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Wavelets and framelets from dual pseudo splines ∗

Yi Shen†and Song Li‡

Abstract

Dual pseudo splines constitute a new class of refinable functions with B-splines as special
examples, which was introduced in [8]. In this paper, we shall construct Riesz wavelet associated
with dual pseudo splines. Furthermore, we use dual pseudo splines to construct tight frame
systems with desired approximation order by applying the unitary extension principle.
Keywords. Dual pseudo splines, Riesz wavelet basis, Tight wavelet frame.
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1 Introduction

Pseudo splines were shown to be an important family of refinable functions and their properties

were extensively studied by some researches ([2, 4, 5, 6, 19]). Dual pseudo splines were introduced in

[8] in order to derive the maximum degree of polynomial reproduction by subdivision schemes. The

lower bounds for the regularity exponents of the dual pseudo-splines were derived in [3]. The masks

of dual pseudo splines were also used in [13] to construct symmetric orthonormal complex wavelets.

In this paper, we construct Riesz wavelets and tight framelets from dual pseudo splines. We shall

study several approximation properties of dual pseudo splines, which are important in server areas

of approximation theory and wavelet theory. Before proceeding further, let us introduce some

notations and definitions.

Throughout this paper, let L2(R) denote the Banach space of all measurable functions f on R

such that

‖f‖2 :=
(∫

R

|f(x)|2dx
)1/2

<∞.

The Fourier transform of a compactly supported measurable function f is defined to be

f̂(ξ) :=

∫

R

f(x)e−iξxdx, ξ ∈ R.
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Similarly, if c is a (complex-valued) summable sequences on Z, then its Fourier series is defined by

ĉ(ξ) :=
∑

k∈Z

c(k)e−ikξ , ξ ∈ R.

A compactly supported function φ ∈ L2(R) is refinable if it satisfies the refinement equation

φ = 2
∑

k∈Z

a(k)φ(2 · −k), (1.1)

where a : Z → R is a sequence and is called the mask for the refinement equation. In this paper,

we always assume φ̂(0) 6= 0.

For positive integers N, l ∈ N with l < N , the mask of a dual pseudo spline of order (N, l) is

given by

âN,l(ξ) :=
1 + e−iξ

2
cos2N (ξ/2)

l∑

i=0

(
N − 1/2 + i

i

)
sin2i(ξ/2). (1.2)

The corresponding dual pseudo splines φN,l can be defined in terms of their masks. It was showed

in [3] that the dual pseudo splines are compactly supported refinable functions in L2(R). Unless it

is necessary, we drop the subscript “(N, l)” in âN,l and φN,l for simplicity. This new family masks

have some well-known special cases. For examples, when l = 0, 1, N −1, these masks were designed

for stationary subdivision scheme that generates smooth curves (see e.g. [7, 16]) and when l = 0,

the corresponding refinable function is a B-spline with order 2N + 1. Recall that a B-spline with

order N and its mask are defined by

B̂N (ξ) =

(
1− e−iξ

iξ

)N

and â(ξ) =

(
1 + e−iξ

2

)N

, ξ ∈ R.

Note that the mask â defined in (1.2) can be factorized as

â(ξ) :=

(
1 + e−iξ

2

)2N+1

L(ξ), (1.3)

where L(ξ) is a bounded trigonometric polynomial with L(0) = 1 and L(ξ) > 0 for all ξ ∈ R.

Therefore, the dual pseudo spline is the convolution of the B-spline B2N+1 with a distribution.

The rest of the paper is organized as follows. In Section 2, we construct Riesz wavelets from

dual pseudo splines by a nature choice in wavelets analysis. In Section 3, we give a brief discussion

of the approximation order of the truncated tight frame series, where the tight frame are obtained

via the unitary extension principle from the dual pseudo splines.

2 Riesz wavelet basis

Let ψ ∈ L2(R). We say that the wavelet ψ generates a Riesz wavelet basis in L2(R) if there exist

two positive constants C1 and C2 such that

C1


∑

j,k∈Z

|cj,k|2



1/2

≤

∥∥∥∥∥∥
∑

j,k∈Z

cj,kψj,k

∥∥∥∥∥∥
2

≤ C2


∑

j,k∈Z

|cj,k|2



1/2
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for all finitely supported sequences {cj,k}j,k∈Z and the linear span of

X(ψ) := {ψj,k := 2j/2ψ(2j · −k) : j, k ∈ Z}

is dense in L2(R). The generator ψ is called Riesz wavelet. It is well known that the order of

vanishing moments is one of the most important factors for success of wavelet in various applications.

In particular, vanishing moments guarantee the approximation order. We say that ψ has vanishing

moments of order K if

ψ̂(k)(0) = 0 ∀ k = 0, . . . ,K − 1,

where ψ̂(k) denotes the kth derivative of ψ̂.

Due to some desirable properties, Riesz wavelets have been found to be of interest in many

applications such as image processing, computer graphical and numerical algorithms. Riesz wavelets

are generally obtained from a refinable function via the multiresolution analysis. Let φ be a refinable

function whose shifts are stable, a natural choice of ψ is

ψ̂(2ξ) := e−iξâ(ξ + π)φ̂(ξ), ξ ∈ R. (2.1)

See [1, 4, 11, 12, 13, 14]) for some discussions for Riesz wavelets.

When φ is a compactly supported orthonormal refinable function, it is well known that ψ defined

in (2.1) generates an orthonormal wavelet basis for L2(R) [1]. When φ is chosen to be the B-splines

or interpolatory refinable function, Han and Shen showed in [14] that the wavelet defined in (2.1)

is a Riesz wavelet. In [13], Han generalized this results to fractional B-splines, which are refinable

functions introduced by Unser and Blu in [22]. It was shown in [4] that when the refinable function

φ is chosen to be a pseudo spline, the wavelet ψ defined in (3.1) is also a Riesz wavelet.

In this section, we will show that for dual pseudo spline φ, the wavelet defined by (2.1) is a

Riesz wavelet. In order to show this, we need the following Lemma 3.1 that was obtained by Han

and Shen.

Lemma 2.1. [14, Theorem 2.1] Let a be a finitely supported mask of a refinable function φ ∈ L2(R)

with â(0) = 1 and â(π) = 0, such that â can be factorized into the form

|â(ξ)| = cosn(ξ/2)|L(ξ)|, ξ ∈ [−π, π],

where L is the Fourier series of a finitely supported sequence with L(ξ) 6= 0. Suppose that

|â(ξ)|2 + |â(ξ + π)|2 6= 0, ξ ∈ [−π, π].

Define

ψ̂(2ξ) := e−iξâ(ξ + π)φ̂(ξ)

and

L̃(ξ) := L(ξ)
|â(ξ)|2 + |â(ξ + π)|2 .

Assume that

ρL := ‖L‖∞ < 2n−1/2 and ρL̃ := ‖L̃‖∞ < 2n−1/2. (2.2)

Then ψ generates a Riesz wavelet basis for L2(R).
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We need following lemmas, which are important to the proof of main result.

Lemma 2.2. For the given integers l, N with 0 ≤ l < N , we have

(1)
(N+1

i

)
=
(N
i

)
+
( N
i−1

)
.

(2)
∑l

i=0

(N−α+i
i

)
xi =

∑l
i=0

(N+1−α+l
i

)
xi(1− x)l−i, where 0 ≤ α < 1.

(3)
(
N+l
i

)
<
(
N+α+l

i

)
<
(
N+1+l

i

)
, where 0 ≤ i ≤ l and 0 ≤ α < 1.

Before we prove the main result of this section, we also need the following lemmata later.

Lemma 2.3. For the given integers l, N with 0 ≤ l < N , we have

(1) (2N + 4)
∑l−1

i=0

(N+l
i

)
− l
∑l

i=0

(N+l
i

)
≥ 0.

(2) 22l
(
N+α+l

l

)
≤
(∑l

i=0

(
N+α+l

i

))2
, where 0 ≤ α < 1.

Proof. For (1), it is suffices to show that

(N + 1)

l−1∑

i=0

(
N + l

i

)
− l

(
N + l

l

)
≥ 0.

The above equality follows from the identity (N + 1)
(
N+l
l−1

)
= l
(
N+l
l

)
.

For (2), we first prove that

22l
(
N + 1 + l

l

)
≤
(

l∑

i=0

(
N + l

i

))2

. (2.3)

(2.3) is obviously true for N = 1. Suppose (2.3) holds for N0 with 0 ≤ l < N . Consider the case

N = N0 + 1. For 0 ≤ l < N0, we deduce that

22l
(
N0 + 2 + l

l

)
=

N0 + 2 + l

N0 + 2
22l
(
N0 + 1 + l

l

)

≤ N0 + 2 + l

N0 + 2

(
l∑

i=0

(
N0 + l

i

))2

=

(
l∑

i=0

(
N0 + l

i

)
+

(√
N0 + 2 + l

N0 + 2
− 1

)
l∑

i=0

(
N0 + l

i

))2

=

(
l∑

i=0

(
N0 + l

i

)
+

(
l

N0 + 2 +
√
N0 + 2

√
N0 + 2 + l

) l∑

i=0

(
N0 + l

i

))2

≤
(

l∑

i=0

(
N0 + l

i

)
+

(
l

2N0 + 4

) l∑

i=0

(
N0 + l

i

))2

.
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It follows from (2) in Lemma 2.2 and (1) in Lemma 2.3 that

22l
(
N0 + 2 + l

l

)
≤

(
l∑

i=0

(
N0 + l

i

)
+

l−1∑

i=0

(
N0 + l

i

))2

≤
(

l∑

i=0

(
N0 + 1 + l

i

))2

.

It remains to show that (2.3) holds for l = N0, i.e.

22N0

(
2N0 + 2

N0

)
≤
(

N0∑

i=0

(
2N0 + 1

i

))2

.

By computation, we have

N0∑

i=0

(
2N0 + 1

i

)
=

1

2

2N0+1∑

i=0

(
2N0 + 1

i

)
=

1

2
(1 + 1)2N0+1 = 22N0 .

By (2) in Lemma 2.2, we have

(
2N0 + 2

N0

)
=

(
2N0 + 1

N0

)
+

(
2N0 + 1

N0 − 1

)
≤

N0∑

i=0

(
2N0 + 1

i

)
.

Now we conclude that (2.3) holds. This, together with (3) in Lemma 2.2, implies that

22l
(
N + α+ l

l

)
≤ 22l

(
N + 1 + l

l

)
≤
(

l∑

i=0

(
N + l

i

))2

≤
(

l∑

i=0

(
N + α+ l

i

))2

.

Lemma 2.4. For the given nonnegative integers l, N with l < N , let R(y) :=
∑l

i

(N−α+i
i

)
yi where

0 ≤ α < 1. Define

S(y) := (1− y)2N+1R2(y) + (y)2N+1R2(1− y).

Then,

(i) maxy∈[0,1]R(y) =
(N+1−α+l

l

)
.

(ii) miny∈[0,1] S(y) = (12)
2N+2l

(∑l
i=0

(N+1−α+l
i

))2
.

Proof. Since all the coefficients of the polynomial R(y) are positive, it is easy see that

max
y∈[0,1]

R(y) = R(1).
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By item (2) in Lemma 2.3,

R(1) =
l∑

i=0

(
N + 1− α+ l

i

)
1i(1− 1)l−i =

(
N + 1− α+ l

l

)
.

Denote R̃(y) := R2(y), then R̃(y) =
∑2l

i=0 c(i)y
i. The positive coefficients c(i) are uniquely

determined by the coefficients of R(y). It follows from l < N that

2l∑

i=0

c(i)

(
1

y

)2N−i

≥
2l∑

i=0

c(i)

(
1

1− y

)2N−i

, ∀ y ∈ [0, 1/2].

This show that,

−(2N + 1)(1 − y)2NR2(y) + (2N + 1)y2NR2(1− y) ≤ 0 ∀ y ∈ [0, 1/2].

With the similar arguments, we have that

−2y2N+1R(1− y)R′(1− y) + 2(1 − y)2N+1R(y)R′(y) ≤ 0 ∀ y ∈ [0, 1/2].

Taking the derivative of S(y), we obtain

S′(y) = −(2N + 1)(1 − y)2NR2(y) + 2(1 − y)2N+1R(y)R′(y)

+(2N + 1)y2NR2(1− y)− 2y2N+1R(1− y)R′(1− y)

< 0

for all y ∈ [0, 1/2].

By directly calculate, we have that S(y) = S(1− y). Hence, S(y) is symmetric about 1/2. Now

we conclude that

S′(y)

{
≤ 0, y ∈ [0, 1/2],

≥ 0, y ∈ [1/2, 1].

Thus, miny∈[0,1] S(y) = S(1/2). By item (1) in Lemma 2.3, we deduce that

S

(
1

2

)
=

(
1

2

)2N+1

R2

(
1

2

)
+

(
1

2

)2N+1

R2

(
1

2

)

=

(
1

2

)2N

R2

(
1

2

)

=

(
1

2

)2N
(

l∑

i=0

(
N + 1− α+ l

i

)(
1

2

)i(1

2

)l−i
)2

= (
1

2
)2N+2l

(
l∑

i=0

(
N + 1− α+ l

i

))2

.
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Remark 2.5. For the case that α = 0, Lemma 2.3 and Lemma 2.4 were proved by Dong and Shen

in [4].

Now we state the main theorem of this section which says that the system X(ψ) derived from

dual pseudo splines forms a Riesz wavelet basis for L2(R).

Theorem 2.6. Let φ be the dual pseudo spline of order (N, l) with mask â defined in (1.2). Define

ψ̂(2ξ) := e−iξâ(ξ + π)φ̂(ξ).

Then ψ generates a Riesz wavelet basis in L2(R). The wavelet ψ has 2N + 1 vanishing moments.

Proof. Since â does not has symmetric zeros, which implies that

|â(ξ)|2 + |â(ξ + π)|2 6= 0.

Define RN,l(y) :=
∑l

i

(N−1/2+i
i

)
yi, where y = sin2(ξ/2) and N , l are nonnegative integers with

l < N . Then

|â(ξ)|2 = cos2N+2(ξ/2)

[
l∑

i=0

(
N − 1/2 + i

i

)
sin2i(ξ/2)

]2

= (1− y)2N+1R2(y).

It follows from Lemma 3.4

‖L̃(ξ)‖∞ = sup
y∈[0,1]

R(y)

(1− y)2N+1R2(y) + (y)2N+1R2(1− y)

≤
maxy∈[0,1]R(y)

miny∈[0,1] S(y)

=

(N+1/2+l
l

)

(12 )
2N+2l

(∑l
i=0

(N+1/2+l
i

))2

≤ 22N (from Lemma 3.2)

< 22N+1−1/2.

By [13], we have |â|2 + |â(·+π)|2 ≤ 1 , which implies that |L(ξ)| ≤ |L̃(ξ)| for all ξ ∈ R. By Lemma

2.1, we conclude that ψ generates a Riesz wavelet basis in L2(R). The second claim follows from

the fact that mask â has the factor (
1− e−iξ

2

)2N+1

.

Example 2.1. Let N = 2 and l = 1. Define ψ by (2.1) with dual pseudo spline φ2,1. Then by

Theorem 2.6, X(ψ) is a Riesz basis for L2(R). The wavelet ψ has 5 vanishing moments. See Figure

1 for the graphs of function φ2,1 and ψ.
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3 Tight Frame from dual pseudo splines

In this section, we discuss the approximation order of tight wavelets frame from dual pseudo splines

via the unitary extension principle. For given Ψ := {ψ1, ...ψL}, we say that the system

X(Ψ) := {ψj,k, ψ ∈ Ψ, j, k ∈ Z}

is a tight frame for L2(R) if

‖f‖22 =
∑

g∈X(Ψ)

|〈f, g〉|2, ∀ f ∈ L2(R).

The generator ψ is called framelet. Let φ be a compactly supported refinable function in L2(R) with

a mask a such that φ̂(0) = 1, suppose that there exist some 2π-periodic trigonometric polynomials

b̂l, l = 1, . . . , L, such that

|â(ξ)|2 +
L∑

l=1

|b̂l(ξ)|2 = 1 and â(ξ)â(ξ + π) +
L∑

l=1

b̂l(ξ)b̂l(ξ + π) = 0. (3.1)

Define ψl, l = 1, . . . , L, by

ψ̂l(2ξ) = b̂l(ξ)φ̂(ξ), l = 1, . . . , L. (3.2)

Then the unitary extension principle (UEP) asserts that Ψ = {ψ1, . . . , ψL} generates a tight wavelet
frame in L2(R) (see [2, 23, 24]). Following [2], we define the truncated operator as

Qn : f →
L∑

ℓ=1

∑

j<n

∑

k∈Z

〈f, ψl
j,k〉ψl

j,k.

We say that the operator Qn provides approximation order m1, if for all f in the Sobolev space

Wm1

2 (R), such that

‖f −Qnf‖2 = O(2−nm1).

The approximation order of the truncated operator Qn was studied in [2]. Recall that a function

φ satisfies the Strang-Fix condition of order m if

φ̂(0) 6= 0, φ̂(j)(2πk) = 0, j = 0, 1, 2, . . . ,m− 1, k ∈ Z \ {0}.

Suppose that the refinable function φ satisfies the Strang-Fix condition of order m0 and the corre-

sponding mask â satisfies

1− |â|2 = O(| · |m2)

at the origin, then it was pointed out in [2] that m1 = min{m0,m2}.

Theorem 3.1. Let φ be a dual pseudo spline of order (N, l) with mask a as in (1.2). Let Ψ :=

{ψ1, ..., ψL}, where
ψ̂l(2ξ) = b̂l(ξ)φ̂(ξ), l = 1, 2, ..., L

8



and b̂l satisfy the conditions in (4.1) for l = 1, 2, ..., L. Then the system

X(Ψ) := {ψj,k, ψ ∈ Ψ, j, k ∈ Z}

is a tight frame for L2(R). Furthermore, the corresponding truncated operator Qn provides approx-

imation order 2l + 2oddl, where oddl :=
1−(−1)l

2 .

Proof. It was showed in [8, Theorem 8] that

â(ξ) = e−iξ/2 +O(|ξ|2l+2oddl).

This implies that

1− |â| = O(| · |2l+2oddl).

Note that

1− |â|2 = (1− |â|)(1 + |â|),
therefore, there exists a positive constant C such that

C| · |2l+2oddl ≤ 1− |â|2 ≤ 2C| · |2l+2oddl .

It means that 1− |â|2 = O(| · |2l+2oddl).

Since mask â has the factor
(
1−e−iξ

2

)2N+1
, φ satisfies the Strang-Fix condition of order 2N +1.

Hence, the truncated operator Qn provides approximation order

min{2N + 1, 2l + 2oddl} = 2l + 2oddl.

In the end of this section, we provide some examples to illustrate Theorem 3.1. The construction

follows from what was given in [4].

Example 3.1. We choose â to be the mask of the dual pseudo spline with order (2, 1), i.e.

â(ξ) =

(
1 + e−iξ

2

)5(
1 +

5

2
sin2(ξ/2)

)
.

We define

b̂1(ξ) := e−iξâ(ξ + π),

b̂2(ξ) := A(ξ) + e−iξA(−ξ),
b̂3(ξ) = e−iξA(−ξ)−A(ξ),

where

A(ξ) =
1

128

√
35

9 + 4
√
5
(−1 + e−2iξ)2(−9− 4

√
5 + e−2iξ).

The above masks satisfy the UEP conditions (3.1), hence the system X(Ψ) := {ψ1
j,k, ψ

2
j,k, ψ

3
j,k, j, k ∈

Z} is a tight frame. Furthermore, the approximation order of the truncated operator Qn is 4.

9



Example 3.2. We choose â to be the mask of the dual pseudo spline with order (3, 1), i.e.

â(ξ) =

(
1 + e−iξ

2

)7(
1 +

7

2
sin2(ξ/2)

)
.

We define

b̂1(ξ) := e−iξâ(ξ + π),

b̂2(ξ) := A(ξ) + e−iξA(−ξ),
b̂3(ξ) = e−iξA(−ξ)−A(ξ),

where

A(ξ) =
1

2
e4iξ(− 0.002950560718227624 + 0.012538064132321055e−2iξ

+ 0.22812835732470788e−4iξ − 0.4820686641734686e−6iξ

+ 0.2443528034346672e−8iξ ).

(3.3)

The above masks satisfy the UEP conditions (3.1), hence the system X(Ψ) := {ψ1
j,k, ψ

2
j,k, ψ

3
j,k, j, k ∈

Z} is a tight frame. Furthermore, the approximation order of the truncated operator Qn is 4.

The dual pseudo-spline of order (N, l) is smoother than the pseudo-spline of order (N, l) for

small N and l yet its support is larger by one [3]. As we can see from table, the dual pseudo

splines fill the gaps between the pseudo splines with different orders in some sense. This give us

a wide range of choices of the refinable functions that meets various demands for balancing the

approximation power, the length of the support, and the regularity in applications.

Table 1:

support of φ,ψ1, ψ2, ψ3 approximation order regularity exponents

Example 3.1 [0, 7], [0, 7], [0, 9], [0, 9] 4 2.8301
Example in [4] [0, 8], [0, 8], [0, 9], [0, 9] 4 3.6781
Example 3.2 [0, 9], [0, 9], [0, 9], [0, 9] 4 4.5406
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Figure 1: The graph of the dual pseudo spline φ2,1 (left) and the graph of the wavelet function
(right) in Example 2.1. The wavelet system X(ψ) is a Riesz basis for L2(R).
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framelets in Example 3.1. The wavelet system X(ψ) is a tight wavelet frame L2(R).
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Figure 3: φ3,1 is the dual pseudo spline with order (3, 1). ψ1, ψ2 and ψ3 are the graphs of the
framelets in Example 3.2. The wavelet system X(ψ) is a tight wavelet frame L2(R).
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