (ii) by
Theorem 2.3. The implication (iii) ⇒ (ii) is clear since we assume the integral to be
continuous, non-constant and Γ-invariant and since X(∞) is compact. It remains
to show (ii) ⇒ (iii) and the existence of the flat planes.

To that end, let C ⊂ X(∞) be a non-empty Γ-invariant proper compact
subset. For σ ∈ GX we set

(2.5) f(σ) = min
ζ∈C

∠σ(0)(σ(∞), ζ) .

We claim that the function f is an integral of the geodesic flow as asserted. Note
that f is Γ-invariant since C is.

The continuity of angle measurement at a fixed point, see I.3.x, implies that
for any σ ∈ GX there is ζ ∈ C with f(σ) = ∠σ(0)(σ(∞), ζ). Obviously, or by
Proposition II.4.2, we have that f(gt(σ)) is monotonically not decreasing in t.

Suppose first that σ ∈ GX is Γ-recurrent. Choose sequences (tn) in R and
(ϕn) in Γ such that tn → ∞ and ϕn ◦ gtn(σ) → σ. By the Γ-invariance of f and the
monotonicity we have

f(ϕn ◦ gtn(σ)) = f(gtn(σ)) ≥ f(σ) .

The semicontinuity of angle measurement, see I.3.x, implies

lim inf
n→∞ f(ϕn ◦ gtn(σ)) ≤ f(σ) .

We conclude that f(gt(σ) = f(σ) for all t ≥ 0, and hence for all t ∈ R since gs(σ)
is Γ-recurrent for all s ∈ R. We also conclude that there is a point ζ(σ) ∈ C such
that

f(gt(σ)) = ∠σ(t)(σ(∞), ζ(σ)) = ∠(σ(∞), ζ(σ)) = min
ζ∈C

∠(σ(∞), ζ) .

In particular, σ bounds a flat half plane Hσ with ζ(σ) ∈ Hσ(∞) if σ(∞) 	∈ C.
Now let σ ∈ GX be arbitrary. Let (σn) be a sequence of Γ-recurrent unit

speed geodesics converging to σ. Passing to a subsequence if necessary, the corre-
sponding half planes Hσn

and points ζ(σn) converge to a flat half plane Hσ along
σ respectively a point ζ(σ) ∈ Hσ(∞). We conclude

f(σ) = lim
n→∞ f(σn) = ∠(σ(∞), ζ(σ)) .

Therefore f is continuous; now Lemma 1.1 implies that f(σ) = f(ρ) if σ(∞) = ρ(∞)
respectively if σ(−∞) = ρ(−∞); f is non-constant since C is proper.
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Let σ ∈ GX and let Hσ, ζ(σ) be as above. Let ρt : R → X be a unit speed
geodesic with ρt(0) = σ(t) and ρt(∞) = ζ(σ). For s ∈ R, let σs : R → X be a unit
speed geodesic σs(t) = ρt(s) and σs(∞) = σ(∞). Then clearly

f(σ) = f(σs) = ∠σs(t)(ζ(σ), σs(∞)) .

Therefore ρt|[s,∞) and σs|[t,∞) span a flat cone Cs,t. This cone contains σ([t,∞)) if
s < 0. Now X is locally compact. Hence we obtain a flat plane containing σ as a limit
of the cones Csn,tn

for some appropriate sequences sn → −∞ and tn → −∞. �
2.6 Problem. Suppose X is geodesically complete and irreducible with a

group Γ of isometries satisfying the duality condition. Assume furthermore that
every geodesic of X is contained in a flat plane. Claim: X is a symmetric space or
a Euclidean building.

This is known in the smooth case, which excludes the case of Euclidean build-
ings. In Chapter IV we will discuss the proof. In the singular case, if dimX = n
and every geodesic of X is contained in an n-flat, that is, a convex subset of X
isometric to n-dimensional Euclidean space, then X is a Euclidean building [Kl].

3. The flat half plane condition

In this section we assume that X is a locally compact Hadamard space. Then,
if σ : R → X is a geodesic which does not bound a flat half plane, there is a constant
R > 0 such that σ does not bound a flat strip of width R.

3.1 Lemma. Let σ : R → X be a unit speed geodesic which does not bound
a flat strip of width R > 0. Then there are neighborhoods U of σ(−∞) and V of
σ(∞) in X such that for any ξ ∈ U and η ∈ V there is a geodesic from ξ to η, and
for any such geodesic σ′ we have d(σ′, σ(0)) < R. In particular, σ′ does not bound
a flat strip of width 2R.

Proof. If the assertion of the lemma does not hold, then there are sequences
(xn) and (yn) in X with xn → σ(−∞) and yn → σ(∞) such that the unit speed
geodesic segment σn from xn to yn, parameterized such that σn(0) is the point on
σn closest to z := σ(0), satisfies d(σn(0), z) ≥ R for all n ∈ N. Let zn be the point
on the geodesic from z to σn(0) with d(z, zn) = R. By the choice of σn(0),

∠σn(0)(z, xn), ∠σn(0)(z, yn) ≥ π

2
.

Hence also
∠zn

(z, xn), ∠zn
(z, yn) ≥ π

2
.

Passing to a subsequence if necessary we assume zn → z∞. Then d(z, z∞) = R and

∠z∞(z, σ(−∞)), ∠z∞(z, σ(∞)) ≥ π

2
.

We also have
∠z(σ(−∞), z∞) + ∠z(σ(∞), z∞) ≥ π .

Applying Proposition I.5.8(i) we conclude

∠z(σ(−∞), z∞) = ∠z∞(σ(−∞), z) = ∠z(σ(∞), z∞) = ∠z∞(σ(∞), z) =
π

2
.
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Hence the unit speed rays ω− respectively ω+ from z∞ to σ(−∞) and σ(∞) re-
spectively span flat half strips with σ|(−∞, 0] respectively σ|[0,∞), see Proposition
I.5.8(i). In particular, σ(−t) respectively σ(t) is the point on σ closest to ω−(t) re-
spectively ω+(t), t > 0. Hence d(ω−(t), ω+(t)) ≥ 2t, and hence ω− and ω+ combine
to give a geodesic ω from σ(−∞) to σ(∞) through z∞. Therefore ω is parallel to
σ and ω and σ span a flat strip of width R. This is a contradiction. �

3.2 Lemma. Let σ : R → X be a unit speed geodesic which does not bound a
flat half plane. Let (ϕn) be a sequence of isometries of X such that ϕn(x) → σ(∞)
and ϕ−1

n (x) → σ(−∞) for one (and hence any) x ∈ X. Then for n sufficiently
large, ϕn has an axis σn such that σn(∞) → σ(∞), σn(−∞) → σ(−∞) as n → ∞.

Proof. There is an R > 0 such that σ does not bound a flat strip of width
R. Let x = σ(0) and choose ε > 0, r > 0 such that

U = U(x, σ(−∞), r, ε) and V = U(x, σ(∞), r, ε).

are neighborhoods as in Lemma 3.1. By comparison with Euclidean geometry we
find that there is an R′ > r such that for any y ∈ X we have

(∗) d(σ(r), σx,y(r)) < ε or d(σ(−r), σx,y(r)) < ε

if d(y, σ) ≤ R and d(y, x) ≥ R′.
By the definition of U and V this means that y ∈ U ∪ V if d(y, σ) ≤ R and
d(y, x) ≥ R′.

Assume that ϕn, for any n in a subsequence, fixes a point xn ∈ X outside
U ∪ V with d(x, xn) ≥ 2R′. Let σn = σx,xn

be the unit speed geodesic (or ray re-
spectively if xn ∈ X(∞)) from x to xn. Then the displacement function d(ϕn(z), z)
is monotonically decreasing along σn. Let yn = σn(R′) and y′

n = σn(2R′). Then

∠yn
(y′

n, ϕn(yn))+∠yn
(y′

n, ϕ−1
n (yn)) =

∠yn
(y′

n, ϕn(yn))+∠ϕn(yn)(ϕn(y′
n), yn) ≤ π

since

d(yn, ϕn(yn)) = d(yn, ϕ−1
n (yn)) ≥ d(y′

n, ϕn(y′
n)) = d(y′

n, ϕ−1
n (y′

n))
(consider the quadrangle spanned by yn, y′

n, ϕn(yn), ϕn(y′
n)). Now

∠yn
(y′

n, ϕ±1
n (yn)) + ∠yn

(x, ϕ±1
n (yn)) ≥ ∠yn

(y′
n, x) = π

and therefore
(∗∗) ∠yn

(x, ϕn(yn)) + ∠yn
(x, ϕ−1

n (y′
n)) ≥ π.

We also have
d(ϕ±1

n (yn), ϕ±1
n (x)) = d(yn, x) = R′,

and hence ϕn(yn) → σ(∞) and ϕ−1
n (yn) → σ(−∞) (for the given subsequence).

After passing to a further subsequence if necessary, we can assume yn → y. Then
d(y, σ) ≥ R by (∗) since y 	∈ U ∪ V and d(y, x) = R′. By (∗∗), the rays from y
to σ(−∞) respectively σ(∞) combine to give a geodesic parallel to σ. Therefore
σ bounds a flat strip of width R, a contradiction. Hence we obtain that, for n
sufficiently large, any fixed point of ϕn is contained in U ∪ V ∪ B(x, 2R′).

Using Lemma 3.1 it is now easy to exclude that ϕn is elliptic or parabolic
(for this compare Proposition II.3.4) for all n sufficiently large. For large n, the
endpoints of an axis σn of ϕn have to be in U ∪ V by what we said above. It is
clear from Lemma 3.1 that not both endpoints of σn are in one of the sets, U or
V . Hence the lemma. �
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3.3 Lemma. Let ϕ be an isometry of X with an axis σ : R → X, where σ is
a unit speed geodesic which does not bound a flat half plane. Then
(i) for any neighborhood U of σ(−∞) and any neighborhood V of σ(∞) in X

there exists N ∈ N such that

ϕn(X \ U) ⊂ V, ϕ−n(X \ V ) ⊂ U for all n ≥ N ;

(ii) for any ξ ∈ X(∞) \ {σ(∞)} there is a geodesic σξ from ξ to σ(∞), and any
such geodesic does not bound a flat half plane. For K ⊂ X(∞) \ {σ(∞)}
compact, the set of these geodesics is compact (modulo parameterization).

Proof. Let x = σ(0). We can assume that

U = U(x, σ(−∞), R, ε) and V = U(x, σ(∞), R, ε).

By comparison with Euclidean geometry we find that

(∗) ϕ−1(U) ⊂ U and ϕ(V ) ⊂ V .

If (i) is not true, there is a sequence nk → ∞ and, say, a sequence (xk) in X \ U
such that ϕnk(xk) 	∈ V . Passing to a subsequence, we may assume xk → ξ ∈ X \U .
From (∗) we conclude ϕm(xk) 	∈ V for 0 ≤ m ≤ nk, and hence we get

(∗∗) ϕm(ξ) 	∈ V for all m ≥ 0.

In particular, ξ ∈ X(∞). Now the set K of all ξ ∈ X(∞) \ U satisfying (∗∗) is
compact and invariant under ϕm, m ≥ 1. By our assumption K 	= ∅. Now choose
ξ ∈ K such that ∠σ(0)(σ(∞), ξ) is minimal. Since ϕ(σ(∞)) = σ(∞),

∠σ(0)(σ(∞), ϕm(ξ)) ≤ ∠σ(ma)(σ(∞), ϕm(ξ)) = ∠σ(0)(σ(∞), ξ),

where a > 0 is the period of ϕ. By the choice of ξ we conclude

∠σ(0)(σ(∞), ϕm(ξ)) = ∠σ(ma)(σ(∞), ϕm(ξ)),

hence the rays from σ(0) and σ(ma) to ϕm(ξ) together with σ|[0, ma] bound a
flat convex region. Since m is arbitrary and since ϕ shifts σ, we conclude that σ
bounds a flat half plane, a contradiction. Thus (i) follows. Now (ii) is an immediate
consequence of (i) and Lemma 3.1. �

Let Γ be a group of isometries of the Hadamard space X . We say that a
non-constant geodesic σ in X is Γ-closed if it is an axis of an axial isometry ϕ ∈ Γ.

3.4 Theorem. Assume that X is a locally compact Hadamard space contain-
ing a unit speed geodesic σ : R → X which does not bound a flat half plane and that
Γ is a group of isometries of X satisfying the duality condition. Then we have:

If X(∞) contains at least three points, then X(∞) is a perfect set: for any
ξ ∈ X(∞), there is a sequence (ξn) in X(∞) \ {ξ} such that ξn → ξ. Furthermore,
for any two non-empty open subsets U, V of X(∞) there is a ϕ ∈ Γ with

ϕ(X(∞) \ U) ⊂ V, ϕ−1(X(∞) \ V ) ⊂ U.
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More precisely, there is a Γ-closed geodesic σ with σ(−∞) ∈ U and σ(∞) ∈ V such
that σ does not bound a flat half plane.

Proof. By Lemma 3.2, there is an isometry ϕ0 in Γ with an axis σ0 which
does not bound a flat half plane. Since X(∞) contains more than two points, there
is a point ξ ∈ X(∞) \ {σ0(±∞)}. By Lemma 3.3, ϕ±n

0 (ξ) → σ0(±∞), hence the
first assertion holds for σ0(±∞). Again by Lemma 3.3, there is a geodesic σ1 from
σ0(−∞) to ξ and this geodesic does not bound a flat half plane. By Lemma 3.2,
any two neighborhoods of the endpoints of σ1 contain endpoints of an axis σ′

1 of
an isometry ϕ1 in Γ and σ′

1 does not bound a flat half plane. Then a sufficient high
power of ϕ1 maps σ0(+∞) into the given neighborhood, hence the first assertion
also holds for ξ.

If U, V are non-empty and open in X(∞), there is, by the first step, a point
ξ ∈ U − σ0(∞). By Lemma 3.3, there is a geodesic half plane. By Lemma 3.2 there
is a Γ-closed geodesic σ2 with σ2(−∞) ∈ U such that σ2 does not bound a flat half
plane. Again by the first part, there is a point η ∈ V − σ2(−∞) and, by Lemma
3.3, a geodesic σ3 from σ2(−∞) to η which does not bound a flat half plane. By
Lemma 3.2, there is a Γ-closed geodesic σ as claimed. �

3.5 Theorem. Let X and Γ be as in Theorem 3.4. Suppose X(∞) contains
at least three points.
(i) If X is geodesically complete, then the geodesic flow is topologically transitive

mod Γ.
(ii) Γ contains free non-abelian subgroups.

Proof. (i) This is immediate from Theorem 2.4. Alternatively we can argue
as follows: Theorem 3.4 and Lemma 3.3 imply that the Γ-orbit of any point ξ ∈
X(∞) is dense in X(∞). Hence the geodesic flow of X is topologically transitive
mod Γ by Theorem 2.3.

(ii) By the first assertion of Theorem 3.4, X(∞) contains non-empty open
subsets W1, W2 with

(∗) W1 ∩ W2 = ∅ and W1 ∪ W2 	= X(∞).

By the second assertion of Theorem 3.4 and Lemma 3.3, Γ contains isometries
ϕ1, ϕ2 with axis σ1, σ2 which do not bound flat half planes such that σi(±∞) ∈ Wi

and

(∗∗) ϕ±k
i (X(∞) \ Wi) ⊂ Wi, i = 1, 2 ,

for all k 	= 0. Let ξ ∈ X(∞) \ (W1 ∪ W2). It follows from (∗) and (∗∗) that a
non-trivial word w in ϕ1 and ϕ2, considered as an element of Γ, maps ξ to Wi if
ϕi is the first letter of w, i = 1, 2. Hence w(ξ) 	= ξ and therefore w 	= id. It follows
that ϕ1 and ϕ2 generate a free subgroup of Γ. �

3.6 Remark. If X is a Hadamard manifold with a unit speed geodesic σ :
R → X which does not bound a flat half plane, and if Γ is a group of isometries
of X satisfying the duality condition, then the geodesic flow of X is topologically
mixing mod Γ [Ba1]: for any two non-empty open subsets U, V in GX there is a
T ≥ 0 such that for any t ≥ T there is ϕ ∈ Γ with gt(U)∩ϕ(V ) 	= ∅. This does not
hold in the general case we consider, even if we impose the strongest hyperbolicity
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assumption. For example, if X is the tree with all vertices of valence three and all
edges of length one, and if U respectively V is the set of all σ ∈ GX such that σ(0)
is ε-close to a vertex respectively the midpoint of an edge, where ε < 1/4, then
gt(U)∩ϕ(V ) = ∅ for all t ∈ Z and every isometry ϕ of X . It is, however, possible to
strengthen the above result about topological transitivity and to obtain a property
intermediate between it and topological mixing.

In Chapter IV we prove that a Hadamard manifold M with a group Γ of
isometries satisfying the duality condition contains a unit speed geodesic which
does not bound a flat half plane if and only if it contains a unit speed geodesic
σ which does not bound an infinitesimal flat half plane. By the latter we mean
that there is no parallel vector field V along σ such that ‖V ‖ = 1, V ⊥ σ̇ and
K(σ̇ ∧ V ) ≡ 0. It is easy to see that σ satisfies this condition if and only if σ is
hyperbolic in the sense of the following definition.

3.7 Definition (experimental). Let X be a Hadamard space. We say that
a unit speed geodesic σ : R → X is hyperbolic if there are real numbers a < b and
constants ε > 0 and λ < 1 such that any geodesic segment γ : [a, b] → X with
γ(a) ∈ Bε(σ(a)) and γ(b) ∈ Bε(σ(b)) satisfies

d(γ(
a + b

2
), σ) ≤ λ

2
(d(γ(a), σ) + d(γ(b), σ)).

It is unclear whether a geodesically complete Hadamard space X (with reason-
able additional assumptions like local compactness and/or large group of isometries)
contains a hyperbolic unit speed geodesic (in the above sense or a variation of it)
if it contains a unit speed geodesic which does not bound a flat half plane.

Let X be a geodesically complete and locally compact Hadamard space. Then
the set GhX of hyperbolic geodesic is open in GX and invariant under isometries
and the geodesic flow.

3.8 Corollary. Let X be a geodesically complete and locally compact Hada-
mard space and Γ a group of isometries of X satisfying the duality condition. If X
contains a hyperbolic geodesic, then the set of hyperbolic Γ-closed geodesics is dense
in GX.

Proof. By Lemma 3.2, any hyperbolic geodesic σ is the limit of a sequence
(σn) of Γ-closed geodesics. Since GhX is open in GX, σn is hyperbolic for n large.
Now Theorem 3.5(i) implies that GhX is dense in GX . �

4. Harmonic functions and random walks on Γ

Let X be a locally compact Hadamard space containing a unit speed geodesic
σ : R → X which does not bound a flat half plane and Γ a countable group of
isometries of X satisfying the duality condition. Assume furthermore that X(∞)
contains at least three points.

Suppose μ is a probability measure on Γ whose support generates Γ as a
semigroup. We say that a function h : Γ → R is μ-harmonic if

(4.1) h(ϕ) =
∑
ψ∈Γ

h(ϕψ)μ(ψ) for all ϕ ∈ Γ .
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Our objective is to show that Γ admits many μ-harmonic functions.
We define the probability measures μk, k ≥ 0, on Γ recursively by μ0 := δ, the

Dirac measure at the neutral element of Γ, and

(4.2) μk(ϕ) =
∑
ψ∈Γ

μk−1(ψ)μ(ψ−1ϕ) k ≥ 1 .

Then μ1 = μ. An easy computation shows that h : Γ → R is μk-harmonic if h is
μ-harmonic. Now the support of μ generates Γ as a semigroup and hence for any
ϕ ∈ Γ there is a k ≥ 1 such that μk(ϕ) > 0.

For k, l ≥ 0 we also have μk ∗ μl = μk+l, where

(4.3) μk ∗ μl(ϕ) =
∑
ψ∈Γ

μk(ψ)μl(ψ−1ϕ) .

For a probability measure ν on X(∞) and k ≥ 0 define the convolution μk ∗ ν by

(4.4)
∫

X(∞)

f(ξ)d(μk ∗ ν)(ξ) =
∑
Γ

∫
X(∞)

f(ϕξ)dν(ξ)μk(ϕ) ,

where f is a bounded measurable function on X(∞). Then

(4.5) μk ∗ (μl ∗ ν) = μk+l ∗ ν , k, l ≥ 0 .

Since the space of probability measures on X(∞) is weakly compact, the sequence

1
n + 1

(ν + μ ∗ ν + μ ∗ μ ∗ ν + . . . + (μ∗)nν)

has weakly convergent subsequences, and a weak limit ν̄ will be stationary (with
respect to μ), that is, μ ∗ ν̄ = ν̄. Thus the set of stationary probability measures is
not empty.

Now let ν be a fixed stationary probability measure. By (4.5) we have

(4.6) μk ∗ ν = ν for all k ≥ 0 .

If there is a point ξ ∈ X(∞) such that ν(ξ) > 0, then there is also a point ξ0 ∈ X(∞)
such that ν(ξ0) is maximal since ν is a finite measure. For k ≥ 1, the definition of
μk ∗ ν implies

ν(ξ0) =
∑
Γ

ν(ϕ−1ξ0)μk(ϕ),

and thus ν(ϕ−1ξ0) = ν(ξ0) for all ϕ in the support of μk by the maximality of ν(ξ0).
But for any ϕ ∈ Γ there is k ≥ 1 such that μk(ϕ) > 0. Hence ν(ϕ−1ξ0) = ν(ξ0) for
all ϕ ∈ Γ. But this is absurd since the orbit of ξ0 under Γ is infinite. Hence

(4.7) ν is not supported on points.

Thus for any ξ ∈ X(∞) and ε > 0 there is a neighbourhood U of ξ such that
ν(U) < ε.
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Let f be a bounded measurable function on X(∞). Define a function hf on Γ
by

(4.8) hf (ϕ) =
∫

X(∞)

f(ϕξ)dν(ξ) =
∫

X(∞)

f(ξ)d(ϕν)(ξ).

Since we have μ ∗ ν = ν we obtain∑
Γ

hf (ϕψ)μ(ψ) =
∑
Γ

∫
X(∞)

f(ϕψξ)dν(ξ)μ(ψ) =
∫

X(∞)

f(ϕξ)dν(ξ) = hf (ϕ),

and therefore hf is a μ-harmonic function. We will show now that hf (ϕn) → f(ξ)
if ξ is a point of continuity of f and if ϕn(x) → ξ for one (and hence any) x ∈ X .

4.9 Lemma. Let x0 ∈ X, R > 0 and ε > 0 be given. Let (ϕn) ⊂ Γ be a
sequence such that ϕnx0 → ξ ∈ X(∞). Then there is an open subset U ⊂ X(∞)
with ν(U) < ε and a ϕ ∈ Γ such that for some subsequence (ϕnk

) of (ϕn) we have
ϕnk

ϕ(X \ U) ⊂ U(x0, ξ, R, ε).

Proof. After passing to a subsequence if necessary we may assume ϕ−1
n x0 →

η ∈ X(∞). By Theorem 3.4 there is a ϕ0 ∈ Γ with an axis σ which does not bound
a flat half plane and with open neighborhoods U− of σ(−∞) and U+ of σ(∞) in
X such that

η ∈ X \ U+ and U− ∩ U(x0, ξ, R, ε) = ∅.
By increasing R and diminishing ε and U− if necessary we can assume x0 	∈ U−

and ν(U−) < ε. By Lemmas 3.1 and 3.3 there is a neighborhood V − of σ(−∞) in
U− such that for any two points y, z ∈ X \ U− and any x ∈ V − the geodesics σx,y

and σx,z exists and d(σx,y(t), σx,z(t)) < ε/2 for 0 ≤ t ≤ R.
Now choose N so large that

ϕN
0 (X \ V −) ⊂ U+, ϕ−N

0 (X \ U+) ⊂ V −

and let ϕ = ϕN
0 . If n is large, then ϕ−1

n x0 ∈ X \ U+ since ϕ−1
n x0 → η. Then

x = ϕ−1ϕ−1
n x0 ∈ V − and for y ∈ X \ U− arbitrary we get, for 0 ≤ t ≤ R,

d(σx0,ξ(t), σx0,ϕnϕ(y)(t))

≤ d(σx0,ξ(t), σx0,ϕnϕ(x0)(t)) + d(σx0,ϕnϕ(x0)(t), σx0,ϕnϕ(y)(t)) .

The first term on the right hand side tends to 0 as n tends to ∞ since ϕn(ϕx0) → ξ.
The second term is less than ε/2 for n sufficiently large since x0, y ∈ X \U−. Hence
ϕnϕ(X \ U−) ⊂ U(x0, ξ, R, ε) for all n sufficiently large. �

4.10 Theorem (Dirichlet problem at infinity). Let X be a locally com-
pact Hadamard space containing a unit speed geodesic σ : R → X which does not
bound a flat half plane. Assume that X(∞) contains at least 3 points. Suppose that
Γ is a countable group of of isometries of X satisfying the duality condition and
that μ is a probability measure on Γ whose support generates Γ as a semigroup.

Then we have: if f is a bounded measurable function on X(∞) and ξ ∈ X(∞)
is a point of continuity for f , then hf is continuous at ξ; that is, if (ϕn) ⊂ Γ is a
sequence such that ϕnx → ξ for one (and hence any) x ∈ X, then hf (ϕn) → f(ξ).
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In particular, if f : X(∞) → R is continuous, then hf is the unique μ-harmonic
function on Γ extending continuously to f at infinity.

Proof. Without loss of generality we can assume f(ξ) = 0. If there is a
sequence (ϕn) ⊂ Γ such that ϕnx0 → ξ and such that hf (ϕn) does not tend to f(ξ),
then there is such a sequence (ϕn) with the property that lim supn→∞ |hf (ϕn)| is
maximal among all these sequences. We fix such a sequence and set

δ = lim sup
n→∞

|hf (ϕn)|.

By passing to a subsequence if necessary we can assume that the lim sup is a true
limit. Since ξ is a point of continuity of f , there are R > 0 and ε > 0 such that

|f(η)| < δ/3 for all η ∈ X(∞) ∩ U(x0, ξ, R, ε).

By Lemma 4.9 there is a ϕ ∈ Γ and an open subset U of X(∞) such that ν(U) < ε
and ϕnk

ϕ(X(∞) \ U) ⊂ U(x0, ξ, R, ε) for a subsequence (ϕnk
) of (ϕn). Then

|hf (ϕnk
ϕ)| ≤

∣∣∣∣∫
X(∞)\U

f(ϕnk
ϕη)dν(η)

∣∣∣∣+ ∣∣∣∣∫
U

f(ϕnk
ϕη)dν(η)

∣∣∣∣
≤ ν(X(∞) \ U) · δ/3 + ν(U) sup |f |.

Hence |hf (ϕnk
ϕ)| ≤ δ/2 for all k if we choose ε > 0 small enough.

Now there is a k ≥ 1 such that μk(ϕ) = α > 0. We split Γ into three disjoint
parts G, L and {ϕ}, where G is finite and μk(L) sup |f | < αδ/2. Since hf is μk-
harmonic we get

lim sup
k→∞

|hf (ϕnk
)| = lim sup

k→∞

∣∣∣∣∑
Γ

hf (ϕnk
ψ)μk(ψ)

∣∣∣∣
≤ lim sup

k→∞

∣∣∣∣∑
G

hf (ϕnk
ψ)μk(ψ)

∣∣∣∣+ lim sup
k→∞

|hf (ϕnk
ϕ)|α + αδ/2

< μ(G) · δ + αδ/2 + αδ/2 ≤ (1 − α)δ + αδ = δ.

This is a contradiction. �
We now consider the left-invariant random walk on Γ defined by μ; that is, the

transition probability from ϕ ∈ Γ to ψ ∈ Γ is given by μ(ϕ−1ψ). For ψ1, . . . , ψk ∈ Γ,
the probability P that a sequence (ϕn) satisfies ϕi = ψi, 1 ≤ i ≤ k, is by definition
equal to

μ(ψ1)μ(ψ−1
1 ψ2) · · ·μ(ψ−1

k−1ψk).

Since the support of μ generates Γ and since Γ is not amenable (Γ contains a free
subgroup), random walk on Γ is transient, see [Fu3, p.212], that is, d(x, ϕnx) → ∞
for P -almost any sequence (ϕn) ⊂ Γ. An immediate consequence of Theorem 4.10
and the Martingale Convergence Theorem is the following result.

4.11 Theorem. Let X, Γ and μ be as in Theorem 4.10. Then for almost any
sequence (ϕn) in Γ, the sequence (ϕnx), x ∈ X, tends to a limit in X(∞). The
hitting probability is given by ν. In particular, the stationary measure ν is uniquely
determined.
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Proof. If h is a bounded μ-harmonic function, then Mk((ϕn)) := h(ϕk),
k ≥ 1, defines a martingale and hence Mk((ϕn)) converges P -almost surely by the
Martingale Convergence Theorem, see [Fu3].

Let ξ 	= η ∈ X(∞) and let U, V be neighborhoods of U and V in X(∞).
Then there is a continuous function f on X(∞) which is negative at ξ, positive
at η and 0 outside U ∪ V . Applying the Martingale Convergence Theorem in the
case h = hf we conclude that the set of sequences (ϕn) in Γ such that (ϕn(x)),
x ∈ X , has accumulation points close to both ξ and η has P -measure 0. Now X(∞)
is compact, hence the first assertion.

Let f : X(∞) → R be continuous and set Mk((ϕn)) = hf (ϕk), k ≥ 1. If π
denotes the hitting probability at X(∞), then∫

fdπ =
∫

(limMk)dP.

On the other hand, since (Mk) is a martingale,∫
(limMk)dP =

∫
MkdP

= hf (e) =
∫

fdν

Hence ν = π and the proof is complete. �
We may ask whether (X(∞), ν) is the Poisson boundary of Γ. By that we

mean that the assertions of Theorem 4.11 hold and that every bounded μ-harmonic
function h on Γ is given as h = hf , where f is an appropriate bounded measurable
function on X(∞). This is true if X , Γ and μ satisfy the assumptions of Theorem
4.10 and

(i) Γ is finitely generated and μ has finite first moment with respect to the word
norm of a finite system of generators of Γ;

(ii) Γ is properly discontinuous and cocompact on X .
For the proof (in the smooth case) we refer to [BaL1]; see alsox [Kai3, Theorem 3]
for a simplification of the argument in [BaL1]. We omit a more elaborate discussion
of the Poisson boundary since the relation between cocompactness on the one hand
and the duality condition on the other is unclear (as of now).

For the convenience of the reader, the Bibliography contains many references in
which topics related to our random walks are discussed: Martin boundary, Brownian
motion, potential theory ... for Hadamard spaces and groups acting isometrically
on them.
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CHAPTER IV

RANK RIGIDITY

In this chapter we prove the Rank Rigidity Theorem. The proof proper is in
Sections 4 - 7, whereas Sections 1 - 3 are of a preliminary nature. The initiated
geometer should skip these first sections and start with Section 4. In Section 1 we
discuss geodesic flows on Riemannian manifolds, in Section 2 estimates on Jacobi
fields in terms of sectional curvature (Rauch comparison theorem) and in Section
3 the regularity of Busemann functions.

1. Preliminaries on geodesic flows

Let M be a smooth n-dimensional manifold with a connection D. Let TM
be the tangent bundle of M and denote by π : TM → M the projection. Recall
that the charts of M define an atlas for TM in a natural way, turning TM into a
smooth manifold of dimension 2n. Namely, if x : U → U ′ ⊂ R

n is a chart of M and

Xi =
∂

∂xi
, 1 ≤ i ≤ n ,

are the basic vector fields over U determined by x, then we define

(1.1) x̂ : π−1(U) → U ′ × R
n; x̂(v) = (x(p), dx |p(v)) ,

where p = π(v). If we write v as a linear combination of the Xi(p),

v =
∑

ξiXi(p) ,

then
(ξ1, . . . , ξn) =: ξ(v) = dx |p(v) ,

and hence
x̂ = (x̄, ξ) ,

where x̄ = x ◦ π. It is easy to see that the family of maps x̂, where x is a chart of
M , is a C∞-atlas for TM .

The connection D allows for a convenient description of TTM , the tangent
bundle of the tangent bundle. To that end, we introduce the vector bundle E → TM ,

E = π∗(TM) ⊕ π∗(TM) .

Typeset by AMS-TEX
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The fibre Ev of E at v ∈ TM is

(1.2) Ev = TpM ⊕ TpM ,

where p = π(v) is the foot point of v. We define a map I : TTM → E as follows:

(1.3) I(Z) =
(

ċ(0),
DV

dt
(0)
)

,

where V is a smooth curve in TM with V̇ (0) = Z and c = π ◦ V . To see that (1.3)
defines a map TTM → E , we express it in a local coordinate chart x̂ as above.
Then x̂ ◦ V = (σ, ξ), where σ = x ◦ c and V =

∑
ξiXi. Hence(

ċ(0),
DV

dt
(0)
)

is represented by

(1.4)
(
σ̇(0), ξ̇(0) + Γ(σ̇(0), ξ(0))

)
,

where Γ denotes the Christoffel symbol with respect to the chart x and where we
use x̂ ⊕ x̂ as a trivialization for E . We conclude that I is well-defined, smooth and
linear on the fibres. It is easy to see that I is surjective on the fibres. Now I is
bijective since the fibres of TTM and E have the same dimension 2n. Therefore:

1.5 Lemma. The map I : TTM → E is a vector bundle isomorphism. �
1.6 Exercise. For a coordinate chart x and a tangent vector v =

∑
ξkXk(p)

as in the beginning of this section show that

I
(

∂

∂ξi

∣∣∣∣
v

)
=
(
0, Xi(p)

)
and

I
(

∂

∂x̄i

∣∣∣∣
v

)
=
(
Xi(p), DXi

V (p)
)
,

where V =
∑

ξkXk is the “constant extension” of v to a vector field on the domain
of the coordinate chart x.

Henceforth we will identify TTM and E via I without further reference to the
identification map I.

For v ∈ TTM and p = π(v), the splitting

TvTM = TpM ⊕ TpM

singles out two n-dimensional subspaces. The first one is the vertical space

(1.7) Vv = ker π∗v = {(0, Y ) | Y ∈ TpM} .

The vertical distribution V is smooth and integrable. The integral manifolds of V
are the fibres of π, that is, the tangent spaces of M . Here we visualize the tangent
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spaces of M as vertical to the manifold - a convenient picture when thinking of TM
as a bundle over M . The second n-dimensional subspace is the horizontal space

(1.8) Hv = {(X, 0) | X ∈ TpM} .

The horizontal distribution H of TM is smooth but, in general, not integrable. By
definition, a curve V in TM is horizontal, that is, V̇ belongs to H, if and only if
V ′ ≡ 0, where V ′ denotes the covariant derivative of V along π ◦V ; in other words,
V is horizontal if and only if V is parallel along c = π ◦ V .

The map, which associates to two smooth horizontal vector fields X , Y on TM
the vertical component of [X ,Y ], is bilinear and, in each variable, linear over the
smooth functions on TM . Hence the vertical component of [X ,Y ] at v ∈ TM only
depends on X (v) and Y(v). To measure the non-integrability of H, it is therefore
sufficient to consider only special horizontal vector fields.

Now let X be a smooth vector field on M . The horizontal lift XH of X is
defined by

(1.9) XH(v) = (X(π(v)), 0), v ∈ TM .

By definition, X is π-related to XH, that is, π∗ ◦ XH = X ◦ π. This allows us to
express the Lie bracket of horizontal lifts of vector fields X , Y on M in a simple
way.

1.10 Lemma. Let X, Y be smooth vector fields on M . Then

[XH, Y H](v) = ([X, Y ]p, R(Xp, Yp)v),

where p = π(v) and the index p indicates evaluation at p.

Proof. Since X and Y are π-related to XH and Y H respectively, we have

π∗v([XH, Y H](v)) = [X, Y ]p.

This shows the claim about the horizontal component.
Since the vertical component only depends on Xp and Yp, it suffices to consider

the case [X, Y ]p = 0. Denote by ϕt the flow of X and by ψs the flow of Y . Then the
flows Φt of XH and Ψs of Y H are parallel translations along ϕt and ψs respectively.
Let v ∈ TM and let

V (s, t) = Φ−tΨsΦt(v) .

Then

[XH, Y H](v) =
∂

∂t

(
∂

∂s
V

∣∣∣∣
s=0

)∣∣∣∣
t=0

,

where we note that this makes sense since

∂

∂s
V

∣∣∣∣
s=0

∈ TvTM for all t .

Now the horizontal component of
∂

∂s
V

∣∣∣∣
s=0

is
DV

∂s

∣∣∣∣
s=0

, and hence the horizontal

component of [XH, Y H](v) is

∂

∂t

(
DV

∂s

∣∣∣∣
s=0

)∣∣∣∣
t=0

,
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where we note (again) that
DV

∂s

∣∣∣∣
s=0

∈ TpM for all t. In particular,

∂

∂t

(
DV

∂s

∣∣∣∣
s=0

)
=

D

∂t

DV

∂s

∣∣∣∣
s=0

.

By assumption, [X, Y ]p = 0; by definition,
D

∂s

DV

∂t
= 0; hence

D

∂t

DV

∂s
(0, 0) = R(Xp, Yp)v.

This proves the claim about the vertical component. �
1.11 Exercise. Show that [XH,Z] = 0, where XH is as above and Z is a

smooth vertical field of TM .

Recall that the geodesic flow (gt) acts on TM by

(1.12) gt(v) = γ̇v(t), t ∈ Dv,

where Dv denotes the maximal interval of definition for the geodesic γv determined
by γ̇v(0) = v. By definition, the connection is complete if Dv = R for all v ∈ TM .
To compute the differential of the geodesic flow, let v ∈ TM and (X, Y ) ∈ TvTM .
Represent (X, Y ) by a smooth curve V through v, that is, ċ(0) = X for c = π ◦ V

and
DV

dt
(0) = Y . Let J be the Jacobi field of the geodesic variation γV (s) of γv. By

the definition of the splitting of TTM we have

gt
∗v(X, Y ) =

d

ds
gt(V (s))

∣∣∣∣
s=0

=
(

∂

∂s
γV (s)(t),

D

∂s
γ̇V (s)(t)

)∣∣∣∣
s=0

=
(

J(t),
D

∂t

∂

∂s
γV (s)(t)

)∣∣∣∣
s=0

=
(
J(t), J ′(t)

)
,

where the prime indicates covariant differentiation along γv. Hence:

1.13 Lemma. The differential of the geodesic flow is given by

gt
∗v(X, Y ) = (J(t), J ′(t)),

where J is the Jacobi field along γv with J(0) = X and J ′(0) = Y . �
We now turn our attention to the case that D is the Levi-Civita connection

of a Riemannian metric on M . By using the corresponding splitting of TTM , we
obtain a Riemannian metric on TM , the Sasaki metric,

(1.14) < (X1, Y1), (X2, Y2) > := < X1, X2 > + < Y1, Y2 > .

There is also a natural 1-form α on TM ,

(1.15) αv((X, Y )) = < v, X > .

Using Lemma 1.10 it is easy to see that the differential ω = dα is given by

(1.16) ω((X1, Y1), (X2, Y2)) = < X2, Y1 > − < X1, Y2 > .

The Jacobi equation tells us that ω is invariant under the geodesic flow. The 1-form
α is not invariant under the geodesic flow on TM .
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1.17 Exercise. Compute the expressions for α and ω with respect to local
coordinates x̂ = (x̄, ξ) as in the beginning of this section.

Note that ω is a nondegenerate closed 2-form and hence a symplectic form on
TM . The measure on TM defined by |ωn| is equal to the volume form of the Sasaki
metric. It is called the Liouville measure. The Liouville measure is invariant under
the geodesic flow since ω is.

Denote by SM ⊂ TM the unit tangent bundle. We have

(1.18) TvSM = {(X, Y ) | X, Y ∈ TpM, Y ⊥ v} ,

where v ∈ SM and p = π(v). The geodesic flow leaves SM invariant. The restric-
tions of α and ω to SM , also denoted by α and ω respectively, are invariant under
the geodesic flow since < γ̇v, J >≡ const if J is a Jacobi field along γv with J ′ ⊥ γ̇v.
The (2n− 1)-form α∧ωn−1 is the volume form of the Sasaki metric (1.14) on SM .
In particular, α is a contact form. The measure on SM defined by α∧ωn−1 is also
called the Liouville measure. It is invariant under the geodesic flow on SM since α
and ω = dα are.

A first and rough estimate of the differential of the geodesic flow with respect
to the Sasaki metric is as follows, see [BBB1].

1.19 Proposition. For v ∈ SM set RvX = R(X, v)v. Then we have

‖gt
∗(v)‖ ≤ exp

(
1
2

∫ t

0

‖id − Rgs(v)‖ds

)
.

Proof. Let J be a Jacobi field along γv. Then

(〈J, J〉 + 〈J ′, J ′〉)′ = 2 〈J ′, J + J ′′〉
= 2

〈
J ′,
(
id − Rgs(v)

)
J
〉

≤ 2‖J‖ · ‖J ′‖ · ‖id − Rgs(v)‖
≤ (〈J, J〉 + 〈J ′, J ′〉) ‖id − Rgs(v)‖

�
We finish this section with some remarks on the geometry of the unit tangent

bundle.

1.20 Proposition [Sas]. A smooth curve V in SM is a geodesic in SM if
and only if

V ′′ = − < V ′, V ′ > V and ċ′ = R(V ′, V )ċ ,

where c = π ◦ V and prime denotes covariant differentiation along c.

Proof. The energy of a piecewise smooth curve V : [a, b] → SM is given by

E(V ) =
1
2

∫ b

a

‖ċ‖2dt +
1
2

∫ b

a

‖V ′‖2dt .

The second integral is the energy of the curve Ṽ in the unit sphere at c(0) obtained
by parallel translating the vectors V (t) along c to V (0).
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Assume V is a critical point of E. By considering variations of V which leave
fixed the curve c of foot points and V (a) and V (b), we see that Ṽ is a geodesic
segment in the unit sphere. Hence V satisfies the first equation.

Now consider an arbitrary variation V (s, ·) of V with foot point c(s, ·) which
keeps V (·, a) and V (·, b) fixed. Then

0 =
dE

ds
=
∫ b

a

[〈
D

ds
ċ, ċ

〉
+
〈

D

ds
V ′, V ′

〉]
dt

=
∫ b

a

[〈
D

dt

∂c

∂s
, ċ

〉
+
〈

D

dt

D

ds
V, V ′

〉
+
〈

R

(
∂c

∂s
,
∂c

∂t

)
V, V ′

〉]
dt

=
∫ b

a

[
d

dt

(〈
∂c

∂s
, ċ

〉)
−
〈

∂c

∂s
, ċ′
〉

+
d

dt

(〈
D

ds
V, V ′

〉)
−
〈

D

ds
V, V ′′

〉
+
〈

R(V ′, V )ċ,
∂c

∂s

〉]
dt .

Note that ∫ b

a

d

dt

〈
∂c

∂s
, ċ

〉
dt = 0 =

∫ b

a

d

dt

〈
D

ds
V, V ′

〉
dt

since c(s, a), c(s, b), V (s, a), and V (s, b) are kept fixed. Also 〈(D/ds)V, V ′′〉 = 0 since
V ′′ and V are collinear by the first equation and 〈(D/ds)V, V ′′〉 = 0 because V is
a curve of unit vectors. Hence the second equation is satisfied.

Conversely, our computations show that V is a critical point of the energy if
it satisfies the equations in Proposition 1.17. �

1.21 Remarks. (a) The equations in Proposition 1.17 imply

〈V ′, V ′〉′ = 0 = 〈ċ, ċ〉′

and therefore
‖V ′‖ = const. and ‖ċ‖ = const.

(b) The great circle arcs in the unit spheres SpM , p ∈ M , are geodesics in
SM . In particular, we have that the Riemannian submersion π : SM → M has
totally geodesic fibres.

(c) If V is horizontal, then V is a geodesic if and only if c = π ◦V is a geodesic
in M .

1.22 Exercise. Let M be a surface and V a geodesic in the unit tangent
bundle of M . Assume that V is neither horizontal nor vertical. Then V ′ 	= 0 and
ċ 	= 0, where c = π ◦ V , and

V ′′(t) = −‖V ′‖2 · V (t)

k(t) =
‖V ′‖
‖ċ‖ K(c(t))

where k is the geodesic curvature of c with respect to the normal n such that (ċ, n)
and (V, V ′) have the same orientation and K is the Gauss curvature of M . Use
this to discuss geodesics in the unit tangent bundles of surfaces of constant Gauss
curvature.
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2. Jacobi fields and curvature

In Proposition 1.13 we computed the differential of the geodesic flow (gt) on
TM in terms of the canonical splitting of TTM . We obtained that

(2.1) gt
∗v(X, Y ) = (J(t), J ′(t)),

where J is the Jacobi field along the geodesic γv with J(0) = X and J ′(0) = Y . In
order to study the qualitative behaviour of (gt) it is therefore useful to get estimates
on Jacobi fields.

2.2 Lemma. Let γ : R → M be a unit speed geodesic, and suppose that the
sectional curvature of M along γ is bounded from above by a constant κ. If J is a
Jacobi field along γ which is perpendicular to γ̇, then ‖J‖′′(t) ≥ −k‖J‖(t) for all t
with J(t) 	= 0.

Proof. The straightforward computation does the job:

‖J‖′′ = (
< J ′, J >

‖J‖ )′ =
1

‖J‖2

(
< J ′′, J > ‖J‖+ < J ′, J ′ > ‖J‖ − < J ′, J >2

‖J‖
)

=
1

‖J‖3

(− < R(J, γ̇)γ̇, J > ‖J‖2 + ‖′J ′‖2‖J‖2− < J ′, J >2
) ≥ −k‖J‖ .

�
The same computation gives the following result.

2.3 Lemma. Let γ : R → M be a unit speed geodesic and suppose that the
sectional curvature of M along γ is nonpositive. If J is a Jacobi field along γ
(not necessarily perpendicular to γ̇), then ‖J(t)‖ is convex as a function of t. In
particular, there are no conjugate points along γ. �

For κ ∈ R denote by snκ respectively csκ the solution of

(2.4) j′′ + κj = 0

with snκ(0) = 0, sn′
κ(0) = 1 respectively csκ(0) = 1, cs′κ(0) = 1. Then sn′

κ = csκ

and cs′κ = −κ snκ. We also set tgκ =
snκ

csκ
and ctκ =

csκ

snκ
. Lemma 2.2 implies the

following version of the Rauch Comparison Theorem.

2.4 Proposition. Let γ : R → M be a unit speed geodesic and suppose that
the sectional curvature of M along γ is bounded from above by a constant κ. If J
is a Jacobi field along γ with J(0) = 0, J ′(0) ⊥ γ̇(0) and ‖J ′(0)‖ = 1, then

‖J(t)‖ ≥ snκ(t) and ‖J‖′(t) ≥ ctκ(t)‖J(t)‖

for 0 < t < π/
√

κ.

Proof. For any Jacobi field J along γ and perpendicular to γ̇ and any solu-
tion j of (2.4) we have by Lemma 2.2

(‖J‖′j − ‖J‖j′)′ ≥ 0
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wherever j and ‖J‖ are positive. For J as in Proposition 2.4,

lim
t→0+

‖J‖(t)
snκ(t)

= lim
t→0+

‖J‖′(t)
sn′

κ(t)
= 1

by l’Hospital’s rule. Hence

‖J‖′(t) ≥ ctκ(t)‖J(t)‖ and ‖J(t)‖ ≥ snκ(t)

for t small and then, by continuation, for all t as claimed. �
The proof of the estimates for Jacobi fields in the case of a lower bound on

the curvature is different.

2.5 Proposition. Let γ : R → M be a unit speed geodesic and suppose that
the sectional curvature of M along γ is bounded from below by a constant λ. If J
is a Jacobi field along γ with J(0) = 0, J ′(0) ⊥ γ̇(0) and ‖J ′(0)‖ = 1, then

‖J(t)‖ ≤ snλ(t) and ‖J ′(t)‖ ≤ ctλ(t)‖J(t)‖

if there is no pair of conjugate points along γ | [0, t].

For the proof of this version of the Rauch Comparison Theorem we refer to
[Kar], [BuKa].

In the rest of this section we deal with manifolds of nonpositive or negative
curvature. The infinitesimal version of the Flat Strip Theorem I.5.8(ii) is as follows.

2.6 Lemma. Let M be a manifold of nonpsitive curvature and γ : R → M a
unit speed geodesic. Let J be a Jacobi field along γ. Then the following conditions
are equivalent:
(i) J is parallel; (ii) ‖J(t)‖ is constant on R; (iii) ‖J(t)‖ is bounded on R.
Each of these condition implies that < R(J, γ̇)γ̇, J >≡ 0.

Proof. Clearly (i) ⇒ (ii) ⇒ (iii). Now (iii) ⇒ (ii) since ‖J(t)‖ is convex in
t, see Lemma 2.3. If ‖J(t)‖ is constant, then

0 = < J, J >′′ = 2 (< J ′, J ′ > − < R(J, γ̇)γ̇, J >) .

and hence J ′(t) ≡ 0 since the sectional curvature is nonpositive. Hence (ii) ⇒
(i). �

2.7 Definition. Let M be a manifold of nonpositive curvature and γ : R →
M a unit speed geodesic. We say that a Jacobi field J along γ is stable if ‖J(t)‖ ≤ C
for all t ≥ 0 and some constant C ≥ 0.

2.8 Proposition. Let M be a manifold of nonpositive curvature and γ : R →
M a unit speed geodesic. Set p = γ(0).
(i) For any X ∈ TpM , there exists a unique stable Jacobi field JX along γ with

JX(0) = X.
(ii) Let (γn) be a sequence of unit speed geodesics in M with γn → γ. For each n,

let Jn be a Jacobi field along γn. Assume that Jn(0) → X ∈ TpM and that
Jn(tn) ≤ C, where tn → ∞ and C is independent of n. Then Jn → JX and
J ′

n → J ′
X .
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Proof. Uniqueness in (i) follows from the convexity of ‖J(t)‖. Existence
follows from (ii) since we may take γn = γ and Jn the Jacobi field with Jn(0) = X ,
Jn(n) = 0 (recall that γ has no conjugate points). Now let γn, Jn, tn and C be as
in (ii). Fix m ≥ 0. By convexity we have

‖Jn(t)‖ ≤ C, 0 ≤ t ≤ m,

for all n with tn ≥ m. By a diagonal argument we conclude that any subsequence
(nk) has a further subsequence such that the corresponding subsequence of (Jn)
converges to a Jacobi field J along γ with ‖J(t)‖ ≤ C for all t ≥ 0. Now the
uniqueness in (i) implies J = JX and (ii) follows. �

2.9 Proposition. Let M be a manifold of nonpositive curvature, γ : R → M
a unit speed geodesic and J a stable Jacobi field along γ perpendicular to γ̇.
(i) If the curvature of M along γ is bounded from above by κ = −a2 ≤ 0, then

‖J(t)‖ ≤ ‖J(0)‖e−at and ‖J ′(t)‖ ≥ a‖J(t)‖ for all t ≥ 0 .

(ii) If the curvature of M along γ is bounded from below by λ = −b2 ≤ 0, then

‖J(t)‖ ≥ ‖J(0)‖e−bt and ‖J ′(t)‖ ≤ b‖J(t)‖ for all t ≥ 0 .

Proof. Let Jn be the Jacobi field along γ with Jn(0) = J(0) and Jn(n) = 0,
n ≥ 1. Then Jn → J and J ′

n → J ′ by the previous lemma. If κ = −a2 ≤ 0 is an
upper bound for the curvature along γ, then by Proposition 2.4

‖Jn(t)‖
‖Jn(0)‖ ≤ sinh(a(n − t))

sinh(an)

and
‖Jn‖′(t) ≤ −a coth(a(n − t))‖Jn(t)‖ , 0 < t < n ,

where we have snκ(s) =
1
a

sinh(as) (=: s if a = 0) and ctκ(s) = a coth(as) (=:

1 if a = 0). Hence (i). In the same way we conclude (ii) from Proposition 2.5. �

The following estimate will be needed in the proof of the absolute continuity
of the stable and unstable foliations in the Appendix on the ergodicity of geodesic
flows.

Proposition 2.10. Let M be a Hadamard manifold and assume that the
sectional KM of M is bounded by −b2 ≤ KM ≤ −a2 < 0. Denote by dS the
distance in the unit tangent bundle SM of M .

Then for every constant D > 0 there exist constants C = C(a, b) ≥ 1 and
T = T (a, b) ≥ 1 such that

dS(gtv, gtw) ≤ Ce−atdS(v, w) , 0 ≤ t ≤ R ,

where v, w are inward unit vectors to a geodesic sphere of radius R ≥ T in M with
foot points x, y of distance d(x, y) ≤ D
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Proof. Since the curvature of M is uniformly bounded, the metric

d1(v, w) = d(γv(0), γw(0)) + d(γv(1), γw(1))

is equivalent to dS and therefore it suffices to consider d1. For the same reason,
there is a constant C1 > 0 such that the interior distance of any pair of points x,
y on any geodesic sphere in M is bounded by C1d(x, y) as long as d(x, y) ≤ D.
Now the interior distance of γv(t) and γw(t) in the sphere of radius R − t about
p = γv(R) = γw(R) can be estimated by a geodesic variation γs, 0 ≤ s ≤ 1, such
that γ0 = γv, γ1 = γw, γs(R) = p and γs(0) ∈ Sp(R), 0 ≤ s ≤ 1. Arguing as in
the proof of Proposition 2.9, we conclude that there is a constant C2 such that the
asserted inequality holds for 0 ≤ t ≤ R − 1 (recall that we are using the distance
d1). Now the differential of the geodesic flow gτ , 0 ≤ τ ≤ 1, is uniformly bounded
by a constant C3 = C3(b), see Proposition 1.19. Hence C = C2C3e

a is a constant
as desired. �

3. Busemann functions and horospheres

We come back to the description of Busemann functions in Exercise II.2.6.

3.1 Proposition. Let M be a Hadamard manifold and let p ∈ M . Then a
function f : M → R is a Busemann function based at p if and only if (i) f(p) = 0;
(ii) f is convex; (iii) f has Lipschitz constant 1; (iv) for any q ∈ M there is a
point q1 ∈ M with f(q) − f(q1) = 1.

Proof. Let f : M → R be a function satisfying the conditions (i) - (iv). Let
q ∈ M be arbitrary. Set q0 := q and define qn, n ≥ 1, recursively to be a point in
M with d(qn, qn−1) = 1 and f(qn) − f(qn−1) = 1. Let σn : [n − 1, n] → M be the
unit speed geodesic segment from qn−1 to qn, n ≥ 1. Since f has Lipschitz constant
1, the concatenation

σq : σ1 ∗ σ2 ∗ . . . : [0,∞) → M

is a unit speed ray with

f(σq(t)) = f(q) − t, t ≥ 0 .

We show now that all the rays σq, q ∈ M , are asymptotic to σp. We argue by
contradiction and assume that σq(∞) 	= σp(∞). Let σ be the unit speed ray from p
with σ(∞) = σq(∞). Then d(σ(t), σp(t)) → ∞ and there is a first t1 > 0 such that
d(σ(t1), σp(t1)) = 1. For t ≥ t1 we have

d2(σ(t), σp(t)) ≥ 2t2(1 − sin α), α =
1

2t1
,

by comparison with Euclidean geometry. Hence the midpoint mt between σ(t) and
σp(t) satisfies

(∗) d(mt, p) ≤ t cos α, t ≥ t1 .

Now f is convex and Lipschitz, hence

f(mt) ≤ 1
2
(f(σ(t) + f(σp(t)))

≤ 1
2
(
f(σq(t)) + f(σp(t)) + d(p, q)

) ≤ −t + C,
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where C = (d(p, q) + f(q))/2. This contradicts (∗).
It follows easily that f is a Busemann function. The other direction is clear. �
The characterization in Proposition 3.1 implies that Busemann functions are

C1, cf. [BGS, p.24]. Using that Busemann functions are limits of normalized distance
functions, we actually get that they are C2. For ξ ∈ M(∞) and p ∈ M let σp,ξ be
the unit speed ray from p to ξ and set vξ(p) = σ̇p,ξ(0).

3.2 Proposition (Eberlein, see [HeIH]). Let M be a Hadamard manifold,
p ∈ M and ξ ∈ M(∞). If f = b(ξ, p, .) is the Busemann function at ξ based at p,
then f is C2 and we have

grad f = −vξ and DX grad f(q) = −J ′
X(0) , q ∈ M , X ∈ TqM ,

where JX is the stable Jacobi field along σq,ξ with JX(0) = X.

Proof. Let (pn) be a sequence in M converging to ξ and let

fn(q) = b(pn, p, q) = d(q, pn) − d(q, p).

Then fn → f uniformly on compact subsets of M . The gradient of fn on M \ {pn}
is the negative of the smooth field of unit vectors vn pointing at pn. Now

‖vn − vξ‖(q) ≤ ∠q(pn, ξ).

By comparison with Euclidean geometry, the right hand side tends to 0 uniformly
on compact subsets of M as n → ∞. Hence f is C1 and grad f = −vξ .

Now let X, Y be smooth vector fields on M . Then

DX(q) grad fn = −J ′
n(q, 0) ,

where Jn(q, .) is the Jacobi field along σq,pn
with Jn(0) = X(q) and Jn(q, tn) = 0,

where tn = d(q, pn). By Proposition 2.8, J ′
n(q, 0) tends to J ′

X(q)(0) uniformly on
compact subsets of M . Hence f is C2 and the covariant derivative of grad f is as
asserted. �

3.3 Remark. In general, Busemann functions are not three times differen-
tiable, even if the metric of M is analytic, see [BBB2]. However, if the first k
derivatives of the curvature tensor R are uniformly bounded on M and the sec-
tional curvature of M is pinched between two negative constants, then Busemann
functions are Ck+2.

For v ∈ SM set v(∞) := γv(∞). We define

W so(v) = {w ∈ SM | w(∞) = v(∞)} .

For v fixed and ξ = v(∞),

W so(v) = {− grad f(q) | q ∈ M} .

where f is a Busemann function at ξ. Proposition 3.2 implies that W so(v) is a C1-
submanifold of SM . The submanifolds W so(v), v ∈ SM , are a continuous foliation
of SM . By Proposition 3.2, the tangent distribution of W so is

Es(v) = {(X, Y ) | Y = J ′
X(0)} ,

where JX is the stable Jacobi field along γv with JX(0) = X . The regularity of the
foliation W so is a very intricate question.
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Remark 3.4. The following is known in the case that M is the universal cover
(in the Riemannian sense) of a compact manifold of strictly negative curvature:

(a) For each v ∈ SM , W so(v) is the weak stable manifold of v with respect to
the geodesic flow and hence smooth. (Compare also Remark 3.3.)

(b) The foliation W so is a smooth foliation of SM if and only if M is a
symmetric space (of rank one), see [Gh, BFL, BCG].

(c) If the dimension of M is 2 or if the sectional curvature of M is strictly neg-

atively
1
4
-pinched, then the distribution Es is C1, see [Ho1, HiPu]. If the dimension

of M is 2 and Es is C2, then it is C∞, see [HurK].
(d) The foliation W so is Hölder and absolutely continuous, see [Ano1], [AnSi]

and the Appendix below.

4. Rank, regular vectors and flats

As before, we let M be a Hadamard manifold and denote by SM the unit
tangent bundle of M . For a vector v ∈ SM , the rank of v is the dimension of
the vector space J p(v) of parallel Jacobi fields along γv and the rank of M is the
minimum of rank(v) over v ∈ SM .

Clearly we have rank(w) ≤ rank(v) for all vectors in a sufficiently small neigh-
borhood of a given vector v ∈ SM . We define R, the set of regular vectors in SM ,
to be those vectors v in SM such that rank(w) = rank(v) for all w sufficiently close
to v. The set of regular vectors of rank m is denoted by Rm. The sets R and Rm

are open. Moreover, R is dense in SM since the rank function is semicontinuous
and integer valued. If k = rank(M), then the set Rk is nonempty and consists of
all vectors in SM of rank k.

For v ∈ SM we can identify TvTM with the space J (v) of Jacobi fields along
γv by associating to (X, Y ) ∈ TvTM the Jacobi field J along γ with J(0) = X ,
J ′(0) = Y . We let F(v) be the subspace of TvSM corresponding to the space
J p(v) of parallel Jacobi fields along γv. That is, F(v) consists of all (X, 0) such
that the stable Jacobi field JX along γv determined by JX(0) = X is parallel. The
distribution F is tangent to SM and invariant under isometries and the geodesic
flow of M . Note that F has constant rank locally precisely at vectors in R. On each
nonempty set Rm, m ≥ rank(M), F has constant rank m, and we shall see that
F is smooth and integrable on Rm. Moreover, for each vector v ∈ Rm the integral
manifold of F through v contains an open neighborhood of v in the set P(v) of all
vectors in SM that are parallel to v.

4.1 Lemma. For every integer m ≥ rank(M), the distribution F is smooth
on Rm.

Proof. For each vector v ∈ Rm, we consider the symmetric bilinear form

Qv
T (X, Y ) =

∫ T

−T

< R(X, γ̇v)γ̇v, Y > dt,

where X, Y are arbitrary parallel vector fields (not necessarily Jacobi) along γv.
Here R denotes the curvature tensor of M , and T is a positive number. Since the
linear transformation w → R(w, γ̇v)γ̇v is symmetric and negative semidefinite, a
parallel vector field X on γv is in the nullspace of Qv

T if and only if for all t ∈ [−T, T ]

R(X(t), γ̇v(t))γ̇v(t) = 0.
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Hence such a vector field X is a Jacobi field on γv[−T, T ]. It follows that for a small
neighborhood U of v in Rm and a sufficiently large number T the nullspace of Qw

T

is precisely Jp(w) for all w ∈ U . For a fixed T the form Qw
T depends smoothly on w.

Since the dimension of the nullspace is constant in U , F(w) also depends smoothly
on w. �

We now integrate parallel Jacobi fields to produce flat strips in M .

4.2 Lemma. The distribution F is integrable on each nonempty set Rm ⊂
SM, m ≥ rank(M). The maximal arc-connected integral manifold through v ∈ Rm

is an open subset of P(v). In particular, if w ∈ P(v)∩Rm, then P(v) and P (v) are
smooth m-dimensional manifolds near w and π(w) respectively.

Proof. To prove the first assertion we begin with the following obeservation:
let σ : (−ε, ε) → Rm be a smooth curve tangent to F . Then σ(s) is parallel to σ(0) =
v for all s. To verify this we consider the geodesic variation γs(t) = (π ◦ gt)(σ(s))
of γ0 = γv. The variation vector fields Ys of (γs) are given by

Ys(t) = (dπ ◦ dgt)(
d

ds
σ(s)).

The vector fields Ys are parallel Jacobi fields along γs since (d/ds)σ(s) belongs to
F . For each t the curve αt : u → γu(t) has velocity (d/du)αt(u) = Yu(t), and hence,
since each Yu is parallel, the lengths of the curves αt(I) are constant in t for any
interval I ⊂ (−ε, ε). Therefore, for every s the convex function t → d(γ0(t), γs(t))
is bounded on R and hence constant. This implies that the geodesics γs are parallel
to γ0 and σ(s) = γ̇s(0) is parallel to σ(0) = v.

Now let v ∈ Rm be given, and let X ,Y be smooth vector fields defined in a
neighborhood of v in Rm that are tangent to F . Denote by φs

ξ and φs
η the flows of

X and Y respectively. The discussion above shows that if w ∈ Rm is parallel to v
then so are φs

ξ(w) and φs
η(w) for every small s. Hence σ(s2) = φ−s

η ◦φ−s
ξ ◦φs

η ◦φs
ξ(v)

is parallel to v for every small s. Therefore, [X ,Y ](v) = (d/ds)σ(s)|s=0 belongs to
F , and it follows that F is integrable on Rm.

The third assertion of the lemma follows from the second, which we now prove.
If Q denotes the maximal arc-connected integral manifold of F through v, then
Q ⊂ P(v) by the discussion above. Now let w ∈ Q be given, and let O ⊂ Rm be a
normal coordinate neighborhood of w relative to the metric in SM . We complete
the proof by showing that

O ∩ P(w) = O ∩ P(v) ⊂ Q .

If w′ ∈ O ∩ P(v) is distinct from w, let σ(s) be the unique geodesic in M from
σ(0) = π(w) to σ(1) = π(w′). The parallel field w(s) along σ(s) with w(0) = w
has values in P(v) since either γw = γw′ or γw and γw′ bound a flat strip in M .
Hence w[0, 1] is the shortest geodesic in SM from w(0) = w to w(1) = w′ and must
therefore lie in O ⊂ Rm. Since the curve w(s), 0 ≤ s ≤ 1, lies in P(v) ∩ Rm it is
tangent to F and hence w′ ∈ w[0, 1] ⊂ Q. �

4.3 Lemma. Let N∗ be a totally geodesic submanifold of a Riemannian man-
ifold N . Let γ be a geodesic of N that lies in N∗, and let J be a Jacobi field in N
along γ. Let J1 and J2 denote the components of J tangent and orthogonal to N∗

respectively. Then J1 and J2 are Jacobi fields in N along γ.
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Proof. Let R denote the curvature tensor of N , and let v be a vector tangent
to N∗ at a point p. Since N∗ is totally geodesic it follows that

R(X, v)v ∈ TpN
∗ if X ∈ TpN

∗

and hence, since Y → R(Y, v)v is a symmetric linear operator, that

R(X, v)v ∈ (TpN
∗)⊥ if X ∈ (TpN

∗)⊥ .

Since J ′′
1 is tangent and J ′′

2 perpendicular to N∗ we see that

J ′′
1 + R(J1, γ̇)γ̇

is the component of
0 = J ′′ + R(J, γ̇)γ̇

tangent to N∗, and hence must be zero. �

4.4 Proposition. Suppose the isometry group of M satisfies the duality con-
dition. Then for every vector v ∈ Rm, the set P (v) is an m-flat, that is, an isomet-
rically and totally geodesically embedded m-dimensional Euclidean space.

Proof. Let v ∈ Rm be given. By Lemma 4.2 for any v′ ∈ Rm the sets
P(v′) ∩Rm and P (v′) are smooth m-manifolds near v′ and π(v′) respectively, and
π : P(v′)∩Rm → P (v′) is an isometry onto an open neighborhood of π(v′) in P (v′).

We can choose a neighborhood U ⊂ Rm of v and a number ε > 0 such that for
every v′ ∈ U the exponential map at π(v′) is a diffeomorphism of the open ε-ball
in Tπ(v′)P (v′) onto its image Dε(v′) ⊂ P (v′).

Let q ∈ P (v) be given. We assert that q ∈ Dε ⊂ P (v), where Dε is the
diffeomorphic image under the exponential map at q of the open ε-ball in some
m-dimensional subspace of TqM . Let w = v(q) be the vector at q parallel to v. By
Corollary III.1.3 we can choose sequences sn → ∞, vn → v and (φn) in Γ such that
(dφn ◦ gsn)(vn) → w as n → +∞. For sufficiently large n, vn ∈ U and

φn(Dε(vn)) = Dε(dφn(vn)) ⊂ P (dφn(vn)).

If Dε(v′) ⊂ P (v′) for some v′ ⊂ R, then clearly Dε(gsv′) ⊂ P (v′) = P (gsv′) for
any real number s since P (v′) is the union of flat strips containing γv′ . Hence

Dε(gsn ◦ dφn(vn)) = Dε(dφn ◦ gsn(vn)) ⊂ P (dφn ◦ gsn(vn))

for sufficiently large n. Therefore, the open m-dimensional ε-balls Dε(dφn◦gsn(vn))
converge to an open m-dimensional ε-ball Dε ⊂ P (w) = P (v) as asserted.

We show first that Dε = Bε(q) ∩ P (v), where Bε(q) is the open ε-ball in M
with center q. Since q ∈ P (v) was chosen arbitrary this will show that P (v) is an
m-dimensional submanifold without boundary of M , and it will follow that P (v) is
complete and totally geodesic since P (v) is already closed and convex. Suppose that
Dε is a proper subset of Bε(q) ∩ P (v). Choose a point q′ ∈ Bε(q) ∩ P (v) such that
the geodesic from q to q′ is not tangent to Dε at q. The set P (v) contains the convex
hull D′ of Dε and q′ and hence contains a subset D′′ ⊂ D′ that is diffeomorphic to
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an open (m + 1)-dimensional ball. Similarly P (v) contains the convex hull of D′′

and p = π(v), but this contradicts the fact that P (v) has dimension m at p.
We show next that P (v) has zero sectional curvature in the induced metric.

By a limit argument we can choose a neighborhood O of v in Tπ(v)P (v) such that
O ⊂ Rm and for any w ∈ O the geodesic γw admits no nonzero parallel Jacobi field
that is orthogonal to P (v). Let w ∈ O be given, and let Y be any parallel Jacobi
field along γw. If Z is the component of Y orthogonal to P (v), then Z is a Jacobi
field on γw by Lemma x.4, and ‖Z(t)‖ ≤ ‖Y (t)‖ is a bounded convex function on R.
By Lemma x.x, Z is parallel on γw and hence identically zero since w ∈ O. Hence

Tπ(w)P (w) = span{Y (O) : Y ∈ Jp(w)} ⊂ Tπ(v)P (v).

Since P (v) and P (w) are totally geodesic submanifolds of M of the same dimension
m it follows that P (v) = P (w) for all w ∈ O. The vector field p → w(p) is globally
parallel on P (w) = P (v). Since this is true for any w ∈ O we obtain m linearly
independent globally parallel vector fields in P (v). Hence P (v) is flat. �

5. An invariant set at infinity

In this section we discuss Eberlein’s modification of the Angle Lemma in
[BBE], see [EbHe]. We will also use the notation Pv for P (v). Since the distribution
F is smooth on R, we have the following conclusion of Proposition 4.5.

5.1 Lemma. The function (v, p) �→ d(p, Pv) is continuous on R× M . �
5.2 Lemma. Let k = rank(M), v ∈ Rk and ξ = γv(−∞), η = γv(∞). Then

there exists an ε > 0 such that if F is a k-flat in M with d(p, F ) = 1, where p = π(v)
is the foot point of v, then

∠(ξ, F (∞)) + ∠(η, F (∞)) ≥ ε .

Proof. Suppose there is no ε > 0 with the asserted properties. Then, by the
semicontinuity of ∠, there is a k-flat F in M with d(p, F ) = 1 and ξ, η ∈ F (∞).
Since F is a flat and ∠(ξ, η) = π this implies ∠q(ξ, η) = π for all q ∈ F . Hence F
consists of geodesic parallel to γv and therefore F ⊂ P (γv) = Pv. But Pv is a k-flat,
hence F = Pv. This is a contradiction since d(p, F ) = 1. �

5.3 Lemma. Let k = rankM . Let v ∈ Rk be Γ-recurrent and let η = γv(∞).
Then there exists an α > 0 such that ∠(η, ζ) ≥ α for any ζ ∈ M(∞) \ Pv(∞).

Proof. Let ε > 0 be as in Lemma 5.2. Choose δ > 0 such that any unit vector
w at the foot point p of v with ∠(v, w) < δ belongs to Rk and set α = min{ε, δ}.

Let ζ be any point in M(∞) \ Pv(∞) and suppose ∠(η, ζ) < α. In particular,
∠(η, ζ) < π and hence there is a unique ∠-geodesic σ : [0, 1] → M(∞) from η to ζ.
Let v(s) be the vector at p pointing at σ(s), 0 ≤ s ≤ 1. Note that

∠(v(s), v(t)) ≤ ∠(σ(s), σ(t)) = |t − s|∠(η, ζ)

by the definition of the ∠-metric on M(∞). Hence

∠(v, v(s)) ≤ ∠(ζ, σ(s)) < δ



AN INVARIANT SET AT INFINITY 67

and hence v(s) ∈ Rk, 0 ≤ s ≤ 1.
Let w = v(1) be the vector at p pointing at ζ. Note that η 	∈ Pw(∞). Otherwise

we would have γv ⊂ Pw since Pw is convex and p ∈ Pw. But then Pv = Pw, a contra-
diction since ζ 	∈ Pv(∞). We conclude that (the convex function) d(γv(t), Pw) → ∞
as t → ∞.

Since v is Γ-recurrent, there exist sequences tn → ∞ and (ϕn) in Γ such
that dϕn(gtnv) → v as n → ∞. By what we just said, there is an N ∈ N such
that d(γv(tn), Pw) ≥ 1 for all n ≥ N . By Lemma 5.1 there exists an sn ∈ [0, 1]
with d(γv(tn), Pv(sn)) = 1, n ≥ N . We let Fn = ϕn(P (vsn

)). Then d(p, Fn) → 1.
Passing to a subsequence if necessary, the sequence (Fn) converges to a k-flat F
with d(p, F ) = 1.

Let γn be the geodesic defined by γn(t) = ϕn(γv(t + tn)), t ∈ R. Then
d(γn(t), Fn) is convex in t and increases from 0 to 1 on the interval [−tn, 0]. By
the choice of tn and ϕn we have γn → γv and hence d(γv(t), F ) ≤ 1 on (−∞, 0].
We conclude that γv(−∞) ∈ F (∞). Therefore ∠(γv(∞)), F (∞)) ≥ ε, where ε > 0
is the constant from Lemma 5.2.

Let ζn = σ(sn). By passing to a further subsequence if necessary, we can
assume that ϕn(ζn) ∈ Fn(∞) converges. Then the limit ξ is in F (∞). Also note
that ϕn(η) = γn(∞) converges to η = γv(∞) since γn → γv. Hence

ε ≤ ∠(γv(∞), F (∞)) ≤ ∠(γv(∞), ξ)

≤ lim inf ∠(ϕn(η), ϕn(ζn))

= lim inf ∠(η, ζn) ≤ ∠(η, ζ) < α.

This is a contradiction. �
For any p ∈ M , let ϕp : M(∞) → SpM be the homeomorphism defined by

ϕp(ξ) = vξ(p), where vξ(p) is the unit vector at p pointing at ξ.

5.4 Lemma. Let v, η and α be as in Lemma 5.3, and let F be a k-flat with
η = γv(∞) ∈ F (∞). Then

Bα(η) = {ζ ∈ M(∞) | ∠(η, ζ) < α} ⊂ F (∞)

and for any q ∈ F, ϕq maps Bα(η) isometrically onto the ball Bα(vη(q)) of radius
α in SqF .

Proof. Lemma 5.3 implies Bα(η) ⊂ Pv(∞). For q ∈ F , ϕ−1
q maps SqF iso-

metrically into M(∞). In particular, ϕ−1
q maps Bα(vη(q)) isometrically into Bα(η).

Hence ϕp◦ϕ−1
q : Bα(vη(q)) → Bα(v) is an isometric embedding mapping vη(q) to v.

Since both, Bα(vη(q)) and Bα(v), are balls of radius α in a unit sphere of dimension
k − 1, ϕp ◦ ϕ−1

q is surjective and hence an isometry. The lemma follows. �

5.5 Corollary. Let v, η and α be as in Lemma 5.3. Then ∠q(ζ1, ζ2) =
∠(ζ1, ζ2) for all q ∈ M and ζ1, ζ2 ∈ Bα(η).

Proof. Let q ∈ M and let γ be the unit speed geodesic through q with
γ(∞) = η. By Proposition 4.5, γ is contained in a k-flat F . By Lemma 5.4, we
have Bα(η) ⊂ F (∞). Since F is a flat we have ∠q(ζ1, ζ2) = ∠(ζ1, ζ2) for ζ1, ζ2 ∈
Bα(η). �
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5.6 Proposition. If rank(M) = k ≥ 2, if the isometry group Γ of M satisfies
the duality condition and if M is not flat, then M(∞) contains a proper, nonempty,
closed and Γ-invariant subset.

Proof. Suppose first that M has a non-trivial Euclidean de Rahm factor
M0. Then M = M0 × M1 with M1 non-trivial since M is not flat. But then every
isometry of M leaves this splitting invariant, and hence M0(∞) and M1(∞) are
subsets of M(∞) as asserted. Hence we can assume from now on that M has no
Euclidean de Rahm factor.

Let Xδ be the set of ξ ∈ M(∞) such that there is an η ∈ M(∞) with ∠q(ξ, η) =
δ for all q ∈ M . Corollary 5.5 shows that Xδ 	= ∅ for some δ > 0. Clearly, Xδ is
closed and Γ-invariant for any δ.

Let β = sup{δ | Xδ 	= ∅}. Then Xβ 	= ∅. We want to show Xβ 	= M(∞). We
argue by contradiction and assume Xβ = M(∞). Suppose furthermore β < π. Let
v ∈ Rk be Γ-recurrent, η = γv(∞) and let α be as in Lemma 5.3. Choose δ > 0
with β + δ < π and δ < α. Since Xβ = M(∞), there is a point ζ ∈ M(∞) with
∠q(η, ζ) = β < π for all q ∈ M . Let σ : [0, β] → M(∞) be the unique unit speed
∠-geodesic from ζ to η. Now the last piece of σ is in Bα(η) and Bα(η) is isometric
to a ball of radius α in a unit sphere. Hence σ can be prolongated to a ∠-geodesic
σ∗ : [0, β + δ] → M(∞).

Let q ∈ M . Since ∠(ϕq(ξ1), ϕq(ξ2)) ≤ ∠(ξ1, ξ2) for all ξ1, ξ2 ∈ M(∞), where
ϕq(ξ) ∈ SqM denotes the unit vector at q pointing at ξ ∈ M(∞), and since
∠q(η, ζ) = β = ∠(η, ζ), we conclude

∠(ϕq(σ(s)), ϕq(σ(t))) = ∠(σ(s), σ(t)) = |s − t|
for all s, t ∈ [0, β]. Hence ϕq ◦ σ is a unit speed geodesic in SqM .

The geodesic γ through q with γ(∞) = η is contained in a k-flat F , and hence
ϕq ◦ σ∗ : (β − α, β + δ] is also a unit speed geodesic in SqM . Therefore ϕq ◦ σ∗ is a
unit speed geodesic in SqM of length β + δ and hence

∠q(ζ, σ∗(β + δ)) = β + δ .

Since q was chosen arbitrary we get Xβ+δ 	= ∅. This contradicts the choice of
β, hence β = π. But Xπ 	= ∅ implies that M is isometric to M ′ × R. This is a
contradiction to the assumption that M does not have a Euclidean factor. Hence
Xβ is a proper, nonempty, closed and Γ-invariant set as claimed. �

5.7 Remark. The set Xβ as in the proof catches endpoints of (certain) sin-
gular geodesics in the case that X is a symmetric space of non-compact type.

6. Proof of the rank rigidity

From now on we assume that M is a Hadamard manifold of rank ≥ 2 and that
the isometry group of M satisfies the duality condition. In the last section we have
seen that there is a Γ-invariant proper, nonempty compact subset Z ⊂ M(∞). By
Theorem III.2.4 and Formula III.2.5.

(6.1) f(v) = ∠(v, Z) := inf{∠π(v)(γv(∞), ξ) | ξ ∈ Z}
defines a Γ-invariant continuous first integral for the geodesic flow on SM and

(6.2) f(v) = f(w) if γv(∞) = γw(∞) or γv(−∞) = γw(−∞) .
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6.3 Lemma. f : SM → R is locally Lipschitz, hence differentiable almost
everywhere.

Proof. Instead of the canonical Riemannian distance dS on SM , we consider
the metric

d1(v, w) = d(γv(0), γw(0)) + d(γv(1), γw(1))

which is locally equivalent to dS . Let v, w ∈ SM and p = π(v), q = π(w). Let v′ be
the vector at q asymptotic to v. Then f(v′) = f(v) by (6.2). Now

d1(w, v′) = d(γw(1), γv′(1))

≤ d(γw(1), γv(1) + d(γv(1), γv′(1))

≤ d(γw(1), γv(1)) + d(γv(0), γv′(0))

= d1(v, w)

since v and v′ are asymptotic and γv′(0) = γw(0). By comparison we obtain

|f(v)− f(w)| = |f(v′) − f(w)|

≤ ∠(v′, w) ≤ 2 arcsin
(

d1(v, w)
2

)
.

�
Recall the definition of the sets W so(v), v ∈ SM , at the end of Section 3,

W so(v) = {w ∈ SM | w(∞) = v(∞)} .

Correspondingly we define

Wuo(v) = {w ∈ SM | w(−∞) = v(−∞)} .

Note that Wuo(v) = −W so(−v). One of the central observations in [Ba2] is as
follows.

6.4 Lemma. Let v ∈ SM . Then TvW so(v)+TvW
uo(v) contain the horizontal

subspace of TvSM .

Proof. Note that TvW
so(v) consists of all pairs of the form (X, B+(X)),

where B+(X) denotes the covariant derivative of the stable Jacobi field along
γv determined by X . It follows that TvW

uo(v) consists of all pairs of the form
(X, B−(X)), where B−(X) denotes the covariant derivative of the unstable Jacobi
field along γv determined by X . Observe that B+ and B− are symmetric linear
operators of Tπ(v)M , and

E0 = {X ∈ Tπ(v)M | B+(X) = B−(X) = 0}

consists of all X which determine a parallel Jacobi field along γv. (In particular,
v ∈ E0). Since B+ and B− are symmetric, they map Tπ(v)M into the orthogonal
complement E⊥

0 of E0.
Given a horizontal vector (X, 0), we want to write it in the form

(X, 0) = (X1, B
+(X1)) + (X2, B

−(X2))
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which is equivalent to

X2 = X − X1 and B+(X1) = −B−(X2).

Because of the fact that

B−(X2) = B−(X) − B−(X1)

it suffices to solve
B+(X1) − B−(X1) = −B−(X).

Since B−(X) is contained in E⊥
0 and (B+ − B−)(E⊥

0 ) ⊂ E⊥
0 , the latter equation

has a solution if B+ − B−) | E⊥
0 is an isomorphism. This is clear, however, since

(B+ − B−)(Y ) = 0 implies that the stable and unstable Jacobi fields along γv

determined by Y have identical covariant derivative in γv(0); hence Y ∈ E0. �
6.5 Corollary. If f is differentiable at v and X is a horizontal vector in

TvSM , then dfv(X) = 0.

Proof. By (6.2), f is constant on W so(v) and Wuo(v). By Lemma 6.4, X ∈
TvW so(v) + TvW

uo(v). �
6.6 Lemma. If c is a piecewise smooth horizontal curve in SM then f ◦ c is

constant.

Proof. Since f is continuous, it suffices to prove this for a dense set (in the
C0-topology) of piecewise smooth horizontal curves. Now f is differentiable in a
set D ⊂ SM of full measure. It is easy to see that we can approximate c locally
by piecewise smooth horizontal curves c̃ such that c̃(t) ∈ D for almost all t in the
domain of c̃. Corollary 6.5 implies that f ◦ c̃ = const. for such a curve c̃. �

Let p ∈ M . Since the subset Z ⊂ M(∞) is proper, the restriction of f to SpM
is not constant. Lemma 6.6 implies that f is invariant under the holonomy group G
of M at p. In particular, the action of G on SpM is not transitive. Now the theorem
of Berger and Simons [Be, Si] applies and shows that M is a Riemannian product
or a symmetric space of higher rank. This concludes the proof of the rank rigidity.
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APPENDIX. ERGODICITY OF THE GEODESIC FLOW

M. Brin

We present here a reasonably self-contained and short proof of the ergodicity
of the geodesic flow on a compact n-dimensional manifold of strictly negative sec-
tional curvature. The only complete proof of specifically this fact was published by
D.Anosov in [Ano1]. The ergodicity of the geodesic flow is buried there among quite
a number of general properties of hyperbolic systems, heavily depends on most of
the rest of the results and is rather difficult to understand, especially for somebody
whose background in smooth ergodic theory is not very strong. Other works on this
issue either give only an outline of the argument or deal with a considerably more
general situation and are much more difficult.

1. Introductory remarks

E.Hopf (see [Ho1], [Ho2]) proved the ergodicity of the geodesic flow for com-
pact surfaces of variable curvature and for compact manifolds of constant sectional
curvature in any dimension. The general case was established by D.Anosov and
Ya.Sinai (see [Ano1], [AnSi]) much later. Hopf’s argument is relatively short and
very geometrical. It is based on the property of the geodesic flow which Morse called
“instability” and which is now commonly known as “hyperbolicity”. Although the
later proofs by Anosov and Sinai follow the main lines of Hopf’s argument, they
are considerably longer and more technical. The reason for the over 30 year gap be-
tween the special and general cases is, in short, that length is volume in dimension 1
but not in higher dimensions. More specifically, these ergodicity proofs extensively
use the horosphere H(v) as a function of the tangent vector v and the absolute
continuity of a certain map p between two horospheres (the absolute continuity
of the horospheric foliations). Since the horosphere H(v) depends on the infinite
future of the geodesic γv determined by v, the function H(·) is continuous but, in
the general case, not differentiable even if the Riemannian metric is analytic. As
a result, the map p is, in general, only continuous. For n = 2 the horospheres are
1-dimensional and the property of bounded volume distortion for p is equivalent to
its Lipschitz continuity which holds true in special cases but is false in general.

The general scheme of the ergodicity argument below is the same as Hopf’s.
Most ideas in the proof of the absolute continuity of the stable and unstable fo-
liations are the same as in [Ano1] and [AnSi]. However, the quarter century de-
velopment of hyperbolic dynamical systems and a couple of original elements have
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made the argument less painful and much easier to understand. The proof goes
through with essentially no changes for the case of a manifold of negative sectional
curvature with finite volume, bounded and bounded away from 0 curvature and
bounded first derivatives of the curvature. For surfaces this is exactly Hopf’s result.
The assumption of bounded first derivatives cannot be avoided in this argument.

The proof also works with no changes for any manifold whose geodesic flow is
Anosov.

In addition to being ergodic, the geodesic flow on a compact manifold of
negative sectional curvature is mixing of all orders, is a K-flow, is a Bernoulli flow
and has a countable Lebesgue spectrum, but we do not address these stronger
properties here.

In Section 2 we list several basic facts from measure and ergodic theory. Con-
tinuous foliations with C1-leaves and their absolute continuity are discussed in Sec-
tion 3. In Section 4 we recall the definition of an Anosov flow and some of its basic
properties and prove the Hölder continuity of the stable and unstable distributions.
The absolute continuity of the stable and unstable foliations for the geodesic flow
and its ergodicity are proved in Section 5.

2. Measure and ergodic theory preliminaries

A measure space is a triple (X, A, μ), where X is a set, A is a σ-algebra
of measurable sets and μ is a σ-additive measure. We will always assume that
the measure is finite or σ-finite. Let (X, A, μ) and (Y, B, ν) be measure spaces.
A map ψ : X → Y is called measurable if the preimage of any measurable set
is measurable; it is called nonsingular if, in addition, the preimage of a set of
measure 0 has measure 0. A nonsingular map from a measure space into itself is
called a nonsingular transformation (or simply a transformation). Denote by λ the
Lebesgue measure on R. A measurable flow φ in a measure space (X, A, μ) is a map
φ : X × R → X such that (i) φ is measurable with respect to the product measure
μ × λ on X × R and measure μ on X and (ii) the maps φt(·) = φ(·, t) : X → X
form a one-parameter group of transformations of X , that is φt ◦φs = φt+s for any
t, s ∈ R. The general discussion below is applicable to the discrete case t ∈ Z and
to a measurable action of any locally compact group.

A measurable function f : X → R is φ-invariant if μ({x ∈ X : f(φtx) 	=
f(x)}) = 0 for every t ∈ R. A measurable set B ∈ A is φ-invariant if its charac-
teristic function 1B is φ-invariant. A measurable function f : X → R is strictly
φ-invariant if f(φtx) = f(x) for all x ∈ X, t ∈ R. A measurable set B is strictly
φ-invariant if 1B is strictly φ-invariant.

We say that something holds true mod 0 in X or for μ-a.e. x if it holds on a
subset of full μ-measure in X . A null set is a set of measure 0.

2.1 Proposition. Let φ be a measurable flow in a measure space (X, A, μ)
and let f : X → R be a φ-invariant function.

Then there is a strictly φ-invariant measurable function f̃ such that f(x) =
f̃(x) mod 0.

Proof. Consider the measurable map Φ : X × R → X, Φ(x, t) = φtx,
and the product measure ν in X × R. Since f is φ-invariant, ν({(x, t) : f(φtx) =
f(x)}) = 1. By the Fubini theorem, the set

Af = {x ∈ X : f(φtx) = f(x) for a.e. t ∈ R}
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has full μ-measure. Set

f̃(x) =
{

f(y) if φtx = y ∈ Af for some t ∈ R

0 otherwise .

If φtx = y ∈ Af and φsx = z ∈ Af then clearly f(y) = f(z). Therefore f̃ is well
defined and strictly φ-invariant. �

2.2 Definition (Ergodicity). A measurable flow φ in a measure space
(X, A, μ) is called ergodic if any φ-invariant measurable function is constant mod
0, or equivalently, if any measurable φ-invariant set has either full or 0 measure.

The equivalence of the two definitions follows directly from the density of the
linear combinations of step functions in bounded measurable functions.

A measurable flow φ is measure preserving (or μ is φ-invariant) if μ(φt(B)) =
μ(B) for every t ∈ R and every B ∈ A.

2.3 Ergodic Theorems. Let φ be a measure preserving flow in a finite
measure space (X, A, μ). For a measurable function f : X → R set

f+
T (x) =

1
T

∫ T

0

f(φtx) dt and f−
T (x) =

1
T

∫ T

0

f(φ−tx) dt .

(1) (Birkhoff) If f ∈ L1(X, A, μ) then the limits f+(x) = limT→∞ f+
T (x) and

f−(x) = limT→∞ f−
T (x) exist and are equal for μ-a.e. x ∈ X, moreover

f+, f− are μ-integrable and φ-invariant.
(2) (von Neumann) If f ∈ L2(X, A, μ) then f+

T and f−
T converge in L2(X, A, μ)

to φ-invariant functions f+ and f−, respectively.
�

2.4 Remark. If f ∈ L2(X, A, μ), that is, if f2 is integrable, then f+ and
f− represent the same element f̄ of L2(X, A, μ) and f̄ is the projection of f onto
the subspace of φ-invariant L2-functions. To see this let h be any φ-invariant L2-
function. Since φ preserves μ we have∫

X

(f(x) − f̄(x))h dμ(x) =
∫

X

f(x)h(x) dμ(x)−
∫

X

lim
T→∞

1
T

∫ T

0

f(φtx)h(x) dt dμ(x)

=
∫

X

f(x)h(x) dμ(x)−
∫

X

lim
T→∞

1
T

∫ T

0

f(y)h(φ−1y) dt dμ(y)

=
∫

X

f(x)h(x) dμ(x)−
∫

X

f(y)h(y) dμ(y) = 0 .

In the topological setting invariant functions are mod 0 constant on sets of
orbits converging forward or backward in time.

Let (X, A, μ) be a finite measure space such that X is a compact metric space
with distance d, μ is a measure positive on open sets and A is the μ-completion of
the Borel σ-algebra. Let φ be a continuous flow in X , that is the map (x, t) → φtx
is continuous. For x ∈ X define the stable V s(x) and unstable V u(x) sets by the
formulas

(2.5)
V s(x) = {y ∈ X : d(φtx, φty) → 0 as t → ∞} ,

V u(x) = {y ∈ X : d(φtx, φty) → 0 as t → −∞} .
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2.6 Proposition. Let φ be a continuous flow in a compact metric space X
preserving a finite measure μ positive on open sets and let f : X → R be a φ-
invariant measurable function.

Then f is mod 0 constant on stable sets and unstable sets, that is, there are
null sets Ns and Nu such that f(y) = f(x) for any x, y ∈ X \ Ns, y ∈ V s(x) and
f(z) = f(x) for any x, z ∈ X \ Nu, z ∈ V u(x).

Proof. We will only deal with the stable sets. Reversing the time gives the
same for the unstable sets. Assume WLOG that f is nonnegative.

For C ∈ R set fC(x) = min(f(x), C). Clearly fC is φ-invariant and it is
sufficient to prove the statement for fC with arbitrary C. For a natural m let
hm : X → R be a continuous function such that

∫
X
|fC − hm| dμ(x) < 1

m . By the
Birkhoff Ergodic Theorem,

h+
m(x) = lim

T→∞
1
T

∫ T

0

fm(φtx) dt

exists a.e. Since μ and fC are φ-invariant, we have that for any t ∈ R

1
m

>

∫
X

|fC(x) − hm(x)| dμ(x) =
∫

X

|fC(φty) − hm(φty)| dμ(y)

=
∫

X

|fC(y) − hm(φty)| dμ(y) .

Therefore∫
X

∣∣fC(y)− 1
T

∫ T

0

hm(φty)
∣∣ dt dμ(y) ≤ 1

T

∫ T

0

∫
X

|fC(y)− hm(φty)| dμ(y) dt <
1
m

.

Note that since hm is uniformly continuous, h+
m(y) = h+

m(x) whenever y ∈ V s(x)
and h+

m(x) is defined. Hence there is a set Nm of μ-measure 0 such that h+
m exists

and is constant on the stable sets in X \ Nm. Therefore, f+
C (x) := limm→∞ h+

m(x)
is constant on the stable sets in X \ (∪Nm). Clearly fC(x) = f+

C (x) mod 0. �

For differentiable hyperbolic flows in general and for the geodesic flow on a
negatively curved manifold in particular, the stable and unstable sets are differen-
tiable submanifolds of the ambient manifold Mn. The foliations W s and Wu into
stable and unstable manifolds are called the stable and unstable foliations, respec-
tively. Together with the 1-dimensional foliation W o into the orbits of the flow they
form three transversal foliations W s, Wu and W o of total dimension n. Any mod 0
invariant function f is, by definition, mod 0 constant on the leaves of W o and, by
Proposition 2.6, is mod 0 constant on the leaves of W s and Wu. To prove ergodicity
one must show that f is mod 0 locally constant. This would follow immediately if
one could apply a version of the Fubini theorem to the three foliations. Unfortu-
nately the foliations W s and Wu are in general not differentiable and not integrable
(see the next section for definitions). The applicability of a Fubini-type argument
depends on the absolute continuity of W s and Wu which is discussed in the next
section.

We will need the following simple lemma in the proof of Theorem 5.1.
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2.7 Lemma. Let (X, A, μ), (Y, B, ν) be two compact metric spaces with Borel
σ-algebras and σ-additive Borel measures and let pn : X → Y, n = 1, 2, ..., p : X →
Y be continuous maps such that

(1) each pn and p are homeomorphisms onto their images,
(2) pn converges to p uniformly as n → ∞,
(3) there is a constant C such that ν(pn(A)) ≤ Cμ(A) for any A ∈ A.

Then ν(p(A)) ≤ Cμ(A) for any A ∈ A.

Proof. It is sufficient to prove the statement for an arbitrary open ball B
in X . For δ > 0 let Bδ denote the δ-interior of B. Then p(Bδ) ⊂ pn(B) for n large
enough, and hence, ν(p(Bδ)) ≤ ν(pn(B)) ≤ Cμ(B). Observe now that ν(p(Bδ)) ↗
ν(p(B)) as δ ↘ 0 . �

3. Absolutely continuous foliations

Let M be a smooth n-dimensional manifold and let Bk denote the closed unit
ball centered at 0 in R

k. A partition W of M into connected k-dimensional C1-
submanifolds W (x) � x is called a k-dimensional C0-foliation of M with C1-leaves
(or simply a foliation) if for every x ∈ M there is a neighborhood U = Ux � x and
a homeomorphism w = wx : Bk × Bn−k → U such that w(0, 0) = x and

(i) w(Bk, z) is the connected component WU (w(0, z)) of W (w(0, z)) ∩ U con-
taining w(0, z),

(ii) w(·, z) is a C1-diffeomorphism of Bk onto WU (w(0, z)) which depends
continuously on z ∈ Bn−k in the C1-topology.

We say that W is a C1-foliation if the homeomorphisms wx are diffeomor-
phisms.

3.1 Exercise. Let W be a k-dimensional foliation of M and let L be an
(n−k)- dimensional local transversal to W at x ∈ M , that is, TxM = TxW (x)⊕TxL.
Prove that there is a neighborhood U � x and a C1 coordinat chart w : Bk ×
Bn−k → U such that the connected component of L∩U containing x is w(0, Bn−k)
and there are C1-functions fy : Bk → Bn−k, y ∈ Bn−k with the following proper-
ties:

(i) fy depends continuously on y in the C1-topology;
(ii) w(graph (fy)) = WU (w(0, y)).

We assume that M is a Riemannian manifold with the induced distance d.
Denote by m the Riemannian volume in M and by mN denote the induced Rie-
mannian volume in a C1-submanifold N .

3.2 Definition (Absolute continuity). Let L be a (n − k)-dimensional
open (local) transversal for a foliation W , that is, TxL⊕ TxW (x) = TxM for every
x ∈ L. Let U ⊂ M be an open set which is a union of local “leaves”, that is
U = ∪x∈LWU (x), where WU (x) ≈ Bk is the connected component of W (x) ∩ U
containing x.

The foliation W is called absolutely continuous if for any L and U as above
there is a measurable family of positive measurable functions δx : WU (x) → R

(called the conditional densities) such that for any measurable subset A ⊂ U

m(A) =
∫

L

∫
WU (x)

1A(x, y)δx(y) dmW (x)(y) dmL(x) .
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Note that the conditional densities are automatically integrable. Instead of
absolute continuity we will deal with “transversal absolute continuity” which is a
stronger property, see Proposition 3.4.

3.3 Definition (Transversal absolute continuity). Let W be a fo-
liation of M , x1 ∈ M , x2 ∈ W (x1) and let Li � xi be two transversals to
W, i = 1, 2. There are neighborhoods Ui � xi, Ui ⊂ Li, i = 1, 2, and a home-
omorphism p : U1 → U2 (called the Poincare map) such that p(x1) = x2 and
p(y) ∈ W (y), y ∈ U1. The foliation W is called transversally absolutely continuous
if the Poincare map p is absolutely continuous for any transversals Li as above,
that is, there is a positive measurable function q : U1 → R (called the Jacobian of
p) such that for any measurable subset A ⊂ U1

mL2(p(A)) =
∫

U1

1Aq(y)dmL1(y) .

If the Jacobian q is bounded on compact subsets of U1 then W is called transversally
absolutely continuous with bounded Jacobians.

3.4 Exercise. Is the Poincare map in Definition 3.3 uniquely defined?.

3.5 Proposition. If W is transversally absolutely continuous, then it is ab-
solutely continuous.

Proof. Let L and U be as in Definition 3.2, x ∈ L and let F be an (n − k)-
dimensional C1-foliation such that F (x) ⊃ L, FU (x) = L and U = ∪y∈WU (x)FU (y),
see Figure 2. Obviously F is absolutely continuous and transversally absolutely con-
tinuous. Let δ̄y(·) denote the conditional densities for F . Since F is a C1-foliation, δ̄
is continuous, and hence, measurable. For any measurable set A ⊂ U , by the Fubini
theorem,

(3.6) m(A) =
∫

WU (x)

∫
FU (y)

1A(y, z)δ̄y(z) dmF (y)(z) dmW (x)(y) .

Let py denote the Poincare map along the leaves of W from FU (x) = L to
FU (y) and let qy(·) denote the Jacobian of py. It is not difficult to see that q is a
measurable function (see the exercise below). We have∫

FU (y)

1A(y, z)δ̄y(z) dmF (y)(z) =
∫

L

1A(py(s))qy(s)δ̄y(py(s)) dmL(s)

and by changing the order of integration in (3.6) we get

(3.7) m(A) =
∫

L

∫
WU (x)

1A(py(s))qy(s)δ̄y(py(s)) dmW (x)(y) dmL(s) .

Similarly, let p̄s denote the Poincare map along the leaves of F from WU (x) to
WU (s), s ∈ L, and let q̄s denote the Jacobian of p̄s. We transform the integral over
WU (x) into an integral over WU (s) using the change of variables r = py(s), y =
p̄−1

s (r)∫
WU (x)

1A(py(s))qy(s)δ̄y(py(s)) dmW (x)(y) =
∫

WU (s)

1A(r)qy(s)δ̄y(r)q̄−1
s (r) dmW (s)(r) .
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Figure 2

The last formula together with (3.7) gives the absolute continuity of W . �

3.8 Exercise. Prove that the Jacobian q in the above argument is a mea-
surable function.

3.9 Remark. The converse of Proposition 3.5 is not true in general. To see
this imagine two parallel vertical intervals I1 and I2 in the plane making the opposite
sides of the unit square. Let C1 be a “thick” Cantor set in I1, that is, a Cantor
set of positive measure, and let C2 be the standard “1/3” Cantor set in I2. Let
α : I1 → I2 be an increasing homeomorphism such that α is differentiable on I1 \C1

and α(C1) = C2. Connect each point x ∈ I1 to α(x) by a straight line to obtain
a foliation W of the square which is absolutely continuous but not transversally
absolutely continuous. It is true, however, that an absolutely continuous foliation is
transversally absolutely continuous for “almost every” pair of transversals chosen,
say, from a smooth nondegenerate family.

3.10 Exercise. Fill in the details for the construction of an absolutely con-
tinuous but not transversally absolutely continuous foliation in the previous remark.

The absolute continuity of the stable and unstable foliations for a differentiable
hyperbolic dynamical system, such as the geodesic flow on a compact Riemannian
manifold of negative sectional curvature, is precisely the statement that allows one
to use a Fubini-type argument and to conclude that since an invariant function is
mod 0 constant on stable and unstable manifolds, it must be mod 0 constant in the
phase space.

3.11 Lemma. Let W be an absolutely continuous foliation of a Riemannian
manifold M and let f : M → R be a measurable function which is mod 0 constant
on the leaves of W .

Then for any transversal L to W there is a measurable subset L̃ ⊂ L of
full induced Riemannian volume in L such that for every x ∈ L̃ there is a subset
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W̃ (x) ⊂ W (x) of full induced Riemannian volume in W (x) on which f is constant.

Proof. Given a transversal L break it into smaller pieces Li and consider
neighborhoods Ui as in the definition of absolute continuity. Let N be the null set
such that f is constant on the leaves of W in M \ N and let Ni = N ∩ Ui. By the
absolute continuity of W for each i there is a subset L̃i of full measure in Li such
that for each x ∈ L̃i the complement W̃Ui

(x) of Ni in WUi
(x) has full measure in

the local leaf. �
Two foliations W1 and W2 of a Riemannian manifold M are transversal if

TxW1(x) ∩ TxW2(x) = {0} for every x ∈ M .

3.12 Proposition. Let M be a connected Riemannian manifold and let W1,
W2 be two transversal absolutely continuous foliations on M of complementary
dimensions, that is TxM = TxW1(x)⊕TxW2(x) for every x ∈ M (the sum is direct
but not necessarily orthogonal). Assume that f : M → R is a measurable function
which is mod 0 constant on the leaves of W1 and mod 0 constant on the leaves of
W2.

Then f is mod 0 constant in M .

Proof. Let Ni ⊂ M, i = 1, 2, be the null sets such that f is constant on the
leaves of Wi in Mi = M \ Ni. Let x ∈ M and let U � x be a small neighborhood.
By Lemma 3.11, since W1 is absolutely continuous, there is y arbitrarily close to
x whose local leaf WU1(y) intersects M1 by a set M̃1(y) of full measure. Since W2

is absolutely continuous, for almost every z ∈ M̃1(y) the intersection W2 ∩ M2 has
full measure. Therefore f is mod 0 constant in a neighborhood of x. Since M is
connected, f is mod 0 constant in M . �

The previous proposition can be applied directly to the stable and unstable
foliations of a volume preserving Anosov diffeomorphism to prove its ergodicity
(after establishing the absolute continuity of the foliations). The case of flows is
more difficult since there are three foliations involved – stable, unstable and the
foliation into the orbits of the flow. In that case one gets a pair of transversal
absolutely continuous foliations of complementary dimensions by considering the
stable foliation W s and the weak unstable foliation Wuo whose leaves are the orbits
of the unstable leaves under the flow.

Two transversal foliations Wi of dimensions di, i = 1, 2, are integrable and
their integral hull is a (d1 + d2)-dimensional foliation W if

W (x) = ∪y∈W1(x)W2(y) = ∪z∈W2(x)W1(z) .

3.13 Lemma. Let Wi, i = 1, 2, be transversal integrable foliations of a Rie-
mannian manifold Mwith integral hull W such that W1 is a C1-foliation and W2

is absolutely continuous.
Then W is absolutely continuous.

Proof. Let L be a transversal for W . For a properly chosen neighborhood
U in M the set L̃ = ∪x∈LW1U (x) is a transversal for W2. Since W2 is absolutely
continuous, we have for any measurable subset A ⊂ U

m(A) =
∫

eL

∫
W2U (y)

1A(y, z)δy(z) dmW2U (y)(z) dm
eL(y) .
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Since L̃ is foliated by W1-leaves,∫
eL

dm
eL(x) =

∫
L

∫
W1U (x)

j(x, y) dm1U(x)(y) dml(x)

for some positive measurable function j. The absolute continuity of W follows
immediately. �

We will need several auxiliary statements to prove the absolute continuity of
the stable and unstable foliations of the geodesic flow.

4. Anosov flows and the Hölder continuity of invariant distributions

For a differentiable flow denote by W o the foliation into the orbits of the flow
and by Eo the line field tangent to W o.

4.1 Definition (Anosov flow). A differentiable flow φt in a compact Rie-
mannian manifold M is called Anosov if it has no fixed points and there are distri-
butions Es, Eu ⊂ TM and constants C, λ > 0, λ < 1, such that for every x ∈ M
and every t ≥ 0

(a) Es(x) ⊕ Eu(x) ⊕ Eo(x) = TxM ,

(b) ‖dφt
xvs‖ ≤ Cλt‖vs‖ for any vs ∈ Es(x) ,

(c) ‖dφ−t
x vu‖ ≤ Cλt‖vu‖ for any vu ∈ Eu(x)

It follows automatically from the definition that the distributions Es and Eu

(called the stable and unstable distributions, respectively) are continuous, invariant
under the derivative dφt and their dimensions are (locally) constant and positive.
To see this observe that if a sequence of tangent vectors vk ∈ TM satisfies (b) and
vk → v ∈ TM as k → ∞, then v satisfies (b), and similarly for (c).

The stable and unstable distributions of an Anosov flow are integrable in the
sense that there are stable and unstable foliations W s and Wu whose tangent dis-
tributions are precisely Es and Eu. The manifolds W s(x) and Wu(x) are the stable
and unstable sets as described in (2.5). This is proved in any book on differentiable
hyperbolic dynamics. The geodesic flow on a manifold M of negative sectional cur-
vature is Anosov. Its stable and unstable subspaces are the spaces of stable and
unstable Jacobi fields perpendicular to the geodesic and the (strong) stable and
unstable manifolds are unit normal bundles to the horospheres (see Chapter IV). If
the sectional curvature of M is pinched between −a2 and −b2 with 0 < a < b then
Inequalities (b) and (c) of Definition 4.1 hold true with λ = e−a (see Proposition
IV.2.9).

For subspaces H1, H2 ⊂ TxM define the distance dist (H1, H2) as the Haus-
dorff distance between the unit spheres in H1 and H2. We say that H2 is θ-
transversal to H1 if min ‖v1 − v2‖ ≥ θ, where the minimum is taken over all unit
vectors v1 ∈ H1, v2 ∈ H2.

Set Eso(x) = Es(x) ⊕ Eo(x), Euo(x) = Eu(x) ⊕ Eo(x). By compactness,
the pairs Es(x), Euo(x) and Eu(x), Eso(x) are θ-transversal with some θ > 0
independent of x.
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4.2 Lemma. Let φt be an Anosov flow. Then for every θ > 0 there is C1 > 0
such that for any subspace H ⊂ TxM with the same dimension as Es(x) and θ-
transverssal to Eu0(x) and any t ≥ 0

dist (dφ−t(x)H, Es(φ−tx)) ≤ C1λ
tdist (H, Es(x)) .

Proof. Let v ∈ H, ‖v‖ = 1, v = vs + vuo, vs ∈ Es(x), vuo ∈ Euo(x).
Then ‖vs‖ > const · θ, dφ−t(x)vs ∈ Es(φ−tx), dφ−t(x)vuo ∈ Euo(φ−tx) and
‖dφ−t(x)vuo‖ ≤ const · ‖vuo‖, ‖dφ−t(x)vs‖ ≥ C−1λ−t‖vs‖. �

A distribution E ⊂ TM is called Hölder continuous if there are constants
A, α > 0 such that for any x, y ∈ M

dist(E(x), E(y)) ≤ Ad(x, y)α ,

where dist(E(x), E(y)) denotes, for example, the Hausdorff distance in TM between
the unit spheres in E(x) and E(y). The numbers A and α are called the Hölder
constant and exponent, respectively.
4.3 Adjusted metric. Many arguments in hyperbolic dynamical systems become
technically easier if one uses the so-called adjusted metric in M which is equivalent
to the original Riemannian metric. Let φt : M → M be an Anosov flow. Let
β ∈ (λ, 1). For vo ∈ Eo, vs ∈ Es, vu ∈ Eu and T > 0 set

|vo| = ‖vo‖ ; |vs| =
∫ T

0

‖dφτvs‖
βτ

dτ, |vu| =
∫ T

0

‖dφ−τvs‖
βτ

dτ,

|vo + vs + vu|2 = |vo|2 + |vs|2 + |vu|2 .

Note that since β > λ, the integrals
∫∞
0

‖dφτ vs‖
βτ dτ and

∫∞
0

‖dφ−τ vs‖
βτ dτ converge.

For t > 0 we have

|dφtvs| =
∫ T

0

‖dφt+τvs‖
βτ

dτ = βt

∫ T+t

t

‖dφτvs‖
βτ

dτ

= βt

(
|vs| −

∫ t

0

‖dφτvs‖
βτ

dτ +
∫ T+t

T

‖dφτvs‖
βτ

dτ

)
.

For T large enough the second integral in parentheses is less than the first one and
we get

|dφtvs| ≤ βt|vs|
and similarly for vu. Note that Es, Eu and Eo are orthogonal in the adjusted
metric.

The metric | · | is clearly smooth and equivalent to ‖·‖ and in the hyperbolicity
inequalities of Definition 4.1 λ is replaced by β and C by 1.

In the next proposition we prove the Hölder continuity of Es and Eu. This was
first proved by Anosov (see [Ano2]). To make the exposition complete we present a
similar but shorter argument here. It uses the main idea of a more general argument
from [BrK1] (see Theorem 5.2). To eliminate a couple of constants we assume that
the flow is C2 but the argument works equally well for a C1-flow whose derivative
is Hölder continuous.
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4.4 Proposition. Distributions Es, Eu, Eso, Euo of a C2 Anosov flow φt

are Hölder continuous.

Proof. Since Eo is smooth and since the direct sum of two transversal Hölder
continuous distribution is clearly Hölder continuous, it is sufficient to prove that
Es and Eu are Hölder continuous. We consider only Es, the Hölder continuity of
Eu can be obtained by reversing the time. As we mentioned above, the hyperbol-
icity conditions (see Definition 4.1) are closed, and hence, all four distributions are
continuous. Obviously a distribution which is Hölder continuous in some metric is
Hölder continuous in any equivalent metric. Fix β ∈ (λ, 1) and use the adjusted
metric for β with an appropriate T . We will not attempt to get the best possible
estimates for the Hölder exponent and constant here.

The main idea is to consider two very close points x, y ∈ M and their images
φmx and φmy. If the images are reasonably close, the subspaces Es(φmx) and
Esφmy) are (finitely) close by continuity. Now start moving the subspaces “back”
to x and y by the derivatives dφ−1. By the invariance of Es under the derivative,
dφ−kEs(φmx) = Es(φm−kx). By Lemma 4.2, the image of Es(φmy) under dφmxφ−k

is exponentially in k close to Es(φm−kx). An exponential estimate on the distance
between the corresponding images of x and y allows us to replace dφ−1 along the
orbit of y by dφ−1 along the orbit of x.

To abbreviate the notation we use φ instead of φ1. Fix γ ∈ (0, 1), let x, y ∈ M
and choose q such that γq+1 < d(x, y) ≤ γq. Let D ≥ max ‖dφ‖ and fix ε > 0. Let
m be the integer part of (log ε − q log γ)/ logD. Then

d(φix, φiy) ≤ d(x, y)Di ≤ γqDi and d(φix, φiy) ≤ ε, i = 0, 1, ..., m .

Assume that γ is small enough so that m is large. Consider a system of small enough
coordinate neighborhoods Ui ⊃ Vi � φix identified with small balls in TφixM by
diffeomorphisms with uniformly bounded derivatives and such that φ−1Vi ⊂ Ui−1.
Assume that ε is small enough, so that φiy ∈ Vi for i ≤ m. We identify the tangent
spaces TzM for z ∈ Vi with TφixM and the derivatives (dzφ)−1 with matrices
which may act on tangent vectors with footpoints anywhere in Vi. In the argument
below we estimate the distance between Es(x) and the parallel translate of Es(y)
from y to x. Since the distance function between points is Lipschitz continuous, our
estimate implies the Hölder continuity of Es.

Let vy ∈ Es(φmy), |vy| > 0, vk = dφ−kvy = vs
k + vuo

k , vs ∈ Es(φm−kx), vuo ∈
Euo(φm−kx), k = 0, 1, ..., m,. Fix κ ∈ (

√
β, 1). We use induction on k to show that if

ε is small enough then ‖vuo
k ‖/‖vs

k‖ ≤ δκk for k = 0, ...m and a small δ > 0. For k = 0
the above inequality is satisfied for a small enough ε since Es is continuous. Assume
that the inequality holds true for some k. Set (dφm−kxφ)−1 = Ak, (dφm−kyφ)−1 =
Bk. By the choice of D we have ‖Ak − Bk‖ ≤ const · γqDm−k =: ηk ≤ const · ε,
where the constant depends on the maximum of the second derivatives of φ. We
have

|Akvs
k| ≥ β−1|vs

k|, |Akvuo
k | ≤ |vuo

k |,
vk+1 = Bkvk = Akvk + (Bk − Ak)vk = Ak(vs

k + vuo
k ) + (Bk − Ak)vk .

Therefore
|vuo

k+1|
|vs

k+1|
≤ |Akvuo

k | + ‖Ak − Bk‖ · |vk|
|Akvs

k| − |(Ak − Bk)vk| ≤ (δκk + ηk)
|vk|

β−1(|vk| − |vuo
k |) − ηk|vk|

≤
(
(δκk + ηk)

√
β
)( |vk|

|vk|(1 − βηk − δκk)

√
β

)
.
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By the choice of m and D above, ηk = const · γqDm−k ≤ const · εD−k, and hence
the inequality for k + 1 holds true provided D is big enough, ε is small enough,√

β < κ and δ is chosen so that the last factor is less than 1.
For k = m we get that |vuo

m |/|vs
m| ≤ δκm and, by the choice of m,

|vuo
m |

|vs
m| ≤ const · γ−(q+1) log κ

log D ≤ const · dist (x, y)−
log κ
log D .

Note that by varying vy we obtain all vectors vm ∈ Es(y). �

5. Proof of absolute continuity and ergodicity

We assume now that M is a compact boundaryless m-dimensional Riemannian
manifold of strictly negative sectional curvature. For v ∈ SM set Es(v) = {(X, Y ) :
Y = J

′
X(0)}, where JX is the stable field along γv which is perpendicular to γ̇v and

such that JX(0) = X . Set Eu(v) = −Es(−v). By Section IV.2, the distributions
Es and Eu are the stable and unstable distributions of the geodesic flow gt in the
sense of Definition 4.1. By Section IV.3, the distributions Es and Eu are integrable
and the leaves of the corresponding foliations W s and Wu of SM are the two
components of the unit normal bundles to the horospheres.

5.1 Theorem. Let M be a compact Riemannian manifold with a C3-metric of
negative sectional curvature. Then the foliations W s and Wu of SM into the normal
bundles to the horospheres are transversally absolutely continuous with bounded
Jacobians.

Proof. We will only deal with the stable foliation W s. Reverse the time for
the geodesic flow gt to get the statement for Wu. Let Li be two C1-transversals
to W s and let Ui and p be as in Definition 3.3. Denote by Σn the foliation of SM
into “inward” spheres, that is, each leaf of Σn is the set of unit vectors normal to
a sphere of radius n in M and pointing inside the sphere. Let Vi ⊂ Ui be closed
subsets such that V2 contains a neighborhood of p(V1). Denote by pn the Poincare
map for Σn and transversals Li restricted to V1. We will use Lemma 16 to prove
that the Jacobian q of p is bounded. By the construction of the horospheres, pn ⇒ p
as n → ∞. We must show that the Jacobians qn of pn are uniformly bounded.

To show that the Jacobians qn of the Poincare maps pn : L1 → L2 are uni-
formly bounded we represent pn as the following composition

(5.2) pn = g−n ◦ P0 ◦ gn ,

where gn is the geodesic flow restricted to the transversal L1 and P0 : gn(L1) →
gn(L2) is the Poincare map along the vertical fibers of the natural projection π :
SM → M . For a large enough n, the spheres Σn are close enough to the stable
horospheres W s, and hence, are uniformly transverse to L1 and L2 so that pn is
well defined on V1. Let vi ∈ Vi, i = 1, 2, and pn(v1) = v2. Then π(gnv1) = π(gnv2)
and p0(gnv1) = gnv2. Let J i

k denote the Jacobian of the time 1 map g1 in the
direction of T i

k = Tgkvi
Li at gkvi ∈ Li, i = 1, 2, that is J i

k = | det(dg1(gkvi)
∣∣
T i

k

)‖ .

If J0 denotes the Jacobian of P0, we get from (5.2)



PROOF OF ABSOLUTE CONTINUITY AND ERGODICITY 83

(5.3) qn(v1) =
n−1∏
k=0

(J2
k )−1 · J0 ·

n−1∏
k=0

(J1
k ) = J0(gnv1) ·

n−1∏
k=0

(J1
k/J2

k ) .

By Lemma 4.2, for a large n the tangent plane at gnv1 to the image gn(L1)
is close to Eso(gnv1), and hence, is uniformly (in v1) transverse to the unit sphere
SxM at the point x = π(gnv1) = π(gnv2). Note also that the unit spheres form a
fixed smooth foliation of SM . Therefore the Jacobian J0 is bounded from above
uniformly in v1.

We will now estimate from above the last product in (5.3). By Proposition
IV.2.10,

d(gkv1, g
kv2) ≤ const · exp(−ak) · d(v1, v2) .

Hence, by the Hölder continuity of Euo,

dist(Euo(gkv1), Euo) ≤ const · d(gkv1, g
kv2)α ≤ const · exp(−akα) .

Together with Lemma 4.2 this implies that

dist(T 1
k , T 2

k ) ≤ const · exp(−βk)

with some β > 0. Our assumptions on the metric imply that the derivative dg1(v)
is Lipschitz continuous in v. Therefore its determinants in two exponentially close
directions are exponentially close, that is ‖J1

k−J2
k‖ ≤ const·exp(−γk). Observe now

that ‖J i
k‖ is uniformly separated away from 0 by the compactness of M . Therefore

the last product in (5.3) is uniformly bounded in n and v1. By Lemma 2.7, the
Jacobian q of the Poincare map p is bounded. �

We will need the following property of absolutely continuous foliations in the
proof of Theorem 5.5.

5.4 Lemma. Let W be an absolutely continuous foliation of a manifold Q and
let N ⊂ Q be a null set. Then there is a null set N1 such that for any x ∈ Q \ N1

the intersection W (x) ∩ N has conditional measure 0 in W (x).

Proof. Consider any local transversal L for W . Since W is absolutely con-
tinuous, there is a subset L̃ of full mL measure in L such that mW (x)(N) = 0 for
x ∈ L̃. Clearly the set ∪x∈eLW (x) has full measure. �

5.5 Theorem. Let M be a compact Riemannian manifold with a C3 metric
of negative sectional curvature. Then the geodesic flow gt : SM → SM is ergodic.

Proof. Let m be the Riemannian volume in M , λx be the Lebesgue measure
in SxM, x ∈ M and μ be the Liouville measure in SM , dμ(x, v) = dm(x)×dλx(v).
Since M is compact, m(M) < ∞ and μ(SM) = m(M) · λx(SxM). The local
differential equation determining the geodesic flow gt is

ẋ = v, v̇ = 0 .

By the divergence theorem, the Liouville measure is invariant under gt (see also
Section IV.1). Hence the Birkhoff Ergodic Theorem and Proposition 2.6 hold true
for gt.
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Since the unstable foliation Wu is absolutely continuous and the foliation W o

into the orbits of gt is C1, the integral hull Wuo is absolutely continuous by Lemma
3.13. Let f : SM → R be a measurable g-invariant function. By Proposition 2.1, f
can be corrected on a set of Liouville measure 0 to a strictly g-invariant function
f̃ . By Proposition 2.6, there is a null set Nu such that f̃ is constant on the leaves
of Wu in SM \ Nu. Applying Lemma 5.4 twice we obtain a null set N1 such that
Nu is a null set in Wuo(v) and in Wu(v) for any v ∈ SM \ N1. It follows that f
is mod 0 constant on the leaf Wu(v) and, since it is strictly g-invariant, is mod 0
constant on the leaf Wuo(v). Hence f is mod 0 constant on the leaves of Wuo. Now
apply Proposition 3.12 to W s and Wuo. �
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Birkhäuser, Boston-Basel-Berlin, 1990.

[BB1] W. Ballmann & M. Brin, On the ergodicity of geodesic flows, Ergodic Theory & Dy-
namical Systems 2 (1982), 311–315.

[BB2] W. Ballmann & M. Brin, Polygonal complexes and combinatorial group theory, Geo-

metriae Dedicata 50 (1994), 165–191.

[BB3] W. Ballmann & M. Brin, Orbihedra of nonpositive curvature, SFB256-Preprint 367,

Universität Bonn (1994).

[BBB1] W. Ballmann, M. Brin & K. Burns, On surfaces with no conjugate points, J. Differential
Geometry 25 (1987), 249–273.



BIBLIOGRAPHY 87

[BBB2] W. Ballmann, M. Brin & K. Burns, On the differentiability of horocycles and horocyclic

foliations, J. Differential Geometry 26 (1987), 337–347.

[BBE] W. Ballmann, M. Brin & P. Eberlein, Structure of manifolds of nonpositive curvature,
I, Annals of Math. 122 (1985), 171–203.

[BBS] W. Ballmann, M. Brin & R. Spatzier, Structure of manifolds of nonpositive curvature,

II, Annals of Math. 122 (1985), 205–235.

[BaBu] W. Ballmann & S. Buyalo, Nonpositively curved metrics on 2-polyhedra, Math. Zeit-
schrift (to appear).

[BaEb] W. Ballmann & P. Eberlein, Fundamental groups of manifolds of nonpositive curvature,

J. Differential Geometry 25 (1987), 1–22.

[BGS] W. Ballmann, M. Gromov & V. Schroeder, Manifolds of nonpositive curvature (1985),
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Universität Bonn (1993).

[Cro] C. Croke, Rigidity for surfaces of non-positive curvature, Comment. Math. Helv. 65
(1990), 150–169.

[CEK] C. Croke, P. Eberlein & B Kleiner, Conjugacy and rigidity for nonpositively curved

manifolds of higher rank, Preprint.

[DaRi] E. Damek & F. Ricci, A class of non-symmetric harmonic Riemannian spaces, Bulletin

Amer. Math. Soc. 27 (1992), 139–142.

[DADM] J. D’Atri & I. Dotti Miatello, A characterization of bounded symmetric domains by
curvature, Transactions Amer. Math. Soc. 276 (1983), 531–540.

[Dav] M.W. Davis, Nonpositive curvature and reflection groups, Preprint, Ohio State Univer-

sity (1994).

[DaJa] M.W. Davis & T. Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geometry

34 (1991), 347–388.

[Dr1] M. Druetta, Homogeneous Riemannian manifolds and the visibility axiom, Geometriae

Dedicata 17 (1985), 239–251.

[Dr2] M. Druetta, Visibility and rank one in homogeneous spaces of K ≤ 0, Transactions
Amer. Math. Soc. 304 (1987), 307–321.

[Dr3] M. Druetta, The rank in homogeneous spaces of nonpositive curvature, Proceedings

Amer. Math. Soc. 105 (1989), 972–979.

[Dr4] M. Druetta, Fixed points of isometries at infinity in homogeneous spaces, Illinois J.

Math. 33 (1989), 210–226.

[Dr5] M. Druetta, Nonpositively curved homogeneous spaces of dimension five, Pacific J. Math.
148 (1991), 17–37.

[Dr6] M. Druetta, The Lie algebra of isometries of homogeneous spaces of nonpositive curva-

ture, Geometriae Dedicata (to appear).

[Dy] E.B. Dynkin, Brownian motion in certain symmetric spaces and nonnegative eigen-

functions of the Laplace-Beltrami operator, Izv. Akad. Nauk. SSSR 30 (1966), 455–478

(Russian); English translation in: Amer. Math. Soc. Translations 72 (1968), 203–228.

[Eb1] P. Eberlein, Geodesic flow in certain manifolds without conjugate points, Transactions

Amer. Math. Soc. 167 (1972), 151-170.

[Eb2] P. Eberlein, Geodesic flows on negatively curved manifolds, I, Annals of Math. 95 (1972),
492–510.

[Eb3] P. Eberlein, Geodesic flows on negatively curved manifolds, II, Transactions Amer.
Math. Soc. 178 (1973), 57–82.

[Eb4] P. Eberlein, When is a geodesic flow of Anosov type? I, J. Differential Geometry 8

(1973), 437–463.

[Eb5] P. Eberlein, When is a geodesic flow of Anosov type? II, J. Differential Geometry 8

(1973), 565–577.

[Eb6] P. Eberlein, Some properties of the fundamental group of a Fuchsian manifold, Inven-
tiones math. 19 (1973), 5–13.



90 ERGODICITY OF THE GEODESIC FLOW

[Eb7] P. Eberlein, Surfaces of nonpositive curvature, Memoirs Amer. Math. Soc. 218 (1979),

1–90.

[Eb8] P. Eberlein, Lattices in manifolds of nonpositive curvature, Annals of Math. 111 (1980),
435–476.

[Eb9] P. Eberlein, Geodesic rigidity in nonpositively curved manifolds, Transactions Amer.

Math. Soc. 268 (1981), 411–443.

[Eb10] P. Eberlein, Isometry groups of simply connected manifolds of nonpositive curvature,

II, Acta Math. 149 (1982), 41–69.

[Eb11] P. Eberlein, A canonical form for compact nonpositively curved manifolds whose fun-
damental groups have nontrivial center, Math. Annalen 260 (1982), 23–29.

[Eb12] P. Eberlein, Rigidity of lattices of nonpositive curvature, Ergodic Theory & Dynamical

Systems 3 (1983), 47–85.

[Eb13] P. Eberlein, The Euclidean de Rham factor of a lattice of nonpositive curvature, J.
Differential Geometry 18 (1983), 209–220.

[Eb14] P. Eberlein, Structure of manifolds of nonpositive curvature, Lecture Notes in Mathe-
matics 1156, Springer-Verlag, Berlin-Heidelberg-New York yr 1985, pp. 86–153.

[Eb15] P. Eberlein, L-subgroups in spaces of nonpositive curvature, Lecture Notes in Mathe-

matics 1201, Springer-Verlag, Berlin-Heidelberg-New York, 1986, pp. 41–88.

[Eb16] P. Eberlein, Symmetry diffeomorphism group of a manifold of nonpositive curvature, I,
Transactions Amer. Math. Soc. 309 (1988), 355–374.

[Eb17] P. Eberlein, Symmetry diffeomorphism group of a manifold of nonpositive curvature,

II, Indiana Univ. Math. J. 37 (1988), 735–752.

[Eb18] P. Eberlein, Manifolds of nonpositive curvature, Global Differential Geometry (S.S.

Chern, ed.), MAA Studies in Mathematics 27, 1989, pp. 223–258.

[Eb19] P. Eberlein, Geometry of nonpositively curved manifolds, In preparation, 1995.
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[FrMa] A. Freire & R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate
points, Inventiones math. 69 (1982), 375–392.



BIBLIOGRAPHY 91

[Fu1] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Annals of Math. 77

(1963), 335–386.

[Fu2] H. Furstenberg, Random walks and discrete subgroups of Lie groups, Advances in Prob-
ability and Related Topics, I (P. Ney, ed.), Dekker, New York, 1971, pp. 1–63.

[Fu3] H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Pro-

ceedings Symp. Pure Math. 26, 1973, pp. 193–229.

[GeSh] S. Gersten & H. Short, Small cancellation theory and automatic groups, Inventiones

math. 102 (1990), 305–334.

[Gh] E. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Sci. Ecole
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Berichte Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261–304.

[Ho2] E. Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II, Math.
Annalen 117 (1940), 590–608.

[Hor] P. Horja, On the number of geodesic segments connecting two points on manifolds of

non-positive curvature, Preprint, Duke University (1995).

[HumS] C. Hummel & V. Schroeder, Cusp closing in rank one symmetric spaces, Preprint.

[Hu] B. Hu, Whitehead groups of finite polyhedra with nonpositive curvature, J. Differential

Geometry 38 (1993), 501–517.

[HurK] S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov

flows, Publications Math. IHES 72 (1990), 5–61.

[IH1] H. C. Im Hof, The family of horospheres through two points, Math. Ann. 240 (1979),
1–11.

[IH2] H. C. Im Hof, Die Geometrie der Weylkammern in symmetrischen Räumen vom nicht-
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