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Positivity and vanishing theorems of ample vector bundles
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Abstract

In this paper, we study the Nakano-positivity and dual-Nakano-positivity of certain ad-
joint vector bundles associated to ample vector bundles. As applications, we get new van-
ishing theorems about ample vector bundles. For examples, we prove that if E is an ample
vector bundle over a compact complex manifold S, then S*E is Nakano-positive and dual-
Nakano-positive for large k. For P", we show that (S*TP", S*hps) is Nakano-positive and
dual-Nakano-positive for any k£ > 2 where hpg is the standard Fubini-Study metric.

1 Introduction

Let E be a holomorphic vector bundle with a Hermitian metric h. Nakano in [29] introduced
an analytic notion of positivity using the curvature of (E,h), and now it is called Nakano
positivity. Griffiths in [15] defined Griffiths positivity of (E,h). On a Hermitian line bundle,
these two concepts are the same. In general, Griffiths positivity is weaker than Nakano positivity.
On the other hand, Hartshorne in [17] defined the ampleness of a vector bundle over a projective
manifold. A vector bundle £ is said to be ample if the tautological line bundle Op(z-+)(1) is ample
over P(E™).

For a line bundle, it is well known that the ampleness of the bundle is equivalent to the Griffiths
positivity of it. In [15], Griffiths conjectured that this equivalence is also valid for vector bundles,
i.e., E is an ample vector bundle if and only if F carries a Griffiths-positive metric. It is well
known if £/ admits a Griffiths-positive metric, then Op(g«(1) has a Griffiths-positive metric(see
Proposition 2.2). Finding a Griffiths-positive metric on an ample vector bundle seems to be very
difficult but hopeful. In [7], Campana and Flenner gave an affirmative answer to the Griffiths
conjecture when the base S is a projective curve, see also [38]. In [36], Siu and Yau proved the
Frankel conjecture that every compact Kéahler manifold with positive holomorphic bisectional
curvature is biholomorphic to the projective space. The positivity of holomorphic bisectional
curvature is the same as Griffiths positivity of the holomorphic tangent bundle. On the other
hand, S. Mori([26]) proved the Hartshorne conjecture that any algebraic manifold with ample
tangent vector bundle is biholomorphic to the projective space.

In this paper, we consider the existence of positive metrics on ample vector bundles. It is
well-known that metrics with good curvature properties are bridges between complex algebraic
geometry and complex analytic geometry. Various vanishing theorems about ample vector bun-
dles can be found in [10], [31], [25], [34], [23] and [22]. In this paper we take a different approach,
we will construct Nakano-positive and dual-Nakano-positive metrics on various vector bundles
associated to ample vector bundles.
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Let E be a vector bundle over a compact complex manifold S and F' a line bundle over S. Let
r be the rank of ' and n be the complex dimension of S. In the following we briefly describe
our main results.

Theorem 1.1. If S""*E®det E* @ F is (semi-)ample over S, then SFE® F is (semi-)Nakano-
positive and (semi-)dual-Nakano-positive.

Here we make no assumption on E and we allow E to be negative(see Corollary 4.6). As
pointed out by Professor Berndtsson that the Nakano positive part of Theorem 1.1 may also be
derived from the result of [2]. For definitions about Nakano-positivity, dual-Nakano-positivity
and ampleness, see Section 2. As applications of this theorem, we get the following results:

Theorem 1.2. Let E be an ample vector bundle over S.

(I) If F is a nef line bundle, then there exists kg = ko(S, E) such that S*E @ F is Nakano-
positive and dual-Nakano-positive for any k > ky. In particular, S*E is Nakano-positive
and dual-Nakano-positive for any k > kq.

(II) If F is an arbitrary vector bundle, then there exists ko = ko(S, E, F') such that for any
k> ko, S*E ® F is Nakano-positive and dual-Nakano-positive for any k > k.

Moreover, if the Hermitian vector bundle (E, h) is Griffiths-positive, then for large k, (S*E, S*h)
1s Nakano-positive and dual-Nakano-positive.

In general, when k is large enough, S*F is very ample. Here we get its Nakano-positivity and
dual-Nakano-positivity, which is much stronger than very ampleness. We can see the big gap
between ampleness and Nakano-positivity from the following vanishing theorems.

Corollary 1.3. Let E be an ample vector bundle over S.
(I) If F is a nef line bundle, then there exists ko = ko(S, E) such that
HPY(S,S*E® F) =0 (1.1)
forany q > 1 and p > 0.

(IT) If F is an arbitrary vector bundle, then there exists ko = ko(S, E, F') such that for any
k > k07
HP(S,S*E® F) =0 (1.2)

forany ¢ > 1 and p > 0.
In particular, H™™(S,S*E) = 0 for any k > 1.

Remark 1.4. (1) In proving vanishing theorems of ample vector bundles, a powerful technique
is the Leray-Borel-Le Potier spectral sequence. By using this technique, one can get an
isomorphism between Dolbeault cohomology groups HP'4(S,*) about vector bundles and
cohomology group HP4(P(E*),*) about line bundles. From the Akizuki-Kodaira-Nakano
vanishing theorems for ample line bundles, one can get vanishing theorems of HP(S, x).
But the lower bound of p + ¢ depends on the rank r of E. If the rank r is large enough,
then the vanishing theorems deduced by this method are not effective. For example, the
famous Le Potier’s vanishing theorem: if E is an ample vector bundle over a compact
complex manifold S, then HP4(S,E) =0 if p+q > n+r. If r > n, then there are no
information about Cohomology groups. For more details, see [10], [31], [25], [23] and [22].



(2) On a Griffiths-positive vector bundle FE, it is easy to see that H™™(E) = 0. In general we
can not get more information, for example, H™"~Y(P" TP") = C.

Corollary 1.5. If E is an ample vector bundle and F a nef line bundle, or E is a nef vector
bundle and F' an ample line bundle, then we have

(I) S*E ®@ det E ® F is Nakano-positive and dual-Nakano-positive for any k > 0.

(I1) If the rank r of E is greater than 1, then S™E* @ (det E)! @ F is Nakano-positive and
dual-Nakano-positive if t > r+m — 1.

(IT1) If St E @ det E* is ample, then E is Nakano-positive and dual-Nakano-positive, so it is
Griffiths-positive.

Remark 1.6. (1) For part (I), similar results were discussed in [2], [3] [4], [27], [28] and [33]
recently.

(2) If E is Griffiths-positive, J-P. Demailly and H. Skoda proved that EF®det E and E*®(det E)"
are Nakano-positive if > 1( see [12]). For more precise argument, see Theorem 7.3.

(3) Using Nakano-positivity and dual-Nakano-positivity of vector bundles, we can get vanishing
theorems of types H™? and H?" with ¢ > 1. See Theorem 6.2 and also [15], [10], [31],
[25], [23] and [22].

(4) If E has a Griffiths-positive metric, then the naturally induced metrics on those vector
bundles are exactly Nakano-positive and dual-Nakano-positive, see Theorem 7.3.

Let hpg be the Fubini-Study metric on TP" and S*hpg the induced metric on S*TP" by Veronese
mapping. Let n > 2. It is easy to see that TIPP" does not admit a Nakano-positive metric. In
particular (TP", hpg) is not Nakano-positive. However, (S*TP", S*hpg) is Nakano-positive for
any k > 2.

Corollary 1.7. Let hpg be the Fubini-Study metric on TP", then

(I) (S"HTP" ® Kpn, S" M hpg @ det(hps)™t) is semi-Griffiths-positive for n > 2.
(IT) (SFTP" @ Kpn, S*hps @ det(hrs)™") is Griffiths-positive for k > n + 2.
(IIT) (S*TP", Skhrs) is Nakano-positive and dual-Nakano-positive for any k > 2.

This corollary can be viewed as an important evidence of positivity of some adjoint vector
bundles, namely, vector bundles of type S¥E @ (det E)! @ K.

Theorem 1.8. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If r > 1, then S*E @ (det E)?> ® Kg is Nakano-positive and dual-Nakano-
positive for any k > max{n — r,0}. Moreover, the lower bound is sharp.

In general, det E® K is not an ample line bundle, for example, (S, E) = (P3, Ops (1)®Ops (1)), so
the (dual-)Nakano-positivity in the above theorem is stronger than the (dual-)Nakano-positivity
of S*E ® det E.



Theorem 1.9. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If r > 1, then E ® (det E)* ® Kg is Nakano-positive and dual-Nakano-positive
for any k > max{n + 1 —r,2}. Moreover, the lower bound is sharp.

In the case n + 1 —r > 2, that is 1 < r < n — 1, the vector bundle Kg ® (det E)"™" can be a
negative line bundle, for example (S, E) = (P*, Ops(1)%?). But E @ det E ® Kg ® (det E)" ™" is
still Nakano-positive and dual-Nakano-positive.

Although the lower bounds of k£ in Theorem 1.8 and Theorem 1.9 are not effective when r > n,
in considering vanishing theorems of ample vector bundles, it becomes quite interesting when
r < n as we explained before.

Theorem 1.10. Let E be an ample vector bundles over an n-dimensional compact complex
manifold S of rank r and L be any nef line bundle on S.

(I) If r > 1, then
H™(S,S*E® (det B)? ® Kg ® L) = H¥™(S,S*E @ (det EY) @ K¢ @ L) =0 (1.3)
for any ¢ > 1 and k > max{n — r,0}.
(IT) Ifr > 1, then
H™(S,E® (det B)* ® Kg ® L) = H*™(S,E ® (det E)* ® Kg ® L) =0 (1.4)
for any g > 1 and k > max{n + 1 —r,2}.
Using theorem 1.1 and by induction we obtained the following theorem,

Proposition 1.11. Assume that STT*"E ® L is ample where r is the rank of E. Then
H™(SM,S'E ® (det E)* @ L) = H*"(SM,S'E ® (det E)* @ L) = 0
for any q > 1.

Remark 1.12. Theorem 1.1 allows us to do induction to deduce more positivity results. For
example, if S"E ® F is ample, then S™ "F ® det E ® L is (dual-)Nakano-positive and so it is
ample. Using Theorem 1.1 again, we get S™ % ® (det E)? ® L is Nakano-positive and dual-
Nakano-positive. Finally, we get S* E®(det E)*® L is Nakano-positive and dual-Nakano-positive,
if m =t + kr for some 0 <t < r. It is obvious that the (dual-)Nakano-positivity turns stronger
and stronger under induction. This explains why a lot of vanishing theorems involve a power of
det E.

2 Background material

Let E be a holomorphic vector bundle over a compact complex manifold S and h a Hermitian
metric on E. There exists a unique connection V which is compatible with the metric A and
complex structure on E. It is called the Chern connection of (E,h). Let {2’} be the local



holomorphic coordinates on S and {e,},_; be the local frames of E. The curvature tensor
RY € T'(S,A’T*S ® E* ® E) has the form

e

RV ="""R dNdF @ @e, (2.1)
27 Jo
Y pBRp o
where Rﬁa =h""R; 7B and
27 _ _
Re —— — 0 haﬁ + h'yg ahag 8h“/5 (2 2)
ijaB 02107 0zt 07 '
A Hermitian vector bundle (E,h) is said to be Griffiths-positive, if for any nonzero vectors
u = uia‘zi and v = v%,, o
> Ry zuw v’ >0 (2.3)
i7j7a75
(E, h) is said to be Nakano-positive, if for any nonzero vector u = u'® 621- ® eq,
S Ry >0 2
i?j7a7/3
(E, h) is said to be dual-Nakano-positive, if for any nonzero vector u = u’® 621- ® eq;
> Rgagu@* >0 (25)
i?j7a7/3

The notions of semi-positivity could be defined similarly. We say F is (semi-)Nakano-positive, if
it admits a (semi-)Nakano-positive metric. A line bundle L is said to be nef, if for any irriducible

curve C' C S,
/CI(L) >0
C

For a comprehensive description of positivity and related topics, see [9], [L5], [34] and [38].

Let E be a Hermitian vector bundle of rank r over a compact complex manifold S, L =
Op(g+)(1) be the tautological line bundle on the projective bundle P(E*) and 7 the canonical
projection P(E*) — S. By definition([17]), E' is an ample vector bundle over S if Op(g+)(1) is
an ample line bundle over P(E*). We say E is semi-ample if Op(g+)(1) is semi-ample. E is said
to be nef, if Op(g+)(1) is nef. To simplify the notations we will denote P(£*) by X and the fiber
7 ({s}) by X.

Let (e1,- - ,e,) be the local holomorphic frames with respect to a given trivialization on E and
the dual frames on E* are denoted by (e!,--- ,e"). The corresponding holomorphic coordinates
on E* are denoted by (W7, -+, W,). There is a canonical section ey« of L*, i.e., ep» € I'(X, L*):

erx = Z Weae (2.6)
a=1

The dual section of it is denoted by ey € T'(X, L). Using this non-vanishing section, we can
define a Hermitian metric % on L if there exists a Hermitian metric h¥ on E. More precisely,

then

if (h aB) is the matrix representation of h¥ with respect to the basis {eq}"_;,
1 1

hL — — -
hE(epwer) ST haBW, Wy

(2.7)



Proposition 2.1. The curvature of (L, h*) is

RM = ——\é;laglog hE =

%aﬁ log (Z MWQWB) (2.8)
where & and O are operators on the total space P(E*).

By this proposition, we get the following well-known result:
Proposition 2.2. If (E, k") is a Griffiths-positive vector bundle, then E is ample.

Proof. By Kodaira embedding theorem, L is ample if and only if there exists a positive Hermitian
metric on L. We will show that the induced metric h” (see 2.7) is positive. Now we fix a point
p € P(E*), then there exist local holomorphic coordinates (2!, -- -, 2") centered at point s = 7(p)

and local holomorphic basis {e1,--- ,e,} of E around s such that
ho5 = 0,5 — Ri.5%" 7+ O0(|2P) (2.9)
Without loss generality, we assume p is (0,---,0,[a1, - ,a,]) with a, = 1. On the chart

U = {W, =1} of the fiber P""!, we set w4 = W, for A=1,--- ,r — 1, then

R =Yy Ry st a1 + 5 ( aBaA)d Anaw® | (210)
i,j=la,f=1 A,B=1

where |a|? = Z lan|?. If RF is Griffith positive, then
=1

I8 —
agae
Z RﬁaB a2

06,621

is a Hermitian positive n x n matrix. Consequently, RM (p) is a Hermitian positive (1,1) form
on P(E*), i.e. h” is a positive Hermitian metric. O

The following linear algebraic lemma will be used in Theorem 4.4.

=)

is invertible and D is invertible, then (A — BD~'C)~! exists and

Lemma 2.3. If the matriz

-1 _ (A—BD'C) ! —(A-BD™'C)"'BD™!
~\ -D'¢c(A-BD'C)"' D'C(A-BD'C)"'BD'+ D!

Moreover, if T is positive definite, then A — BD~'C is positive definite.



3 Curvature formulas

Suppose L = LF @ 7 (F) for k > 0 where F' is a line bundle over S. Let hg be a Hermitian
metric on L and {w;}scg a smooth family of Kéhler metrics on the the fibers X, = P(E¥) of X.
Let {wA}TA be the local holomorphic coordinates on the fiber X which is generated by the
homogeneous coordinates [W7y,---,W,] on the corresponding trivialization chart. Using these
notations, we can write the metric ws as

vV~ —B
ws = 5 Aé:lgABsw)dw A dw (3.1)

It is well known H°(P"~!, Op,—1(k)) can be identified as the space of homogeneous polynomials
of degree k in r variables. The sections of HY(Xj, L\ x.) are of the form V,e? ¥ © e where V,
are homogenous polynomials in {W7y,---  W,.} of degree k and e the base of 7*(F') induced by
a base e of F. For example, if @ = (aq,--- ,a,) with oy +--- 4+ o, = k and «; are nonnegative
integers, then

Vo =W Wi, (3.2)

T

Now we set
Ea=e{"® @ ®e and e;=c¢fF®e

which are basis of S*E @ F and L respectively. B
We get a vector bundle whose fibers are H%(Xg, L|x,). In fact, this vector bundle is E =
SkE @ F. Now we define a Hermitian metric f on S¥E® F by (L, hg) and (X, ws), locally it is

r—1 wr—l

o _ _ _ o‘)s _ I/ S
fop = f(Ea, Eg) = /S<V066L7 Vierng o1 / hoVavﬁi(r S (3.3)
Here we regard hq locally as a positive function. In this general setting, the Hermitian metric
hp on L and Ké&hler metrics wg on the fibers are independent.

Let (z',---,2") be the local holomorphic coordinates on S. By definition, the curvature
tensor of f is

0*f, af,; 913
R v Y ad
Rio 82’82J Z ! 0z Z?zJ (3:4)

7,0
In the following, we will compute the curvature of f. Let Tx/g be the relative tangent bundle of
the fibration P(E*) — S, then g,5 is a metric on Tx/s and det(g,5) is a metric on det(T,g).
Let ¢ = —log(hodet(g,55)) be the local weight of induced Hermitian metric hodet(g,5) on
L ®det(Tx/s). In the sequel, we will use the following notations
Oy B 0% B 0% 0% 0%

= o YT paiga PAB T Guigol BT ghuggh 4 Y45 = goa0a

and (¢*B) is the transpose inverse of the (r — 1) x (r — 1) matrix (PA5);
r—1 o
> ¢ Poop =68
B=1



The following lemma can be deduced from the formulas in [32], [39] and [35]. In the case of
holomorphic fibration P(E*) — S, we could compute it directly, since it is locally flat and each
fiber of it is isomorphic to P" 1.

Lemma 3.1. The first order derivative of faB 18

af — . r—1
af Ws Ws
- = — hoVaVgpi—2— = —Vapier, Vger 3.5
8ZZ /—Xs 0 5(70 (7,,_1)! /X5< QDGL BEL>h0 (7"—1)! ( )
Proof. By the local expression of wy,
r—1
s — det(g 5)dVer—

(r—1)!

where dVgr—1 is standard volume on C"~!. Therefore
faﬁ :/ e_chaVﬁdV(crfl
Xs

and the first order derivative is

8f v 86_90 —
aff ve - o
5o = [, VaVadVer

= — / gDie_wVandV(crfl

E]

wr—l

= - hVaV 2‘87
/Xs et

O
Theorem 3.2. The curvature tensor of Hermitian metric f on SFE @ F is
— wr_l o w?“—l
Ri}aﬁ - /Xs hOVaVﬁ(pij (7" — 1)' /XS hOPzaP]B (7" — 1)' (36)

where
_a —
Pia = —Vapi — ZV«/ (Z f75%> (37)
Y é

Proof. For simplicity of notations, we set A;, = —V,p;. The Hermitian metric 3.3 is also a
norm on the space I'(Xs, L|x, ), and it induces an orthogonal projection

7o : T(Xs, Llx.) — H°(X,, L|x.)

Using this projection, we could rewrite the first derivative as

8.](.03 w;’—l
92 / (iacr, Vaep)ng (r — 1)
~ - Wit
_ / (Faliaez) + (Aineg = ol Aiaep), Vae o oy

r—1
— /S<7T5(Aia€z)avﬁei>ho (r—1)!
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since (Ajae; — Ts(Aine7)) is in the orthogonal space of HO(X,, E|XS). By this relation, we could
write 7s(Aiqe7) in the basis {Vaez} of HY(X,, Llx, ),

To(Aiger) = Y (Z fV‘S 0fas ) (Vyez) (3.8)

Y

From this identity, we see

/ (Ts(Aiae), Ts(4; BeL)

s

6afoc6
va 0z 821 (3.9)

Suppose
1 (83 14 9 i N

then Ajne; = s(Aines) + Piaeg, that is,

7o(Paeg) = 0 (3.11)
Similar to Lemma 3.1, we get the second order derivative
82](‘ _ r—1 r—1
aB 7 Ws Ws
=g hoVa Y] aPi€y, i€F )ho 7Ty
0205 /XS oVe Vﬁ‘ng (T‘ — 1)' + /Xs (V Pi€r V590]6L>h0 (,r, _ 1)|
— wr 1 wr =t
= —/ hOVaVﬁ(Pﬁm + /X <Aia€E7AjB€E>hom
o wr—l B _ wr—l
= _/ ‘ hOVaVB‘;DZ'j (7‘ — 1)' ‘|‘/ | <Pz‘aez + Ws(Aian)a Pjﬁez + Ws(AjﬁeZ»ho (7‘ — 1),
_ wg_l — w;’—l — - w
= —/X hoVaVBwﬁm +/ hOPiaP]ﬂW + /X <7T5(Aiaez) S(Ajﬁez)>h0(
o wr—l 8f
= — hoV,Vgp~—2—o thaP v Y ad a6
/XS oVaV 525 (1) +/ obels Ty T Zf R azﬂ
By formula 3.4, we get the curvature formula 3.6. O

4 O-estimate and positivity of Hermitian metrics

In this section, we will use J-estimate on polarized Kihler manifolds to analyze the curvature
formula in Theorem 3.2,

r—1 wr—l

— w —
PR hva -8 hBaP 85
Hijos /XS VeV s /X 0Tt I8 G )1
The first term on the right hand side involves the base direction curvature ©i7 of the line bundle

L® det(Tx/s). If the line bundle L® det(Tx/s) is positive in the base direction, we can choose
(ho,ws) such that ¢ is positive in the base direction, i.e. (¢;;) is Hermitian positive. We will
give a lower bound of the second term by the following Lemma.

r—1

s
r—1)!



Lemma 4.1. Let (M",wy) be a compact Kihler manifold and (L,h) a Hermitian line bundle
over M. If there exists a positive constant ¢ such that

Ric(wy) + R" > cw, (4.1)

then for any w € D(M, T*9'M ® L) such that Ow = 0, there erxists a unique u € T'(M, L)
such that Ou = w and 7(u) = 0 where 7 : I'(M, L) — H°(M, L) is the orthogonal projection.

Moreover,
w1 wr
ulp = < = | Jwlpegn— (4.2)
M nl ~ oty 0%l

For the first part, condition 4.1 asserts that Ky, ® L is a positive line bundle over M, so by
Akizuki-Kodaira-Nakano vanishing theorem(see e.g. [9]),

H" (M, K3 ® L) =0

that is H%'(M,L) = 0. For the second part, since u has minimal energy, the inequality 4.2
follows by standard 0-estimate. We refer the reader to [9] or [19].

Now we apply Lemma 4.1 to each fiber (X, ws) and (L|x,,holx.). At a fixed point s € S,
the fiber direction curvature of the induced metric on line bundle L @ det(Tx/g) is

- %8353 log(ho det(g,5)) = RES + Ricp(ws) (4.3)

On the other hand

VI, VI,
_78888 lOg(hO det(gAE)) = 7888890

where ¢ = —log(hg det(g,5)). So the condition 4.1 turns to be

(pa5) = ¢s(943) (4.4)
for some positive constant cs = ¢(s).

Theorem 4.2. If (p,5) > cs(9,45) at point s € S, then for any

9 .
=Y u = @e, €T(S,TVS®E
u 2 Ut ®eq € T(S, S®E)

with E = S*E ® F, we have the following estimate at point s,

r—1 —
A
E i, iB N T A%:—lg Cemeag wr 1
RF () = 3 B 2 3 [ halVau ) Wou) | 5 = 22 —
A L X Cs (7, 1)
i,5,0,8 i,5,0,0
(4.5)

10



Proof. At point s € S, we set

P =Y Pouc; €T(X,, L), K== Vapau'e; € (X, Ly)

[NeY B0

It is obvious that 03P = 0,K where O, is O on the fiber direction. On the other hand, by 3.11,
7s(P) = 0. So we could apply Lemma 4.1 and get

wr—l 1 o wr—l

PP < — | (05K gy 4.6
[ PRy <5 PeRTon iy (46)

Since 0,K = — 5. VagpigudeB ® ef,

i, B
0K Gran = D D ho(Vau')(Vau?)g* 50,45
i7j a?/B

By inequality 4.6 and Theorem 3.2, we get the estimate 4.5. O

Before proving the main theorem, we need the following lemma:

Lemma 4.3. If I is a holomorphic vector bundle over a compact complex manifold S with rank
r and F is a line bundle over S such that S**"E ® det E* ® F is a (semi-)ample over S, then
there exists a (semi-)positive Hermitian metric Ao on Opg+) (k) @ 7*(F) @ det(Tx/g)-

Proof. Let E be S5t E @ det(E*) ® F. It is obvious that P(S¥+"E*) = P(E*). The tautological
line bundles of them are related by the following formula

Ou»@)(l) = Op(gr+rp= (1) @ Ty, (det B) @ 7, (F) (4.7)

where 731, : P(S¥*7E*) — S is the canonical projection. Let vy, : P(E*) — P(S**"E*) be the
standard Veronese embedding, then

OP(E*)(k + 7") = ,UZ-H“ <O]P’(Sk+’E*)(1)) (48)

Similarly, let juz4, be the induced mapping ji4y : P(E*) — P(E), then

Wiy, (OM)(D) — Op(ey(k + 1) @ 7°(F ® det E¥) (4.9)
By the identity
Kx = m(Ks) ® Op(g+)(—7) @ 7" (det E), (4.10)
we have ~
MZ+T <O]P’(E‘)(1)> = OP(E*)(I{I) ® W*(F) X det(Tx/S) =L® det(Tx/S) (411)

By definition if £ is (semi-)ample, then Op( E)(l) is (semi-)ample and so is L ® det(Tx/s). By
Kodaira embedding theorem, there exists a (semi-)positive Hermitian metric Ag on it. O

11



Theorem 4.4. If E is a holomorphic vector bundle over a compact complexr manifold S with
rank v and F is a line bundle over S such that S**"E®det E*®F is a (semi-)ample over S, then
there exists a Hermitian metric f on SSE® F such that (SFE® F, f) is (semi-)Nakano-positive
and (semi-)dual-Nakano-positive.

Proof. At first, we assume Sk E @ det E* @ F is ample. Let Ao be a positive Hermitian metric
on L ® det(T'x/g) and set

V=1

wsz——aﬁslong_— Z 9458 w)dw A dw®
2w 2w AT

which is a smooth family of Kéhler metrics on the fibers X;. We get an induced Hermitian

metric on Z, namely,
Ao

det(g,5)

Let f be the Hermitian metric on the vector bundle S¥E ® det F induced by (Z, ho) and
(Xs,ws)(see 3.3). In this setting, the weight ¢ of induced metric on L @ det(Tx/g) is

ho =

© = —log (ho det(gAB)) —log \g

Hence
(0a5) = (945) (4.12)
In Theorem 4.2, ¢; = 1 for any s € S, therefore

r—1

=Y Ry = Y [ noVewn W) (g Y o Temess | gy

] o, Ly B A,B=1
r—1

= ZZ/ ho( Vu Vﬁuﬂﬁ) Y5 — Z ‘PAE%E‘PAE (:}8_7

.Jj a,B A,B=1

for any u = > u'® 8‘; ® E, € T(S, TS @ E).

(e
On the other hand ) is a positive Hermitian metric on the line bundle L ® det(Ty/g). The
curvature form of Ao can be represented by a Hermitian positive matrix, namely, the coefficients
matrix of Hermitian positive (1,1) form /—199¢ on X. By Lemma 2.3,

r—1

AB
o= Y ¢ Poimea
A,B=1

is a Hermitian positive n X n matrix. Since the integrand is nonnegative, RE (u,u) = 0 if and
only if

r—1
Z Z ho (V') (VauiB) P — Z cpAng@(ij =0 (4.13)
i,] 0676 A,le
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on X, which means (u'®) is a zero matrix. In summary, we get
RE (u,u) > 0

for nonzero u, i.e. the induced metric f on E=S*E@Fis Nakano-positive.
__ For the semi-ample case, the proof is similar. Let Ao be a semi-positive Hermitian metric on
L @ det(Tx/s). Since P(E*) is Kéhler, there exists a Kihler metric wx. Now we replace w; by
V=1 _
wi = —2—8385 log Ao + ewx|x, (4.14)
T
for small € € (0,1). So we could repeat the above process and let € go to 0.
For the dual-Nakano-positivity, by definition

- r—1 r—1
i3 — — - w
S5 Rt 2 33 [ hoa ) | o~ 3 o | oy
ij B ij onB X AB=1 ‘
(4.15)
The right hand side equals zero if and only if
. _ r—1 -
(Vaud®)(Vau'P) | ¢;5 — Z SDAB%-E%Q =0 (4.16)
A,B=1
on X, which infers (u'®) is a zero matrix. The dual-Nakano-positivity of f is proved. O

Corollary 4.5. If E is an ample vector bundle and F is a nef line bundle, then there exists
ko = ko(S, E) such that S*E ® F is Nakano-positive and dual-Nakano-positive for any k > k.
In particular, S¥E is Nakano-positive and dual-Nakano-positive for k > k.

Proof. Since for large k, S¥*F @ det E* is ample, so S*E @ E* ® F is ample. By Theorem 4.4,
SkE ® F is Nakano-positive and dual-Nakano-positive. In particular, S¥E is Nakano-positive
and dual-Nakano-positive for k > k. [l

Corollary 4.6. If E is an ample vector bundle and F is a nef line bundle, or E is a nef vector
bundle and F is an ample line bundle,

(I) S*E ® det E ® F is Nakano-positive and dual-Nakano-positive for any k > 0.

(I1) If the rank r of E is greater than 1, then S™E* @ (det E)! @ F is Nakano-positive and
dual-Nakano-positive if t > r+m — 1.

Proof. (I) follows by the ampleness of S**"E ® F = S*"E @ det E* @ (det E ® F).
(IT) If 7 > 1, it is easy to see E* ® det E = A"~!E. By the relation
ST E* @ det B) @ (det )" @ F = S E* @ det E® (det E)! @ F (4.17)

we can apply Theorem 4.4 to the pair (E*,(det E)! @ F) and obtain the Nakano-positivity
and dual-Nakano-positivity of S"E* @ (det ) @ F when t > r +m — 1. Let £ = TP?
then £ = F* ® det F is Griffiths-positive but not Nakano-positive. So we need the restriction
t>r+m— 1. O

Corollary 4.7. If S"t'E®det E* is ample, then E is Nakano-positive and dual-Nakano-positive
and so it is Griffiths-positive.
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5 Nakano-positivity and dual-Nakano-positivity of adjoint vec-
tor bundles

The following lemma is due to Fujita ([14]) and Ye-Zhang [10].

Lemma 5.1. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If r > n+ 1, then det E ® Kg is ample except (S, E) = (P", Opn (1)®7F1).

Theorem 5.2. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S.

(1) If r > 1, then S¥E ® (det E)? ® Kg is Nakano-positive and dual-Nakano-positive for any
k > max{n —r,0}.

(IT) If r =1, then the line bundle E®"*?) @ Kg is Nakano-positive.
Moreover, the lower bound on k is sharp.

Proof. (I) If r > 1, then X = P(E*) is a P"~! bundle which is not isomorphic to any projective
space. By Lemma 5.1, Op(p+)(n +r) ® Kx is ample. That is

Op(g+y(n) @ 7 (Kg ® det E)

is ample which is equivalent to the ampleness of S"E® (det E*)® (det E)?® Kg. If k > max{n—
7,0}, STTFE @ det E* ® (det E)? ® Kg is ample, hence by Theorem 4.4, S*E @ (det F)?> ® Kg
is Nakano-positive and dual-Nakano-positive. (II) follows from Lemma 5.1. In fact, the vector
bundle E = E®(+2) is an ample vector bundle of rank n + 2 and det E = E®2) By Lemma
5.1, det E@KS = E®(+2) @ Kg is ample. By Kodaira embedding theorem, it carries a Griffiths-
positive.

Here the lower bound n — r is sharp. For any integer ky < n — r, there exists some ample
vector E such that F® (det F)* ® Kg is not Nakano-positive, for example (S, E) = (P4, Ops (1)@
Opa(1)). O

Remark 5.3. In general, det F ® Kg is not an ample line bundle, so the positivity in case (I)
is stronger than the positivity of S*F @ det E.

Theorem 5.4. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If r > 1, then E ® (det E)* ® Kg is Nakano-positive and dual-Nakano-positive
for any k > max{n + 1 —r,2}. Moreover, the lower bound is sharp.

Proof. If r > n — 1, by Theorem 5.2, F ® (det E)2 ® Kg is Nakano-positive and dual-Nakano-
positive. Now we consider 1 < 7 < n— 1. By ([20], Theorem 2.5), Kg ® (det E)" ™" is nef except
the case (S, E) = (P*, Ops(1) ® Opa(1)). It is easy to check

SHME® Kg® (det B)* ™"

is also ample in that case. By Theorem 4.4, E ® (det E)"H_T ® Kg is Nakano-positive and
dual-Nakano-positive. Here the lower bound n + 1 — 7 is sharp. For any integer kg <n+1—r,
there exists an ample vector bundle E such that E ® (det F)* ® Kg is not Nakano-positive, for
example (S, E) = (P, Ops(1) © Opa(1)). O
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Remark 5.5. In Theorem 5.2 and 5.4, if » > n, E ® (det £)> ® Kg is Nakano-positive and
dual-Nakano-positive. If E = TP", then S?E ® det E ® Kpn is Nakano-positive and dual-
Nakano-positive.

Problem: Is S?FE ® det E ® Kg Nakano-positive and dual-Nakano-positive when r > n? If one
knows S"T?E @ Kg is ample, or equivalently, Op(g+)(n+2) @ 7*(Kg) is ample, by Theorem 4.4,
S?FE @ det E ® Kg is Nakano-positive and dual-Nakano-positive.

6 Vanishing theorems

The following vanishing theorem is dual to Nakano([29])(see Demailly([9])):

Lemma 6.1 (Nakano). Let E be a vector bundle over a compact complex manifold M. If E
is Nakano-positive, then H™ (M, E) = 0 for any q > 1. If E is dual-Nakano-positive, then
HY"(M,E) =0 for any ¢ > 1.

Theorem 6.2. Let E, Ey,---,Ey be vector bundles over an n-dimensional compact complex
manifold M. The ranks of them are r,ry,--- ,rp respectively. Let L be a line bundle on M.

(I) If E is ample and L is nef, then there exists ko such that for any k > ko = ko(M, E),
HPY(M,S*E® L) =0 (6.1)
for any q > 1 and p > 0.
(IT) If E is ample, L is nef and r > 1, then
H™(M,S*E @ (det E)? @ Kpy @ L) = HY™(M,S*E @ (det E)? @ Kpy @ L) =0 (6.2)
for any ¢ > 1 and k > max{n — r,0}.
(IIIY) If E is ample, L is nef and r > 1, then
H"(M,E® (det E)* ® Kpy ® L) = HY"(M,E® (det E)* @ Kpy @ L) =0 (6.3)
for any g > 1 and k > max{n + 1 —r,2}.
(IV) Letr > 1. If E is ample and L is nef, or E is nef and L is ample, then
H™(M,S"E* @ (det E) @ L) = HY"(M,S™E* @ (det E)! ® L) = 0 (6.4)

foranyq>1andt>r+m—1.

(V) Ifall E; are ample and L is nef, or, all E; are nef and L is ample, then any ky > 0,--+ kg >
0,
H™(M,S"E ®-- @ SMFE,@det B, ® --- ® det B, @ L)
= H"(M,SME @ - @ S*E,@det | @ - @det B, @ L) = 0
forq > 1.
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Proof. For (II), (IIT), (IV) and (V), the vector bundles in consideration are all Nakano-positive
and dual-Nakano-positive. The vanishing theorems follow from Lemma 6.1. For (I), by the
following Theorem 6.7, there exists kg = ko(M, E) such that S¥E @ A" PTYOM is Nakano-
positive for any p. On the other hand

HPY(M,S*E® L) = H™(M,S*E ® L @ A" PTYOM) (6.5)
By Nakano’s vanishing theorem, HP4(M,S*E ® L) =0 for ¢ > 1 and p > 0 if k > k. O

Remark 6.3. Part (V) can be regarded as a generalization vanishing theorems of Griffiths ([15],
Theorem G) and Demailly([10], Theorem 0.2).

The following result generalizes Griffiths’ vanishing theorem, see also ([23], Corollary 1.5):

Proposition 6.4. Assume that St™*"E @ L is ample where r is the rank of E. Then
H™(M,S'E @ (det E)* @ L) = H?"™(M,S'E @ (det E)* @ L) = 0
for any q > 1.

Proof. By Theorem 4.4, S'E & (det E)* ® L is Nakano-positive and dual-Nakano-positive. The
results follow by Nakano’s vanishing theorem. O

If L is an ample line bundle over a compact complex manifold M and F' is an arbitrary line
bundle over M. By comparing the Chern classes, we know there exists a constant mg such that
L™ ® F is ample and so it is positive. If E is an ample vector bundle and F' is an arbitrary
vector bundle, it is easy to see S¥E @ F is ample for large k. But, in general, we don’t know
whether an ample vector bundle carries a Griffiths-positive or Nakano-positive metric. In the
following, we will construct Nakano-positive and dual-Nakano-positive metrics on various ample
vector bundles.

Lemma 6.5. If L is an ample line bundle over M and F is an arbitrary vector bundle. Then
there exists an integral mg such that L™ ® F is Nakano-positive and dual-Nakano-positive.

Proof. Let hg be a positive metric on L and w be the curvature of hy which is also the Kéahler
metric fixed on M. For any metric g on F, the curvature RY has a lower bound in the sense

min inf —Rg(u(:n), u(z))

€M u#0 ’u(m)P =z —(mo B 1) (66)

where u € I'(M, T*°M ® F). The curvature of metric h™ ® g on L™® ® F is given by

ﬁzmow'g—l—hom-Rg (6.7)
Therefore N
R(v®@u,v @u) > |ul*hg (v,v)
for any v € I'(M,L™°) and v € I'(M,TM ® F). O

Lemma 6.6. If E is (dual-)Nakano-positive and F is a nef line bundle, then E ® F is (dual-
)Nakano-positive.
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Proof. Fix a Kéhler metric on M. Let g be a Nakano-positive metric on E, then there exists
2¢ > 0 such that
R (u(), u(z)) > 2¢lu()[”

for any u € I'(M,T"'M ® E). On the other hand, by a result of [I1], there exists a metric hq
on the nef line bundle F' such that
RM > —cwhy (6.8)

The curvature of ¢ ® hg on £ ® F' is
R=RY hy+g-R"
For any u € T'(M,T'*°M ® E) and v € T'(M, F)
Ru®v,u®v) > (R (u,u) — €|’LL|2) ho(v,v) > elu2ho(v, v) (6.9)
For dual-Nakano-positivity, the proof is similar. O

Theorem 6.7. If E is an ample vector bundle over M and F is an arbitrary vector bundle over
M, then there exists ko = ko(M, E, F) such that S*E ® F is Nakano-positive and dual-Nakano-
positive for any k > kq.

Proof. By Lemma 6.5, there exists mg such that (det E)™ ® F' is Nakano-positive and dual-
Nakano-positive. On the other hand, there exists kg = ko(E, mg, M) such that Op(g«)(r + k) ®
7*(det E*)™0F1 is ample for k > ko. It is equivalent to the ampleness of vector bundle S™*E @
(det E*)mo*+!. By Theorem 4.4, S¥E ® (det £*)™© is Nakano-positive and dual-Nakano-positive.
Since the tensor product of two (dual-)Nakano-positive vector bundles is (dual-)Nakano-positive,
SFE® F = (SFE® (det E*)™) @ ((det )™ ® F) is Nakano-positive and dual-Nakano-positive
for k > ko. O

Theorem 6.8. If E is ample over M and F' is an arbitrary vector bundle over M, then there
exists kg = ko(M, E, F) such that

HPY(M,S*E® F) =0 (6.10)
forq>1andp>0ifk > kg.

Proof. By Theorem 6.7, there exists kg = ko(M, E,F) such that S*E @ F @ A" PTHOM is
Nakano-positive for any p. On the other hand

HPY(M,S*E® F) = H"(M,S*E ® F @ A" PTOM) (6.11)

By Nakano vanishing theorem, HP4(M,S*E ® F) = 0 for ¢ > 1 and p > 0 if k > k. O
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7 Comparison of Griffiths-positive and Nakano-positive metrics

Let (E,h) be a Hermitian vector bundle. In general, it is very difficult to write down the
exact curvature formula about (SkE , Skh). In this section, we give an algorithm to compute the
curvature of (S*E, S*h). As applications, we can disprove the Griffiths-positivity and Nakano-
positivity of a given metric on P".

Let wrg be the standard Fubini-Study metric on P~ and [Wy,---W,] the homogeneous
coordinates on P" 1. If a = (aq, -+ ,ap) and B = (B1, o, , Bk), we define the generalized
Kronecker ¢ for multi-index by the following formula

k
Oap = Z Héaa(j)ﬁa(j) (7.1)

o€eSE j=1
where S is the permutation groups in k symbols.
Lemma 7.1. If V, =W, --- Wy, and Vg = Wy, ---Wpg,, then

/ Vavﬁ wg‘gl _ 604ﬁ (7 2)
pret W2k (n = 1) (n+k—1) ‘

For simple index notations,

/ WoWs wig' _ dap / WoWsWoWs wis' _ dapdys + basdp,
pro1 W2 (n—1)!  nl’ o1 [WE S (n—1)! (n+1)!

(7.3)

/ WoaWsWo WsWalWy wig'  das (03600 + 05u026) + Gas (83500 + 03u025) + dapu (35035 + 8150x5)
pn-1 |W|6 (n—1)! (n + 2)!

(7.4)

Let h be a Hermitian metric on E, h” be the induced metric (see 2.7) on L = Op(g+)(1). Let
F be a line bundle with Hermitian metric A*. Naturally, there is a metric S*A®h!" on the vector
bundle S*E ® F. On the other hand, we can construct a new metric f on S¥E ® F by formula
3.3. There is a canonical way to construct it. Let L=ILF@r* (F). The induced metric on L
is hg = (hM)* @ 7* (') and the induced metric on det(T'x/g) is (A1) @ w*(det(h)~!). These two
metrics induce a metric Ao = (RL)*" @ 7* (det(h)™!) on L® det(T’x/g). Now we could polarize

each fiber X, by the curvature of \g. By formula 2.8, when the curvature R is restricted to a
fiber X, the Kéhler form is

V-1, - (k+r)v-1_ = By W
wy = =08, log Mo = L 0,5, log (S0 hPWTs ) = (k4 rwrs

7r
Now we can use (L, ho) and (Xs,ws) to construct a “new” metric f on S*E @ F by formula 3.3.

Theorem 7.2. The metric constructed in Theorem /4.4 is

(r+ k)r—1

TR gk F
oD 2 ek (7.5)

/=
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Proof. Without loss generality, we choose the normal coordinates for metric A at a fix point
s € §. The metric in Theorem 4.4 turns to be

VoVg wh
——(k T—th/ B FS
Jag = (k) et [W2E (r — 1)
Here V,, V3 are homogeneous monomials of degree £ in Wy,--- ,W,. By Lemma 7.1,
(r+k)! F
0p = o Gagh
Jas = Gk — 1%
that is f = CH L Gkp @ pF. 0

= k1)
Theorem 7.3. If (E,h) is a Griffiths-positive vector bundle, then
(I) (S*E ® (det E)’, S*h ® (det h)*) is Nakano-positive and dual-Nakano-positive for any k > 0

and £ > 1.

(IT) There exists kg = ko(M,E) such that (S*E,S*h) is Nakano-positive and dual-Nakano-
positive.

Proof. These follow by Theorem 4.4 and Theorem 7.2. O

Remark 7.4. The Nakano-positivity of (E ® det E,h ® det h) was firstly proved by Demailly
and Skoda in [12] where they used a discrete Fourier transformation method.

Corollary 7.5. Let hpg be the Fubini-Study metric on TP", then

(I) (S"TMTP" @ Kpn, S" M hpg ® det(hps)™t) is semi-Griffiths-positive for n > 2.

(IT) (SFTP" @ Kpn, S*hps @ det(hrs)™') is Griffiths-positive for any k > n + 2.

(IIT) (S*TP", S*hpg) is Nakano-positive and dual-Nakano-positive for any k > 2.

Proof. The curvature of F = TP"™ with respect to the standard Fubini-Study metric hpg is
Rz = highyg + highy; (7.6)

Without loss generality, we assume hﬁ = 0;; at a fixed point, then

Rzu uhlt = Z [u* + ki 2 (7.7)

which means that (E, hrg) is semi-Nakano-positive but not Nakano-positive. By Theorem 7.2,
(S"HTP" ® Kpn, "M hpg ® det(hps)™!) is semi-Griffiths-positive. (IT) follows by the identity
SETP™ @ Kpn = S¥(TP" @ Opn(—1)) @ Opn(k —n — 1)

and semi-Griffiths positivity of TP" ® Opn(—1).

(III) By Theorem 4.4, the canonically induced metric f is Nakano-positive and dual-Nakano-
positive. On the other hand, by Theorem 7.2, f is a constant multiply of S*hpg. The lower
bound of k follows from (II). O
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Proposition 7.6. (I) (E,h) is Griffiths-positive if and only if (S*E, S*h) is Griffiths-positive
for some k > 1.

(IT1) If (E,h) is (dual-)Nakano-positive, then (S*E, S*h) is (dual-)Nakano-positive for any k >
1.

Proof. For the convenience of the reader, we assume k& = 2 at first. We could choose normal
coordinates at a fixed point. Let {ej, - - ,e,} be the local basis at that point. The ordered
basis of S?E at that point are {e1 ®er,e9 ®eg, -+ e, @ €rq,6, ®e.}. We denote them by
€(a,8) = €a ® eg With a < 3. The curvature tensor S?h is

Rﬁ(aﬁ)( 5 = Rz050v6 + Ri5. 5008 + Rz 5006 + Ri5,5048 (7.8)
where Rz 5 is the curvature tensor of E. Let u = ; O;V Ui(ay)€(ayy) € (M, TYOM ® S2E). For

simplicity of notations, we extend the values of u;(, ) to all indices (a,7) by setting u;(,) = 0
if v < a. Therefore

22 Bitamintien@es = D D RiamistiemnTies)
,J gzg 1,7 a,,B,0

= Y (Rgap%iam Tji(sa) + Ris5tiam Tas)

R 5Ui(a)Tj(B.a) T Rija5li(an)Ti(r.6))

= Z Z Rz.5 (ui(an) + ui(%a)) (uj(ﬁnf) + uj(%ﬁ))(7'9)
Y oi4g,a,8

Hence (S?E, S?h) is Nakano-positive if (E,h) is Nakano-positive. For the general case, we set
A= (a1, ,ax) and B = (B1,---,Bk) with oy < -+ < af and f; < -+ < Bg. The basis of
SEE are {ea = eq, ® - @ eq, }. In Theorem 4.4, all inequalities are identities, so by Lemma
7.1, the curvature tensor of (S*E, S*h) is

Z]AB Z Z Rzgaﬁ aaséﬁﬁtéAth (710)
a,f=1s,t=1
where AS = (ala"' y Ms—1,Os41, """ ,Oék), Bt = (517"' 7Bt—17/8t+17"' 75k) and 5Ath is the

multi-index delta function( see formula 7.1). By the curvature formula,

Z Rz’EAE“iAUJ'B_ Z Z Z RigapViaasq)yagu- 1)VJB%<1) o (k1) (7.11)
i,7,A,B S0k—1 0€SK_1 1,50,

where Si_1 is the permutation group in (k — 1) symbols and

s
‘/iaal---ak,l = E Ui As A® = (ala g1, QG gy 1,00t ,Oék)

With the help of curvature formula 7.10, we could prove Griffiths-positivity and dual-Nakano-
positivity of S¥E in a similar way. Here, we use another way to show it. S*F can be viewed as a
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quotient bundle of E®*. If (E, h) is Griffiths-positive or dual-Nakano-positive, then (E®* h®Fk)
is Griffiths-positive or dual-Nakano-positive and so the quotient bundles are Griffiths-positive
or dual-Nakano-positive(see [9]). The induced metrics on quotient bundles are exactly the given
ones. 0

Remark 7.7. Part (I) is an analogue of ampleness: F is ample if and only if SkE is ample for
some k > 1. The converse of part (IT) is wrong. We know (S?TP", S?hrs) is Nakano-positive,
but (TP", hrg) is not Nakano-positive as shown in the following.

Example 7.8. In this example, we will show the Nakano-positivity of (S?TP?, S%2hrs) in local
coordinates. At a fixed point, we choose the normal coordinates of TP2. Let {e1,es} be the
ordered basis of TP? at that point. The ordered basis of S?TP? are e(1,1) = e1®e1,€e(19) = €1Qe
and e(p9) = €2 ® €. Using the same notation as Proposition 7.6, we set Viay = tj(a,~) + Ui(y,a)

where u =) > Uj(ay) 621 ® €(a,y) € T(P2, THOP? ® S?TP?). For v = 1, the 2 X 2 matrix (Via1)

i aly
has the form
T = < 2uy(11)  u1(1,2) >
2ug(1,1)  Ug(1,2)

For v = 2, the 2 x 2 matrix (Vja2) is

The total 2 x 3 matrix (ui(aﬁ)) is

T— < Ur(1,1)  Ui1(1,2) U1(2,2) >
U2(1,1) U2(1,2) U2(2,2)

By formula 7.9 and identity 7.7,

Z Y R tien@es = Y BgagVieVipt+ D RiaVia2Vis
7-] ai’y ﬁ 5 i7j7a7/5 i7j7a7/5
1 1
- 52"/ial+Vai1’2+§z“/io¢2+vai2‘2
[NeY B0

It equals zero if and only if 77 and 75 are skew-symmetric which means T" = 0. The Nakano-
positivity of (S2TP?, S%hps) is proved.
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