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Abstract
In this paper, for an algebra, weakly ordered multiplicative basis with weakly admissible
order is introduced as an invariant under almost Morita equivalence and it is shown that
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ordered multiplicative basis has really a weakly ordered multiplicative basis.
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1. Introduction

Originally, the classical theory of Grobner bases gives efficient methods of computation
of Hilbert polynomials of graded and filtered modules over polynomial rings. Mora in [11]
presented the method of Grobner bases for free algebras over a field when such a basis is
finite. Since path algebras are quotients of free algebras, Green et al [5] extended the theory
to path algebras. Furthermore, Green [6] introduces algebras with ordered multiplicative
basis and proves this kind of algebras are quotients of path algebras, see Theorem 1.1. From
our discussion in this paper, we know indeed such algebras with ordered multiplicative
bases are a generalization of artinian basic algebras as said in Remark 3.7, or we say,
algebras with ordered multiplicative bases are non-artinian “basic” algebras. So, one can
think that this result in [6] is a generalization of the well-known Gabriel structure theorem
about artinian basic algebras in [3][2].

From [11][5][6], we know the property for an algebra with an ordered multiplicative
basis is non-invariant under Morita equivalence. In this reason, one of our motivations is
to find a similar notion of ordered multiplicative basis as the replacement which is “almost”
invariant under Morita equivalence (we will say it almost Morita equivalent) such that an
algebra satisfying such property possesses some similar characterizations. This notion is
just the so-called weakly ordered multiplicative basis with weakly admissible order which
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we will introduce in Section 2. Its main example here is from generalized path algebras in
[4][7](8][9][10].

On the other hand, in [7][10], we generalized the classical Gabriel structure theorem
for artinian basic algebras to artinian non-basic algebras if they are splitting over radicals
as the only condition. As mentioned above, the Green’s result in [6] can be thought as a
generalization of classical Gabriel theorem to algebras with ordered multiplicative bases as
a kind of non-artinian “basic” algebras. As the other motivation of this paper, we want to
find a generalization of algebras with ordered multiplicative bases which can be realzied as
a kind of non-artinian “non-basic” algebras and but also the generalized Gabriel structure
theorem can be obtained for this kind of algebras. It is interesting that they are still
algebras with weakly ordered multiplicative bases. The main result in this paper is that
an algebra with weakly ordered multiplicative basis are a quotient of its corresponding
generalized path algebra.

This paper can be regarded as a further step of representation theory of non-artinian
algebras. As we know, due to the classical Gabriel structure theorem, the representation
theory of artinian basic algebras is related to the representation theory of quivers. More-
over, by the generalized Gabriel structure theorem in [7][10], the representation theory of
artinian (non-basic) algebras is related to the representation theory of generalized path
algebras, equivalently, by [8], to that of pre-modulations. Therefore, as a development, it
would be interesting to study the representation theory of algebras with weakly ordered
multiplicative bases (in particular, that with ordered multiplicative bases) related to the
representation theory of generalized path algebras (in particular, that of quivers) via the
main theorem in this paper. We will do it in our successor research.

Finally, it is shown that the skew group algebra of a cyclic group over an algebra
with ordered multiplicative basis has a weakly ordered multiplicative basis. This gives
an example of an algebra with weakly ordered multiplicative basis which is not really an
ordered multiplicative basis.

Now, we give some preliminaries including notions and results for our need.

In this paper, K always denotes an algebraically closed field, R a K-algebra. For two
subset S,T of R, write ST = {st|s € S,t € T}\{0}. If S* C SU {0}, we say S to be
O-closed. If a set B = {b, € R: w € Q} is O-closed and also a K-basis of R, then B is
called a multiplicative basis for R.

By [6], > is called an admissible order on B if the following properties hold:

AO0. > is well-order on B;

A1. For all by, by, b3 € B, if by > by then b;bs > bybs if both b1bs and bybs are nonzero;
A2. For all by, by, b3 € B, if by > by then bsb; > b3b, if both bsb; and bsb, are nonzero;
A3. For all by, by, b3, by € B, if by = bybsby then by > bs.

R is said to have an ordered multiplicative basis (B, >) if B is a multiplicative basis
for R with an admissible order > on B.



For a multiplicative basis B = {b, € R:w € Q} for Randany r € R, let r =) ¢, k.b,,
for k, € K, the support of r, denoted as Supp(r), is the set of basis elements in B that
occur in r, that is, Supp(r) = {b,, : if k, # 0 for w € Q}.

The tip of r, denoted as Tip(r), is the largest basis elements by in Supp(r) on the order
>. That is, Tip(r) = by € Supp(r) such that for any b, € Supp(r), b, < bo.

In [6], we know that for a K-algebra R with ordered multiplicative basis (B, >), the
identity 1 of R can be decomposed as 1 = v; + --- + v,, such that vy, --- ,v, € B form
a full set of primitive orthogonal idempotents for R and the set B\{vy,- - ,v,} has no
idempotents. Denote I'y = {vy,--- , v, }. Define

I ={beB:b¢gTyand b cannot be written as a product b;by for by, by € B\I'y}.
That is, I'; is the set of product indecomposable elements in B\I';. Note that I'; is
a unique set, as is I'g.

In [6], it was proved that 'y UT'; generates the multiplicative basis B of R; moreover,
see [6, Proposition 3.3], for any b € B, there exist the unique %, j such that v;b = b and
bv; = b, and if [ # i then v;b = 0, if [ # j then by, = 0, denote o(b) = v; and ¢(b) = v;.

Then, the quiver I' associated to B can be defined with I'y as the vertex set and I'; as
the arrow set such that for b € I'y, one views b as an arrow from o(b) to t(b), that is, o(b)
is the starting vertex of b and ¢(b) is the end vertex of b. We call this quiver the Green
quiver of R on B.

The classical notations, concepts and results on quivers can be seen in [2][3]. The
following theorem from [6] is fundamnental for our discussion.

Theorem 1.1. Let R be a K-algebra with an ordered multiplicative basis (B,>). Let
I be the Green quiver of R on B. Then there is a surjective K-algebra homomorphism
¢ : KI' — R such that:

(1) if p is a path in T, then ¢(p) € BU{0};

(2) if b € B, then there is a path p € Q such that ¢p(p) = b;

(3) the kernel of ¢ is a 2-nomial ideal; that is, it is generated by all elements of form p
or p — q where p and q paths in I,

The concept of generalized path algebra was introduced early in [4]. Here we review
the different but equivalent method of definition which is given in [10].

Let Q = (Qo, Q1) be a quiver. For each pair (i,7) € Qg X Qq, define Q(i,5) = {a € Q :
t(a) = j,0(a) =1i}. Note that @; is the disjoint union of all Q(3, 7).

Given a collection of K-algebras A = {A; | i € Qo}, let e; be the identity of A; and
Ay = Hier A; the direct product of K-algebras. Note that all e; are orthogonal central
idempotents of Ay. Let ;M; = A (i, j)A; be the free A;-A;-bimodule with basis (4, 7).
This is the free A4; ® Aj’-module over the set (7, j). Then, the rank of ;M; as A;-A;-
bimodule is just the number of arrows from ¢ to j in the quiver (). Thus,

(1.1) M = ®(ij)eqox o Ai2(i, 1) A;
3



is an Ag-Ag-bimodule. The generalized path algebra is defined to be the tensor algebra
T(M, Ap) = @2 MP™,

Here M®40" = M @4, M @4, - ®4, M and M®4° = A,. Usually, denote the generalized
path algebra T'(M, Ag) by K(Q, A).

As a matter of fact, the classical path algebras are the special cases by taking A; = k.

The generalized path algebra K(Q,.A) is called normal if all A; are simple K-algebras.
This is the most interested case of generalized path algebras, in particular when all A;
are central simple algebras. In [7][9][10], normal generalized path algebras are used to
characterize the structures and representations of artinian algebras via the method of
natural quivers as unlike as the classical method to depending upon the corresponding
basic algebras.

Let A be an artinian algebra with radical 7. Write A/ry = @;_, A; the block decom-
position of the algebra A/r4. Then, 7, /7% is an A/r ,-bimodule by a-(z+7%)-b = axb+1%
forany @ =a+rs,b=b+74 € A/ry and x € r4. Let M; = A, -ra/ry - Aj, then [ M;
is finitely generated as A;-A;-bimodule for each pair (i, 7).

Let Ag = {1,---,s} be the set of isomorphism classes of simple A-modules, which is
also corresponding to the set of blocks of A/rs. For i,j € Ag, set the number ¢;; of
arrows from ¢ to j to be rank,,(;M;)a,, that is, the least number of generators of ;M as
A;-Aj-bimodule. Obviously, if ;M; = 0, there is no arrows from ¢ to j. Then we associate
A the quiver Ay = (A, A;) which is called the natural quiver of A.

Moreover, for A and its natural quiver A 4, we obtain the normal generalized path alge-
bra K(Aa, A) with A = {A;,---, As}, which is defined as the associated generalized
path algebra of an artinian algebra A.

In [10], it was shown that for an artinian K-algebra A which is splitting over its radical,
there is a surjective algebra homomorphism ¢ : K(A4, A) — A with J* C ker(¢) C J for
some positive integer s, that is, this algebra A is a class of Gabriel-type.

Moreover, we gave in [10] that if an artinian algebra A of Gabriel-type with admissible
ideal is hereditary, then A is isomorphic to its related generalized path algebra K(A4,.A).

2. Weakly Ordered Multiplicative Bases

We firstly a property of a K-algebra A with an ordered multiplicative basis (B4, >).

We have 14 = X ,v; where V = {vy, vy, -+ ,v,} C Ba is the full set of primitive
orthogonal idempotents for A by [6, Lemma 3.6], mentioned above. By [6, Proposition
3.3] (see Section 1) and A3, it is easy to see that

Lemma 2.1. If by = bybs with each b; € B, then by > by and by > bs.

Proposition 2.2. Using of the notation as above, v; A 22 v; A for any i # j.

Proof. Assume that v;A = v; A, then there is x € v;Av; and 2’ € v;Av; such that v; = za’
and v; = 2’z. Note that x = X} k;b; and o' = X7 kb, with ki, k) € K*, v;bv; = b; € B

and v;biv; = b € B. It follows that v; = ¥ k;b; X7 kb, = S0 X0 kiKbb, and so
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there is some 7 and j such that v; = b;b;. By Lemma 2.1, we get v; > b; which contradicts

to [6, Lemma 3.4]. Thus v;A 2 v;A if i # j. O

Of course, K is a trivial K-algebra with ordered multiplicative basis. However, by
Proposition 2.2, for any positive integer n, the matrix algebra M, (K) has not an ordered
multiplicative basis. This means that the property for an algebra with ordered multiplica-
tive basis is not Morita invariant, even not invariant under the expansion by a full matrix
algebra.

Now we will define a similar notion of ordered multiplicative basis as the replacement
which is better as invariant under a certain sense.

Let R be a K-algebra with a multiplicative basis B. For convenience, we denote two
subsets by V = {b € B:b>=b} and V = {b € B : b have a local inverse} (i.e., there is a
b=! € B such that bb~! and b~'b are two different idempotents). Define B = B\(V U V).

We say that > is a weakly admissible order on B if the following properties hold:

WO0. > is well-order on B;

W1. For all by, by, b3 € B, if by > by then bbs > bybs if both b1b; and bybs are nonzero;
W2. For all by, by, b3 € B, if by > by then bsb; > bsb, if both b3b; and bsb, are nonzero;
W3. For all by, bs € B, if there are by, by € 8\17 such that b; = bybsb, then by > bs.

With this condition, (B,>) is called a weakly ordered multiplicative basis for R.
Example 2.3. Let K be a field of charK # 2 and I' be the quiver

le

o2

’

B
1/.—/>.2/
«

Let A = KT and let G = (o) be the automorphism group of I' with order 2, where o is
defined satisfying that

o€ = €y, 0€y = €91, O€1 = €1, Oy = €9, ca =0, 03 =0, od' =, o8 = 8.
Then,
/ / / /
B — {61,62,61/,62/,0[,5,04 aﬁ ,€10,€20,€1/0,€2/0, O[O',ﬁO',OZ O-vﬁ 0}

is a K-basis of AG with V = {ey, es, ey, €2}, V= {e10,ey0,e1.0,ex0}. Define an order <
such that

er1<eoc<e<eor<er<edg<ey<eywr<a<ar<fB<fo<a <do<f <pfo.

Then, it is trivial to check that the skew group algebra AG has a weakly ordered multiplica-
tive basis (B, <).

Example 2.4. Every normal generalized path algebra A = K(Q,.A) has a weakly ordered
multiplicative basis (B, <), where A = {A;]i € Qo} with A; = M, (K).

Proof. Let V = {EL} with Ef, = (1);; € Ay and k € Qq , then it is easy to see that
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B=VU {a161a202 -+ - apfBrani1: n=1,a; € g,,@lﬂg -+, a path in Q}
is a multiplicative basis for A. Define a well order < in the multiplicative basis B as
follows.

Let <g be the left length-lexicographic order on Q. Then E}; <;, E!, provided k < [.
And, for Ef5, E¥, if i < s then let E}, <y El. If i = s and j < t, then E}, <y El,.
Such <3, is obvious a well order on V. Furthermore, for any ¥,b” € B and ¥/ £ b if
Y €V but b’ € B\V, then we define b < b”. Suppose V,b” € B\V then there are two
paths p' = 38} - 3, and p" = B8y - - B, in Q such that V' = a} BB} - a,Blal,,, and
b" = ayiB{ay8; ---ay, Byran, . Define b < b” if p’ < p”. Next, assume p’ = p”, then there
is a least positive integer K such that aj, # aj. No loss of generality, if a) <j, aj/, then
define b’ < b".

It is easy to check that this order < on B is weakly admissible, as required. U

For the remainder of this section, let R be always a K-algebra with weakly ordered
multiplicative basis (B, >).

Lemma 2.5. For all bl,bQ,bg S B, ’Lf blbg = b2b3 # 0 or bgbl = b3b2 # 0 then b1 = b2.

Proof. Suppose that b; # by. No loss of generality, say b; > by. Then bibs > bybs and
b3by > bsby by W1 and W2. This contradicts to the known condition. O

Denote by 1 the identity of R on multiplication. We have the following;:

Lemma 2.6. (i) The set V of all idempotents in B is a finite set;

vi, if i=7 .
0, if i#j
(111) For any b € B, there exist unique v;,v; € V such that v;b =b = bv;.

(i) Write V = {vy---,v,}, then 1 =" v; with v;v; =

Proof. Let

i=1

where each 0 # «; € K and v; € B, v; # v; for i # j. For any v, here, we get v; =
Z?:l ;v;v;, then there is t such that v; = v;v; and by Lemma 2.5, v;u;, = 0 for all ¢ # ¢
and o, = 1. For v, similarly, there is p such that v, = v,v, and v,v; = 0 for all ¢ # p. But,
we have v,v; = v; # 0 as said above. Hence p = [. Thus v, = v,v, = v,u; = v;. It follows

n

that v, = v? and oy = 1 for any [ = 1,--- ,n. Meantime, 1 = Y iy Vi

For any j, v; = >, v;v;. We have v; = v}. Then, by Lemma 2.5, we can get v;v; =0
for any ¢ # j.
Let Vo = {v1, -+ ,v,}. Then Vy C V.

Now, we show that for any b € B, there exist unique v;,,v;, € V, such that

(22) v; b=0b= bvjo.

0
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In fact, for any b € B, we have b = )" | v;b. So, there is unique %y such that b = v;,b
and v;b = 0 for all ¢ # 4y. Similarly, there is unique j, such that b = bv,, and bv; = 0 for
all j # Jo.

Next, we can obtain V = V,. It is enough to prove V C V,. For any v € V, of course
v = v?. According to the above discussion, there is v;, € V, such that vv;, = v. Thus,
vvj, = v*. By Lemma 2.5, we get v = v;, € V. Hence, V C V).

From V =V, = {vy, -+ ,v,} and by (2.1), (2.2), the statements (i), (ii), (iii) follow. O

Due to (iii) of this lemma, for any b € B, let v;,v; be the unique elements V such that
v;b = b = bv; and denote o(b) = v; and t(b) = v,.

Corollary 2.7. (i) For b € B, if there is either a € B or b € B such that b = ab or
b = be, then a = o(b) or ¢ = t(b);
(ii) For b € B, if there is either a,c € B\i such that b = abc, then a,c € V with
a = o(b) and c = t(b).

Proof. (i) If b = ab, then since b = o(b)b by Lemma 2.6, we get ab = o(b)b = b # 0. Thus,
by Lemma 2.5, it follows that a = o(b). It is similar for the case that b = bc.

(ii) Since b = abc, then by Lemma 2.6, we have o(a) = o(b) and t(c¢) = t(b). Moreover,
bc = o(b)bc and abe = abct(c), then by W3, we get bc > b and abc > be respectively. Then,

b=abc>bc>b

Hence, bec = b and abc = be. Thus from (i), ¢ = t(b) and a = o(bc) = o(b), which means
a,c € V. O

Lemma 2.8. Letb e V. Then,
(i) The local inverse of b is unique;
(i) o(b) # 0); i
(iii) Denote by b= the local inverse of b, then b=' € V and bb~' = o(b), b='b = t(b).

Proof. (i) Let b is a local inverse of b, then b0',b'b € V. Then by Lemma 2.6, bb' =
v;, 0'b = v; for some i and j. Thus o(b) = o(bb') = o(v;) = v; and t(b) = t(b'b) = t(v;) = v;.
Similarly, £(0') = v; and o(V’) = v;. Then, o(b) = t(b') and o(b') = t(b).

Assume that b” is another local inverse of b. Similarly, v; = b and v; = t(b"). Then,
b =o)b =t(b)b = v =0"b =b"v, =0"t(b") =b".

(ii) By (i), o(b) = v; = bl', t(b) = v; = b'b. Then, from definition of V, o(b) # t(b).

(iii) By (i) and its proof, bb=* = o(b), b=2b = ¢(b). And by (ii), b=* € V. O

From Lemma 2.6 and 2.8, we have firstly:
Corollary 2.9. In any weakly ordered multiplicative basis (B,>), V|V = @.

Corollary 2.10. A weakly ordered multiplicative basis (B, >) is an ordered multiplicative
basis of R if and only if its V=0.



Proof. “If”: Tt is obvious by definitions of (weakly) ordered multiplicative basis.

“Only if": If there exists v € V, then there is v~ € V such that vo=!,v~*v € V. Thus,
! and
v=! > v by A3. So, v = v~!. Tt follows that o(v) = vv~! = v~'v = t(v), which contradicts

to Lemma 2.8 (ii). O

vo v = v and v lwv™t = v~! by Lemma 2.8 (ii). Since > is admissible, v > v

Theorem 2.11. Let R be a K-algebra with weakly ordered multiplicative basis (B,>) and
I be a monomial ideal (i.e., I is generated by some basis-elements in B3), then the quotient

algebra R/1 has a weakly ordered multiplicative basis.

Proof. Let m : R — R/I be a canonical surjection, then since I is monomial, w(B) is a
multiplicative basis of R/I by [6, Theorem 2.3]. Also, because I is monomial, for any
0 # b € ©(B), there is a unique element b € B\ I such that m(b) = b+ I = b. We call this
fact as the unique lifting property (briefly, ULP) of 7(B) in B.

For any b € Vg, with b € B, we have b — b*> € I. Assume that b — b*> # 0, then
Supp(b — b%) = {b,b*} C BNI. So, b € I, then b = 0. It contradicts to b # 0. Thus
b*=beV, and so Vg/r C {v+I|v € V}\ {0}. The converse inclusion is clear, and hence

(23) VR/[ = {U + I|’U € V} \ {0}

For any v + I € 17R/1 with © € B, there is v/ +1 € 17R/1 with v € B such that
V0 + 1,00 + 1 € Vgyr and v'0 + 1 # 90’ + I with v'0,00" € B. By (2.3), we have
0B, 00’ € V with v'5 # 5v'. Tt follows that & € V. So, Va/r C {0+ 15 € V} \ {0}.

Conversely, let & € V' \ I, then 5~' € V and #~'9,06~" € V with 57 # 95. We
can say that 071, 07'0,00"t € I. Otherwise, © = 90~'0 € I by Lemma 2.8, which
contradicts to 0 ¢ I. Moreover, due to the above ULP, (0 + I)(0~' +I) = 00" 4+ I and
(7' + I)(5+ I) = 0 + I are not equal each other in Vg,;. Hence, & 4 I € Vg, and
thus, )73/1 D {4+ 1|5 € V}\ {0}. Therefore,

(2.4) Vi = {0+ 15 € V} \ {0}.

Now, define the order = in 7 (1) satisfying that for any b, = b, + I,by = by + I € 7(B)
with by, b, € B, let by > by if by > by. Then by the above ULP and (2.4), it is trivial to see
that > is a weakly admissible order on 7(B). O

One can think Theorem 2.11 as a method for constructing a new algebra with weakly
ordered multiplicative basis from a known one. On the other hand, when R is a generalized
path algebra, this theorem supplies an example of the converse problem of the latter
Theorem 3.16, that is, under what condition, has the quotient of a generalized path algebra
a weakly ordered multiplicative basis?

Lemma 2.12. For any b € B\V, o(b) < b and t(b) < b.

Proof. Note that b = bt(b)t(b) = o(b)o(b)b, then this relation follows from W3. O

Proposition 2.13. In a weakly ordered multiplicative basis B of a K-algebra R, all idem-
potents are primitive.



Proof. By Lemma 2.6, it is just to prove all elements in V = {v;,--- ,v,,} are primitive.

For any v; € V, suppose there are two nonzero orthogonal idempotents « and y such
that v, = x +y.

Since 0 = 2y = x(v; — x) = xv; — 2? = 2v; — 1, we have zv; = x. Similarly, v;x = z. So,
v;zv; = x and o(z) = t(z) = v;. Similarly, v;yv; = y and o(y) = t(y) = v;.

Thus, we can write © = kv; + Y, kb, with k;, k € K and b, € B\V satisfying o(b;) =
t(b;) = v;, which implies b, € B. Then y=1—k)v, — >, kb, It follows that

(2.5) 0=ay=k(l—k)vi+ > kb + > > kik;bid,
l I 4

If there are [, j such that b,b; = v;, then b,b;v; = v;. By W3, v; > b;. But, b; # v;. So,
t(b;) = v; 2 b;, which contradicts to Lemma 2.12.
Therefore, bjb; # v; for any [, j and thus by (2.5),

(2.6) D kb + Y0 kikbib; = 0.
l 14

We conclude that k;(1 — k;) = 0. Then, x = kv; + >, kb with k; =1 or k; = 0.

Assume that ), kb # 0. Since > is well-order, there is b as the minimal b, occurring
in >, kib. By (2.6), b,,bj, = b for some I, and jo, then b > b, and b > b;,. Due to b ¢ V,
it is impossible that b = b, and b = b;, Hence, b 2 b;, or b 2 b;,, which contradict to the
minimality of b.

Thus, ), kb = 0 and then x = v; or = 0. It follows that v; is primitive. O

0

Theorem 2.14. Let n be a positive integer. A K-algebra R has a weakly ordered multi-
plicative basis if and only if M,(R) has a weakly ordered multiplicative basis.

Proof. Assume R has a weakly ordered multiplicative basis (B, >), then the set

is a K-basis of M,,(R), where E;;(b) means the matrix whose all elements are zero except
the (i, j)-element is b. For any E;;(b), Ey (V') € M, (B), we have

By (5)Ea(V) = { 0, / if k ;é] or bb' = 0;
E;(bb'), otherwise .
Since bb' € B, it follows E;(bb') € M,,(B). Therefore, M,,(B) is a multiplicative basis.

Denote that

V) = {Ei(v)lv € V,1 < i <n}
Vi) = {Ey(0)]o € V,1 <4, j < n} U{BE;(v)lv € V,1<i#j < n}

Define an order > on M,,(B) satisfying that if b > ¥’, then E;;(b) > Ex(b'); if b =V’ and
i >k, then E;;(b) = Ep(V);if b="V,i=Fk and j > [, then E;;(b) = Ej(b'). The only we
have to show is that > is a weakly admissible ordered on M,,(B).

WO. Let S be any subset of M,,(B). Denote T' = {b € B : i, j such that E;;(b) € S}.
Since > is well-order on B, we have a least element by in 7. Then for any Fy, (V') € S, we
have b’ > b. Thus, for any 4, j, it holds Ej, (V') = E;;(b). Let Ko = {E;;(bo) : 1 < i,7 < n}.
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Then, there are iy, jo such that E; ; (b) is the least element in K, on >. It is easy to see
that E;j,(bo) is also the least element in S on . Therefore, > is a well order on M, 5.

W1. No loss of generality, we only need to consider E;;(b1), Ey;(b2), Ej(bs) € M,(B)
and b1bs, bobs are nonzero. If E;;(by) = Ejy;(by), then by > by or by = by and i > k.
Note that E;;(b1)Ej;(bs) = Ei(bibs) and Ey;(be)Eji(bs) = Ej(bebs). Since by > by implies
b1bs > bebs by W1 on >, it follows that ¢ > k implies E;;(b1)E;i(bs) = Ey;(b2)Ej(bs) by
definition of >.

The proof of W2 is similar to that of W1.

W3. If Eiy(b1) = Eij(b2) Ejp(bs) Ea(bs) with Ey(bs), Exa(bs) & Var, (), then by = babsby
and by, by ¢ V. It follows that by > bs. If by > bs, then E;(by) > E;,(bs) holds clearly. If
by = b, then by, by € V by Corollary 2.7. Note that E;;(bs), Exi(bs) & 17MH(R), then ¢ = j

and k = [, and hence E;;(b1) > Ej;;(bs). O
The idempotents in the K-subalgebra KV of R generated by V can be presented as

e=u; + -+ u, with uy, - ,u, €V and u; # u; for ¢ # j.

Lemma 2.15. Let an idempotent e = uy + - - - + ug, with uy,--- ,u, € V and u; # u; for

i # j. Then for any b € B, (i) either eb =b or eb =0 and (ii) either be = b or be = 0.

Proof. (i) For any b € B, let o(b) = v; then v;b = b. Denote Supp(e) = {uy,- -+ ,u}. If
v; € Supp(e), then eb = b. Otherwise, eb = 0. (ii) can be proved similarly. O

Proposition 2.16. Assume R is a K-algebra with weakly ordered multiplicative basis B.
Let an idempotent e = uy + - - - + uy, with uy,--- ,u, € V and u; # u; for i # j. Then the
K-algebra eRe has also a weakly ordered multiplicative basis.

Proof. 1t is easy to see eBe = {ebe, b € B}\{0} is a K-basis of eRe. For any ebe, eb’e € eBe,
0, if be=0o0r et/ =0
ebb’e, otherwise
then ebeeb’e € eBe U {0}. That is, eBe is a multiplicative basis.

Clearly, V.. = {uy, -+ ,u;} and Vore = {eve:v € 17}\{0}

Note that eBe C B. The restriction of > to eBe is trivially a weakly admissible order. [J

ebeeb'e = by Lemma 2.15. From this and b’ € B U {0},

It is well-known that two rings R and S are Morita equivalent if and only if there
is a positive integer n and an idempotent matrix e € M,(R) such that S = eM,(R)e.
Theorem 2.14 means that possessing weakly ordered multiplicative basis is invariant only
for the special Mroita equivalence of R in the case e is the identity matrix; Proposition
2.16 means this property is invariant in the other case of Mroita equivalence of R, that
is, n = 1 and e is only in KV, not any idempotent in R. Hence, the property for a K-
algebra to have weakly ordered multiplicative basis is not Morite invariant in general, but
it has analogously invariant in the above cases. In this reason, we call the property for a
K-algebra to have weakly ordered multiplicative basis is almost Morita invariant.

However, from some examples in [11][5][6], the property for an algebra to have an
ordered multiplicative basis is not such almost Morita invariant. This is just one of the
motivations for us to introduce the notion of weakly ordered multiplicative basis.
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3. GENERALIZED GABRIEL STRUCTURE THEOREM

In this section, we assume that R is a K-algebra with weakly ordered multiplicative
basis (B,>) and maintain the notation of the above section. The aim in this part is
to give the generalized Gabriel structure theorem for a K-algebra with weakly ordered
multiplicative basis as a reform of the Gabriel structure theorem for an artinian algebra
in [7][10] and the classical Gabriel structure theorem for a finite dimensional basic algebra
over an algebraically closed field in [2][3].

Lemma 3.1. VUV is 0-closed under multiplication.

Proof. Assume that b;,b, € V U Y and b1by # 0.

If by € V or by € V, then by = o(by) or by = t(by). Thus byby = by or byb, = by, which
means biby € V U V.

Otherwise, by, by € V. Then there are some bt byt e V such that bibyt = o(by), baby! =
o(by) = t(by). Thus byby(by 'b; ") = o(by) and (by 'b; )bibs = 0(by). Then by definition, we

get biby € V. Hence biby € VU V. O

We define the relation ~ on B: for any b, ¥ € B, b ~ b if b = b;b'b, for some
bi,by € VUV.

Lemma 3.2. ~ s an equivalence relation on B.

Proof. 1. Reflexivity: for any b € B, we have b = o(b)bt(b).

2. Symmetry: if b ~ b, then there are b;,by, € V U V such that b = b1b'by. It follows
that v’ :glbgg where 31 is by " or o(b), 52 is by or t(b').

3. Transitivity: if b ~ b and b’ ~ b”, then there are b; € V U % (1 =1,2,3,4) such that
b= bbby and b = byb"b,. Thus b = bybsb"bsbs. By Lemma 3.1, bibs, bybs € VU V. Hence
b~1". O

And, as the restriction on V of the relation ~, we get the decomposition ¥ = v'U- - U™
with ©% all equivalences classes for i = 1,--- ,m. In the sequel, we always set |v°| = k;,
then V| =k + - + k..

Lemma 3.3. For v',v" € V and v' # 0", v' ~ 0" if and only if there is a unique b € %
such that v'bv"” = b, that is, o(b) = ', t(b) =v".

Proof. “if’: 1In this case, o(b) = v/, t(b) = v”. Then, v'bv"b~! = v' where v'b, b~ € V. It
means v’ ~ v".

“only if”: By definition, v’ = b1v"b, for by, b, € V UV. Ifb € Vor by € V, then v =v”
which contradicts to v" # v”. So, by, by € V. Tt follows that v'by b = b, But, byt = v'by !
and b; = byv”. Thus, b; = bz_l. Then, by = v'b; = v’b;l = bv" =v'b1v”. So, b= by is just
that we hope.

Assume there another b; € YV such that bs = v'bsv”. Then v’ = bsb;'. Since by = byv' =
bybsbs ', it follows bsby = bybs. Then bsby # 0 (otherwise, by = 0). Hence, bsby € V U %
by Lemma 3.1. Note that o(bsby) = o(bs) = v/ = t(b2) = t(bsbs), and so bsby € V by
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Lemma 2.8 (ii), that is, b3by = v’. Thus b; = v'b; = bgbyb; = bzv” = bz, which means the
uniqueness of b. O

In the sequel, if v/,v” € ¥* with v’ # v”, we denote v’ and v” respectively by v, and vj,
for some j,l =1,--- ,k; with j # [, and denote the unique b in Lemma 3.3 by v;'-l. Then,

vjv5v = vj, and o(vj;) = vj;,
Furthermore, for any ¢ = 1,--- , k;, vl (vi,v;)v, = (vj,v},)(v;v)) = vjvp. Then vj,vy,

can only be in % and, due to the uniqueness of b in Lemma 3.3, we have for any j,t,l =

t(”;‘l) = vj.

1,---,k;andt=1,--- ,m,

(3.1) ViU = U

And, for any i, # iy and p,q=1,--- ,k;, and u,w =1,--- , k;,, we have
(3.2) vl =0

Prq ~uw

since t(viL) = vil and o(v}3,) = vz, are different in V.

For any b € V, by Lemma 3.3, it holds o(b) ~ t(b), so we can write o(b) = v, t(b) = vj,
forsomei=1,--- ,;mand j,l =1, -+, k; with j # [. Then, as seen above, we have b = v;-l.
Therefore, the set {v}, : i =1,--- ,m,j,l = 1,--- , k; with j # I} consists of all elements

of 17, that is, we obtain:

Proposition 3.4. (i) V= {hri=1,--- m, 4l =1,--  k; with j #1};

(i) V=ViU---UVy where V; = {v}; : j,l =1, k; with j #1} fori=1,--- ,m as
the equivalence classes of restriction on % of the relation ~;

(iii) V]| =ki(ky — 1)+ - + k(b — 1) with [V;| = ki(ki — 1) fori=1,--- ,m.

Proof. (i) has been proved in above.

(ii) By (3.2) and the definition of the relation ~, it is easy to see that for any i; # s,
vt o véiu always holds; for any i = iy = 45, v}, ~ v}, always holds, since v} = v} v vl,..
Thus, V; = {v}, : j,l = 1,--- , k; with j # [}.

(iii) is from (ii). O

Note B = B\(V U V). Now, define £ = {b € B : b cannot be written as a product
biby with by, by € B}. Then, & = Usea € where &, (A € A) are all nonempty equivalence
classes of £ on the equivalence relation ~.

Then, for any vj, € 7* and v, € 7/, we get v}, Ev); = Jycp VirErvy)-

Lemma 3.5. For anyb e VUV, b UED C EU{0}.

Proof. The case of b € V is obvious. Now, let b € V.

For any b; € €. First, bb; € B holds (otherwise, by = b=1(bb;) € V(VUV) C VUV by
Lemma 3.1). Assume that bb; = bebs # 0 with by, b3 € B. Tt follows that by = b~ 1bybs.
Note that b=1by, b3 € B by Lemma 3.1 and hypothesis. It contradicts to b; € £. Hence,
bE C £U{0}. Similarly, £b C £ U {0}. O
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Proposition 3.6. Assume R is a K-algebra with weakly ordered multiplicative basis B.
Let an idempotent e = uy + -+ + up with uy, - ,u, € V and u; # u; for i # j. If
|Supp(e) No*| <1 for anyi=1,--- ,m, then eRe has an ordered multiplicative basis.

Proof. By Corollary 2.10 and Proposition 2.16, it is sufficient to show that
Vere = {evelv € V}\ {0} = 0.

In fact, for any v € V, since v~'v = t(v) by Lemma 2.8, o(v) ~ t(v) by the definition of
the relation ~. Hence, there is some integer i such that o(v),t(v) € v'. Because at most
one of o(v) and ¢(v) belongs to Supp(e), and so eve = 0, as desired. O

Now, let R be an artinian K-algebra with weakly ordered multiplicative basis B and
an idempotent e = uy + - -+ 4+ u; with uy,--- ,u, € V and u; # u; for i # j satisfying
|Supp(e) Nv%| =1 for any ¢ = 1,--- ,m. Then the algebra eRe is just the basic algebra of
R.

Therefore, in this sense, for a general R satisfying Proposition 3.6 which may be not
artinian, we say eRe to be the basic algebra of R, as a generalization of the notion when

R is artinian.

Example 3.7. For AG in Example 2.3, it is easy to check that for ¢ = 1,2, the projective
modules of e; and e are isomorphic with each other. So, due to the above discussion, the
basic algebra Byg of AG is eAGe with e = e; +e5. Then Byg has an ordered multiplicative

basis {ej, €2, ., f’'c} by Proposition 3.6 and Byg = Kf/[ by [6, Theorem 3.8] where
T: le o2 .

Note that dimBpyg = 4 = Kf, and hence I =0 and Byg = KT. Thus T is the Ext-quiver

of Bag and AG = My(Bag) = My(KT), this fact will be mentioned again in Example

3.17.

Proposition 3.8. For any i, j,k,1, s, [vi,Ev)| < 1 with vi, € ¥° and vi, € 7.

Proof. Note that v}, &), = {vi,bvi,b € &} \ {0} by definition. If vi,bv}, = 0 for any
b € &,, then v}, Ev), = 0. So |[vi,Ewv),| = 0. Otherwise, vi, &), # 0. Let b, b € v, Ev,
then 3 by, by € VU V such that b’ = b,1bby. It follows that

o(by) = o(b') = vi, = o(b) = t(by) and t(by) = t(b') = v}, = t(b) = o(by),

and hence by, by € V by Lemma 2.8. Hence, ' = b. O
Corollary 3.9. For any vi,,vi,. € 9 and v}, v, € v7, then | vi, Ev) |=| Vi Evl, |.
Proof. It is easy to see by Proposition 3.8 and v}, Evf, = U, virEavi,- O

Proposition 3.10. Every b € B can be written as a product by ---b, with b; € £. In
particular, VUV UE generate the multiplicative basis B.

13



Proof. The proof is similar to [6, Proposition 3.7]. Without loss of generality, let b € B
and b = b1by with by,b, € B. By W3, Lemma 2.5 and assumption, we get b > b; and
b > by. If both b; and by are in &, then we are done. Continuing in this fashion, we get
b = bi1bi ... b;, with b;; € B. Since > is a total order, we have a proper descending chain
b>b;, >---> b, where the chain is 7 + 1 elements long. But > is a well-order and
this process must stop. That is, each b;; must be product indecomposable and we are
done. O

For any rational number ¢, denote [q] = ceil(q) = min{n € Z|q < n}. Now we define
the Green quiver () of R on B as follows:

(i) The vertex set )y is the upper index set {1,--- ,n} of {v*,---,0"};

(ii) tij = 7721 is the number of arrows from i to j where m;; = |vi, Ev),| for some fixed
k and [. ]

Note that (1) t;; is unique determined by the pair (¢,j) due to Corollary 3.9; (2) if
m;; = +oo for some ¢, 7, then t,; = 400, that is, in ) there are infinite arrows from 7 to j.

Let A; be the K—subalgebra of R generated by the bases set {v’,} with 1 < s,¢ < k;,
and A = @ A, M = EB ;M; with ;M; the free A;-A;-bimodule with basis consisting of
1,7=1

the m,;; arrows from 4 to j, then the generalized path algebras K(Q, A) = T'(A, M) with
A ={A;}7_,. It is easy to check that each A, = M, (K).

Proposition 3.11. If R is an Artinian K-algebra with o multiplicative basis B, then
J = R(E) = K(B) is the radical of R.

Here R(E) denotes the ideal of R generated by &, K <E) the K-linear space generated
by B.

Proof. Consider the chain --- C J* C --- C J? C J, then there is an integer n such that
Jntt = Jn. First, we show that J" = 0.
Assume J"T! = J" £ 0. Then there is a minimal element b of B--- B by W0, and so

there are ry, -+ ,7,,7ny1 € J such that b =ryry - r,r, 1. Set r; = Zkz b, with b, EB’
thenb= > kj ---kj b ---b;b; So b=10bjb;, b b;

In+1 fOI’ some .71 ]n+1 By
J1dnat

Jn+1 Jn+41*

n

W3 and Lemma 2.5, we get b > b;,b;,---b;, € B -- B which contradicts to the minimal
—

property. !
Thus J" = 0, that is, J is nilpotent, so J C rad(R).
Now, it is sufficient to show that rad(R) C J. Let 0 # r € rad(R).
If there is a v € V such that v € Supp( ), then vrv € rad(R) and Supp(vrv) \ {v} C B.

Set vrv = kv+2kb with b; € B and k, k; € K. Note that Zkb € J C rad(R), then
v € rad(R). It follows that v is nilpotent, a contradiction. Thus YV N Supp(r) =0
If there is a & € V such that & € Supp(r), then

o(9)rt(#) € rad(R) and V N Supp(o(d)rt(d)) = {0}
14



by Lemma 3.3. Similar to the above proof, we get v € rad(R). And so o(v) = 907! €
rad(R), which is contradict to the above proof. Thus V N Supp(r) = 0.
Therefore Supp(r) C B, that is, r € J. So J = rad(R). O

Corollary 3.12. If R is Artinian with weakly ordered multiplicative basis B, then the
Green quiver Q of R on B is just the natural quiver of R.

Proof. By Proposition 3.11, R/J = @ R; with R, = (vi, +J : 1 < s,t < k;). Put
i=1
'L'Mj :RZJ/JQR],

My =K@lbv! +J%:be & 1<s,t<ki,1<p,q<k). (1)

= Ri(vi,bv), + J? b€ &, 1<t <k, 1 <p< k)R, (2)

Let T = {vl,bv], +J* : b € 1 < 5,t < k1 < p,g < kj}, then we construct a
map x : T — v, Evy via x(vi,bv), + J?) = vj,bv),. Note that vy, bv);, = vgvlbv) vy and
vi,bvl = v, bul vy, then x is well defined and bijective by Lemma 3.5. By (1), we get
1MJ = <T> It follows that I'kRi (’LMJ)R7 (:2) [dimil\/{j—| = [‘Uiksvfll—‘, as desired. O

kikj kik‘]‘

From Corollary 3.12, we know that the Green quiver of an algebra R on weakly ordered
multiplicative basis B can be thought as a generalization of the natural quiver of an artinian
algebra defined in [7][9][10].

Let ;Q; = {(s,a,t)} be a triple set with 1 < s < k;; 1 < t < k; and o an arrow
from ¢ to j. Set S;; = {v,iké',\vljl‘)\ € Al &) # 0} for some fixed k and I, then
18551 = [vieEuit| = mu;.

Note that [;Q2;| = m;;k;k; and m;; > %, then [;€2;] > |S;;| = m;;. Thus we get

Lemma 3.13. There is a surjective map o;j : £0; — S;;.
Lemma 3.14. The set ;9; = {vi,av’,|a is an arrow from i to j} is the K-basis of ;M.

Proof. By definition, ;00; is linearly independent. For any = € ;M;, there are {a}},—1.... m,
A; and {a!}q—1....m, C A; such that z = Y alaal. Note that a = > kvl and
p,q s,t

J

N

al =3 kyyvl, for kg, kyy € K, then

s/t
= Z(Z kv )a E :ks't/viw = E E E ksikspvg,avl,.
p,q st s/t p,q kil st
Thus ;9M; is a K-basis of ;M;. .

Corollary 3.15. v;9; C ;9; U {0} and ;M;v C M, U{0} for any v e VU V.

Theorem 3.16. Let R be a K-algebra with a weakly ordered multiplicative basis (B, >)
and Q be the quiver associated to R. Then there is a surjective K-algebra homomorphism
¢ :K(Q,A) — R.
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Proof. As above, we have known the unique set of algebras A and the quiver () associated
to R. Now, we firstly define a map @ :A® M — R.
Denote v[m] (0,---,0,vi°,0,---,0) € A and vi5[a]v)? = P!
io—th
vPav? and all other §;; = 0. Then, the sets 4 = {v] : 1 <i < n,1 < k,I <k} and
M = {vilavl, 1 <i<n1<kl<k;1<j<n1<s,t<k;} are respectively the
K-basis of A and M.

For any k, [, 1, o, define cp(vkl) = vl,, §(vi[a]v)) := b the unique element in O'U((k‘ a,l))

d;; where only ¢,

2,j=1 iojo —

by Proposition 3.8, moreover define (vi, [a]v],) := v, G(vi,[a]vi)v], (V1 < s < ki1 <t <
k;). Then ¢ can be extended linearly to a K-linear map.

And,
1y=3r 1, =x0 5kl
which implies that $(1,4) = 1. Since G(v o) =0 = vi?, = GWNHGWE if i # j or
[ # s and (vklvlt]) go(v,[cg) =i, = vivl, = cp(v,[ﬁ)go(vl[t ), we have that ¢|4 is a K-algebra
homomorphism.

Furthermore,
UI@)QZ(U;I [Oé]’l)gt) = Ulz;:pv;l&(vzl [CV] vgs)vgt = fulicl@(vlil [a]vgs)vgtv

and (vi,vlalvly) = (v lalvl) = v @(vilalvl,)vl, thus we get that

P pl

vy @(vplalol) = B(ufvlalvl)
which means that @[y, is a left A-module homomorphism. Similarly, @y is a right A-
module homomorphism.

Conversely, for any b € &, there are v}, v], € V such that v}, bv), = b by Lemma 2.6,
then b € v}, Ev),. Since £ = Usea €r, there is an equivalent class £y such that b is the
unique element v}, £yvj;, and hence v, E\vj, # 0 such that v}, Exvi, € S;; . Choose a triple
(k, o, 1) € 035" (v Exvi)), then B(vjlavl)) = b.

On the other hand, by definition of ¢, V U Y C Img. And, by Proposition 3.10, R is
generated as an algebra by V U VUE. Therefore, it means that @ is surjective.

By the universal property of K(Q,.4) as a tensor algebra, ¢ can be constructed and is
also surjective. (]

Example 3.17. (i) Let AG is a skew group algebra in Example 2.3. Since e; ~ ey, e/ ~ ey,
&= {a,o/,ozo, ooy U{B, 0, Bo,f'o}. Thus Q : 1

82

and A = {Al = My(K), Ay = M3(K)}. Moreover, let

12:{(1,a,1),(1,a,2),(2,a,1),(2,a,2)} — {a, 0}

via 0'12((1 a, 1)) = = 0'12((1 a, 2)) and 0'12((2 a, 1)) = ,8/0' = 0'12((2 a 2))
Thus, by Theorem 3.16 and its proof, there is an isomorphism: AG = K(Q, .A)/I where
I = (Enalhy — EnaFy, Exalhy — Expaly).
(ii) We can prove that AG is not a normal generalized path algebra.
16
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In fact, assume that AG = K(@,JZ) for a quiver Q and a collection A of simple K-
algebras. Then the number |Qo| of the vertex set of Q is two by [9, The diagram]. It
follows that A = A or A = {M;(K), K} since the identity of AG is the sum of four
primitive orthogonal idempotent elements. It is easy to check dimK(@,A) > 20 and
dimK(Q, {M3(K), K}) > 19 in any cases of the numbers of arrows of Q which are contra-
dict to dimAG = 16.

Remark 3.18. (1) This example says that the matrix algebra of a generalized path algebra
is not necessarily a generalized path algebra, and so the property that an algebra possesses
the structure of generalized path algebra is not morita invariant.

(2) By Example 3.7, the basic algebra Bg of AG is a path algebra and then is hereditary.
It follows that AG is hereditary. It means that NOT any hereditary artinian algebras is
a generalized path algebra, even if it is splitting over radical, e.g. when the ground-field
K is of characteristic 0. In [10], the authors gave that for a hereditary Artinian algebra A
splitting over radical such that the surjective homomorphism 7 : K(A4,.A) — A given in
[10] possesses the kernel ker(w) C J?, then 7 is an isomorphism and thus A is a normal
generalized path algebra. The example given here implies the condition ker(w) C J? in
this result of [10] can not be omitted.

4. SKEW GROUP ALGEBRAS

Throughout this section, A is a K-algebra with a ordered multiplicative basis (B, >).
Then 1, = v, + - - - + v, and denote by
Ty = {Ul .. "Uh}Q
'y ={be Blb¢ T, and b cannot be written as a product byby with by, by € B\ T'y}.
Suppose that o : [y UT'y — 'y UT'; is a bijection which can be extended to a K-linear
automorphism of A satisfying the following;:
(i) o(Ty) =Ty and o(T'y) =T.
(i) o'(N\) = o(o"(N\)) for all A\ € A and ¢ > 1.
(iii) o™(A) = A for all A in A.
Let G = (o) be a finite cyclic group with |G| = n and charK { n. Then the skew group
algebra of G over A, denote by AG, is given by the following data:

(i) AG is the free left A-module with the elements of G as a basis.
(ii) The multiplication in AG is defined by the rule (\;o")(\;07) = \io*(\;)o"* for
any A; and A; in A and 1 < 4,5 < n.
In the following, let € be the n-th primitive root of 1 and b a G-orbit of b € B. Since
(B, >) is well-order, any orbit b (or ©) has a unique minimal element, denoted as b (or v).
For any v;,v; € Iy, let d; = |v;], d; = |v;], and ¢;; is the least common multiple of d;

Bl

and d;. Trivially, o' is an automorphism of v;,I'yv;, then ¢;;

Lemma 4.1.

n/d—1 . n
g Z ni _ 1, A= Emodn
n 3 0, otherwise



Proposition 4.2. Denote E} =

3\&

n/d—1 n
5o emrdgspe™d=t for any 0 < p < E’O < st <
=0

d,o € v C Ty}, then the set

{EL0 u<2,0<5,t<d,17€r0}

d
is a 0-closed set under multiplicative where d = |0).

Proof. In the sequel, we show that
propge — ) Pabn v=vit=s and p=
st ot 0, otherwise

In fact,

dd/ n/d—1n/d —1 ,
Z 8mp,cl—‘,—m w'd o UO’md to.s t]/ m'd —t’
m=0 m’'=0
dd/ n/d 1 n/d/ 1 / ! 1 g ! !
Z Z Ernp,d«Hn o 'd (U)Umd7t+s+s (U/)O'm d' —t'+md—t+s+s

m=0 m’=0
If v # v/, that is, v and v’ do not lie in the same orbit, then o ( ) # o™d=t5+5 (v') which
implies that o*(0)om s+ (o) = 0. Tt follows that ESFE" 4 4 = 0. So we assume that
Es’t”E", b " £0, then b = v’. Thus

EU#AEUIMI
s,t st/ - 2
) » n

o o d2 n/d—1n/d—1 J d J , Loyt 4 ,
M I — mpud-+m’ s md—t+s+s m'd—t'+md—t+s+s
BBy =5 2 > et (v)o (v)o

m=0 m’'=0
d2 n/d—1n/d—1

= 3 ZO ZO 6rnud-‘rm " d (UU_H_S/(U))U(m/"‘m)d—t/—t-i-s-i,-s’
m m

d n/d—1 d n/d—1 , ,
— Z {_:m(u u)d Z Ekp,d e(no.—t+€ (U))O.kd—t —t+s+s

n m=o0 n k=0

where (m +m')d = kd(modn) and 0 < k < % By Lemma 4.1 and 0 < p, i/ < %, we get

w=p. And po ' (v) # 0 if and only if ¢t = s'(modn) if and only if t = s’. Therefore
E;{‘EU b 75 0 implies that v = v’, u = p/ and ¢t = s’. On other hand, if v = v', u =y’ and
t = s’, then by Lemma 4.1

n/d 1 , dn/d 1
v, v, _ v,
BB = 0% (o)t = LTS cigrogit - gy
k=0

O

Corollary 4.3. The set {EJF[0 < p < %,0 < s < d,v C Iy} is a family of orthogonal
idempotents in AG.

Lemma 4.4. For any b € b(C Ty), let vy, v, € Ty such that o?(v;,)ba?(v;) # 0. If we set
(TG)y = {ESMbES™ [b C Ty,0 < iy < dﬁ,o < < dﬁ,o <s<d,0<t<dy}\ {0},
k 1

then |(I'G)1| = n|I'y|.
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Proof. For some fixed vertices v; and v;, let
(TG)Y = {E'5MbE™10 < py < g,o <y < g,o <s<d,0<t<d}\{0},
i j
then it is sufficient to show that |(T'G)Y| = n|b|.
In fact,

2
n m=0 k=0

di—1n/d;—1
didj ™ MY mupid;+kp;jd; ~md;+s—p md;+kdj—t+s—p+q
= CBTSS S gt ()i

2
n m=0 k=0

Eni’“'ibEUj7w _ dld] n/dziilsmuidi 5y, md; —p b n/g.:ilekujdj ay. md;—t
P a.t = g o°v;o

Let |b| = D, and write md; = MD + m'd; and kd; = KD + k'd; with 0 < M, K < %,
D D
os<m' < T and 0 < k' < R This yields
% J

Eni,ui bEhjtwj — didj § €(M+K)Dui+m/diui+KD(ui—uj)-i-k/djujUm/di+5—p(b)0_(M+K)D+m'di+k:/dj—t+s—p+q
S,p q, 2
M,K,m/ K’

Finally, if we write d;r = (M + K)D + d;m/(modn) with 0 < r < n/d;, then we obtain the

further factorization

D dd ’ ’ ’
s 0, = T s +s— ; - _
E;“M quJt Hi § EK’D(;L 1j) et E Ed rui+k'd;pg a_m di+s p(b)O'd r+k'dj—t+s—p+q
o ’ n nD

r.k’ ,m’
[V IT) sk ] 1 L= . E | 2 . B .
Thus E{3bE,}"™ # 0 if and only if u; = modD , and hence |(I'G)Y| = 77
J T

ool

Let (I'G)? = (I'G)1(I'G); - -- (I'G), \{0} for any integer n > 0.

n

Lemma 4.5. BG = |J (I'G)7} is a multiplicative basis of AG where (T'G)? stands for the
n=0

set {EJF0< p < <s,t < d,v ey} with d = |v|.

n
7
Proof. First, we show that BG is 0-closed. Assume a € (T'G)?, 8 € (I'G)"* and af # 0,
if n,m > 0, then it is obvious that a8 € (I'G)}*™. If n = m = 0, then af € 'Y by
Proposition 4.2. Without loss of generality, we assume that o = E{§ and 3 = Egy bng;“ B
then aff = E;”’SLES,’(‘)‘[JES;’“' = E;)’é‘bEgjt’“l € I'G}, as required.

Secondly, we show that BG is a K-basis of AG.

We note that B £ {bo'|b € B,0 < i < n} is a K-basis of AG. It is sufficient to show
that BG is a linearly independent set by which BG can be linearly expressed.

Assume that there is an equation

D RE =0 (1)
i=1
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satisfying EJ'1" # E:Jt‘” if ¢ # j, then for any fixed p € {1,--- ,m}, we get

B (Z kEt#) By = Z RESIESENI = kB (%)
i=1
So each k, = 0 in Eq.(1), that is, (I'G)Y is linearly independent. Moreover, |(I'G){| =

ﬁ. 2 . ‘FO‘

HEJ!'Y = n|Co| = [{bo'|b € T'5,0 < i < n}|. By definition of EJ}', (I'G)!

and {bo’|b 6 I'p,0 < i < n} are linearly expressed each other.

In the similar way as in (), without loss of generality, we can assume that there is an
equation

}:cyE““bEUO =0 (2)

with a; € K, 0 < p; <d, 0 < g, <d, either p; # p; or ¢; # q; if i # j. Note that

dd/ n/d—1n/d —1
[N D/,u’ _ mudJrkud md pi md+kd'7pi+qi
EovpibEQ'hO - Z Z € (b)O’ )
m=0

then o7 (b) = o™ 4=7i(b) if and only if md —p; = m'd—p,(mod|b|) if and only if p; = p;
and ]b|’(m m/)d since d||b| and 0 < p;, p; < d.
If O.md pf,(b) md—+kd —p;+q; = g™ 'd— |21 (b)O’m "d4+-k'd’ —pj—&-qj’ then

pi = pj, |bl{(m —m/)d

(m —m')d+ (k- k)d = q; — ¢;(mod|b|).

It follows that ¢; = ¢; since d”|b| and 0 < ¢;,q; < d'.

So if either p; # p; or ¢; # q;, then o™@Pi(b)gmdthd —pitai — gm'd=p;(p)gm d+k'd —pi+a;
Since {bo’|b € T'1,0 < i < n} is a linearly independent set, each a; = 0 in Eq. (2). It
follows that (I'G); is linearly independent. And since [(T'G)1| = [{bo'|b € T'1,0 < i < n}|
by Lemma 4.4, (I'G); and {bo’|b € ';,0 < i < n} are linearly expressed each other.

Note that BG is generated by (I'G)? U (I'G),, and so it is linearly independent. Mean-
while, for any bo® with b € B and 0 < ¢ < n, there are 3;,---,83, € I'g such that
bo' = (3, ---Byo’. By the above proof, we know that each 8, (k = 1,---,b) is linearly
expressed by (I'G);. So there are k;, € K* and p;, € (I'G); such that

bai:(ikhph)- (21%;)%) (TG,

i1=1 (2 1

as desired. m

Theorem 4.6. AG is a K-algebra with a weakly ordered multiplicative basis.

Proof. By Lemma 4.5, (I'G) is a multiplicative basis of AG. Now we define an order > on
(T'G) as follows.
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For any E;{‘,E:,’j: € (I'GQ)Y, define

o>

o=v" >y

o=v, u=u,s>s
v=v,u=u,s=8t>1t

Eoe EU' o if
s,t = s’ t! 1

Let a,a’ € (I'G)1, for convenience, we set a = ebf and o = €'b'f’ with e, f,e/, f €
(I'G)Y and b,b’ € B. Then

b> b
a>ao if b="0,e>¢
b=b,e=c,f>f

For any a € (IT'G)}, 0 € (I'G)T*, n > m implies that « = . If n = m > 1, then we
write @ = ayg - ay, and B = (155 - - - B, with oy, 6; € I'G,. If there is some k such that
a; = f; for any 0 <7 < k and «y, >~ B, then we define a > (.

In the sequel, we check that > is a weakly admissible order on (I'G).

V= {E*} and V = (I'G){/V.

AQ. > is obvious a total order and is a well order on T'GY (for (I'G)! is finite). For any
subset T of (I'G);. Let T = {b € I';| there are ¢, f € (I'G)® such that ebf € T}, then there
is a minimal element b; on T since > is a well order on B. Set Ty = {eb, fle, f € (TG)°}NT,
and hence there is a minimal element ¢; in 77. Clearly, t; is also a minimal element in
T, that is, > is a well order on (I'G);. Moreover, for any S C (I'G), there is a least n
such that Sy = (I'G)F (S # 0. For any o = ;- -- v, € (I'G)} with «o; € (I'G)y, then
we denote by t;(a) = «;. Let S1 = {a € Sy|V 8 € So,t1(8) = ti(a)}. By induction,
S; ={a € S; 1|V 3 e Si_1,t(B) = ti(a)}. Then by n steps, we have |S,| = 1. So the
unique element s,, € S, is a minimal element of S.

Al and A2 are trivial.

A3. For any ay,a3 € (I'G), if there are o,y € (FG)/? such that o = asasay.

oo

Assume that a, or ay in |J (CG)?, then oy = as. But if ay, oy € TGy/V, then it is easy
n=1

to check that asasay = a3 = .
Now we complete the proof. O
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