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PRESCRIBING THE SYMMETRIC FUNCTION OF THE
EIGENVALUES OF THE SCHOUTEN TENSOR

YAN HE AND WEIMIN SHENG

Abstract. In this paper we study the problem of conformally deforming a
metric to a prescribed symmetric function of the eigenvalues of the Schouten

tensor on compact Riemannian manifolds with boundary. We prove its solv-
ability and the compactness of the solution set, provided the Ricci tensor is
non-negative definite.

1. INTRODUCTION

Let (Mn, g) be a smooth, compact Riemannian manifold with totally geodesic
boundary of dimension n ≥ 3. The Schouten tensor of g is defined by

Ag =
1

n− 2

(
Ricg − Rg

2(n− 1)
g

)
,

where Ric and R are the Ricci and scalar curvatures of g, respectively.
Let σk : Rn → R be the k-th elementary symmetric function (1 ≤ k ≤ n)

σk(x) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik,

Γk the corresponding open, convex cone, i.e. Γk = {x ∈ Rn|σi (x) > 0, 1 ≤ i ≤ k} .
Let

Σθ = {x = (x1, · · · , xn) ∈ Rn| minxi + θΣxi > 0} .
Now let us consider the general symmetric function F defining on Γ (Γn ⊂ Γ ⊂
Σ 1

n−2
) satisfying

(C1) F is positive and F = 0 on ∂Γ;
(C2) F is concave and monotone;
(C3) F is invariant under exchange of variables;
(C4) F is homogeneous of degree 1;
(C5) lim

s→∞
F (sx) = ∞, ∀ x ∈ Γ;

(C6) F (x) ≤ ϱσ1(x) in Γ and F (1, · · · , 1) = nϱ, ϱ is a positive constant.
We need (C1)-(C4) to ensure that the elliptic equations are solvable. If F addi-

tionally satisfies (C5) then Liouville Theorem in [12] is applicable. The condition
(C6) says that the Newton-Maclaurin inequality with respect to function F holds.
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We denote [g] = {g̃ | g̃ = e−2ug}. We call the metric ĝ = e−2ug (as well as the
function u) is Γ-admissible, or simply admissible, if ĝ ∈

{
g̃ ∈ [g] | λ(g̃−1Ag̃) ∈ Γ

}
.

Here, λ(g̃−1Ag̃) = (λ1, · · · , λn) denote the eigenvalues of g̃−1Ag̃.
In this paper we study the existence of some prescribing problems and the com-

pactness of the solution set. The main result is as follows.

Theorem 1.1. Let (Mn, g) be a compact n-dimensional Riemannian manifold with
totally geodesic boundary. Let F be a symmetric function satisfying (C1)− (C6) on
Γ with Γn ⊂ Γ ⊂ Σ 1

n−2
. If the manifold (M, g) is not conformal equivalent to a

hemisphere, then for any positive function f , there exists an admissible conformal
metric g̃ = e−2ug with totally geodesic boundary satisfying

F
(
λ(g̃−1Ag̃)

)
= f.

Additionally, the set of all such solutions is compact in the Cm -topology for any
m ≥ 0.

We can get the following two corollaries from Theorem 1.1 immediately. One is
to find a conformal metric g̃ with nonnegative Ricg̃ such that

(1.1) det
(
µ(g̃−1Ricg̃)

)
= fn,

where µ(g̃−1Ricg̃) = (µ1, · · · , µn) are the eigenvalues of g̃−1Ricg̃ and f(x) is a
positive function.

SinceRicg̃ = (n−2)Ag̃+σ1(λ(g̃−1Ag̃))g̃, if we define F (λ) = σ
1/n
n ((n− 2)λ+ (Σn

i=1λi))
and Γ = {λ | F (λ) > 0}, then

det1/n
(
µ(g̃−1Ricg̃)

)
= σ

1/n
n

(
µ
(
g−1

[
(n− 2)(du⊗ du− |∇u|2g) + (n− 2)∇2u+ △ug +Ricg

]))
= F

(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2 |∇u|
2g +Ag

]))
,

where µ = (n − 2)λ + Σn
i=1λi. From the definition, it is easy to verify that F

satisfying (C1) − (C5), since

∂F

∂λi
=
∂
(
σ

1/n
n

)
∂µs

(1 + (n− 2)δs
i ) ,

and

∂2F

∂λi∂λj
= (1 + (n− 2)δs

i )
∂2
(
σ

1/n
n

)
∂µs∂µt

(
1 + (n− 2)δt

j

)
.

Moreover, from

F
(
λ(g̃−1Ag̃)

)
= σ1/n

n

(
µ(g̃−1Ricg̃)

)
≤ 1

n
σ1

(
µ(g̃−1Ricg̃)

)
=

2n− 2
n

σ1

(
λ(g̃−1Ag̃)

)
,

we know F satisfies (C6) with ϱ = 2n−2
n . Thus (1.1) turns out to be a proper

equation with respect to Schouten tensor. Furthermore, as [6] and [15], by use of
the volume comparison theorem, C0 estimate of the solutions of such equation can
be derived if Ric ≥ 0. In other words, the condition Γ ⊂ Σ 1

n−2
ensures that the
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volume comparison theorem is applicable, where the eigenvalues of Schouten tensor
λ satisfy (n− 2)λ+ Σn

i=1λi ≥ 0 if and only if the eigenvalues of Ricci tensor µ ≥ 0.
Similarly, on the manifold with totally geodesic boundary, based on the boundary
C1, C2 estimates with Neumann boundary condition for general symmetric function
([2] or [9], etc.), we can get

Corollary 1.2. Let (M, g) be a compact n dimension Riemannian manifold with
totally geodesic boundary and the Ricci tensor is semi-positive definite. If it is not
conformal equivalent to a hemisphere, then for any positive function f , there exists
a conformal metric g̃ = e−2ug with totally geodesic boundary and Ricg̃ ≥ 0 and

det
(
µ(g̃−1Ricg̃)

)
= fn.

Additionally, the set of all such solutions is compact in the Cm -topology for any
m ≥ 0.

Remark 1.3. The conformal problem with respect to the Ricci tensor has been
studied extensively. In [13] and [8], the authors studied the negative Ricci curvature
and proved that there exists a conformal metric g̃ with negative Ricci tensor Ricg̃
such that

det
(
µ(g̃−1Ricg̃)

)
= const..

When the Ricci tensor is positive definite, in [5], Guan and Wang derived a confor-
mal metric with a constant smallest eigenvalue of Ricci tensor. In [15], Trudinger
and Wang proved the prescribing problem of positive Ricci tensor on closed mani-
fold.

Another corollary is to find a conformal metric g̃ in Γk (n/2 ≤ k ≤ n) such that(
σk

σl

) 1
k−l (

λ(g̃−1Ag̃)
)

= f (x) ,

where l < k and λ(g̃−1Ag̃) the eigenvalues of g̃−1Ag̃, and f(x) is a positive function

as well. Since it is easy to verify that F =
(

σk
σ1

) 1
k−l on Γ = Γk satisfies (C1)− (C6)

with ϱ = 1
n (n

k )
1

k−l (n
l )−

1
k−l and Γk ⊂ Γn/2 ⊂ Σ 1

n−2
. If the manifold is closed, the

existence of the solutions to the equation and the compactness of the solution set
have been involved in [15]. Here we state the result for the manifolds with boundary.

Corollary 1.4. Let (M, g) be a compact n-dimensional and Γk admissible Rie-
mannian manifold with totally geodesic boundary. If it is not conformal equivalent
to a hemisphere, then for any positive function f , there exists a conformal Γk

admissible metric g̃ = e−2ug with totally geodesic boundary and(
σk

σl

) 1
k−l (

λ(g̃−1Ag̃)
)

= f,

where l < k and λ(g̃−1Ag̃) the eigenvalues of g̃−1Ag̃ . Additionally, the set of all
such solutions is compact in the Cm -topology for any m ≥ 0.

This paper is organized as follows. We begin with some preliminaries in Section
2. In Section 3, we will discuss the deformation and a priori estimates. The proof
of Theorem 1.1. is in Section 4.
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2. PRELIMINARIES

We introduce Fermi coordinates in a boundary neighborhood at first. In this
local coordinates, we take the geodesic in the inner normal direction ν = ∂

∂xn

parameterized by arc length, and
(
x1, ..., xn−1

)
forms a local chart on the boundary

where xn = 0. The metric can be expressed as

g = gαβdx
αdxβ + (dxn)2 .

The Greek letters α, β, γ, ...stand for the tangential direction indices, 1 ≤ α, β, γ, ... ≤
n − 1, while the Latin letters i, j, k, ... stand for the full indices, 1 ≤ i, j, k, ... ≤ n
(See [4] and [1]).

We denote the functions, tensors and covariant differentiations with respect to
the induced metric on the boundary by a bar(e.g. Γ̄α

βγ , R̄αβ). Then the Christoffel
symbols on the boundary satisfy

Γ̄γ
αβ =

1
2
gγδ(

∂gαδ

∂xβ
+
∂gβδ

∂xα
− ∂gαβ

∂xδ
) = Γγ

αβ ,

and Γn
nn = 0, Γα

nn = 0, Γn
nα = 0.

Let us denote ∂
∂xi by ∂i. The boundary is called umbilic if the second fundamen-

tal form Lαβ = τgαβ , where τ is a function defined on ∂M . Since the boundary
∂M is connected, by Schur Theorem, τ = const.. A totally geodesic boundary is
umbilic with τ = 0.

Thus Γn
αβ |∂M = Lαβ = τgαβ and Γα

nβ |∂M = −Lαγg
γβ = −τδβ

α.

Under the conformal metric g̃ = e−2ug, the functions, tensors and the covariant
differentiations with respect to g̃ denoted by a tilde (e.g. Ag̃, L̃αβ).

Let [g] be the set of metrics conformal to g. For g̃ = e−2ug ∈ [g], we consider
the equation

(2.1) F
(
λ(g̃−1Ag̃)

)
= f.

The Schouten tensor transforms according to the formula

Ag̃ = ∇2u+ du⊗ du− 1
2
|∇u|2g +Ag,

where ∇u and ∇2u denote the gradient and Hessian of u with respect to g. Con-
sequently, (2.1) is equivalent to

F
(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2
|∇u|2g +Ag

]))
= f(x)e−2u.

Then the second fundamental form satisfies

L̃αβe
u =

∂u

∂ν
gαβ + Lαβ .

Note that the umbilicity is conformally invariant. When the boundary is umbilic,
the above formula becomes

τ̃ e−u =
∂u

∂ν
+ τ,

where L̃αβ = τ̃ g̃αβ .
Therefore, whence the initial metric g on manifold M is with totally geodesic

boundary ∂M , the boundary of the manifold M with conformal metric g̃ = e−2ug
is still totally geodesic if and only if ∂u

∂ν = 0.
Therefore, in order to prove Theorem 1.1, we need to find admissible solutions

of the following equation
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(2.2)

{
F
(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2 |∇u|
2g +Ag

]))
= f(x)e−2u in M,

∂u
∂ν = 0 on ∂M.

3. DEFORMATION, C1 AND C2 ESTIMATES

To prove the existence of solution to the equation (2.2), we employ the following
deformation which defined in [7]
(3.1)

F
(
λ
(
g−1

[
ς(1 − ψ(t))g + ψ(t)Ag + ∇2u+ du⊗ du− 1

2 |∇u|
2g
]))

= ψ(t)f(x)e−2u + (1 − t)(
∫
e−(n+1)u)2/n+1 in M,

∂u
∂ν = 0 on ∂M,

where ψ ∈ C1[0, 1] satisfies 0 ≤ ψ(t) ≤ 1, ψ(0) = 0, ψ(t) = 1 for t ≥ 1
2 ; and

ς = (nϱ)−1vol(Mg)
2

n+1 , where F (1, · · · , 1) = nϱ.
Similar as [7], at t = 1, (3.1) becomes (2.2). While at t = 0, it becomes

{
F
(
λ
(
g−1

[
ςg + ∇2u+ du⊗ du− 1

2 |∇u|
2g
]))

= (
∫
e−(n+1)u)

2
n+1 in M,

∂u
∂ν = 0 on ∂M.

We can show that the above equation has a unique solution u(x) ≡ 0.
In fact, it is obvious that u ≡ 0 is a solution. Now we are going to prove its

uniqueness.
At the maximum point x0 of u, no matter x0 is interior or boundary point, we

always have that ∇u|x0 = 0, and ∇2u|x0 is non-positive definite. In fact if x0 is
interior point, it is clear; if x0 is boundary point, we have ∂u

∂ν |∂M = 0 by equation
(3.1), and ∂u

∂xα |x0 = 0, where {xα}1≤α≤n−1 is a local coordinates on the boundary
∂M around x0. Therefore ∇2u|x0 is non-positive definite. Now at x0 we have

vol(Mg)
2

n+1 = ς · nϱ = ςF (λ(g−1 · g))

≥ F
(
λ
(
g−1

[
ςg + ∇2u+ du⊗ du− 1

2
|∇u|2g

]))
= (

∫
e−(n+1)u)

2
n+1 .

Similarly, at the minimum point of u, we can get ς · nϱ ≤ (
∫
e−(n+1)u)

2
n+1 . As a

result, we have vol(Mg)
2

n+1 = ς · nϱ = (
∫
e−(n+1)u)

2
n+1 .

By (C6), we know F ≤ ϱσ1. Hence,

ς · nϱ = F
(
λ
(
g−1

[
ςg + ∇2u+ du⊗ du− 1

2
|∇u|2g

]))
≤ ϱ σ1

(
λ
(
g−1

[
ςg + ∇2u+ du⊗ du− 1

2
|∇u|2g

]))
= ϱ

(
nς + △u+ (1 − n

2
)|∇u|2

)
.

Then

(
n

2
− 1)

∫
M

|∇u|2 ≤
∫

M

△u =
∫

∂M

∂u

∂ν
= 0,
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and u ≡ const. = 0.

Thus the operator

Ψt[u] = F
(
λ
(
g−1

[
ς(1 − ψ(t))g + ψ(t)Ag + ∇2u+ du⊗ du− 1

2
|∇u|2g

]))
−ψ(t)f(x)e−2u − (1 − t)(

∫
e−(n+1)u)

2
n+1

satisfies Leray-Schauder degree deg(Ψ0,O0, 0) ̸= 0 at t = 0, where the Leray-
Schauder degree is defined by [11](see [2] for the boundary case) and O0 is a neigh-
borhood of the zero solution in {u ∈ C4,α(M) : ∂u

∂ν = 0 on ∂M}. Thus whence we
obtain the homotopy-invariance of degree, we can derive that the Leray-Schauder
degree is nonzero at t = 1. This shows that equation (2.2) is solvable.

The C1 and C2 estimates of the solutions to (3.1) have been proved in [9], we
may obtain

Lemma 3.1. For any fixed 0 < δ < 1, there is a constant C = C(δ, n, g, f) such
that any solution of (3.1) with t ∈ [0, 1 − δ] satisfies ∥u∥C4,α ≤ C.

So without loss of generality, we may assume that uti tends to −∞ at ti → 1,
where uti is the solution of (3.1) at t = ti which will be denoted by ui in what
follows. Thus equation (3.1) turns to be

(3.2)


F
(
λ
(
g−1

[
Ag + ∇2u+ du⊗ du− 1

2 |∇u|
2g
]))

= (1 − t)o+ f(x)e−2u
in M,

∂u
∂ν = 0 on ∂M.

where u is assumed to be admissible, and o ≥ 0 is a constant.

Furthermore, we can get a more exact estimate on the geodesic ball B(x, r) =
{y ∈M | dist(x, y) < r} :

Lemma 3.2. ([9]). Let u ∈ C4(M) be a k -admissible solution of (3.1) in B(x, r)
and 0 ≤ r < 1 . Then there is a constant C = C(n, g, f) such that

(3.3)
(
|∇2u| + |∇u|2

)
(x′) ≤ C

(
r−2 + exp

(
−2 inf

B(x,2
√

10r)
u

))
.

for all x′ ∈ B(x, r).

4. PROOF OF THEOREM 1.1.

We call {uk} the blow up sequence and x̄ ∈M the blow up point, if uk(x0,k) →
−∞ as x0,k → x̄, where {x0,k} ⊂M . Now let {uk} be a blow up solutions of (3.2)
with the blow up point x̄.

First of all, we would like to prove that x̄ can be approximated by local minimum
points of uk. Let vk = e−(n−2)/2uk , denote vk(x0,k)

1
n−2 by R0,k and 1

1−e−1/2 by A0.

Lemma 4.1. In each geodesic ball B(x0,k, A0R
−1
0,k) ⊂M we may find a local max-

imum point of vk, named by xk. Furthermore,

vk(xk) = sup
B(xk,vk(xk)

− 1
n−2 )

vk.
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Proof. Let euk(x0,k) = ε0,k. We define a mapping:

U0,k : B(0, ε0,k
−1/2) ⊂ Tx0,k

(M) → B(x0,k, ε0,k
1/2)

y 7−→ expx0,k
(ε0,ky),

where the metric on tangent space is ǧk = ε−2
0,kU∗

0,kg and B(0, ε0,k
−1/2) is a geodesic

ball. Moreover, consider a sequence of functions µ0,k(y) = uk(U0,k(y)) − log ε0,k.
We may derive a equation that µ0,k(y) satisfies. In fact, we have

F
(
λ
(
ǧ−1

k

[
Aǧk

+ ∇2µ0,k + dµ0,k ⊗ dµ0,k − 1
2 |∇µ0,k|2ǧk

]))
= ε20,k(1 − t)o+ f(U0,k(y))e−2µ0,k in B(0, ε0,k

−1/2),
∂µ0,k

∂xn = 0 on B(0, ε0,k
−1/2) ∩ {xn = 0}.

where µ0,k is admissible, and o is a nonnegative constant.
Let us begin with the easy case uk (x) ≥ uk(x0,k)− 1 in B(x0,k, ε0,k

1/2). In this
case, 0 ≤ e−

n−2
2 µ0,k ≤ e

n−2
2 in B(0, ε0,k

−1/2). Hence, µ0,k converges in C3 to µ∞

with 0 ≤ e−
n−2

2 µ∞ ≤ e
n−2

2 on Rn. And the limit function µ∞ satisfies

F
(
λ
(
δ−1
[
∇2u+ du⊗ du− 1

2
|∇u|2δ)

]))
= f(x̄)e−2u.

Then by the Liouville Theorem [12], we know that 0 is the locally minimum point
of µ0,k. Rescaling back, we see that x0,k is the locally minimum point of uk in
B(x0,k, ε0,k

1/2).
The alternative case is that there exists x1,k ∈ B(x0,k, ε0,k

1/2) such that uk(x1,k) <
uk(x0,k) − 1. Then we may consider the lower bound of uk in B(x1,k, ε1,k

1/2),
where ε1,k = euk(x1,k) < e−1ε0,k. If uk ≥ uk(x1,k) − 1 in B(x1,k, ε1,k

1/2), then
µ1,k(y) = uk(U1,k(y)) − log ε1,k > −1, where

U1,k : y → expx1,k
(ε1,ky),

and x1,k is a locally minimum point of uk.
Otherwise, we may repeat the previous proceedings with uk(xj,k) < uk(xj−1,k)−

1 (xj,k ∈ B(xj−1,k, εj−1,k
1/2)), εj,k = euk(xj,k) < e−1εj−1,k and µj,k(y) = uk(Uj,k(y))−

log εj,k, where
Uj,k : y → expxj,k

(εj,ky).

For any given k, as uk ∈ C∞ (M), there exists j(k) ∈ N, j (k) < ∞ such that
uk(xj(k),k) < uk(xj(k)−1,k) − 1 and uk ≥ uk(xj(k),k) − 1 in B(xj(k),k, εj(k),k

1/2).
Hence, we can find a locally minimum point of the uk in B(xj(k),k, εj(k),k

1/2) ⊂
B(x0,k, A0ε0,k

1/2). This completes the proof (See Lemma 3.2 in [15] for more de-
tails). �

Now we consider the rescaled sequence wk = uk − supM uk. Suppose x0
k is

the maximum point of uk. Since e−2 sup ukf(x0
k) = e−2uk(xk)f(x0

k) ≤ C(△uk +
Ag)(x0

k) ≤ C thus x̄ = limxk is the blow up point with respect to wk as well. It is
obviously that wk satisfies the equation

F
(
λ
(
g−1

[
Ag + ∇2wk + dwk ⊗ dwk − 1

2 |∇wk|2g
]))

= (1 − t)o+ f(x)e−2 supM uke−2wk in M,
∂wk

∂ν = 0 on ∂M.

where wk is admissible, and o ≥ 0 is a constant.
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By virtue of Lemme 4.1, we may assume x̄ = limxk, where {xk} are locally
minimum points of uk. Hence {xk} are also locally minimum points of wk and

wk(xk) = inf
B(xk,e

1
2 wk(xk))

wk.

Note that F satisfies (C1)− (C6) and wk are Γ admissible, where Γ ⊂ Σ 1
n−2

. Hence
wk are subharmonic and satisfy

(4.1) W +
1

n− 2
σ1(W )g ≥ 0,

where W = ∇2wk + dwk ⊗ dwk − 1
2 |∇wk|2g+Ag. We need the idea of the minimal

radial functions of w in BR(x0) ([15]):

ŵ(x) = sup{w(y) : y ∈ ∂Br(x0), r = d(x, x0) ≤ R},

and denote ∇2ŵ+ dŵ⊗ dŵ− 1
2 |∇ŵ|

2g+Ag by Ŵ . Now we are ready to prove the
following

Propostion 4.2. Let uj be a blow up sequence of solutions to (3.2). Then wj =
uj − supM uj converges in w1,p (for any 1 < p < n

n−1 ) to an admissible function
w. Moreover, if x̄ is a blow up point of w, then near x̄,

(4.2) w(x) = 2 log d(x, x̄) + o(1),

where d(x, x̄) denotes the geodesic distance from x to x̄ with respect to the metric
g. Furthermore, each blow up point is isolated.

Proof. Since a similar proposition on manifold without boundary has appeared in
[15], we only focus on the differences.

Step 1. We may get admissible solutions on the doubled manifold. Glue two
copies of (M, g) along the totally geodesic boundary together and denote the dou-
bling manifold by M̌ . With the given smooth Riemannian metric g on M , there is
a standard metric ǧ on M̌ induced from g. When ∂M is totally geodesic in (M, g),
ǧ is C2,1 on M̌ (see [3]).

We can extend wk to a C2(M̌) function w̌k as follows: Near the boundary we
take Fermi coordinates, w̌k is then defined as

w̌k(x1, · · · , xn) =
{
wk(x1, · · · , xn), xn ≥ 0,
wk(x1, · · · ,−xn), xn ≤ 0.

Since ∂wk

∂ν = 0, it is easy to verify by definition that w̌k ∈ C2(M̌). As matter of
fact,

lim
xn→0+

∂w̌k

∂xn
(x1, · · · , xn) =

∂wk

∂xn
(x1, · · · , xn−1, 0)

= 0 = −∂wk

∂xn
(x1, · · · , xn−1, 0) = lim

xn→0−

∂w̌k

∂xn
(x1, · · · , xn),

and

lim
xn→0+

∂2w̌k

∂(xn)2
(x1, · · · , xn) = lim

xn→0−

∂2w̌k

∂(xn)2
(x1, · · · , xn).

Thus from the admissible property of wk we know that w̌k is also admissible and
satisfies (4.1).

Step 2. We can find convergent ”minimal radial functions” on doubled manifold.
Inequality (4.1) says w̌k is subharmonic. From Corollary 2.1 in [15], {w̌k} converges
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to a subharmonic function w̌ in W 1,p (for any 1 < p < n
n−1 )). By Corollary 2.2 in

[15], the corresponding minimal radial functions ̂̌wk also converge to ̂̌w. Note that
the minimal radial functions depend only on distance to the center, by Corollary
2.1 and Corollary 2.2 in [15], we may obtain

(4.3) ̂̌w (r) = lim
k→∞

̂̌wk (r) ,

where ̂̌wk(r) = sup{w̌k(y) : y ∈ ∂Br(xk)},
and ̂̌w(r) = sup{w̌(y) : y ∈ ∂Br(x̄)}.
On the one hand, based on (4.3) and (4.1), we can get the following estimates

(4.4) ̂̌w(x) ≤ 2 log d(x, x̄) + C.

In fact, we may assume ̂̌wk(r) = w̌k(xr) , xr = (0, · · · , 0, r), |Ag| ≤ Cr/2. ̂̌wk are
still admissible and satisfy inequality (4.1). Thus

0 ≤
(
(n− 2)Ŵnn + ΣiŴii

)
(xr)

≤ (n− 1)
(̂̌w′′

k + ( ̂̌w′
k)2 − gnn

2
( ̂̌w′

k)2 + Cr/2
)

+Σn−1
i=1

(
(
1
r

+ C) ̂̌w′
k − gii

2
( ̂̌w′

k)2 + Cr/2
)

≤ (n− 1)
(̂̌w′′

k +
1
r
̂̌w′

k + C( ̂̌w′
k + r)

)
,

where the last inequality comes from Σigii ≥ n. Hence,(
log(r ̂̌w′

k + r2)
)′

+ C ≥ 0.

By taking a limit we get (4.4).
On the other hand, let ̂̌vk = e−(n−2)/2 ̂̌wk . From △̂̌vk ≤ Ĉ̌vkr, we get

[rn−1̂̌v′k]′ ≤ Crn̂̌vk

Thus, by a direct calculation we knoŵ̌w(x) ≥ 2 log d(x, x̄) + o(1).

Therefore

(4.5) ̂̌w(x) = 2 log d(x, x̄) + o(1).

Then the comparison principle helps us to deduce (4.2) from (4.5). Roughly
speaking, since w̌ equals ̂̌w at some points, the comparison principle implies they
are equal everywhere. That is

w̌(x) = 2 log d(x, x̄) + o(1).

(For more details, one may consult section 3 of [15].) �

Proof of Theorem 1.1.
As the proof of Proposition 4.2, we glue two copies of (M, g) together. Denote the

doubled manifold and functions by a ”check” (e.g. M̌, w̌). Since the Ricci curvature
Rice−2w̌g is still non-negative, by (4.5) and Volume Comparison Theorem, there is at
most one end away from the blow up points; the metric e−2w̌g is in fact a Euclidean
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one (see section 7 of [6] for details), namely (M, g) is conformally equivalent to the
unit half sphere, which contradicts with the assumption in Theorem 1.1. Therefore
there is a unform L∞ bound for solutions. So the set of solutions is compact. This
completes the proof of Theorem 1.1. �
Acknowledgement. The first author would like to thank her advisor, Professor
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