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Positivity and vanishing theorems of ample vector bundles

Kefeng Liu†, Xiaofeng Sun∗ and Xiaokui Yang†

Abstract

In this paper, we study the Nakano-positivity and dual-Nakano-positivity of certain ad-
joint vector bundles associated to ample vector bundles. As applications, we get new van-
ishing theorems about ample vector bundles. For examples, we prove that if E is an ample
vector bundle over a compact complex manifold S, then SkE is Nakano-positive and dual-
Nakano-positive for large k. For Pn, we show that (SkTPn, SkhFS) is Nakano-positive and
dual-Nakano-positive for any k ≥ 2 where hFS is the standard Fubini-Study metric.

1 Introduction

Let E be a holomorphic vector bundle with a Hermitian metric h. Nakano in [29] introduced
an analytic notion of positivity using the curvature of (E, h), and now it is called Nakano
positivity. Griffiths in [15] defined Griffiths positivity of (E, h). On a Hermitian line bundle,
these two concepts are the same. In general, Griffiths positivity is weaker than Nakano positivity.
On the other hand, Hartshorne in [17] defined the ampleness of a vector bundle over a projective
manifold. A vector bundle E is said to be ample if the tautological line bundleOP(E∗)(1) is ample
over P(E∗).

For a line bundle, it is well known that the ampleness of the bundle is equivalent to the Griffiths
positivity of it. In [15], Griffiths conjectured that this equivalence is also valid for vector bundles,
i.e., E is an ample vector bundle if and only if E carries a Griffiths-positive metric. It is well
known if E admits a Griffiths-positive metric, then OP(E∗)(1) has a Griffiths-positive metric(see
Proposition 2.2). Finding a Griffiths-positive metric on an ample vector bundle seems to be very
difficult but hopeful. In [7], Campana and Flenner gave an affirmative answer to the Griffiths
conjecture when the base S is a projective curve, see also [38]. In [36], Siu and Yau proved the
Frankel conjecture that every compact Kähler manifold with positive holomorphic bisectional
curvature is biholomorphic to the projective space. The positivity of holomorphic bisectional
curvature is the same as Griffiths positivity of the holomorphic tangent bundle. On the other
hand, S. Mori([26]) proved the Hartshorne conjecture that any algebraic manifold with ample
tangent vector bundle is biholomorphic to the projective space.

In this paper, we consider the existence of positive metrics on ample vector bundles. It is
well-known that metrics with good curvature properties are bridges between complex algebraic
geometry and complex analytic geometry. Various vanishing theorems about ample vector bun-
dles can be found in [10], [31], [25], [34], [23] and [22]. In this paper we take a different approach,
we will construct Nakano-positive and dual-Nakano-positive metrics on various vector bundles
associated to ample vector bundles.
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Let E be a vector bundle over a compact complex manifold S and F a line bundle over S. Let
r be the rank of E and n be the complex dimension of S. In the following we briefly describe
our main results.

Theorem 1.1. If Sr+kE⊗detE∗⊗F is (semi-)ample over S, then SkE⊗F is (semi-)Nakano-
positive and (semi-)dual-Nakano-positive.

Here we make no assumption on E and we allow E to be negative(see Corollary 4.6). As
pointed out by Professor Berndtsson that the Nakano positive part of Theorem 1.1 may also be
derived from the result of [2]. For definitions about Nakano-positivity, dual-Nakano-positivity
and ampleness, see Section 2. As applications of this theorem, we get the following results:

Theorem 1.2. Let E be an ample vector bundle over S.

(I) If F is a nef line bundle, then there exists k0 = k0(S,E) such that SkE ⊗ F is Nakano-
positive and dual-Nakano-positive for any k ≥ k0. In particular, SkE is Nakano-positive
and dual-Nakano-positive for any k ≥ k0.

(II) If F is an arbitrary vector bundle, then there exists k0 = k0(S,E, F ) such that for any
k ≥ k0, S

kE ⊗ F is Nakano-positive and dual-Nakano-positive for any k ≥ k0.

Moreover, if the Hermitian vector bundle (E, h) is Griffiths-positive, then for large k, (SkE,Skh)
is Nakano-positive and dual-Nakano-positive.

In general, when k is large enough, SkE is very ample. Here we get its Nakano-positivity and
dual-Nakano-positivity, which is much stronger than very ampleness. We can see the big gap
between ampleness and Nakano-positivity from the following vanishing theorems.

Corollary 1.3. Let E be an ample vector bundle over S.

(I) If F is a nef line bundle, then there exists k0 = k0(S,E) such that

Hp,q(S, SkE ⊗ F ) = 0 (1.1)

for any q ≥ 1 and p ≥ 0.

(II) If F is an arbitrary vector bundle, then there exists k0 = k0(S,E, F ) such that for any
k ≥ k0,

Hp,q(S, SkE ⊗ F ) = 0 (1.2)

for any q ≥ 1 and p ≥ 0.

In particular, Hn,n(S, SkE) = 0 for any k ≥ 1.

Remark 1.4. (1) In proving vanishing theorems of ample vector bundles, a powerful technique
is the Leray-Borel-Le Potier spectral sequence. By using this technique, one can get an
isomorphism between Dolbeault cohomology groups Hp,q(S, ∗) about vector bundles and
cohomology group Hp,q(P(E∗), ∗) about line bundles. From the Akizuki-Kodaira-Nakano
vanishing theorems for ample line bundles, one can get vanishing theorems of Hp,q(S, ∗).
But the lower bound of p + q depends on the rank r of E. If the rank r is large enough,
then the vanishing theorems deduced by this method are not effective. For example, the
famous Le Potier’s vanishing theorem: if E is an ample vector bundle over a compact
complex manifold S, then Hp,q(S,E) = 0 if p + q ≥ n + r. If r > n, then there are no
information about Cohomology groups. For more details, see [10], [31], [25], [23] and [22].

2



(2) On a Griffiths-positive vector bundle E, it is easy to see that Hn,n(E) = 0. In general we
can not get more information, for example, Hn,n−1(Pn, TPn) = C.

Corollary 1.5. If E is an ample vector bundle and F a nef line bundle, or E is a nef vector
bundle and F an ample line bundle, then we have

(I) SkE ⊗ detE ⊗ F is Nakano-positive and dual-Nakano-positive for any k ≥ 0.

(II) If the rank r of E is greater than 1, then SmE∗ ⊗ (detE)t ⊗ F is Nakano-positive and
dual-Nakano-positive if t ≥ r +m− 1.

(III) If Sr+1E ⊗ detE∗ is ample, then E is Nakano-positive and dual-Nakano-positive, so it is
Griffiths-positive.

Remark 1.6. (1) For part (I), similar results were discussed in [2], [3] [4], [27], [28] and [33]
recently.

(2) If E is Griffiths-positive, J-P. Demailly and H. Skoda proved that E⊗detE and E∗⊗(detE)r

are Nakano-positive if r > 1( see [12]). For more precise argument, see Theorem 7.3.

(3) Using Nakano-positivity and dual-Nakano-positivity of vector bundles, we can get vanishing
theorems of types Hn,q and Hq,n with q ≥ 1. See Theorem 6.2 and also [15], [10], [31],
[25], [23] and [22].

(4) If E has a Griffiths-positive metric, then the naturally induced metrics on those vector
bundles are exactly Nakano-positive and dual-Nakano-positive, see Theorem 7.3.

Let hFS be the Fubini-Study metric on TPn and SkhFS the induced metric on SkTPn by Veronese
mapping. Let n ≥ 2. It is easy to see that TPn does not admit a Nakano-positive metric. In
particular (TPn, hFS) is not Nakano-positive. However, (SkTPn, SkhFS) is Nakano-positive for
any k ≥ 2.

Corollary 1.7. Let hFS be the Fubini-Study metric on TPn, then

(I) (Sn+1TPn ⊗KPn , Sn+1hFS ⊗ det(hFS)
−1) is semi-Griffiths-positive for n ≥ 2.

(II) (SkTPn ⊗KPn , SkhFS ⊗ det(hFS)
−1) is Griffiths-positive for k ≥ n+ 2.

(III) (SkTPn, SkhFS) is Nakano-positive and dual-Nakano-positive for any k ≥ 2.

This corollary can be viewed as an important evidence of positivity of some adjoint vector
bundles, namely, vector bundles of type SkE ⊗ (detE)ℓ ⊗KS .

Theorem 1.8. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If r > 1, then SkE ⊗ (detE)2 ⊗ KS is Nakano-positive and dual-Nakano-
positive for any k ≥ max{n− r, 0}. Moreover, the lower bound is sharp.

In general, detE⊗KS is not an ample line bundle, for example, (S,E) = (P3,OP3(1)⊕OP3(1)), so
the (dual-)Nakano-positivity in the above theorem is stronger than the (dual-)Nakano-positivity
of SkE ⊗ detE.
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Theorem 1.9. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If r > 1, then E ⊗ (detE)k ⊗KS is Nakano-positive and dual-Nakano-positive
for any k ≥ max{n+ 1− r, 2}. Moreover, the lower bound is sharp.

In the case n + 1 − r > 2, that is 1 < r < n − 1, the vector bundle KS ⊗ (detE)n−r can be a
negative line bundle, for example (S,E) = (P4,OP4(1)⊕2). But E ⊗ detE ⊗KS ⊗ (detE)n−r is
still Nakano-positive and dual-Nakano-positive.

Although the lower bounds of k in Theorem 1.8 and Theorem 1.9 are not effective when r > n,
in considering vanishing theorems of ample vector bundles, it becomes quite interesting when
r ≤ n as we explained before.

Theorem 1.10. Let E be an ample vector bundles over an n-dimensional compact complex
manifold S of rank r and L be any nef line bundle on S.

(I) If r > 1, then

Hn,q(S, SkE ⊗ (detE)2 ⊗KS ⊗ L) = Hq,n(S, SkE ⊗ (detE)2 ⊗KS ⊗ L) = 0 (1.3)

for any q ≥ 1 and k ≥ max{n− r, 0}.

(II) If r > 1, then

Hn,q(S,E ⊗ (detE)k ⊗KS ⊗ L) = Hq,n(S,E ⊗ (detE)k ⊗KS ⊗ L) = 0 (1.4)

for any q ≥ 1 and k ≥ max{n+ 1− r, 2}.

Using theorem 1.1 and by induction we obtained the following theorem,

Proposition 1.11. Assume that St+krE ⊗ L is ample where r is the rank of E. Then

Hn,q(SM,StE ⊗ (detE)k ⊗ L) = Hq,n(SM,StE ⊗ (detE)k ⊗ L) = 0

for any q ≥ 1.

Remark 1.12. Theorem 1.1 allows us to do induction to deduce more positivity results. For
example, if SmE ⊗ F is ample, then Sm−rE ⊗ detE ⊗ L is (dual-)Nakano-positive and so it is
ample. Using Theorem 1.1 again, we get Sm−2r ⊗ (detE)2 ⊗ L is Nakano-positive and dual-
Nakano-positive. Finally, we get StE⊗(detE)k⊗L is Nakano-positive and dual-Nakano-positive,
if m = t+ kr for some 0 ≤ t < r. It is obvious that the (dual-)Nakano-positivity turns stronger
and stronger under induction. This explains why a lot of vanishing theorems involve a power of
detE.

2 Background material

Let E be a holomorphic vector bundle over a compact complex manifold S and h a Hermitian
metric on E. There exists a unique connection ∇ which is compatible with the metric h and
complex structure on E. It is called the Chern connection of (E, h). Let {zi} be the local
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holomorphic coordinates on S and {eα}rα=1 be the local frames of E. The curvature tensor
R∇ ∈ Γ(S,Λ2T ∗S ⊗ E∗ ⊗ E) has the form

R∇ =

√
−1

2π
R

γ

ijα
dzi ∧ dzj ⊗ eα ⊗ eγ (2.1)

where R
γ

ijα
= hγβRijαβ and

Rijαβ = −
∂2hαβ

∂zi∂zj
+ hγδ

∂hαδ
∂zi

∂hγβ

∂zj
(2.2)

A Hermitian vector bundle (E, h) is said to be Griffiths-positive, if for any nonzero vectors
u = ui ∂

∂zi
and v = vαeα, ∑

i,j,α,β

Rijαβu
iujvαvβ > 0 (2.3)

(E, h) is said to be Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi

⊗ eα,
∑

i,j,α,β

Rijαβu
iαujβ > 0 (2.4)

(E, h) is said to be dual-Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi

⊗ eα,
∑

i,j,α,β

Rijαβu
iβujα > 0 (2.5)

The notions of semi-positivity could be defined similarly. We say E is (semi-)Nakano-positive, if
it admits a (semi-)Nakano-positive metric. A line bundle L is said to be nef, if for any irriducible
curve C ⊂ S, ∫

C
c1(L) ≥ 0

For a comprehensive description of positivity and related topics, see [9], [15], [34] and [38].
Let E be a Hermitian vector bundle of rank r over a compact complex manifold S, L =

OP(E∗)(1) be the tautological line bundle on the projective bundle P(E∗) and π the canonical
projection P(E∗) −−→ S. By definition([17]), E is an ample vector bundle over S if OP(E∗)(1) is
an ample line bundle over P(E∗). We say E is semi-ample if OP(E∗)(1) is semi-ample. E is said
to be nef, if OP(E∗)(1) is nef. To simplify the notations we will denote P(E∗) by X and the fiber
π−1({s}) by Xs.

Let (e1, · · · , er) be the local holomorphic frames with respect to a given trivialization on E and
the dual frames on E∗ are denoted by (e1, · · · , er). The corresponding holomorphic coordinates
on E∗ are denoted by (W1, · · · ,Wr). There is a canonical section eL∗ of L∗, i.e., eL∗ ∈ Γ(X,L∗):

eL∗ =
r∑

α=1

Wαe
α (2.6)

The dual section of it is denoted by eL ∈ Γ(X,L). Using this non-vanishing section, we can
define a Hermitian metric hL on L if there exists a Hermitian metric hE on E. More precisely,

if
(
hαβ

)
is the matrix representation of hE with respect to the basis {eα}rα=1, then

hL =
1

hE(eL∗ , eL∗)
=

1
∑

hαβWαW β

(2.7)
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Proposition 2.1. The curvature of (L, hL) is

RhL

= −
√
−1

2π
∂∂ log hL =

√
−1

2π
∂∂ log

(∑
hαβWαW β

)
(2.8)

where ∂ and ∂ are operators on the total space P(E∗).

By this proposition, we get the following well-known result:

Proposition 2.2. If (E, hE) is a Griffiths-positive vector bundle, then E is ample.

Proof. By Kodaira embedding theorem, L is ample if and only if there exists a positive Hermitian
metric on L. We will show that the induced metric hL (see 2.7) is positive. Now we fix a point
p ∈ P(E∗), then there exist local holomorphic coordinates (z1, · · · , zn) centered at point s = π(p)
and local holomorphic basis {e1, · · · , er} of E around s such that

hαβ = δαβ −Rijαβz
izj +O(|z|3) (2.9)

Without loss generality, we assume p is (0, · · · , 0, [a1, · · · , ar]) with ar = 1. On the chart
U = {Wr = 1} of the fiber Pr−1, we set wA = WA for A = 1, · · · , r − 1, then

RhL

(p) =

√
−1

2π




n∑

i,j=1

r∑

α,β=1

Rijαβ

aβaα

|a|2 dzi ∧ dzj +

r−1∑

A,B=1

(
1− aBaA

|a|2
)
dwA ∧ dwB


 (2.10)

where |a|2 =
r∑

α=1
|aα|2. If RE is Griffith positive, then




r∑

α,β=1

Rijαβ

aβaα

|a|2




is a Hermitian positive n× n matrix. Consequently, RhL
(p) is a Hermitian positive (1, 1) form

on P(E∗), i.e. hL is a positive Hermitian metric.

The following linear algebraic lemma will be used in Theorem 4.4.

Lemma 2.3. If the matrix

T =

(
A B

C D

)

is invertible and D is invertible, then (A−BD−1C)−1 exists and

T−1 =

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1C(A−BD−1C)−1BD−1 +D−1

)

Moreover, if T is positive definite, then A−BD−1C is positive definite.
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3 Curvature formulas

Suppose L̃ = Lk ⊗ π∗(F ) for k ≥ 0 where F is a line bundle over S. Let h0 be a Hermitian
metric on L̃ and {ωs}s∈S a smooth family of Kähler metrics on the the fibers Xs = P(E∗

s ) of X.
Let {wA}r−1

A=1 be the local holomorphic coordinates on the fiber Xs which is generated by the
homogeneous coordinates [W1, · · · ,Wr] on the corresponding trivialization chart. Using these
notations, we can write the metric ωs as

ωs =

√
−1

2π

r−1∑

A,B=1

gAB(s,w)dw
A ∧ dwB (3.1)

It is well known H0(Pr−1,OPr−1(k)) can be identified as the space of homogeneous polynomials
of degree k in r variables. The sections of H0(Xs, L̃|Xs) are of the form Vαe

⊗k
L ⊗ e where Vα

are homogenous polynomials in {W1, · · · ,Wr} of degree k and e the base of π∗(F ) induced by
a base e of F . For example, if α = (α1, · · · , αr) with α1 + · · ·+ αr = k and αj are nonnegative
integers, then

Vα = Wα1
1 · · ·Wαr

r . (3.2)

Now we set
Eα = e⊗α1

1 ⊗ · · · ⊗ e⊗αr
r ⊗ e and eL̃ = e⊗k

L ⊗ e

which are basis of SkE ⊗ F and L̃ respectively.
We get a vector bundle whose fibers are H0(Xs, L̃|Xs). In fact, this vector bundle is Ẽ =

SkE⊗F . Now we define a Hermitian metric f on SkE⊗F by (L̃, h0) and (Xs, ωs), locally it is

fαβ := f(Eα, Eβ) =

∫

Xs

〈VαeL̃, VβeL̃〉h0

ωr−1
s

(r − 1)!
=

∫

Xs

h0VαV β
ωr−1
s

(r − 1)!
(3.3)

Here we regard h0 locally as a positive function. In this general setting, the Hermitian metric
h0 on L̃ and Kähler metrics ωs on the fibers are independent.

Let (z1, · · · , zn) be the local holomorphic coordinates on S. By definition, the curvature
tensor of f is

Rijαβ = −
∂2fαβ

∂zi∂zj
+
∑

γ,δ

fγδ ∂fαδ
∂zi

∂fγβ

∂zj
(3.4)

In the following, we will compute the curvature of f . Let TX/S be the relative tangent bundle of
the fibration P(E∗) → S, then gAB is a metric on TX/S and det(gAB) is a metric on det(TX/S).
Let ϕ = − log(h0 det(gAB)) be the local weight of induced Hermitian metric h0 det(gAB) on

L̃⊗ det(TX/S). In the sequel, we will use the following notations

ϕi =
∂ϕ

∂zi
, ϕij =

∂2ϕ

∂zi∂zj
, ϕAB =

∂2ϕ

∂wA∂wB
, ϕiB =

∂2ϕ

∂zi∂wB
and ϕAj =

∂2ϕ

∂zj∂wA

and (ϕAB) is the transpose inverse of the (r − 1)× (r − 1) matrix (ϕAB),

r−1∑

B=1

ϕABϕCB = δAC

7



The following lemma can be deduced from the formulas in [32], [39] and [35]. In the case of
holomorphic fibration P(E∗) → S, we could compute it directly, since it is locally flat and each
fiber of it is isomorphic to P

r−1.

Lemma 3.1. The first order derivative of fαβ is

∂fαβ

∂zi
= −

∫

Xs

h0VαV βϕi
ωr−1
s

(r − 1)!
=

∫

Xs

〈−VαϕieL̃, VβeL̃〉h0

ωr−1
s

(r − 1)!
(3.5)

Proof. By the local expression of ωs,

ωr−1
s

(r − 1)!
= det(gAB)dVCr−1

where dVCr−1 is standard volume on C
r−1. Therefore

fαβ =

∫

Xs

e−ϕVαV βdVCr−1

and the first order derivative is

∂fαβ

∂zi
=

∫

Xs

∂e−ϕ

∂zi
VαV βdVCr−1

= −
∫

Xs

ϕie
−ϕVαV βdVCr−1

= −
∫

Xs

h0VαV βϕi
ωr−1
s

(r − 1)!

Theorem 3.2. The curvature tensor of Hermitian metric f on SkE ⊗ F is

Rijαβ =

∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
−
∫

Xs

h0PiαP jβ
ωr−1
s

(r − 1)!
(3.6)

where

Piα = −Vαϕi −
∑

γ

Vγ

(
∑

δ

fγδ ∂fαδ
∂zi

)
(3.7)

Proof. For simplicity of notations, we set Aiα = −Vαϕi. The Hermitian metric 3.3 is also a
norm on the space Γ(Xs, L̃|Xs), and it induces an orthogonal projection

π̃s : Γ(Xs, L̃|Xs) −−→ H0(Xs, L̃|Xs)

Using this projection, we could rewrite the first derivative as

∂fαβ

∂zi
=

∫

Xs

〈AiαeL̃, VβeL̃〉h0

ωr−1
s

(r − 1)!

=

∫

Xs

〈π̃s(AiαeL̃) + (AiαeL̃ − π̃s(AiαeL̃)), VβeL̃〉h0

ωr−1
s

(r − 1)!

=

∫

Xs

〈π̃s(AiαeL̃), VβeL̃〉h0

ωr−1
s

(r − 1)!

8



since (AiαeL̃− π̃s(AiαeL̃)) is in the orthogonal space of H0(Xs, L̃|Xs). By this relation, we could

write π̃s(AiαeL̃) in the basis {VαeL̃} of H0(Xs, L̃|Xs),

π̃s(AiαeL̃) =
∑

γ

(
∑

δ

fγδ ∂fαδ
∂zi

)
(
VγeL̃

)
(3.8)

From this identity, we see
∫

Xs

〈
π̃s(AiαeL̃), π̃s(AjβeL̃)

〉
h0

ωr−1
s

(r − 1)!
=
∑

γ,δ

fγδ ∂fαδ
∂zi

∂fγβ

∂zj
(3.9)

Suppose

Piα = Aiα −
∑

γ

Vγ

(
∑

δ

fγδ ∂fαδ
∂zi

)
(3.10)

then AiαeL̃ = π̃s(AiαeL̃) + PiαeL̃, that is,

π̃s(PiαeL̃) = 0 (3.11)

Similar to Lemma 3.1, we get the second order derivative

∂2fαβ

∂zi∂zj
= −

∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫

Xs

〈VαϕieL̃, VβϕjeL̃〉h0

ωr−1
s

(r − 1)!

= −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫

Xs

〈AiαeL̃, AjβeL̃〉h0

ωr−1
s

(r − 1)!

= −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫

Xs

〈
PiαeL̃ + π̃s(AiαeL̃), PjβeL̃ + π̃s(AjβeL̃)

〉
h0

ωr−1
s

(r − 1)!

= −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫

Xs

h0PiαP jβ
ωr−1
s

(r − 1)!
+

∫

Xs

〈
π̃s(AiαeL̃), π̃s(AjβeL̃)

〉
h0

ωr−1
s

(r − 1)!

= −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫

Xs

h0PiαP jβ
ωr−1
s

(r − 1)!
+
∑

γ,δ

fγδ ∂fαδ
∂zi

∂fγβ

∂zj

By formula 3.4, we get the curvature formula 3.6.

4 ∂-estimate and positivity of Hermitian metrics

In this section, we will use ∂-estimate on polarized Kähler manifolds to analyze the curvature
formula in Theorem 3.2,

Rijαβ =

∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
−
∫

Xs

h0PiαP jβ
ωr−1
s

(r − 1)!

The first term on the right hand side involves the base direction curvature ϕij of the line bundle

L̃⊗ det(TX/S). If the line bundle L̃⊗ det(TX/S) is positive in the base direction, we can choose
(h0, ωs) such that ϕ is positive in the base direction, i.e. (ϕij) is Hermitian positive. We will
give a lower bound of the second term by the following Lemma.

9



Lemma 4.1. Let (Mn, ωg) be a compact Kähler manifold and (L, h) a Hermitian line bundle
over M . If there exists a positive constant c such that

Ric(ωg) +Rh ≥ cωg (4.1)

then for any w ∈ Γ(M,T ∗0,1M ⊗ L) such that ∂w = 0, there exists a unique u ∈ Γ(M,L)
such that ∂u = w and π̃(u) = 0 where π̃ : Γ(M,L) −−→ H0(M,L) is the orthogonal projection.
Moreover, ∫

M
|u|2h

ωn
g

n!
≤ 1

c

∫

M
|w|2g∗⊗h

ωn
g

n!
(4.2)

For the first part, condition 4.1 asserts that K∗
M ⊗ L is a positive line bundle over M , so by

Akizuki-Kodaira-Nakano vanishing theorem(see e.g. [9]),

Hn,1(M,K∗
M ⊗ L) = 0

that is H0,1(M,L) = 0. For the second part, since u has minimal energy, the inequality 4.2
follows by standard ∂-estimate. We refer the reader to [9] or [19].

Now we apply Lemma 4.1 to each fiber (Xs, ωs) and (L̃|Xs , h0|Xs). At a fixed point s ∈ S,
the fiber direction curvature of the induced metric on line bundle L̃⊗ det(TX/S) is

−
√
−1

2π
∂s∂s log(h0 det(gAB)) = RL̃

h0
s +RicF (ωs) (4.3)

On the other hand

−
√
−1

2π
∂s∂s log(h0 det(gAB)) =

√
−1

2π
∂s∂sϕ

where ϕ = − log(h0 det(gAB)). So the condition 4.1 turns to be

(ϕAB) ≥ cs(gAB) (4.4)

for some positive constant cs = c(s).

Theorem 4.2. If (ϕAB) ≥ cs(gAB) at point s ∈ S, then for any

u =
∑

i,α

uiα
∂

∂zi
⊗ eα ∈ Γ(S, T 1,0S ⊗ Ẽ)

with Ẽ = SkE ⊗ F , we have the following estimate at point s,

RẼ(u, u) =
∑

i,j,α,β

Rijαβu
iαujβ ≥

∑

i,j,α,β

∫

Xs

h0(Vαu
iα)(Vβujβ)


ϕij −

r−1∑
A,B=1

gABϕiBϕAj

cs




ωr−1
s

(r − 1)!

(4.5)
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Proof. At point s ∈ S, we set

P =
∑

i,α

Piαu
iαe

L̃
∈ Γ(Xs, L̃s), K = −

∑

i,α

Vαϕiu
iαe

L̃
∈ Γ(Xs, L̃s)

It is obvious that ∂sP = ∂sK where ∂s is ∂ on the fiber direction. On the other hand, by 3.11,
π̃s(P ) = 0. So we could apply Lemma 4.1 and get

∫

Xs

|P |2h0

ωr−1
s

(r − 1)!
≤ 1

cs

∫

Xs

|∂sK|2g∗s⊗h0

ωr−1
s

(r − 1)!
(4.6)

Since ∂sK = −
∑

i,α,B
VαϕiBu

iαdzB ⊗ eL̃,

|∂sK|2g∗s⊗h0
=
∑

i,j

∑

α,β

h0(Vαu
iα)(Vβujβ)g

ABϕiBϕAj

By inequality 4.6 and Theorem 3.2, we get the estimate 4.5.

Before proving the main theorem, we need the following lemma:

Lemma 4.3. If E is a holomorphic vector bundle over a compact complex manifold S with rank
r and F is a line bundle over S such that Sk+rE ⊗ detE∗ ⊗ F is a (semi-)ample over S, then
there exists a (semi-)positive Hermitian metric λ0 on OP(E∗)(k)⊗ π∗(F )⊗ det(TX/S).

Proof. Let Ê be Sk+rE⊗det(E∗)⊗F . It is obvious that P(Sk+rE∗) = P(Ê∗). The tautological
line bundles of them are related by the following formula

O
P(Ê)

(1) = OP(Sk+rE∗)(1)⊗ π∗
k+r(detE

∗)⊗ π∗
k+r(F ) (4.7)

where πk+r : P(S
k+rE∗) → S is the canonical projection. Let vk+r : P(E

∗) → P(Sk+rE∗) be the
standard Veronese embedding, then

OP(E∗)(k + r) = v∗k+r

(
OP(Sk+rE∗)(1)

)
(4.8)

Similarly, let µk+r be the induced mapping µk+r : P(E
∗) −−→ P(Ê), then

µ∗
k+r

(
O

P(Ê)
(1)
)
= OP(E∗)(k + r)⊗ π∗(F ⊗ detE∗) (4.9)

By the identity
KX = π∗(KS)⊗OP(E∗)(−r)⊗ π∗(detE), (4.10)

we have
µ∗
k+r

(
O

P(Ê)(1)
)
= OP(E∗)(k)⊗ π∗(F )⊗ det(TX/S) = L̃⊗ det(TX/S) (4.11)

By definition if Ê is (semi-)ample, then O
P(Ê)(1) is (semi-)ample and so is L̃⊗ det(TX/S). By

Kodaira embedding theorem, there exists a (semi-)positive Hermitian metric λ0 on it.
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Theorem 4.4. If E is a holomorphic vector bundle over a compact complex manifold S with
rank r and F is a line bundle over S such that Sk+rE⊗detE∗⊗F is a (semi-)ample over S, then
there exists a Hermitian metric f on SkE⊗F such that (SkE⊗F, f) is (semi-)Nakano-positive
and (semi-)dual-Nakano-positive.

Proof. At first, we assume Sk+rE⊗ detE∗ ⊗F is ample. Let λ0 be a positive Hermitian metric
on L̃⊗ det(TX/S) and set

ωs = −
√
−1

2π
∂s∂s log λ0 =

√
−1

2π

r−1∑

A,B=1

gAB(s,w)dw
A ∧ dwB

which is a smooth family of Kähler metrics on the fibers Xs. We get an induced Hermitian
metric on L̃, namely,

h0 =
λ0

det(gAB)

Let f be the Hermitian metric on the vector bundle SkE ⊗ detF induced by (L̃, h0) and
(Xs, ωs)(see 3.3). In this setting, the weight ϕ of induced metric on L̃⊗ det(TX/S) is

ϕ = − log
(
h0 det(gAB)

)
= − log λ0

Hence (
ϕAB

)
=
(
gAB

)
(4.12)

In Theorem 4.2, cs = 1 for any s ∈ S, therefore

RẼ(u, u) =
∑

i,j

∑

α,β

Rijαβu
iαujβ ≥

∑

i,j

∑

α,β

∫

Xs

h0(Vαu
iα)(Vβujβ)


ϕij −

r−1∑

A,B=1

gABϕiBϕAj


 ωr−1

s

(r − 1)!

=
∑

i,j

∑

α,β

∫

Xs

h0(Vαu
iα)(Vβujβ)


ϕij −

r−1∑

A,B=1

ϕABϕiBϕAj


 ωr−1

s

(r − 1)!

for any u =
∑
i,α

uiα ∂
∂zi

⊗ Eα ∈ Γ(S, T 1,0S ⊗ Ẽ).

On the other hand λ0 is a positive Hermitian metric on the line bundle L̃⊗ det(TX/S). The
curvature form of λ0 can be represented by a Hermitian positive matrix, namely, the coefficients
matrix of Hermitian positive (1, 1) form

√
−1∂∂ϕ on X. By Lemma 2.3,


ϕij −

r−1∑

A,B=1

ϕABϕiBϕAj




is a Hermitian positive n × n matrix. Since the integrand is nonnegative, RẼ(u, u) = 0 if and
only if

∑

i,j

∑

α,β

h0(Vαu
iα)(Vβujβ)


ϕij −

r−1∑

A,B=1

ϕABϕiBϕAj


 ≡ 0 (4.13)
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on Xs which means (uiα) is a zero matrix. In summary, we get

RẼ(u, u) > 0

for nonzero u, i.e. the induced metric f on Ẽ = SkE ⊗ F is Nakano-positive.
For the semi-ample case, the proof is similar. Let λ0 be a semi-positive Hermitian metric on

L̃⊗ det(TX/S). Since P(E∗) is Kähler, there exists a Kähler metric ωX . Now we replace ωs by

ωε
s = −

√
−1

2π
∂s∂s log λ0 + εωX |Xs (4.14)

for small ε ∈ (0, 1). So we could repeat the above process and let ε go to 0.
For the dual-Nakano-positivity, by definition

∑

i,j

∑

α,β

Rijαβu
iβujα ≥

∑

i,j

∑

α,β

∫

Xs

h0(Vαujα)(Vβuiβ)


ϕij −

r−1∑

A,B=1

ϕABϕiBϕAj


 ωr−1

s

(r − 1)!

(4.15)
The right hand side equals zero if and only if

(Vαujα)(Vβuiβ)


ϕij −

r−1∑

A,B=1

ϕABϕiBϕAj


 ≡ 0 (4.16)

on Xs which infers (uiα) is a zero matrix. The dual-Nakano-positivity of f is proved.

Corollary 4.5. If E is an ample vector bundle and F is a nef line bundle, then there exists
k0 = k0(S,E) such that SkE ⊗ F is Nakano-positive and dual-Nakano-positive for any k ≥ k0.
In particular, SkE is Nakano-positive and dual-Nakano-positive for k ≥ k0.

Proof. Since for large k, SkE ⊗ detE∗ is ample, so SkE ⊗ E∗ ⊗ F is ample. By Theorem 4.4,
SkE ⊗ F is Nakano-positive and dual-Nakano-positive. In particular, SkE is Nakano-positive
and dual-Nakano-positive for k ≥ k0.

Corollary 4.6. If E is an ample vector bundle and F is a nef line bundle, or E is a nef vector
bundle and F is an ample line bundle,

(I) SkE ⊗ detE ⊗ F is Nakano-positive and dual-Nakano-positive for any k ≥ 0.

(II) If the rank r of E is greater than 1, then SmE∗ ⊗ (detE)t ⊗ F is Nakano-positive and
dual-Nakano-positive if t ≥ r +m− 1.

Proof. (I) follows by the ampleness of Sk+rE ⊗ F = Sk+rE ⊗ detE∗ ⊗ (detE ⊗ F ).
(II) If r > 1, it is easy to see E∗ ⊗ detE = ∧r−1E. By the relation

Sr+m(E∗ ⊗ detE)⊗ (detE)t−r−m+1 ⊗ F = Sr+mE∗ ⊗ detE ⊗ (detE)t ⊗ F (4.17)

we can apply Theorem 4.4 to the pair (E∗, (detE)t ⊗ F ) and obtain the Nakano-positivity
and dual-Nakano-positivity of SmE∗ ⊗ (detE)t ⊗ F when t ≥ r + m − 1. Let E = TP2,
then E = E∗ ⊗ detE is Griffiths-positive but not Nakano-positive. So we need the restriction
t ≥ r +m− 1.

Corollary 4.7. If Sr+1E⊗detE∗ is ample, then E is Nakano-positive and dual-Nakano-positive
and so it is Griffiths-positive.
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5 Nakano-positivity and dual-Nakano-positivity of adjoint vec-

tor bundles

The following lemma is due to Fujita ([14]) and Ye-Zhang [40].

Lemma 5.1. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If r ≥ n+ 1, then detE ⊗KS is ample except (S,E) ∼= (Pn,OPn(1)⊕n+1).

Theorem 5.2. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S.

(I) If r > 1, then SkE ⊗ (detE)2 ⊗ KS is Nakano-positive and dual-Nakano-positive for any
k ≥ max{n− r, 0}.

(II) If r = 1, then the line bundle E⊗(n+2) ⊗KS is Nakano-positive.

Moreover, the lower bound on k is sharp.

Proof. (I) If r > 1, then X = P(E∗) is a P
r−1 bundle which is not isomorphic to any projective

space. By Lemma 5.1, OP(E∗)(n+ r)⊗KX is ample. That is

OP(E∗)(n)⊗ π∗ (KS ⊗ detE)

is ample which is equivalent to the ampleness of SnE⊗(detE∗)⊗(detE)2⊗KS. If k ≥ max{n−
r, 0}, Sr+kE ⊗ detE∗ ⊗ (detE)2 ⊗KS is ample, hence by Theorem 4.4, SkE ⊗ (detE)2 ⊗ KS

is Nakano-positive and dual-Nakano-positive. (II) follows from Lemma 5.1. In fact, the vector
bundle Ẽ = E⊕(n+2) is an ample vector bundle of rank n+ 2 and det Ẽ = E⊗(n+2). By Lemma
5.1, det Ẽ⊗KS = E⊗(n+2)⊗KS is ample. By Kodaira embedding theorem, it carries a Griffiths-
positive.

Here the lower bound n − r is sharp. For any integer k0 < n − r, there exists some ample
vector E such that E⊗(detE)k0⊗KS is not Nakano-positive, for example (S,E) = (P4,OP4(1)⊕
OP4(1)).

Remark 5.3. In general, detE ⊗KS is not an ample line bundle, so the positivity in case (I)
is stronger than the positivity of SkE ⊗ detE.

Theorem 5.4. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If r > 1, then E ⊗ (detE)k ⊗KS is Nakano-positive and dual-Nakano-positive
for any k ≥ max{n+ 1− r, 2}. Moreover, the lower bound is sharp.

Proof. If r ≥ n − 1, by Theorem 5.2, E ⊗ (detE)2 ⊗KS is Nakano-positive and dual-Nakano-
positive. Now we consider 1 < r < n− 1. By ([20], Theorem 2.5), KS ⊗ (detE)n−r is nef except
the case (S,E) = (P4,OP4(1)⊕OP4(1)). It is easy to check

Sr+1E ⊗KS ⊗ (detE)n−r

is also ample in that case. By Theorem 4.4, E ⊗ (detE)n+1−r ⊗ KS is Nakano-positive and
dual-Nakano-positive. Here the lower bound n+ 1− r is sharp. For any integer k0 < n+ 1− r,
there exists an ample vector bundle E such that E⊗ (detE)k0 ⊗KS is not Nakano-positive, for
example (S,E) = (P4,OP4(1)⊕OP4(1)).
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Remark 5.5. In Theorem 5.2 and 5.4, if r ≥ n, E ⊗ (detE)2 ⊗ KS is Nakano-positive and
dual-Nakano-positive. If E = TPn, then S2E ⊗ detE ⊗ KPn is Nakano-positive and dual-
Nakano-positive.

Problem: Is S2E ⊗ detE ⊗KS Nakano-positive and dual-Nakano-positive when r ≥ n? If one
knows Sn+2E⊗KS is ample, or equivalently, OP(E∗)(n+2)⊗π∗(KS) is ample, by Theorem 4.4,
S2E ⊗ detE ⊗KS is Nakano-positive and dual-Nakano-positive.

6 Vanishing theorems

The following vanishing theorem is dual to Nakano([29])(see Demailly([9])):

Lemma 6.1 (Nakano). Let E be a vector bundle over a compact complex manifold M . If E
is Nakano-positive, then Hn,q(M,E) = 0 for any q ≥ 1. If E is dual-Nakano-positive, then
Hq,n(M,E) = 0 for any q ≥ 1.

Theorem 6.2. Let E,E1, · · · , Eℓ be vector bundles over an n-dimensional compact complex
manifold M . The ranks of them are r, r1, · · · , rℓ respectively. Let L be a line bundle on M .

(I) If E is ample and L is nef, then there exists k0 such that for any k ≥ k0 = k0(M,E),

Hp,q(M,SkE ⊗ L) = 0 (6.1)

for any q ≥ 1 and p ≥ 0.

(II) If E is ample, L is nef and r > 1, then

Hn,q(M,SkE ⊗ (detE)2 ⊗KM ⊗ L) = Hq,n(M,SkE ⊗ (detE)2 ⊗KM ⊗ L) = 0 (6.2)

for any q ≥ 1 and k ≥ max{n− r, 0}.

(IIII) If E is ample, L is nef and r > 1, then

Hn,q(M,E ⊗ (detE)k ⊗KM ⊗ L) = Hq,n(M,E ⊗ (detE)k ⊗KM ⊗ L) = 0 (6.3)

for any q ≥ 1 and k ≥ max{n+ 1− r, 2}.

(IV) Let r > 1. If E is ample and L is nef, or E is nef and L is ample, then

Hn,q(M,SmE∗ ⊗ (detE)t ⊗ L) = Hq,n(M,SmE∗ ⊗ (detE)t ⊗ L) = 0 (6.4)

for any q ≥ 1 and t ≥ r +m− 1.

(V) If all Ei are ample and L is nef, or, all Ei are nef and L is ample, then any k1 ≥ 0, · · · , kℓ ≥
0,

Hn,q(M,Sk1E1 ⊗ · · · ⊗ SkℓEℓ ⊗ detE1 ⊗ · · · ⊗ detEℓ ⊗ L)

= Hq,n(M,Sk1E1 ⊗ · · · ⊗ SkℓEℓ ⊗ detE1 ⊗ · · · ⊗ detEℓ ⊗ L) = 0

for q ≥ 1.
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Proof. For (II), (III), (IV) and (V), the vector bundles in consideration are all Nakano-positive
and dual-Nakano-positive. The vanishing theorems follow from Lemma 6.1. For (I), by the
following Theorem 6.7, there exists k0 = k0(M,E) such that SkE ⊗ Λn−pT 1,0M is Nakano-
positive for any p. On the other hand

Hp,q(M,SkE ⊗ L) = Hn,q(M,SkE ⊗ L⊗ Λn−pT 1,0M) (6.5)

By Nakano’s vanishing theorem, Hp,q(M,SkE ⊗ L) = 0 for q ≥ 1 and p ≥ 0 if k ≥ k0.

Remark 6.3. Part (V) can be regarded as a generalization vanishing theorems of Griffiths ([15],
Theorem G) and Demailly([10], Theorem 0.2).

The following result generalizes Griffiths’ vanishing theorem, see also ([23], Corollary 1.5):

Proposition 6.4. Assume that St+krE ⊗ L is ample where r is the rank of E. Then

Hn,q(M,StE ⊗ (detE)k ⊗ L) = Hq,n(M,StE ⊗ (detE)k ⊗ L) = 0

for any q ≥ 1.

Proof. By Theorem 4.4, StE ⊗ (detE)k ⊗ L is Nakano-positive and dual-Nakano-positive. The
results follow by Nakano’s vanishing theorem.

If L is an ample line bundle over a compact complex manifold M and F is an arbitrary line
bundle over M . By comparing the Chern classes, we know there exists a constant m0 such that
Lm0 ⊗ F is ample and so it is positive. If E is an ample vector bundle and F is an arbitrary
vector bundle, it is easy to see SkE ⊗ F is ample for large k. But, in general, we don’t know
whether an ample vector bundle carries a Griffiths-positive or Nakano-positive metric. In the
following, we will construct Nakano-positive and dual-Nakano-positive metrics on various ample
vector bundles.

Lemma 6.5. If L is an ample line bundle over M and F is an arbitrary vector bundle. Then
there exists an integral m0 such that Lm0 ⊗ F is Nakano-positive and dual-Nakano-positive.

Proof. Let h0 be a positive metric on L and ω be the curvature of h0 which is also the Kähler
metric fixed on M . For any metric g on F , the curvature Rg has a lower bound in the sense

min
x∈M

inf
u 6=0

Rg(u(x), u(x))

|u(x)|2 ≥ −(m0 − 1) (6.6)

where u ∈ Γ(M,T 1,0M ⊗ F ). The curvature of metric hm0 ⊗ g on Lm0 ⊗ F is given by

R̂ = m0ω · g + hm0 · Rg (6.7)

Therefore
R̂(v ⊗ u, v ⊗ u) ≥ |u|2hm0

0 (v, v)

for any v ∈ Γ(M,Lm0) and u ∈ Γ(M,TM ⊗ F ).

Lemma 6.6. If E is (dual-)Nakano-positive and F is a nef line bundle, then E ⊗ F is (dual-
)Nakano-positive.
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Proof. Fix a Kähler metric on M . Let g be a Nakano-positive metric on E, then there exists
2ε > 0 such that

Rg(u(x), u(x)) ≥ 2ε|u(x)|2

for any u ∈ Γ(M,T 1,0M ⊗ E). On the other hand, by a result of [11], there exists a metric h0
on the nef line bundle F such that

Rh0 ≥ −εωh0 (6.8)

The curvature of g ⊗ h0 on E ⊗ F is

R̂ = Rg · h0 + g ·Rh0

For any u ∈ Γ(M,T 1,0M ⊗ E) and v ∈ Γ(M,F )

R̂(u⊗ v, u⊗ v) ≥
(
Rg(u, u)− ε|u|2

)
h0(v, v) ≥ ε|u|2h0(v, v) (6.9)

For dual-Nakano-positivity, the proof is similar.

Theorem 6.7. If E is an ample vector bundle over M and F is an arbitrary vector bundle over
M , then there exists k0 = k0(M,E,F ) such that SkE ⊗F is Nakano-positive and dual-Nakano-
positive for any k ≥ k0.

Proof. By Lemma 6.5, there exists m0 such that (detE)m0 ⊗ F is Nakano-positive and dual-
Nakano-positive. On the other hand, there exists k0 = k0(E,m0,M) such that OP(E∗)(r + k)⊗
π∗(detE∗)m0+1 is ample for k ≥ k0. It is equivalent to the ampleness of vector bundle Sr+kE ⊗
(detE∗)m0+1. By Theorem 4.4, SkE⊗ (detE∗)m0 is Nakano-positive and dual-Nakano-positive.
Since the tensor product of two (dual-)Nakano-positive vector bundles is (dual-)Nakano-positive,
SkE⊗F = (SkE ⊗ (detE∗)m0)⊗ ((detE)m0 ⊗ F ) is Nakano-positive and dual-Nakano-positive
for k ≥ k0.

Theorem 6.8. If E is ample over M and F is an arbitrary vector bundle over M , then there
exists k0 = k0(M,E,F ) such that

Hp,q(M,SkE ⊗ F ) = 0 (6.10)

for q ≥ 1 and p ≥ 0 if k ≥ k0.

Proof. By Theorem 6.7, there exists k0 = k0(M,E,F ) such that SkE ⊗ F ⊗ Λn−pT 1,0M is
Nakano-positive for any p. On the other hand

Hp,q(M,SkE ⊗ F ) = Hn,q(M,SkE ⊗ F ⊗ Λn−pT 1,0M) (6.11)

By Nakano vanishing theorem, Hp,q(M,SkE ⊗ F ) = 0 for q ≥ 1 and p ≥ 0 if k ≥ k0.

17



7 Comparison of Griffiths-positive and Nakano-positive metrics

Let (E, h) be a Hermitian vector bundle. In general, it is very difficult to write down the
exact curvature formula about (SkE,Skh). In this section, we give an algorithm to compute the
curvature of (SkE,Skh). As applications, we can disprove the Griffiths-positivity and Nakano-
positivity of a given metric on P

n.
Let ωFS be the standard Fubini-Study metric on P

n−1 and [W1, · · ·Wn] the homogeneous
coordinates on P

n−1. If α = (α1, · · · , αk) and β = (β1, β2, · · · , βk), we define the generalized
Kronecker δ for multi-index by the following formula

δαβ =
∑

σ∈Sk

k∏

j=1

δασ(j)βσ(j)
(7.1)

where Sk is the permutation groups in k symbols.

Lemma 7.1. If Vα = Wα1 · · ·Wαk
and Vβ = Wβ1 · · ·Wβk

, then

∫

Pn−1

VαV β

|W |2k
ωn−1
FS

(n− 1)!
=

δαβ

(n+ k − 1)!
(7.2)

For simple index notations,

∫

Pn−1

WαW β

|W |2
ωn−1
FS

(n− 1)!
=

δαβ

n!
,

∫

Pn−1

WαWβWγWδ

|W |4
ωn−1
FS

(n− 1)!
=

δαβδγδ + δαδδβγ

(n+ 1)!
(7.3)

∫

Pn−1

WαWβWγWδWλWµ

|W |6
ωn−1
FS

(n− 1)!
=

δαβ (δγδδλµ + δγµδλδ) + δαδ (δγβδλµ + δγµδλβ) + δαµ (δγβδλδ + δγδδλβ)

(n+ 2)!
(7.4)

Let h be a Hermitian metric on E, hL be the induced metric (see 2.7) on L = OP(E∗)(1). Let

F be a line bundle with Hermitian metric hF . Naturally, there is a metric Skh⊗hF on the vector
bundle SkE ⊗ F . On the other hand, we can construct a new metric f on SkE ⊗ F by formula
3.3. There is a canonical way to construct it. Let L̃ = Lk ⊗ π∗(F ). The induced metric on L̃

is h0 = (hL)k ⊗π∗(hF ) and the induced metric on det(TX/S) is (h
L)r ⊗π∗(det(h)−1). These two

metrics induce a metric λ0 = (hL)k+r ⊗ π∗
(
det(h)−1

)
on L̃⊗ det(TX/S). Now we could polarize

each fiber Xs by the curvature of λ0. By formula 2.8, when the curvature Rλ0 is restricted to a
fiber Xs, the Kähler form is

ωs =

√
−1

2π
∂s∂s log λ0 =

(k + r)
√
−1

2π
∂s∂s log

(∑
hαβWαW β

)
= (k + r)ωFS

Now we can use (L̃, h0) and (Xs, ωs) to construct a “new” metric f on SkE⊗F by formula 3.3.

Theorem 7.2. The metric constructed in Theorem 4.4 is

f =
(r + k)r−1

(r + k − 1)!
· Skh⊗ hF (7.5)
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Proof. Without loss generality, we choose the normal coordinates for metric h at a fix point
s ∈ S. The metric in Theorem 4.4 turns to be

fαβ = (k + r)r−1hF
∫

Pr−1

VαV β

|W |2k
ωr−1
FS

(r − 1)!

Here Vα, Vβ are homogeneous monomials of degree k in W1, · · · ,Wr. By Lemma 7.1,

fαβ =
(r + k)r−1

(r + k − 1)!
δαβh

F

that is f = (r+k)r−1

(r+k−1)! · Skh⊗ hF .

Theorem 7.3. If (E, h) is a Griffiths-positive vector bundle, then

(I) (SkE ⊗ (detE)ℓ, Skh⊗ (deth)ℓ) is Nakano-positive and dual-Nakano-positive for any k ≥ 0
and ℓ ≥ 1.

(II) There exists k0 = k0(M,E) such that (SkE,Skh) is Nakano-positive and dual-Nakano-
positive.

Proof. These follow by Theorem 4.4 and Theorem 7.2.

Remark 7.4. The Nakano-positivity of (E ⊗ detE, h ⊗ deth) was firstly proved by Demailly
and Skoda in [12] where they used a discrete Fourier transformation method.

Corollary 7.5. Let hFS be the Fubini-Study metric on TPn, then

(I) (Sn+1TPn ⊗KPn , Sn+1hFS ⊗ det(hFS)
−1) is semi-Griffiths-positive for n ≥ 2.

(II) (SkTPn ⊗KPn , SkhFS ⊗ det(hFS)
−1) is Griffiths-positive for any k ≥ n+ 2.

(III) (SkTPn, SkhFS) is Nakano-positive and dual-Nakano-positive for any k ≥ 2.

Proof. The curvature of E = TPn with respect to the standard Fubini-Study metric hFS is

Rijkℓ = hijhkℓ + hiℓhkj (7.6)

Without loss generality, we assume hij = δij at a fixed point, then

Rijkℓu
ikujℓ =

1

2

∑

j,k

|ujk + ukj|2 (7.7)

which means that (E, hFS) is semi-Nakano-positive but not Nakano-positive. By Theorem 7.2,
(Sn+1TPn ⊗KPn , Sn+1hFS ⊗ det(hFS)

−1) is semi-Griffiths-positive. (II) follows by the identity

SkTPn ⊗KPn = Sk(TPn ⊗OPn(−1))⊗OPn(k − n− 1)

and semi-Griffiths positivity of TPn ⊗OPn(−1).
(III) By Theorem 4.4, the canonically induced metric f is Nakano-positive and dual-Nakano-
positive. On the other hand, by Theorem 7.2, f is a constant multiply of SkhFS . The lower
bound of k follows from (II).
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Proposition 7.6. (I) (E, h) is Griffiths-positive if and only if (SkE,Skh) is Griffiths-positive
for some k ≥ 1.

(II) If (E, h) is (dual-)Nakano-positive, then (SkE,Skh) is (dual-)Nakano-positive for any k ≥
1.

Proof. For the convenience of the reader, we assume k = 2 at first. We could choose normal
coordinates at a fixed point. Let {e1, · · · , er} be the local basis at that point. The ordered
basis of S2E at that point are {e1 ⊗ e1, e1 ⊗ e2, · · · , er ⊗ er−1, er ⊗ er}. We denote them by
e(α,β) = eα ⊗ eβ with α ≤ β. The curvature tensor S2h is

R
ij(α,γ)(β,δ)

= Rijαβδγδ +Rijγδδαβ +Rijγβδαδ +Rijαδδγβ (7.8)

where Rijαβ is the curvature tensor of E. Let u =
∑
i

∑
α≤γ

ui(α,γ)e(α,γ) ∈ Γ(M,T 1,0M⊗S2E). For

simplicity of notations, we extend the values of ui(α,γ) to all indices (α, γ) by setting ui(α,γ) = 0
if γ < α. Therefore

∑

i,j

∑

α≤γ

β≤δ

Rij(α,γ)(β,δ)ui(α,γ)uj(β,δ) =
∑

i,j

∑

α,γ,β,δ

Rij(α,γ)(β,δ)ui(α,γ)uj(β,δ)

=
∑(

Rijαβui(α,γ)uj(β,γ) +Rijγδui(α,γ)uj(α,δ)

+Rijγβui(α,γ)uj(β,α) +Rijαδui(α,γ)uj(γ,δ)
)

=
∑

γ

∑

i,j,α,β

Rijαβ

(
ui(α,γ) + ui(γ,α)

) (
uj(β,γ) + uj(γ,β)

)
(7.9)

Hence (S2E,S2h) is Nakano-positive if (E, h) is Nakano-positive. For the general case, we set
A = (α1, · · · , αk) and B = (β1, · · · , βk) with α1 ≤ · · · ≤ αk and β1 ≤ · · · ≤ βk. The basis of
SkE are {eA = eα1 ⊗ · · · ⊗ eαk

}. In Theorem 4.4, all inequalities are identities, so by Lemma
7.1, the curvature tensor of (SkE,Skh) is

RijAB =

r∑

α,β=1

k∑

s,t=1

Rijαβδααsδββt
δAsBt (7.10)

where As = (α1, · · · , αs−1, αs+1, · · · , αk), Bt = (β1, · · · , βt−1, βt+1, · · · , βk) and δAsBt is the
multi-index delta function( see formula 7.1). By the curvature formula,

∑

i,j,A,B

RijABuiAujB =
∑

α1,··· ,αk−1

∑

σ∈Sk−1

∑

i,j,α,β

RijαβViαασ(1)···ασ(k−1)
V jβασ(1)···ασ(k−1)

(7.11)

where Sk−1 is the permutation group in (k − 1) symbols and

Viαα1···αk−1
=

k∑

s=1

uiAs , As = (α1, · · · , αs−1, α, αs+1, · · · , αk)

With the help of curvature formula 7.10, we could prove Griffiths-positivity and dual-Nakano-
positivity of SkE in a similar way. Here, we use another way to show it. SkE can be viewed as a
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quotient bundle of E⊗k. If (E, h) is Griffiths-positive or dual-Nakano-positive, then (E⊗k, h⊗k)
is Griffiths-positive or dual-Nakano-positive and so the quotient bundles are Griffiths-positive
or dual-Nakano-positive(see [9]). The induced metrics on quotient bundles are exactly the given
ones.

Remark 7.7. Part (I) is an analogue of ampleness: E is ample if and only if SkE is ample for
some k ≥ 1. The converse of part (II) is wrong. We know (S2TPn, S2hFS) is Nakano-positive,
but (TPn, hFS) is not Nakano-positive as shown in the following.

Example 7.8. In this example, we will show the Nakano-positivity of (S2TP2, S2hFS) in local
coordinates. At a fixed point, we choose the normal coordinates of TP2. Let {e1, e2} be the
ordered basis of TP2 at that point. The ordered basis of S2TP2 are e(1,1) = e1⊗e1, e(1,2) = e1⊗e2
and e(2,2) = e2 ⊗ e2. Using the same notation as Proposition 7.6, we set Viαγ = ui(α,γ) + ui(γ,α)

where u =
∑
i

∑
α≤γ

ui(α,γ)
∂
∂zi

⊗ e(α,γ) ∈ Γ(P2, T 1,0
P
2 ⊗ S2TP2). For γ = 1, the 2× 2 matrix (Viα1)

has the form

T1 =

(
2u1(1,1) u1(1,2)
2u2(1,1) u2(1,2)

)

For γ = 2, the 2× 2 matrix (Viα2) is

T2 =

(
u1(1,2) 2u1(2,2)
u2(1,2) 2u2(2,2)

)

The total 2× 3 matrix
(
ui(α,β)

)
is

T =

(
u1(1,1) u1(1,2) u1(2,2)
u2(1,1) u2(1,2) u2(2,2)

)

By formula 7.9 and identity 7.7,

∑

i,j

∑

α,γ,β,δ

Rij(α,γ)(β,δ)ui(α,γ)uj(β,δ) =
∑

i,j,α,β

RijαβViα1V jβ1 +
∑

i,j,α,β

RijαβViα2V jβ2

=
1

2

∑

i,α

|Viα1 + Vαi1|2 +
1

2

∑

i,α

|Viα2 + Vαi2|2

It equals zero if and only if T1 and T2 are skew-symmetric which means T ≡ 0. The Nakano-
positivity of (S2TP2, S2hFS) is proved.
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