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Abstract. In this paper, we prove that, under an assumption, a harmonic
map of finite ∂̄-energy from Cn (n ≥ 2) to any Kähler manifold must be a

holomorphic map. It can be seen as a complex analogue of the Liouville type
theorem for harmonic maps.

1. Introduction

The classical Liouville theorem says that a real-valued nonconstant harmonic
function on Rn has to be unbounded. Sealey (see [2] or [6]) gave an analogue for
harmonic maps states that any harmonic map of finite energy from Rn (n ≥ 2) to
any Riemannian manifold must be a constant map. In this paper, we consider the
complex analogue, i.e. the following question:

Quention: Does a harmonic map with finite ∂̄-energy from Cn (n ≥ 2) to any
Kähler manifold have to be a holomorphic map?

From Siu and Yau’s proof of Frankel conjecture [3], we know that it is very
important to study the holomorphism of harmonic maps. So the above question is
obviously very interesting. We also hope that it is true. But we do not know how
to prove it. Our slightly weak result can be stated as follows:

Theorem 1.1. Let f be a harmonic map of finite ∂̄-energy from Cn (n ≥ 2) to any
Kähler manifold. If f satisfies that limR→∞R

∫
∂BR

(|f∗ ∂
∂r |

2− < J
′
f∗

∂
∂r , f∗J

∂
∂r >

)dv ≥ 0, where J and J
′
denote the complex structures of Cn and target manifold,

∂
∂r is the radical vector field, then f is a holomorphic map.

If we consider harmonic map f = (f1, ..., f2m) (clearly in this case every fi is a
harmonic function) from Cn to Cm, then the answer of above question is true (see
[4]).

Theorem 1.2. Let f be any harmonic map of finite ∂̄-energy from Cn to Cm, then
f is a holomorphic map.

The proof of theorem 1.2 is not difficult but is different to theorem 1.1. We do
not give it here.

The main idea of the proof is to define an one parameter family of maps and
deduce the ∂̄-energy variation formula. Then comparing with the directly compu-
tation via derivative.
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The rest three sections is organized as follows: In section 2, we introduce briefly
the harmonic maps. In section 3, we study the first variation of ∂̄-energy. we would
give the proof of theorem 1.1 in last section.

Acknowledgement: I would like to thank my teacher Liu Kefeng for many
encouragements.

2. preliminaries

In this section we introduce some basic concepts of harmonic maps we need. For
details, one may see the book of Xin [6].

Let (M, g), (N,h) be two Riemannian manifolds. f is a smooth map from M to
N . We can define the energy density of f by

e(f) =
1
2
trace|df |2 =

1
2

< f∗ei, f∗ei >,

where {ei} (i = 1, ...,m = dimM) is the local orthonormal frame field of M . The
energy integral is defined by

E(f) =
∫

M

e(f)dv.

If we choose the natural coordinates {xi} and {yα}, the energy density can be
written as

(2.1) e(f)(x) =
1
2
gij(x)

∂fα(x)
∂xi

∂fβ(x)
∂xj

hαβ(f(x)).

The tensor field of f is

τ(f) = (∇ei
df)(ei),

where ∇ is the Levi-Civita connection of M .

Definition 2.1. If τ(f) = 0, we say that f is a harmonic map.

From the variation view, harmonic maps can be regarded as the critical points
of energy integral functional. Let ft be an one parameter family of maps. We can
regard it as a smooth map from M × (−ε, ε) → N . Let f0 = f , dft

dt |t=0 = v. Then
we have the following first variation formula [6]

(2.2)
d

dt
E(ft)|t=0 =

∫
M

divWdv −
∫

M

< v, τ(f) > dv,

where W =< v, f∗ej > ej . If M is compact, then
∫

M
divWdv = 0, we know that

harmonic maps are the critical points of energy functional.

3. ∂̄-energy variation

In this section we consider complex case.
Let f be a harmonic map from Cn to any Kähler manifold N . J is the standard

complex structure of Cn and J
′

is the complex structure of N . ω and ωN are the
corresponding Kähler forms of Cn and N (i.e. ω(., .) =< J., . > and ωN (., .) =<
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J
′
., . >). The ∂-energy density is defined by [6]

e′(f) = |∂f |2 = |f∗J + J ′f∗|2

=
1
4
(|f∗ei|2 + |f∗Jei|2 + 2 < J

′
f∗ei, f∗Jei >)

=
1
2
(e(f)+ < f∗ωN , ωM >)

and the ∂̄-energy density is defined by

e′′(f) = |∂̄f |2 = |f∗J − J ′f∗|2

=
1
4
(|f∗ei|2 + |f∗Jei|2 − 2 < J

′
f∗ei, f∗Jei >)

=
1
2
(e(f)− < f∗ωN , ωM >),

where {ei, Jei} (i = 1, ..., n) is the Hermitian frame of Cn and < f∗ωN , ω > denotes
the induced norm. We call that f is holomorphic (resp. conjugate holomorphic),
if f∗J = J

′
f∗ (resp. f∗J = −J

′
f∗). Obviously f is holomorphic if and only if

|∂̄f |2 ≡ 0. We denote ∂̄-energy by

E∂̄(f) =
∫

Cn

|∂̄f |2dv.

Now we define an one parameter family of maps ft(x) = f(tx) : Cn −→ N, t ∈
(1 − ε, 1 + ε) and f1 = f . The relation between E∂̄(f) and E∂̄(ft) is given by the
following lemma:

Lemma 3.1. If E∂̄(f) < ∞, then
∫

Cn |∂̄ft|2dv = t2−2n
∫

Cn |∂̄f |2dv.

Proof. Under the standard Hermitian metric of Cn, gij = δij . From (2.1), clearly
we have

e(ft)(x) = t2e(f)(tx).

Under the natural coordinates, it is also easy to show that

< f∗t ωN , ω > (x) = t2 < f∗ωN , ω > (tx).

Hence we have
|∂̄ft|2(x) = t2|∂̄f |2(tx).

Then ∫
BR

|∂̄ft|2dv = t2−2n

∫
BRt

|∂̄f |2dv

where BR is the Euclid ball of radius R around 0. Let R −→ ∞, we obtain the
lemma. �

Let us consider the first variation of ∂̄ energy :

Lemma 3.2. d
dtE∂̄(ft)|t=1 = limR→∞

R
2

∫
∂BR

(|f∗ ∂
∂r |

2− < J
′
f∗

∂
∂r , f∗J

∂
∂r >)dv,

where ∂BR is the Euclid sphere of radius R around 0.

The proof will be separated in two steps.
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Proof. Let {e1, ..., e2n = ∂
∂r} be a local orthonormal frame field, where ∂

∂r denotes
unit radial vector field. By the definition of ft(x), it is easy to see that the variation
vector field of ft at t = 1 is v = dft

dt |t=1 = rf∗
∂
∂r .

Step 1: From (2.2), we have

d

dt

∫
BR

e(ft)dv|t=1 =
∫

BR

div < v, f∗ej > ejdv −
∫

BR

< v, τ(f) > dv

=
∫

∂BR

< v, f∗
∂

∂r
> dv

= R

∫
∂BR

|f∗
∂

∂r
|2dv.

For f is harmonic, we know that the tensor field τ(f) = 0 and the second ”=”
follows from divergence theorem [5].

Step 2: Another hand, from [6], we know d
dtf

∗
t ωN = dθt, here θt = f∗t i(ft∗

∂
∂t )ω

N .
Since dft

dt |t=1 = rf∗
∂
∂r , we have θ1 = θ = rf∗i(f∗ ∂

∂r )ωN . Then

d

dt

∫
BR

< f∗t ωN , ω > dv|t=1

=
∫

BR

< dθ, ω > dv

=
∫

BR

d(θ ∧ ∗ω) +
∫

BR

< θ, δω > dv

=
∫

∂BR

θ ∧ ∗ω −
∫

BR

< θ, ∗dωn−1 > dv

=
∫

∂BR

θ ∧ ∗ω

= −
∫

∂BR

θ(ei)ω(ei,
∂

∂r
)dv

= −R

∫
∂BR

ωN (f∗
∂

∂r
, f∗ei)ω(ei,

∂

∂r
)dv

= −R

∫
∂BR

< J
′
f∗

∂

∂r
, f∗ei >< Jei,

∂

∂r
> dv

= R

∫
∂BR

< J
′
f∗

∂

∂r
, f∗J

∂

∂r
> dv.

Note that < dθ, ω > dv = dθ ∧ ∗ω, the second ”=” follows from the differential
rules, where δ and ∗ are the co-differential and star operators. By the stokes
theorem and the definition of δ, the third ”=” holds. The fifth ”=” follows from
direct computation. Since we may choose e1 = J ∂

∂r , the last ”=” holds. Hence we
have

d

dt

∫
BR

|∂̄ft|2dv|t=1 =
R

2

∫
∂BR

(|f∗
∂

∂r
|2− < J

′
f∗

∂

∂r
, f∗J

∂

∂r
>)dv.

According to lemma 3.1, E∂̄(ft) < ∞. Let R −→∞, we get the lemma. �

Remark 3.3. If M is a compact manifold ,
∫

M
< f∗ωN , ωM > dv is a homotopy

invariant. This was observed firstly by Lichnerowicz [1].
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4. Proof of theorem 1.1

Now we can use lemma 3.1 and 3.2 to prove theorem 1.1: If f satisfies that
limR→∞R

∫
∂BR

(|f∗ ∂
∂r |

2− < J
′
f∗

∂
∂r , f∗J

∂
∂r >)dv ≥ 0. Then by lemma 3.2 we have

d
dtE∂̄(ft)|t=1 ≥ 0. But from lemma 3.1,

d

dt
E∂̄(ft)|t=1 = lim

t→1

∫
Cn |∂̄ft|2dv −

∫
Cn |∂̄f |2dv

t− 1

= lim
t→1

t2−2n − 1
t− 1

∫
Cn

|∂̄f |2dv

= (2− 2n)
∫

Cn

|∂̄f |2dv.

Since n ≥ 2, this yields
∫

Cn |∂̄f |2dv = 0. Hence |∂̄f |2 ≡ 0 and f is a holomorphic
map.

Considering ∂-energy, with same arguments, we have

Theorem 4.1. Let f be a harmonic map of finite ∂-energy (i.e.
∫

Cn |∂f |2 < ∞) from
Cn (n ≥ 2) to any Kähler manifold. If f satisfies that limR→∞R

∫
∂BR

(|f∗ ∂
∂r |

2+ <

J
′
f∗

∂
∂r , f∗J

∂
∂r >)dv ≥ 0, where J and J

′
denote the complex structures of Cn and

target manifold, ∂
∂r is the radical vector field, then f is a conjugate holomorphic

map.
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