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Abstract
In this paper, for an algebra, weakly ordered multiplicative basis with weakly admissible

order is introduced as an invariant under almost Morita equivalence and it is shown that
an algebra with weakly ordered multiplicative basis is a quotient of its corresponding
generalized path algebra, as a generalization of the classical Gabriel structure theorem.
Finally, it is shown that the skew group algebra of a cyclic group over an algebra with
ordered multiplicative basis has really a weakly ordered multiplicative basis.
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1. Introduction

Originally, the classical theory of Gröbner bases gives efficient methods of computation
of Hilbert polynomials of graded and filtered modules over polynomial rings. Mora in [11]
presented the method of Gröbner bases for free algebras over a field when such a basis is
finite. Since path algebras are quotients of free algebras, Green et al [5] extended the theory
to path algebras. Furthermore, Green [6] introduces algebras with ordered multiplicative
basis and proves this kind of algebras are quotients of path algebras, see Theorem 1.1. From
our discussion in this paper, we know indeed such algebras with ordered multiplicative
bases are a generalization of artinian basic algebras as said in Remark 3.7, or we say,
algebras with ordered multiplicative bases are non-artinian “basic” algebras. So, one can
think that this result in [6] is a generalization of the well-known Gabriel structure theorem
about artinian basic algebras in [3][2].

From [11][5][6], we know the property for an algebra with an ordered multiplicative
basis is non-invariant under Morita equivalence. In this reason, one of our motivations is
to find a similar notion of ordered multiplicative basis as the replacement which is “almost”
invariant under Morita equivalence (we will say it almost Morita equivalent) such that an
algebra satisfying such property possesses some similar characterizations. This notion is
just the so-called weakly ordered multiplicative basis with weakly admissible order which
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we will introduce in Section 2. Its main example here is from generalized path algebras in
[4][7][8][9][10].

On the other hand, in [7][10], we generalized the classical Gabriel structure theorem
for artinian basic algebras to artinian non-basic algebras if they are splitting over radicals
as the only condition. As mentioned above, the Green’s result in [6] can be thought as a
generalization of classical Gabriel theorem to algebras with ordered multiplicative bases as
a kind of non-artinian “basic” algebras. As the other motivation of this paper, we want to
find a generalization of algebras with ordered multiplicative bases which can be realzied as
a kind of non-artinian “non-basic” algebras and but also the generalized Gabriel structure
theorem can be obtained for this kind of algebras. It is interesting that they are still
algebras with weakly ordered multiplicative bases. The main result in this paper is that
an algebra with weakly ordered multiplicative basis are a quotient of its corresponding
generalized path algebra.

This paper can be regarded as a further step of representation theory of non-artinian
algebras. As we know, due to the classical Gabriel structure theorem, the representation
theory of artinian basic algebras is related to the representation theory of quivers. More-
over, by the generalized Gabriel structure theorem in [7][10], the representation theory of
artinian (non-basic) algebras is related to the representation theory of generalized path
algebras, equivalently, by [8], to that of pre-modulations. Therefore, as a development, it
would be interesting to study the representation theory of algebras with weakly ordered
multiplicative bases (in particular, that with ordered multiplicative bases) related to the
representation theory of generalized path algebras (in particular, that of quivers) via the
main theorem in this paper. We will do it in our successor research.

Finally, it is shown that the skew group algebra of a cyclic group over an algebra
with ordered multiplicative basis has a weakly ordered multiplicative basis. This gives
an example of an algebra with weakly ordered multiplicative basis which is not really an
ordered multiplicative basis.

Now, we give some preliminaries including notions and results for our need.
In this paper, K always denotes an algebraically closed field, R a K-algebra. For two

subset S, T of R, write ST = {st|s ∈ S, t ∈ T}\{0}. If S2 ⊂ S ∪ {0}, we say S to be
0-closed. If a set B = {bω ∈ R : ω ∈ Ω} is 0-closed and also a K-basis of R, then B is
called a multiplicative basis for R.

By [6], > is called an admissible order on B if the following properties hold:
A0. > is well-order on B;
A1. For all b1, b2, b3 ∈ B, if b1 > b2 then b1b3 > b2b3 if both b1b3 and b2b3 are nonzero;
A2. For all b1, b2, b3 ∈ B, if b1 > b2 then b3b1 > b3b2 if both b3b1 and b3b2 are nonzero;
A3. For all b1, b2, b3, b4 ∈ B, if b1 = b2b3b4 then b1 > b3.

R is said to have an ordered multiplicative basis (B, >) if B is a multiplicative basis
for R with an admissible order > on B.
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For a multiplicative basis B = {bω ∈ R : ω ∈ Ω} for R and any r ∈ R, let r =
∑

ω∈Ω kωbω

for kω ∈ K, the support of r, denoted as Supp(r), is the set of basis elements in B that
occur in r, that is, Supp(r) = {bω : if kω 6= 0 for ω ∈ Ω}.

The tip of r, denoted as Tip(r), is the largest basis elements b0 in Supp(r) on the order
>. That is, Tip(r) = b0 ∈ Supp(r) such that for any bω ∈ Supp(r), bω 6 b0.

In [6], we know that for a K-algebra R with ordered multiplicative basis (B, >), the
identity 1 of R can be decomposed as 1 = v1 + · · · + vn such that v1, · · · , vn ∈ B form
a full set of primitive orthogonal idempotents for R and the set B\{v1, · · · , vn} has no
idempotents. Denote Γ0 = {v1, · · · , vn}. Define

Γ1 = {b ∈ B : b 6∈ Γ0 and b cannot be written as a product b1b2 for b1, b2 ∈ B\Γ0}.
That is, Γ1 is the set of product indecomposable elements in B\Γ0. Note that Γ1 is
a unique set, as is Γ0.

In [6], it was proved that Γ0 ∪ Γ1 generates the multiplicative basis B of R; moreover,
see [6, Proposition 3.3], for any b ∈ B, there exist the unique i, j such that vib = b and
bvj = b, and if l 6= i then vlb = 0, if l 6= j then bvl = 0, denote o(b) = vi and t(b) = vj.

Then, the quiver Γ associated to B can be defined with Γ0 as the vertex set and Γ1 as
the arrow set such that for b ∈ Γ1, one views b as an arrow from o(b) to t(b), that is, o(b)
is the starting vertex of b and t(b) is the end vertex of b. We call this quiver the Green
quiver of R on B.

The classical notations, concepts and results on quivers can be seen in [2][3]. The
following theorem from [6] is fundamnental for our discussion.

Theorem 1.1. Let R be a K-algebra with an ordered multiplicative basis (B, >). Let
Γ be the Green quiver of R on B. Then there is a surjective K-algebra homomorphism
φ : KΓ → R such that:

(1) if p is a path in Γ, then φ(p) ∈ B ∪ {0};
(2) if b ∈ B, then there is a path p ∈ Q such that φ(p) = b;
(3) the kernel of φ is a 2-nomial ideal; that is, it is generated by all elements of form p

or p− q where p and q paths in Γ.

The concept of generalized path algebra was introduced early in [4]. Here we review
the different but equivalent method of definition which is given in [10].

Let Q = (Q0, Q1) be a quiver. For each pair (i, j) ∈ Q0 ×Q0, define Ω(i, j) = {a ∈ Q1 :
t(a) = j, o(a) = i}. Note that Q1 is the disjoint union of all Ω(i, j).

Given a collection of K-algebras A = {Ai | i ∈ Q0}, let ei be the identity of Ai and
A0 =

∏
i∈Q0

Ai the direct product of K-algebras. Note that all ei are orthogonal central

idempotents of A0. Let iMj
def= AiΩ(i, j)Aj be the free Ai-Aj-bimodule with basis Ω(i, j).

This is the free Ai ⊗k Aop
j -module over the set Ω(i, j). Then, the rank of iMj as Ai-Aj-

bimodule is just the number of arrows from i to j in the quiver Q. Thus,

(1.1) M = ⊕(i,j)∈Q0×Q0AiΩ(i, j)Aj
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is an A0-A0-bimodule. The generalized path algebra is defined to be the tensor algebra

T (M, A0) = ⊕∞n=0M
⊗

A0
n.

Here M⊗A0n = M ⊗A0 M ⊗A0 · · ·⊗A0 M and M⊗A00 = A0. Usually, denote the generalized
path algebra T (M, A0) by K(Q,A).

As a matter of fact, the classical path algebras are the special cases by taking Ai = k.
The generalized path algebra K(Q,A) is called normal if all Ai are simple K-algebras.

This is the most interested case of generalized path algebras, in particular when all Ai

are central simple algebras. In [7][9][10], normal generalized path algebras are used to
characterize the structures and representations of artinian algebras via the method of
natural quivers as unlike as the classical method to depending upon the corresponding
basic algebras.

Let A be an artinian algebra with radical rA. Write A/rA =
⊕s

i=1 Ai the block decom-
position of the algebra A/rA. Then, rA/r2

A is an A/rA-bimodule by ā·(x+r2
A)· b̄ = axb+r2

A

for any ā = a + rA, b̄ = b + rA ∈ A/rA and x ∈ rA. Let iMj = Ai · rA/r2
A · Aj, then iMj

is finitely generated as Ai-Aj-bimodule for each pair (i, j).
Let ∆0 = {1, · · · , s} be the set of isomorphism classes of simple A-modules, which is

also corresponding to the set of blocks of A/rA. For i, j ∈ ∆0, set the number tij of
arrows from i to j to be rankAi

(iMj)Aj
, that is, the least number of generators of iMj as

Ai-Aj-bimodule. Obviously, if iMj = 0, there is no arrows from i to j. Then we associate
A the quiver ∆A = (∆0,∆1) which is called the natural quiver of A.

Moreover, for A and its natural quiver ∆A, we obtain the normal generalized path alge-
bra K(∆A,A) with A = {A1, · · · , As}, which is defined as the associated generalized
path algebra of an artinian algebra A.

In [10], it was shown that for an artinian K-algebra A which is splitting over its radical,
there is a surjective algebra homomorphism φ : K(∆A,A) → A with Js ⊆ ker(φ) ⊆ J for
some positive integer s, that is, this algebra A is a class of Gabriel-type.

Moreover, we gave in [10] that if an artinian algebra A of Gabriel-type with admissible
ideal is hereditary, then A is isomorphic to its related generalized path algebra K(∆A,A).

2. Weakly Ordered Multiplicative Bases

We firstly a property of a K-algebra A with an ordered multiplicative basis (BA, >).
We have 1A = Σn

i=1vi where V = {v1, v2, · · · , vn} ⊆ BA is the full set of primitive
orthogonal idempotents for A by [6, Lemma 3.6], mentioned above. By [6, Proposition
3.3] (see Section 1) and A3, it is easy to see that

Lemma 2.1. If b1 = b2b3 with each bi ∈ BA, then b1 > b2 and b1 > b3.

Proposition 2.2. Using of the notation as above, viA � vjA for any i 6= j.

Proof. Assume that viA ∼= vjA, then there is x ∈ viAvj and x′ ∈ vjAvi such that vi = xx′

and vj = x′x. Note that x = Σn
i=1kibi and x′ = Σm

j=1k
′
jb
′
j with k′i, k

′
j ∈ K∗, vibivj = bi ∈ B

and vjb
′
jvi = b′j ∈ B. It follows that vi = Σn

i=1kibiΣm
j=1k

′
jb
′
j = Σn

i=1Σ
m
j=1kik

′
jbib

′
j, and so
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there is some i and j such that vi = bib
′
j. By Lemma 2.1, we get vi > bi which contradicts

to [6, Lemma 3.4]. Thus viA � vjA if i 6= j. ¤

Of course, K is a trivial K-algebra with ordered multiplicative basis. However, by
Proposition 2.2, for any positive integer n, the matrix algebra Mn(K) has not an ordered
multiplicative basis. This means that the property for an algebra with ordered multiplica-
tive basis is not Morita invariant, even not invariant under the expansion by a full matrix
algebra.

Now we will define a similar notion of ordered multiplicative basis as the replacement
which is better as invariant under a certain sense.

Let R be a K-algebra with a multiplicative basis B. For convenience, we denote two
subsets by V = {b ∈ B : b2 = b} and Ṽ = {b ∈ B : b have a local inverse} (i.e., there is a
b−1 ∈ B such that bb−1 and b−1b are two different idempotents). Define B̃ = B\(V ∪ Ṽ).

We say that > is a weakly admissible order on B if the following properties hold:

W0. > is well-order on B;
W1. For all b1, b2, b3 ∈ B, if b1 > b2 then b1b3 > b2b3 if both b1b3 and b2b3 are nonzero;
W2. For all b1, b2, b3 ∈ B, if b1 > b2 then b3b1 > b3b2 if both b3b1 and b3b2 are nonzero;
W3. For all b1, b3 ∈ B, if there are b2, b4 ∈ B\Ṽ such that b1 = b2b3b4 then b1 > b3.

With this condition, (B, >) is called a weakly ordered multiplicative basis for R.

Example 2.3. Let K be a field of charK 6= 2 and Γ be the quiver

1• α //

β ''OOOOOOOOOO •2

1′•
α′

//

β′
77oooooooooo •2′

Let Λ = KΓ and let G = 〈σ〉 be the automorphism group of Γ with order 2, where σ is
defined satisfying that

σe1 = e1′ , σe2 = e2′ , σe1′ = e1, σe2′ = e2, σα = α′, σβ = β′, σα′ = α, σβ′ = β.

Then,

B = {e1, e2, e1′ , e2′ , α, β, α′, β′, e1σ, e2σ, e1′σ, e2′σ, ασ, βσ, α′σ, β′σ}
is a K-basis of ΛG with V = {e1, e2, e1′ , e2′}, Ṽ = {e1σ, e2σ, e1′σ, e2′σ}. Define an order <

such that

e1 < e1σ < e2 < e2σ < e1′ < e1′σ < e2′ < e2′σ < α < ασ < β < βσ < α′ < α′σ < β′ < β′σ.

Then, it is trivial to check that the skew group algebra ΛG has a weakly ordered multiplica-
tive basis (B, <).

Example 2.4. Every normal generalized path algebra Λ = K(Q,A) has a weakly ordered
multiplicative basis (B, <), where A = {Ai|i ∈ Q0} with Ai = Mni

(K).

Proof. Let Ṽ = {Ek
ij} with Ek

ij = (1)ij ∈ Ak and k ∈ Q0 , then it is easy to see that
5



B = Ṽ ∪ {a1β1a2β2 · · · anβnan+1 : n > 1, ai ∈ Ṽ, β1β2 · · ·βn a path in Q}
is a multiplicative basis for Λ. Define a well order < in the multiplicative basis B as
follows.

Let <Q be the left length-lexicographic order on Q. Then Ek
ij <Ṽ El

st provided k <Q l.
And, for Ek

ij, Ek
st, if i < s then let Ek

ij <Ṽ Ek
st. If i = s and j < t, then Ek

ij <Ṽ Ek
st.

Such <Ṽ is obvious a well order on Ṽ. Furthermore, for any b′, b′′ ∈ B and b′ 6= b′′, if
b′ ∈ Ṽ but b′′ ∈ B\Ṽ, then we define b′ < b′′. Suppose b′, b′′ ∈ B\Ṽ then there are two
paths p′ = β′1β

′
2 · · ·β′n and p′′ = β′′1 β′′2 · · ·β′′m in Q such that b′ = a′1β

′
1a
′
2β
′
2 · · · a′nβ′na′n+1 and

b′′ = a′′1β
′′
1 a′′2β

′′
2 · · · a′′mβ′′ma′′m+1. Define b′ < b′′ if p′ < p′′. Next, assume p′ = p′′, then there

is a least positive integer K such that a′k 6= a′′k. No loss of generality, if a′k <Ṽ a′′k, then
define b′ < b′′.

It is easy to check that this order < on B is weakly admissible, as required. ¤

For the remainder of this section, let R be always a K-algebra with weakly ordered
multiplicative basis (B, >).

Lemma 2.5. For all b1, b2, b3 ∈ B, if b1b3 = b2b3 6= 0 or b3b1 = b3b2 6= 0 then b1 = b2.

Proof. Suppose that b1 6= b2. No loss of generality, say b1 > b2. Then b1b3 > b2b3 and
b3b1 > b3b2 by W1 and W2. This contradicts to the known condition. ¤

Denote by 1 the identity of R on multiplication. We have the following:

Lemma 2.6. (i) The set V of all idempotents in B is a finite set;

(ii) Write V = {v1 · · · , vn}, then 1 =
∑n

i=1 vi with vivj =

{
vi, if i = j

0, if i 6= j
;

(iii) For any b ∈ B, there exist unique vi, vj ∈ V such that vib = b = bvj.

Proof. Let

(2.1) 1 =
n∑

i=1

αivi

where each 0 6= αi ∈ K and vi ∈ B, vi 6= vj for i 6= j. For any vl here, we get vl =∑n

i=1 αivivl, then there is t such that vl = vtvl and by Lemma 2.5, vivl = 0 for all i 6= t

and αt = 1. For vt, similarly, there is p such that vt = vtvp and vtvi = 0 for all i 6= p. But,
we have vtvl = vl 6= 0 as said above. Hence p = l. Thus vt = vtvp = vtvl = vl. It follows
that vl = v2

l and αl = 1 for any l = 1, · · · , n. Meantime, 1 =
∑n

i=1 vi.
For any j, vj =

∑n

i=1 vivj. We have vj = v2
j . Then, by Lemma 2.5, we can get vivj = 0

for any i 6= j.
Let V0 = {v1, · · · , vn}. Then V0 ⊆ V.
Now, we show that for any b ∈ B, there exist unique vi0 , vj0 ∈ V0 such that

(2.2) vi0b = b = bvj0 .
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In fact, for any b ∈ B, we have b =
∑n

i=1 vib. So, there is unique i0 such that b = vi0b

and vib = 0 for all i 6= i0. Similarly, there is unique j0 such that b = bvj0 and bvj = 0 for
all j 6= j0.

Next, we can obtain V = V0. It is enough to prove V ⊆ V0. For any v ∈ V, of course
v = v2. According to the above discussion, there is vj0 ∈ V0 such that vvj0 = v. Thus,
vvj0 = v2. By Lemma 2.5, we get v = vj0 ∈ V0. Hence, V ⊆ V0.

From V = V0 = {v1, · · · , vn} and by (2.1), (2.2), the statements (i), (ii), (iii) follow. ¤

Due to (iii) of this lemma, for any b ∈ B, let vi, vj be the unique elements V such that
vib = b = bvj and denote o(b) = vi and t(b) = vj.

Corollary 2.7. (i) For b ∈ B, if there is either a ∈ B or b ∈ B such that b = ab or
b = bc, then a = o(b) or c = t(b);

(ii) For b ∈ B, if there is either a, c ∈ B\Ṽ such that b = abc, then a, c ∈ V with
a = o(b) and c = t(b).

Proof. (i) If b = ab, then since b = o(b)b by Lemma 2.6, we get ab = o(b)b = b 6= 0. Thus,
by Lemma 2.5, it follows that a = o(b). It is similar for the case that b = bc.

(ii) Since b = abc, then by Lemma 2.6, we have o(a) = o(b) and t(c) = t(b). Moreover,
bc = o(b)bc and abc = abct(c), then by W3, we get bc > b and abc > bc respectively. Then,

b = abc > bc > b

Hence, bc = b and abc = bc. Thus from (i), c = t(b) and a = o(bc) = o(b), which means
a, c ∈ V. ¤

Lemma 2.8. Let b ∈ Ṽ. Then,
(i) The local inverse of b is unique;
(ii) o(b) 6= t(b);
(iii) Denote by b−1 the local inverse of b, then b−1 ∈ Ṽ and bb−1 = o(b), b−1b = t(b).

Proof. (i) Let b′ is a local inverse of b, then bb′, b′b ∈ V. Then by Lemma 2.6, bb′ =
vi, b

′b = vj for some i and j. Thus o(b) = o(bb′) = o(vi) = vi and t(b) = t(b′b) = t(vj) = vj.
Similarly, t(b′) = vi and o(b′) = vj. Then, o(b) = t(b′) and o(b′) = t(b).

Assume that b′′ is another local inverse of b. Similarly, vj = b′′b and vi = t(b′′). Then,
b′ = o(b′)b′ = t(b)b′ = vjb

′ = b′′bb′ = b′′vi = b′′t(b′′) = b′′.
(ii) By (i), o(b) = vi = bb′, t(b) = vj = b′b. Then, from definition of Ṽ, o(b) 6= t(b).
(iii) By (i) and its proof, bb−1 = o(b), b−1b = t(b). And by (ii), b−1 ∈ Ṽ. ¤

From Lemma 2.6 and 2.8, we have firstly:

Corollary 2.9. In any weakly ordered multiplicative basis (B, >), V⋂ Ṽ = ∅.

Corollary 2.10. A weakly ordered multiplicative basis (B, >) is an ordered multiplicative
basis of R if and only if its Ṽ = ∅.
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Proof. “If”: It is obvious by definitions of (weakly) ordered multiplicative basis.
“Only if”: If there exists v ∈ Ṽ, then there is v−1 ∈ Ṽ such that vv−1, v−1v ∈ V. Thus,

vv−1v = v and v−1vv−1 = v−1 by Lemma 2.8 (ii). Since > is admissible, v > v−1 and
v−1 > v by A3. So, v = v−1. It follows that o(v) = vv−1 = v−1v = t(v), which contradicts
to Lemma 2.8 (ii). ¤

Theorem 2.11. Let R be a K-algebra with weakly ordered multiplicative basis (B, >) and
I be a monomial ideal (i.e., I is generated by some basis-elements in B), then the quotient
algebra R/I has a weakly ordered multiplicative basis.

Proof. Let π : R → R/I be a canonical surjection, then since I is monomial, π(B) is a
multiplicative basis of R/I by [6, Theorem 2.3]. Also, because I is monomial, for any
0 6= b̄ ∈ π(B), there is a unique element b ∈ B \ I such that π(b) = b + I = b̄. We call this
fact as the unique lifting property (briefly, ULP) of π(B) in B.

For any b̄ ∈ VR/I with b ∈ B, we have b − b2 ∈ I. Assume that b − b2 6= 0, then
Supp(b − b2) = {b, b2} ⊆ B ∩ I. So, b ∈ I, then b̄ = 0. It contradicts to b̄ 6= 0. Thus
b2 = b ∈ V, and so VR/I ⊆ {v + I|v ∈ V} \ {0}. The converse inclusion is clear, and hence

(2.3) VR/I = {v + I|v ∈ V} \ {0}.
For any ṽ + I ∈ ṼR/I with ṽ ∈ B, there is v′ + I ∈ ṼR/I with v′ ∈ B such that

v′ṽ + I, ṽv′ + I ∈ VR/I and v′ṽ + I 6= ṽv′ + I with v′ṽ, ṽv′ ∈ B. By (2.3), we have
v′ṽ, ṽv′ ∈ V with v′ṽ 6= ṽv′. It follows that ṽ ∈ Ṽ. So, ṼR/I ⊆ {ṽ + I|ṽ ∈ Ṽ} \ {0}.

Conversely, let ṽ ∈ Ṽ \ I, then ṽ−1 ∈ Ṽ and ṽ−1ṽ, ṽṽ−1 ∈ V with ṽ−1ṽ 6= ṽṽ−1. We
can say that ṽ−1, ṽ−1ṽ, ṽṽ−1 6∈ I. Otherwise, ṽ = ṽṽ−1ṽ ∈ I by Lemma 2.8, which
contradicts to ṽ 6∈ I. Moreover, due to the above ULP, (ṽ + I)(ṽ−1 + I) = ṽṽ−1 + I and
(ṽ−1 + I)(ṽ + I) = ṽ−1ṽ + I are not equal each other in VR/I . Hence, ṽ + I ∈ ṼR/I and
thus, ṼR/I ⊇ {ṽ + I|ṽ ∈ Ṽ} \ {0}. Therefore,

(2.4) ṼR/I = {ṽ + I|ṽ ∈ Ṽ} \ {0}.
Now, define the order Â in π(B) satisfying that for any b̄1 = b1 + I, b̄2 = b2 + I ∈ π(B)

with b1, b2 ∈ B, let b̄1 Â b̄2 if b1 > b2. Then by the above ULP and (2.4), it is trivial to see
that Â is a weakly admissible order on π(B). ¤

One can think Theorem 2.11 as a method for constructing a new algebra with weakly
ordered multiplicative basis from a known one. On the other hand, when R is a generalized
path algebra, this theorem supplies an example of the converse problem of the latter
Theorem 3.16, that is, under what condition, has the quotient of a generalized path algebra
a weakly ordered multiplicative basis?

Lemma 2.12. For any b ∈ B\Ṽ, o(b) 6 b and t(b) 6 b.

Proof. Note that b = bt(b)t(b) = o(b)o(b)b, then this relation follows from W3. ¤

Proposition 2.13. In a weakly ordered multiplicative basis B of a K-algebra R, all idem-
potents are primitive.
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Proof. By Lemma 2.6, it is just to prove all elements in V = {v1, · · · , vn} are primitive.
For any vi ∈ V, suppose there are two nonzero orthogonal idempotents x and y such

that vi = x + y.
Since 0 = xy = x(vi−x) = xvi−x2 = xvi−x, we have xvi = x. Similarly, vix = x. So,

vixvi = x and o(x) = t(x) = vi. Similarly, viyvi = y and o(y) = t(y) = vi.
Thus, we can write x = kivi +

∑
l klbl with ki, kl ∈ K and bl ∈ B\V satisfying o(bl) =

t(bl) = vi, which implies bl ∈ B̃. Then y = (1− ki)vi −
∑

l klbl. It follows that

(2.5) 0 = xy = ki(1− ki)vi +
∑

l

klbl +
∑

l

∑
j

klkjblbj

If there are l, j such that blbj = vi, then blbjvi = vi. By W3, vi > bj. But, bj 6= vi. So,
t(bj) = vi 	 bj, which contradicts to Lemma 2.12.

Therefore, blbj 6= vi for any l, j and thus by (2.5),

(2.6)
∑

l

klbl +
∑

l

∑
j

klkjblbj = 0.

We conclude that ki(1− ki) = 0. Then, x = kivi +
∑

l klbl with ki = 1 or ki = 0.
Assume that

∑
l klbl 6= 0. Since > is well-order, there is b as the minimal bl occurring

in
∑

l klbl. By (2.6), bl0bj0 = b for some l0 and j0, then b ≥ bl0 and b ≥ bj0 . Due to b 6∈ V,
it is impossible that b = bl0 and b = bj0 Hence, b 	 bl0 or b 	 bj0 , which contradict to the
minimality of b.

Thus,
∑

l klbl = 0 and then x = vi or x = 0. It follows that vi is primitive. ¤

Theorem 2.14. Let n be a positive integer. A K-algebra R has a weakly ordered multi-
plicative basis if and only if Mn(R) has a weakly ordered multiplicative basis.

Proof. Assume R has a weakly ordered multiplicative basis (B, >), then the set

Mn(B) = {Eij(b) : b ∈ B}
is a K-basis of Mn(R), where Eij(b) means the matrix whose all elements are zero except
the (i, j)-element is b. For any Eij(b), Ekl(b′) ∈ Mn(B), we have

Eij(b)Ekl(b′) =

{
0, if k 6= j or bb′ = 0;
Eil(bb′), otherwise .

Since bb′ ∈ B, it follows Eil(bb′) ∈ Mn(B). Therefore, Mn(B) is a multiplicative basis.
Denote that

VMn(R) = {Eii(v)|v ∈ V, 1 6 i 6 n}
ṼMn(R) = {Eij(v)|v ∈ Ṽ, 1 6 i, j 6 n} ∪ {Eij(v)|v ∈ V, 1 6 i 6= j 6 n}

Define an order Â on Mn(B) satisfying that if b > b′, then Eij(b) Â Ekl(b′); if b = b′ and
i > k, then Eij(b) Â Ekl(b′); if b = b′, i = k and j > l, then Eij(b) Â Ekl(b′). The only we
have to show is that Â is a weakly admissible ordered on Mn(B).

W0. Let S be any subset of Mn(B). Denote T = {b ∈ B : ∃i, j such that Eij(b) ∈ S}.
Since > is well-order on B, we have a least element b0 in T . Then for any Ekl(b′) ∈ S, we
have b′ ≥ b. Thus, for any i, j, it holds Ekl(b′) Â Eij(b). Let K0 = {Eij(b0) : 1 ≤ i, j ≤ n}.
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Then, there are i0, j0 such that Ei0j0(b0) is the least element in K0 on Â. It is easy to see
that Ei0j0(b0) is also the least element in S on Â. Therefore, Â is a well order on MnB.

W1. No loss of generality, we only need to consider Eij(b1), Ekj(b2), Ejl(b3) ∈ Mn(B)
and b1b3, b2b3 are nonzero. If Eij(b1) Â Ekj(b2), then b1 > b2 or b1 = b2 and i > k.
Note that Eij(b1)Ejl(b3) = Eil(b1b3) and Ekj(b2)Ejl(b3) = Ekl(b2b3). Since b1 > b2 implies
b1b3 > b2b3 by W1 on >, it follows that i > k implies Eij(b1)Ejl(b3) Â Ekj(b2)Ejl(b3) by
definition of Â.

The proof of W2 is similar to that of W1.
W3. If Eil(b1) = Eij(b2)Ejk(b3)Ekl(b4) with Eij(b2), Ekl(b4) 6∈ ṼMn(R), then b1 = b2b3b4

and b2, b4 6∈ Ṽ. It follows that b1 > b3. If b1 > b3, then Eil(b1) > Ejk(b3) holds clearly. If
b1 = b3, then b2, b4 ∈ V by Corollary 2.7. Note that Eij(b2), Ekl(b4) 6∈ ṼMn(R), then i = j

and k = l, and hence Eil(b1) > Ejk(b3). ¤

The idempotents in the K-subalgebra KV of R generated by V can be presented as
e = u1 + · · ·+ uk with u1, · · · , uk ∈ V and ui 6= uj for i 6= j.

Lemma 2.15. Let an idempotent e = u1 + · · · + uk with u1, · · · , uk ∈ V and ui 6= uj for
i 6= j. Then for any b ∈ B, (i) either eb = b or eb = 0 and (ii) either be = b or be = 0.

Proof. (i) For any b ∈ B, let o(b) = vi then vib = b. Denote Supp(e) = {u1, · · · , uk}. If
vi ∈ Supp(e), then eb = b. Otherwise, eb = 0. (ii) can be proved similarly. ¤

Proposition 2.16. Assume R is a K-algebra with weakly ordered multiplicative basis B.
Let an idempotent e = u1 + · · ·+ uk with u1, · · · , uk ∈ V and ui 6= uj for i 6= j. Then the
K-algebra eRe has also a weakly ordered multiplicative basis.

Proof. It is easy to see eBe = {ebe, b ∈ B}\{0} is a K-basis of eRe. For any ebe, eb′e ∈ eBe,

ebeeb′e =

{
0, if be = 0 or eb′ = 0
ebb′e, otherwise

by Lemma 2.15. From this and bb′ ∈ B ∪ {0},
then ebeeb′e ∈ eBe ∪ {0}. That is, eBe is a multiplicative basis.

Clearly, VeRe = {u1, · · · , uk} and ṼeRe = {eve : v ∈ Ṽ}\{0}.
Note that eBe ⊆ B. The restriction of > to eBe is trivially a weakly admissible order. ¤

It is well-known that two rings R and S are Morita equivalent if and only if there
is a positive integer n and an idempotent matrix e ∈ Mn(R) such that S ∼= eMn(R)e.
Theorem 2.14 means that possessing weakly ordered multiplicative basis is invariant only
for the special Mroita equivalence of R in the case e is the identity matrix; Proposition
2.16 means this property is invariant in the other case of Mroita equivalence of R, that
is, n = 1 and e is only in KV, not any idempotent in R. Hence, the property for a K-
algebra to have weakly ordered multiplicative basis is not Morite invariant in general, but
it has analogously invariant in the above cases. In this reason, we call the property for a
K-algebra to have weakly ordered multiplicative basis is almost Morita invariant.

However, from some examples in [11][5][6], the property for an algebra to have an
ordered multiplicative basis is not such almost Morita invariant. This is just one of the
motivations for us to introduce the notion of weakly ordered multiplicative basis.
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3. Generalized Gabriel structure theorem

In this section, we assume that R is a K-algebra with weakly ordered multiplicative
basis (B, >) and maintain the notation of the above section. The aim in this part is
to give the generalized Gabriel structure theorem for a K-algebra with weakly ordered
multiplicative basis as a reform of the Gabriel structure theorem for an artinian algebra
in [7][10] and the classical Gabriel structure theorem for a finite dimensional basic algebra
over an algebraically closed field in [2][3].

Lemma 3.1. V ∪ Ṽ is 0-closed under multiplication.

Proof. Assume that b1, b2 ∈ V ∪ Ṽ and b1b2 6= 0.
If b1 ∈ V or b2 ∈ V, then b1 = o(b2) or b2 = t(b1). Thus b1b2 = b2 or b1b2 = b1, which

means b1b2 ∈ V ∪ Ṽ.
Otherwise, b1, b2 ∈ Ṽ. Then there are some b−1

1 , b−1
2 ∈ Ṽ such that b1b

−1
1 = o(b1), b2b

−1
2 =

o(b2) = t(b1). Thus b1b2(b−1
2 b−1

1 ) = o(b1) and (b−1
2 b−1

1 )b1b2 = o(b2). Then by definition, we
get b1b2 ∈ Ṽ. Hence b1b2 ∈ V ∪ Ṽ. ¤

We define the relation ∼ on B: for any b, b′ ∈ B, b ∼ b′ if b = b1b
′b2 for some

b1, b2 ∈ V ∪ Ṽ.

Lemma 3.2. ∼ is an equivalence relation on B.

Proof. 1. Reflexivity: for any b ∈ B, we have b = o(b)bt(b).
2. Symmetry: if b ∼ b′, then there are b1, b2 ∈ V ∪ Ṽ such that b = b1b

′b2. It follows
that b′ = b̃1bb̃2 where b̃1 is b1

−1 or o(b′), b̃2 is b2
−1 or t(b′).

3. Transitivity: if b ∼ b′ and b′ ∼ b′′, then there are bi ∈ V ∪ Ṽ (i = 1, 2, 3, 4) such that
b = b1b

′b2 and b′ = b3b
′′b4. Thus b = b1b3b

′′b4b2. By Lemma 3.1, b1b3, b4b2 ∈ V ∪ Ṽ. Hence
b ∼ b′′. ¤

And, as the restriction on V of the relation ∼, we get the decomposition V = v̄1∪· · ·∪v̄m

with v̄i all equivalences classes for i = 1, · · · ,m. In the sequel, we always set |v̄i| = ki,
then |V| = k1 + · · ·+ km.

Lemma 3.3. For v′, v′′ ∈ V and v′ 6= v′′, v′ ∼ v′′ if and only if there is a unique b ∈ Ṽ
such that v′bv′′ = b, that is, o(b) = v′, t(b) = v′′.

Proof. “if”: In this case, o(b) = v′, t(b) = v′′. Then, v′bv′′b−1 = v′ where v′b, b−1 ∈ Ṽ. It
means v′ ∼ v′′.

“only if”: By definition, v′ = b1v
′′b2 for b1, b2 ∈ V ∪ Ṽ. If b1 ∈ V or b2 ∈ V, then v′ = v′′

which contradicts to v′ 6= v′′. So, b1, b2 ∈ Ṽ. It follows that v′b−1
2 = b1v

′′. But, b−1
2 = v′b−1

2

and b1 = b1v
′′. Thus, b1 = b−1

2 . Then, b1 = v′b1 = v′b−1
2 = b1v

′′ = v′b1v
′′. So, b = b1 is just

that we hope.
Assume there another b3 ∈ Ṽ such that b3 = v′b3v

′′. Then v′ = b3b
−1
3 . Since b2 = b2v

′ =
b2b3b

−1
3 , it follows b3b2 = b2b3. Then b3b2 6= 0 (otherwise, b2 = 0). Hence, b3b2 ∈ V ∪ Ṽ

by Lemma 3.1. Note that o(b3b2) = o(b3) = v′ = t(b2) = t(b3b2), and so b3b2 ∈ V by
11



Lemma 2.8 (ii), that is, b3b2 = v′. Thus b1 = v′b1 = b3b2b1 = b3v
′′ = b3, which means the

uniqueness of b. ¤

In the sequel, if v′, v′′ ∈ v̄i with v′ 6= v′′, we denote v′ and v′′ respectively by vi
jj and vi

ll

for some j, l = 1, · · · , ki with j 6= l, and denote the unique b in Lemma 3.3 by vi
jl. Then,

vi
jjv

i
jlv

i
ll = vi

jl and o(vi
jl) = vi

jj, t(vi
jl) = vi

ll.
Furthermore, for any t = 1, · · · , ki, vi

jj(v
i
jtv

i
tl)v

i
ll = (vi

jjv
i
jt)(v

i
tlv

i
ll) = vi

jtv
i
tl. Then vi

jtv
i
tl

can only be in Ṽ and, due to the uniqueness of b in Lemma 3.3, we have for any j, t, l =
1, · · · , ki and i = 1, · · · ,m,

(3.1) vi
jtv

i
tl = vi

jl.

And, for any i1 6= i2 and p, q = 1, · · · , ki1 and u,w = 1, · · · , ki2 , we have

(3.2) vi1
pqv

i2
uw = 0

since t(vi1
pq) = vi1

qq and o(vi2
uw) = vi2

ww are different in V.
For any b ∈ Ṽ, by Lemma 3.3, it holds o(b) ∼ t(b), so we can write o(b) = vi

jj, t(b) = vi
ll

for some i = 1, · · · ,m and j, l = 1, · · · , ki with j 6= l. Then, as seen above, we have b = vi
jl.

Therefore, the set {vi
jl : i = 1, · · · ,m, j, l = 1, · · · , ki with j 6= l} consists of all elements

of Ṽ, that is, we obtain:

Proposition 3.4. (i) Ṽ = {vi
jl : i = 1, · · · ,m, j, l = 1, · · · , ki with j 6= l};

(ii) Ṽ = Ṽ1 ∪ · · · ∪ Ṽm where Ṽi = {vi
jl : j, l = 1, · · · , ki with j 6= l} for i = 1, · · · ,m as

the equivalence classes of restriction on Ṽ of the relation ∼;
(iii) |Ṽ| = k1(k1 − 1) + · · ·+ km(km − 1) with |Ṽi| = ki(ki − 1) for i = 1, · · · ,m.

Proof. (i) has been proved in above.
(ii) By (3.2) and the definition of the relation ∼, it is easy to see that for any i1 6= i2,

vi1
pq 6∼ vi2

uw always holds; for any i = i1 = i2, vi
pq ∼ vi

uw always holds, since vi
pq = vi

puvi
uwvi

wq.
Thus, Ṽi = {vi

jl : j, l = 1, · · · , ki with j 6= l}.
(iii) is from (ii). ¤

Note B̃ = B\(V ∪ Ṽ). Now, define E = {b ∈ B̃ : b cannot be written as a product
b1b2 with b1, b2 ∈ B̃}. Then, E =

⋃
λ∈Λ Eλ where Eλ (λ ∈ Λ) are all nonempty equivalence

classes of E on the equivalence relation ∼.
Then, for any vi

kk ∈ v̄i and vj
ll ∈ v̄j, we get vi

kkEvj
ll =

⋃
λ∈Λ vi

kkEλvj
ll.

Lemma 3.5. For any b ∈ V ∪ Ṽ, bE ∪ Eb ⊆ E ∪ {0}.

Proof. The case of b ∈ V is obvious. Now, let b ∈ Ṽ.
For any b1 ∈ E . First, bb1 ∈ B̃ holds (otherwise, b1 = b−1(bb1) ∈ Ṽ(V ∪ Ṽ) ⊂ V ∪ Ṽ by

Lemma 3.1). Assume that bb1 = b2b3 6= 0 with b2, b3 ∈ B̃. It follows that b1 = b−1b2b3.
Note that b−1b2, b3 ∈ B̃ by Lemma 3.1 and hypothesis. It contradicts to b1 ∈ E . Hence,
bE ⊂ E ∪ {0}. Similarly, Eb ⊂ E ∪ {0}. ¤
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Proposition 3.6. Assume R is a K-algebra with weakly ordered multiplicative basis B.
Let an idempotent e = u1 + · · · + uk with u1, · · · , uk ∈ V and ui 6= uj for i 6= j. If
|Supp(e) ∩ v̄i| 6 1 for any i = 1, · · · ,m, then eRe has an ordered multiplicative basis.

Proof. By Corollary 2.10 and Proposition 2.16, it is sufficient to show that

ṼeRe = {eve|v ∈ Ṽ} \ {0} = ∅.
In fact, for any v ∈ Ṽ, since v−1v = t(v) by Lemma 2.8, o(v) ∼ t(v) by the definition of
the relation ∼. Hence, there is some integer i such that o(v), t(v) ∈ v̄i. Because at most
one of o(v) and t(v) belongs to Supp(e), and so eve = 0, as desired. ¤

Now, let R be an artinian K-algebra with weakly ordered multiplicative basis B and
an idempotent e = u1 + · · · + uk with u1, · · · , uk ∈ V and ui 6= uj for i 6= j satisfying
|Supp(e) ∩ v̄i| = 1 for any i = 1, · · · ,m. Then the algebra eRe is just the basic algebra of
R.

Therefore, in this sense, for a general R satisfying Proposition 3.6 which may be not
artinian, we say eRe to be the basic algebra of R, as a generalization of the notion when
R is artinian.

Example 3.7. For ΛG in Example 2.3, it is easy to check that for i = 1, 2, the projective
modules of ei and e′i are isomorphic with each other. So, due to the above discussion, the
basic algebra BΛG of ΛG is eΛGe with e = e1+e2. Then BΛG has an ordered multiplicative
basis {e1, e2, α, β′σ} by Proposition 3.6 and BΛG

∼= KΓ̃/I by [6, Theorem 3.8] where

Γ̃ : 1• ////•2 .

Note that dimBΛG = 4 = KΓ̃, and hence I = 0 and BΛG
∼= KΓ̃. Thus Γ̃ is the Ext-quiver

of BΛG and ΛG ∼= M2(BΛG) ∼= M2(KΓ̃), this fact will be mentioned again in Example
3.17.

Proposition 3.8. For any i, j, k, l, s, |vi
kkEsv

j
ll| ≤ 1 with vi

kk ∈ v̄i and vj
ll ∈ v̄j.

Proof. Note that vi
kkEsv

j
ll = {vi

kkbv
j
ll, b ∈ Es} \ {0} by definition. If vi

kkbv
j
ll = 0 for any

b ∈ Es, then vi
kkEsv

j
ll = ∅. So |vi

kkEsv
j
ll| = 0. Otherwise, vi

kkEsv
j
ll 6= ∅. Let b, b′ ∈ vi

kkEvj
ll,

then ∃ b1, b2 ∈ V ∪ Ṽ such that b′ = b1bb2. It follows that

o(b1) = o(b′) = vi
kk = o(b) = t(b1) and t(b2) = t(b′) = vj

ll = t(b) = o(b2),

and hence b1, b2 ∈ V by Lemma 2.8. Hence, b′ = b. ¤

Corollary 3.9. For any vi
kk, v

i
k′k′ ∈ v̄i and vj

ll, v
j
l′l′ ∈ v̄j, then | vi

kkEvj
ll |=| vi

k′k′Evj
l′l′ |.

Proof. It is easy to see by Proposition 3.8 and vi
kkEvj

ll =
⋃

λ∈Λ vi
kkEλvj

ll. ¤

Proposition 3.10. Every b ∈ B̃ can be written as a product b1 · · · br with bi ∈ E. In
particular, V ∪ Ṽ ∪ E generate the multiplicative basis B.
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Proof. The proof is similar to [6, Proposition 3.7]. Without loss of generality, let b ∈ B̃

and b = b1b2 with b1, b2 ∈ B̃. By W3, Lemma 2.5 and assumption, we get b > b1 and
b > b2. If both b1 and b2 are in E , then we are done. Continuing in this fashion, we get
b = bi1bi2 . . . bir with bij ∈ B̃. Since > is a total order, we have a proper descending chain
b > bis1

> · · · > bisu
where the chain is r + 1 elements long. But > is a well-order and

this process must stop. That is, each bij must be product indecomposable and we are
done. ¤

For any rational number q, denote dqe = ceil(q) = min{n ∈ Z|q 6 n}. Now we define
the Green quiver Q of R on B as follows:

(i) The vertex set Q0 is the upper index set {1, · · · , n} of {v̄1, · · · , v̄n};
(ii) tij = d mij

kikj
e is the number of arrows from i to j where mij = |vi

kkEvj
ll| for some fixed

k and l.
Note that (1) tij is unique determined by the pair (i, j) due to Corollary 3.9; (2) if

mij = +∞ for some i, j, then tij = +∞, that is, in Q there are infinite arrows from i to j.
Let Ai be the K-subalgebra of R generated by the bases set {vi

st} with 1 6 s, t 6 ki,

and A =
n⊕

i=1

Ai, M =
n⊕

i,j=1
iMj with iMj the free Ai-Aj-bimodule with basis consisting of

the mij arrows from i to j, then the generalized path algebras K(Q,A) ∼= T (A,M) with
A = {Ai}n

i=1. It is easy to check that each Ai
∼= Mki

(K).

Proposition 3.11. If R is an Artinian K-algebra with a multiplicative basis B, then
J = R〈E〉 = K〈B̃〉 is the radical of R.

Here R〈E〉 denotes the ideal of R generated by E , K〈B̃〉 the K-linear space generated
by B̃.

Proof. Consider the chain · · · ⊂ J i ⊂ · · · ⊂ J2 ⊂ J , then there is an integer n such that
Jn+1 = Jn. First, we show that Jn = 0.

Assume Jn+1 = Jn 6= 0. Then there is a minimal element b of B̃ · · · B̃︸ ︷︷ ︸
n

by W0, and so

there are r1, · · · , rn, rn+1 ∈ J such that b = r1r2 · · · rnrn+1. Set ri =
∑
ji

kji
bji

with bji
∈ B̃,

then b =
∑

j1···jn+1

kj1 · · · kjn+1bj1 · · · bjn
bjn+1 . So b = bj1bj2 · · · bjn

bjn+1 for some j1 · · · jn+1. By

W3 and Lemma 2.5, we get b > bj1bj2 · · · bjn
∈ B̃ · · · B̃︸ ︷︷ ︸

n

which contradicts to the minimal

property.
Thus Jn = 0, that is, J is nilpotent, so J ⊂ rad(R).
Now, it is sufficient to show that rad(R) ⊂ J . Let 0 6= r ∈ rad(R).
If there is a v ∈ V such that v ∈ Supp(r), then vrv ∈ rad(R) and Supp(vrv) \ {v} ⊂ B̃.

Set vrv = kv +
∑
i

kibi with bi ∈ B̃ and k, ki ∈ K. Note that
∑
i

kibi ∈ J ⊂ rad(R), then

v ∈ rad(R). It follows that v is nilpotent, a contradiction. Thus V ∩ Supp(r) = ∅.
If there is a ṽ ∈ Ṽ such that ṽ ∈ Supp(r), then

o(ṽ)rt(ṽ) ∈ rad(R) and Ṽ ∩ Supp(o(ṽ)rt(ṽ)) = {ṽ}
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by Lemma 3.3. Similar to the above proof, we get ṽ ∈ rad(R). And so o(ṽ) = ṽṽ−1 ∈
rad(R), which is contradict to the above proof. Thus Ṽ ∩ Supp(r) = ∅.

Therefore Supp(r) ⊂ B̃, that is, r ∈ J . So J = rad(R). ¤

Corollary 3.12. If R is Artinian with weakly ordered multiplicative basis B, then the
Green quiver Q of R on B is just the natural quiver of R.

Proof. By Proposition 3.11, R/J =
n⊕

i=1

Ri with Ri = 〈vi
st + J : 1 6 s, t 6 ki〉. Put

iMj = Ri · J/J2 ·Rj,

iMj = K〈vi
stbv

j
pq + J2 : b ∈ E , 1 6 s, t 6 ki, 1 6 p, q 6 kj〉. (1)

= Ri〈vi
1tbv

j
p1 + J2 : b ∈ E , 1 6 t 6 ki, 1 6 p 6 kj〉Rj. (2)

Let T = {vi
stbv

j
pq + J2 : b ∈ E , 1 6 s, t 6 ki, 1 6 p, q 6 kj}, then we construct a

map χ : T → vi
kkEvj

ll via χ(vi
stbv

j
pq + J2) = vi

ktbv
j
pl. Note that vi

ktbv
j
pl = vksv

i
stbv

j
pqvql and

vi
stbv

j
pq = vskv

i
ktbv

j
plvlq, then χ is well defined and bijective by Lemma 3.5. By (1), we get

iMj = 〈T 〉. It follows that rkRi
(iMj)Rj

(2)
= ddimiMj

kikj
e = d |vi

kkEvj
ll|

kikj
e, as desired. ¤

From Corollary 3.12, we know that the Green quiver of an algebra R on weakly ordered
multiplicative basis B can be thought as a generalization of the natural quiver of an artinian
algebra defined in [7][9][10].

Let iΩj = {(s, α, t)} be a triple set with 1 6 s 6 ki, 1 6 t 6 kj and α an arrow
from i to j. Set Sij = {vi

kkEλvj
ll

∣∣λ ∈ Λ, vi
kkEλvj

ll 6= 0} for some fixed k and l, then
|Sij| = |vi

kkEvj
ll| = mij.

Note that |iΩj| = mijkikj and mij > |vi
kkEvj

ll|
ki×kj

, then |iΩj| > |Sij| = mij. Thus we get

Lemma 3.13. There is a surjective map σij : iΩj → Sij.

Lemma 3.14. The set iMj = {vi
klαvj

st|α is an arrow from i to j} is the K-basis of iMj.

Proof. By definition, iMj is linearly independent. For any x ∈ iMj, there are {ai
p}p=1,··· ,mi

⊆
Ai and {aj

q}q=1,··· ,mj
⊆ Aj such that x =

∑
p,q

ai
pαaj

q. Note that ai
p =

∑
s,t

kstv
i
st and

aj
q =

∑
s′,t′

ks′t′v
j
s′t′ for kst, ks′t′ ∈ K, then

x =
∑
p,q

(
∑
s,t

kstv
i
st)α

∑
s′,t′

ks′t′v
j
s′t′ =

∑
p,q

∑
k,l

∑
s,t

kstks′t′v
i
stαvj

s′t′ .

Thus iMj is a K-basis of iMj. ¤

Corollary 3.15. viMj ⊆ iMj ∪ {0} and iMjv ⊆ iMj ∪ {0} for any v ∈ V ∪ Ṽ.

Theorem 3.16. Let R be a K-algebra with a weakly ordered multiplicative basis (B, >)
and Q be the quiver associated to R. Then there is a surjective K-algebra homomorphism
ϕ : K(Q,A) → R.
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Proof. As above, we have known the unique set of algebras A and the quiver Q associated
to R. Now, we firstly define a map ϕ̃ : A⊕M → R.

Denote v
[i0]
kl = (0, · · · , 0, vi0

kl, 0, · · · , 0)
i0−th

∈ A and vi0
kl[α]vj0

st =
⊕n

i,j=1 δij where only δi0j0 =

vi0
klαvj0

st and all other δij = 0. Then, the sets A = {v[i]
kl : 1 ≤ i ≤ n, 1 ≤ k, l ≤ ki} and

M = {vi
kl[α]vj

st : 1 ≤ i ≤ n, 1 ≤ k, l ≤ ki; 1 ≤ j ≤ n, 1 ≤ s, t ≤ kj} are respectively the
K-basis of A and M .

For any k, l, i, α, define ϕ̃(v[i]
kl ) := vi

kl, ϕ̃(vi
kk[α]vj

ll) := b the unique element in σij((k, α, l))
by Proposition 3.8, moreover define ϕ̃(vi

sk[α]vj
lt) := vi

skϕ̃(vi
kk[α]vj

ll)v
j
lt (∀1 6 s 6 ki, 1 6 t 6

kj). Then ϕ̃ can be extended linearly to a K-linear map.
And,

1A = Σn
i=11Ai

= Σn
i=1Σ

ki

k=1v
[i]
kk

which implies that ϕ̃(1A) = 1R. Since ϕ̃(v[i]
klv

[j]
st ) = 0 = vi

klv
j
st = ϕ̃(v[i]

kl )ϕ̃(v[j]
st ) if i 6= j or

l 6= s and ϕ̃(v[i]
klv

[i]
lt ) = ϕ̃(v[i]

kt) = vi
kt = vi

klv
i
lt = ϕ̃(v[i]

kl )ϕ̃(v[i]
lt ), we have that ϕ̃|A is a K-algebra

homomorphism.
Furthermore,

v
[i]
kpϕ̃(vi

pl[α]vj
st) = vi

kpv
i
plϕ̃(vi

ll[α]vj
ss)v

j
st = vi

klϕ̃(vi
ll[α]vj

ss)v
j
st,

and ϕ̃(v[i]
kpv

i
pl[α]vj

st) = ϕ̃(vi
kl[α]vj

st) = vi
klϕ̃(vi

ll[α]vj
ss)v

j
st, thus we get that

v
[i]
kpϕ̃(vi

pl[α]vj
st) = ϕ̃(v[i]

kpv
i
pl[α]vj

st)

which means that ϕ̃|M is a left A-module homomorphism. Similarly, ϕ̃|M is a right A-
module homomorphism.

Conversely, for any b ∈ E , there are vi
kk, v

j
ll ∈ V such that vi

kkbv
j
ll = b by Lemma 2.6,

then b ∈ vi
kkEvj

ll. Since E =
⋃

λ∈Λ Eλ, there is an equivalent class Eλ such that b is the
unique element vi

kkEλvj
ll, and hence vi

kkEλvj
ll 6= 0 such that vi

kkEλvj
ll ∈ Sij . Choose a triple

(k, α, l) ∈ σ−1
ij (vi

kkEλvj
ll), then ϕ̃(vi

kk[α]vj
ll) = b.

On the other hand, by definition of ϕ̃, V ∪ Ṽ ⊆ Imϕ̃. And, by Proposition 3.10, R is
generated as an algebra by V ∪ Ṽ ∪ E . Therefore, it means that ϕ̃ is surjective.

By the universal property of K(Q,A) as a tensor algebra, ϕ can be constructed and is
also surjective. ¤

Example 3.17. (i) Let ΛG is a skew group algebra in Example 2.3. Since e1 ∼ e2, e1′ ∼ e2′ ,

E = {α, α′, ασ, α′σ}︸ ︷︷ ︸
E1

⋃ {β, β′, βσ, β′σ}︸ ︷︷ ︸
E2

. Thus Q : 1• a //•2 is the Green quiver of ΛG

and A = {A1 = M2(K), A2 = M2(K)}. Moreover, let

σ12 : {(1, a, 1), (1, a, 2), (2, a, 1), (2, a, 2)} → {α, β′σ}

via σ12((1, a, 1)) = α = σ12((1, a, 2)) and σ12((2, a, 1)) = β′σ = σ12((2, a, 2)).
Thus, by Theorem 3.16 and its proof, there is an isomorphism: ΛG ∼= K(Q,A)/I where

I = 〈E11aF11 − E11aF22, E22aF11 − E22aF22〉.
(ii) We can prove that ΛG is not a normal generalized path algebra.
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In fact, assume that ΛG ∼= K(Q̃, Ã) for a quiver Q̃ and a collection Ã of simple K-
algebras. Then the number |Q̃0| of the vertex set of Q̃ is two by [9, The diagram]. It
follows that Ã = A or Ã = {M3(K),K} since the identity of ΛG is the sum of four
primitive orthogonal idempotent elements. It is easy to check dimK(Q̃,A) > 20 and
dimK(Q̃, {M3(K),K}) > 19 in any cases of the numbers of arrows of Q̃ which are contra-
dict to dimΛG = 16.

Remark 3.18. (1) This example says that the matrix algebra of a generalized path algebra
is not necessarily a generalized path algebra, and so the property that an algebra possesses
the structure of generalized path algebra is not morita invariant.

(2) By Example 3.7, the basic algebra BΛG of ΛG is a path algebra and then is hereditary.
It follows that ΛG is hereditary. It means that NOT any hereditary artinian algebras is
a generalized path algebra, even if it is splitting over radical, e.g. when the ground-field
K is of characteristic 0. In [10], the authors gave that for a hereditary Artinian algebra A

splitting over radical such that the surjective homomorphism π : K(∆A,A) → A given in
[10] possesses the kernel ker(π) ⊆ J2, then π is an isomorphism and thus A is a normal
generalized path algebra. The example given here implies the condition ker(π) ⊆ J2 in
this result of [10] can not be omitted.

4. Skew Group Algebras

Throughout this section, Λ is a K-algebra with a ordered multiplicative basis (B, >).
Then 1Λ = v1 + · · ·+ vh, and denote by

Γ0 = {v1 · · · vh};
Γ1 = {b ∈ B|b 6∈ Γ0 and b cannot be written as a product b1b2 with b1, b2 ∈ B \ Γ0}.
Suppose that σ : Γ0 ∪ Γ1 → Γ0 ∪ Γ1 is a bijection which can be extended to a K-linear

automorphism of Λ satisfying the following:

(i) σ(Γ0) = Γ0 and σ(Γ1) = Γ1.
(ii) σi(λ) = σ(σi−1(λ)) for all λ ∈ Λ and i > 1.
(iii) σn(λ) = λ for all λ in Λ.

Let G = 〈σ〉 be a finite cyclic group with |G| = n and charK - n. Then the skew group
algebra of G over Λ, denote by ΛG, is given by the following data:

(i) ΛG is the free left Λ-module with the elements of G as a basis.
(ii) The multiplication in ΛG is defined by the rule (λiσ

i)(λjσ
j) = λiσ

i(λj)σi+j for
any λi and λj in Λ and 1 6 i, j 6 n.

In the following, let ε be the n-th primitive root of 1 and b̄ a G-orbit of b ∈ B. Since
(B, >) is well-order, any orbit b̄ (or v̄) has a unique minimal element, denoted as b (or v).

For any vi, vj ∈ Γ0, let di = |v̄i|, dj = |v̄j|, and tij is the least common multiple of di

and dj. Trivially, σtij is an automorphism of viΓ1vj, then tij

∣∣|b̄|.
Lemma 4.1.

d

n

n/d−1∑
i=0

εdλi =

{
1, λ =

n

d
modn

0, otherwise
17



Proposition 4.2. Denote Ev,µ
s,t =

d

n

n/d−1∑
m=0

εmµdσsvσmd−t for any 0 6 µ <
n

d
, 0 6 s, t <

d, v ∈ v̄ ⊂ Γ0}, then the set

{Ev,µ
s,t |0 6 µ <

n

d
, 0 6 s, t < d, v̄ ∈ Γ0}

is a 0-closed set under multiplicative where d = |v̄|.

Proof. In the sequel, we show that

Ev,µ
s,t Ev′,µ′

s′,t′ =

{
Ev,µ

s,t′ , v = v′, t = s′ and µ = µ′

0, otherwise

In fact,

Ev,µ
s,t Ev′,µ′

s′,t′ =
dd′

n2

n/d−1∑
m=0

n/d′−1∑
m′=0

εmµd+m′µ′d′σsvσmd−tσs′v′σm′d′−t′

=
dd′

n2

n/d−1∑
m=0

n/d′−1∑
m′=0

εmµd+m′µ′d′σs(v)σmd−t+s+s′(v′)σm′d′−t′+md−t+s+s′

If v 6= v′, that is, v and v′ do not lie in the same orbit, then σs(v) 6= σmd−t+s+s′(v′) which
implies that σs(v)σmd−t+s+s′(v′) = 0. It follows that Ev,µ

s,t Ev′,µ′

s′,t′ = 0. So we assume that
Ev,µ

s,t Ev′,µ′

s′,t′ 6= 0, then v = v′. Thus

Ev,µ
s,t Ev,µ′

s′,t′ =
d2

n2

n/d−1∑
m=0

n/d−1∑
m′=0

εmµd+m′µ′dσs(v)σmd−t+s+s′(v)σm′d−t′+md−t+s+s′

=
d2

n2

n/d−1∑
m=0

n/d−1∑
m′=0

εmµd+m′µ′dσs(vσ−t+s′(v))σ(m′+m)d−t′−t+s+s′

=

(
d

n

n/d−1∑
m=0

εm(µ−µ′)d

)(
d

n

n/d−1∑
k=0

εkµdσs(vσ−t+s′(v))σkd−t′−t+s+s′

)

where (m + m′)d = kd(modn) and 0 6 k <
n

d
. By Lemma 4.1 and 0 6 µ, µ′ <

n

d
, we get

µ = µ′. And vσ−t+s′(v) 6= 0 if and only if t = s′(modn) if and only if t = s′. Therefore
Ev,µ

s,t Ev′,µ′

s′,t′ 6= 0 implies that v = v′, µ = µ′ and t = s′. On other hand, if v = v′, µ = µ′ and
t = s′, then by Lemma 4.1

Ev,µ
s,t Ev,µ

t,t′ =
d

n

n/d−1∑
k=0

εkµdσs(v)σkd−t′+s =
d

n

n/d−1∑
k=0

εkµdσsvσkd−t′ = Ev,µ
s,t′

¤

Corollary 4.3. The set {Ev,µ
s,s |0 6 µ <

n

d
, 0 6 s < d, v̄ ⊂ Γ0} is a family of orthogonal

idempotents in ΛG.

Lemma 4.4. For any b ∈ b̄(⊂ Γ1), let vk, vl ∈ Γ0 such that σp(vk)bσq(vl) 6= 0. If we set

(ΓG)1 = {Evk,µk
s,p bEvl,µl

q,t |b̄ ⊂ Γ1, 0 6 µk <
n

dk

, 0 6 µl <
n

dl

, 0 6 s < dk, 0 6 t < dk} \ {0},

then |(ΓG)1| = n|Γ1|.

18



Proof. For some fixed vertices vi and vj, let

(ΓG)ij
1 = {Evi,µi

s,p bE
vj ,µj

q,t |0 6 µi <
n

di

, 0 6 µj <
n

dj

, 0 6 s < di, 0 6 t < dj} \ {0},

then it is sufficient to show that |(ΓG)ij
1 | = n|b̄|.

In fact,

Evi,µi
s,p bE

vj ,µj

q,t =
didj

n2

(
n/di−1∑

m=0

εmµidiσsviσ
mdi−p

)
b

(
n/dj−1∑

k=0

εkµjdjσqvjσ
mdj−t

)

=
didj

n2

n/di−1∑
m=0

n/dj−1∑
k=0

εmµidi+kµjdjσmdi+s−p(b)σmdi+kdj−t+s−p+q

Let |b̄| = D, and write mdi = MD + m′di and kdj = KD + k′dj with 0 6 M, K <
n

D
,

0 6 m′ <
D

di

and 0 6 k′ <
D

dj

. This yields

Evi,µi
s,p bE

vj ,µj

q,t =
didj

n2

∑
M,K,m′,k′

ε(M+K)Dµi+m′diµi+KD(µi−µj)+k′djµjσm′di+s−p(b)σ(M+K)D+m′di+k′dj−t+s−p+q

Finally, if we write dir ≡ (M +K)D + dim
′(modn) with 0 6 r < n/di, then we obtain the

further factorization

Evi,µi
s,p bE

vj ,µj

q,t =

(
D

n

∑
K

εKD(µi−µj)

)(
didj

nD

∑
r,k′,m′

εdirµi+k′djµjσm′di+s−p(b)σdir+k′dj−t+s−p+q

)

Thus Evi,µi
s,p bE

vj ,µj

q,t 6= 0 if and only if µj ≡ µi

(
mod

n

D

)
, and hence |(ΓG)ij

1 | =
D

dj

· D

di

· n

D
·

didj = nD = n|b̄|. ¤

Let (ΓG)n
1 = (ΓG)1(ΓG)1 · · · (ΓG)1︸ ︷︷ ︸

n

\{0} for any integer n > 0.

Lemma 4.5. BG =
∞⋃

n=0

(ΓG)n
1 is a multiplicative basis of ΛG where (ΓG)01 stands for the

set {Ev,µ
s,t |0 6 µ <

n

d
, 0 6 s, t < d, v ∈ Γ0} with d = |v̄|.

Proof. First, we show that BG is 0-closed. Assume α ∈ (ΓG)n
1 , β ∈ (ΓG)m

1 and αβ 6= 0,
if n,m > 0, then it is obvious that αβ ∈ (ΓG)n+m

1 . If n = m = 0, then αβ ∈ Γ0
1 by

Proposition 4.2. Without loss of generality, we assume that α = Ev,µ
s,0 and β = Ev,µ

0,0 bEv′,µ′

0,t ,
then αβ = Ev,µ

s,0 Ev,µ
0,0 bEv′,µ′

0,t = Ev,µ
s,0 bEv′,µ′

0,t ∈ ΓG1
1, as required.

Secondly, we show that BG is a K-basis of ΛG.
We note that B̃ , {bσi|b ∈ B, 0 6 i < n} is a K-basis of ΛG. It is sufficient to show

that BG is a linearly independent set by which BG can be linearly expressed.
Assume that there is an equation

m∑
i=1

kiE
vi,µi

si,ti
= 0 (1)
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satisfying Evi,µi

si,ti
6= E

vj ,µj

sj ,tj
if i 6= j, then for any fixed p ∈ {1, · · · ,m}, we get

0 = Evp,µp
sp,sp

(
m∑

i=1

kiE
vi,µi

si,ti

)
E

vp,µp

tp,tp
=

m∑
i=1

kiE
vp,µp
sp,sp

Evi,µi

si,ti
Ev1,µ1

t1,t1 = kpE
vp,µp

sp,tp
. (∗)

So each kp = 0 in Eq.(1), that is, (ΓG)01 is linearly independent. Moreover, |(ΓG)01| =

|{Ev,µ
s,t }| =

n

d
· d2 · |Γ0|

d
= n|Γ0| =

∣∣{bσi|b ∈ Γ0, 0 6 i < n}
∣∣. By definition of Ev,µ

s,t , (ΓG)01
and {bσi|b ∈ Γ0, 0 6 i < n} are linearly expressed each other.

In the similar way as in (∗), without loss of generality, we can assume that there is an
equation

m∑
i=1

αiE
v,µ
0,pi

bEv′,µ′

qi,0 = 0 (2)

with αi ∈ K, 0 6 pi < d, 0 6 qi < d′, either pi 6= pj or qi 6= qj if i 6= j. Note that

Ev,µ
0,pi

bEv′,µ′

qi,0 =
dd′

n2

n/d−1∑
m=0

n/d′−1∑
k=0

εmµd+kνd′σmd−pi(b)σmd+kd′−pi+qi ,

then σmd−pi(b) = σm′d−pj (b) if and only if md−pi = m′d−pj(mod|b̄|) if and only if pi = pj

and |b̄|
∣∣∣(m−m′)d since d

∣∣|b̄| and 0 6 pi, pj < d.

If σmd−pi(b)σmd+kd′−pi+qi = σm′d−pj (b)σm′d+k′d′−pj+qj , then

pi = pj, |b̄|
∣∣∣(m−m′)d

(m−m′)d + (k − k′)d′ = qj − qi(mod|b̄|).
It follows that qi = qj since d′

∣∣|b̄| and 0 6 qi, qj < d′.
So if either pi 6= pj or qi 6= qj, then σmd−pi(b)σmd+kd′−pi+qi = σm′d−pj (b)σm′d+k′d′−pj+qj .

Since {bσi|b ∈ Γ1, 0 6 i < n} is a linearly independent set, each αi = 0 in Eq. (2). It
follows that (ΓG)1 is linearly independent. And since |(ΓG)1| =

∣∣{bσi|b ∈ Γ1, 0 6 i < n}
∣∣

by Lemma 4.4, (ΓG)1 and {bσi|b ∈ Γ1, 0 6 i < n} are linearly expressed each other.
Note that BG is generated by (ΓG)01 ∪ (ΓG)1, and so it is linearly independent. Mean-

while, for any bσi with b ∈ B and 0 6 i < n, there are β1, · · · , βb ∈ Γ0 such that
bσi = β1 · · ·βbσ

i. By the above proof, we know that each βk (k = 1, · · · , b) is linearly
expressed by (ΓG)1. So there are ki1 ∈ K∗ and ρi1 ∈ (ΓG)1 such that

bσi =

(
m1∑

i1=1

ki1ρi1

)
· · ·

(
mb∑

ib=1

kib
ρib

)
∈ K〈(ΓG)b

1〉,

as desired. ¤

Theorem 4.6. ΛG is a K-algebra with a weakly ordered multiplicative basis.

Proof. By Lemma 4.5, (ΓG) is a multiplicative basis of ΛG. Now we define an order Â on
(ΓG) as follows.
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For any Ev,µ
s,t , Ev,µ′

s′,t′ ∈ (ΓG)01, define

Ev,µ
s,t Â Ev′,µ′

s′,t′ if





v > v′

v = v′, µ > µ′

v = v′, µ = µ′, s > s′

v = v′, µ = µ′, s = s′, t > t′

Let α, α′ ∈ (ΓG)11, for convenience, we set α = ebf and α′ = e′b′f ′ with e, f, e′, f ′ ∈
(ΓG)01 and b, b′ ∈ B. Then

α Â α′ if





b > b′

b = b′, e > e′

b = b′, e = e′, f > f ′

For any α ∈ (ΓG)n
1 , β ∈ (ΓG)m

1 , n > m implies that α Â β. If n = m > 1, then we
write α = α1α2 · · ·αn and β = β1β2 · · ·βn with αi, βi ∈ ΓG1. If there is some k such that
αi = βi for any 0 6 i < k and αk Â βk, then we define α Â β.

In the sequel, we check that Â is a weakly admissible order on (ΓG).
V = {Ev,µ

s,s } and Ṽ = (ΓG)01/V.
A0. Â is obvious a total order and is a well order on ΓG0

1 (for (ΓG)01 is finite). For any
subset T of (ΓG)1. Let T̃ = {b ∈ Γ1| there are e, f ∈ (ΓG)01 such that ebf ∈ T}, then there
is a minimal element b1 on T̃ since > is a well order on B. Set T1 = {eb1f |e, f ∈ (ΓG)01}∩T ,
and hence there is a minimal element t1 in T1. Clearly, t1 is also a minimal element in
T , that is, Â is a well order on (ΓG)1. Moreover, for any S ⊂ (ΓG), there is a least n

such that S0 = (ΓG)n
1

⋂
S 6= ∅. For any α = α1 · · ·αn ∈ (ΓG)n

1 with αi ∈ (ΓG)1, then
we denote by ti(α) = αi. Let S1 = {α ∈ S0|∀ β ∈ S0, t1(β) º t1(α)}. By induction,
Si = {α ∈ Si−1|∀ β ∈ Si−1, ti(β) º ti(α)}. Then by n steps, we have |Sn| = 1. So the
unique element sn ∈ Sn is a minimal element of S.

A1 and A2 are trivial.
A3. For any α1, α3 ∈ (ΓG), if there are α2, α4 ∈ (ΓG)/Ṽ such that α1 = α2α3α4.

Assume that α2 or α4 in
∞⋃

n=1

(ΓG)n
1 , then α1 Â α3. But if α2, α4 ∈ ΓG0/Ṽ, then it is easy

to check that α2α3α4 = α3 = α1.
Now we complete the proof. ¤
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