
ar
X

iv
:1

01
2.

26
36

v1
  [

m
at

h.
G

T
] 

 1
3 

D
ec

 2
01

0 New structures of knot invariants

Kefeng Liu and Pan Peng

Abstract

Based on the proof of Labastida-Mariño-Ooguri-Vafa conjecture
[6], we derive an infinite product formula for Chern-Simons partition
functions, the generating function of quantum slN invariants. Some
symmetry properties of the infinite product will also be discussed.

1 Introduction

Chern-Simons theory has been conjectured to be equivalent to a topological
string theory by 1/N expansion in physics. This duality conjecture builds
a fundamental connection in mathematics. On the one hand, Chern-Simons
theory leads to the construction of knot invariants; on the other hand, topo-
logical string theory gives rise to Gromov-Witten theory in geometry.

Therefore, the Chern-Simons/topological string duality conjecture iden-
tifies the generating function of Gromov-Witten invariants as Chern-Simons
knot invariants [9]. Based on these thoughts, the existence of a sequence of
integer invariants is conjectured [9, 4, 7, 3] in a similar spirit of Gopakumar-
Vafa setting [1], which provides an essential evidence of the duality between
Chern-Simons theory and topological string theory. This integrality conjec-
ture, called the LMOV conjecture, was proved in [6].

One important corollary of the LMOV conjecture is to express Chern-
Simons partition function as an infinite product derived in this article. The
motivation of studying such an infinite product formula is based on a guess
on the modularity property of topological string partition function.

Chern-Simons theory can be approached in mathematics with the help
of quantum group theory. Let L be a link of L components. Quantum slN
invariant of L, W(A1,...,AL)(L; q, t), is defined to be a trace function on the
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Uq(slN) modules constructed from the planar diagram of L and irreducible
Uq(slN) modules VA1 , . . . , VAL associated to the components of L. These ir-
reducible Uq(slN ) modules are labeled by Young diagrams A1, . . . , AL. How-
ever, we will define these invariants more explicitly by the HOMFLY skein
model described in section 3.

The Chern-Simons partition function of L is the following generating
function of quantum slN invariants:

ZCS(L; q, t) = 1 +
∑

A1,...,AL

W(A1,...,AL)(L; q, t)

L
∏

α=1

sAα(xα),

where the summation is taken over all the partitions with some of them
possibly being empty while not all empty, and sAα(xα) is the Schur function
of a set of variables xα = {xα

i }i≥1. Based on our proof of LMOV conjecture,
we obtain the following infinite product formula (we only show the infinite
product formula for a knot. Its generalization to links is similar. Please refer
to section 4) :

ZCS =
∏

µ

∏

Q∈Z/2

∞
∏

m=1

∞
∏

k=−∞

〈

1− qk+mtQxµ
〉−mňµ; k,Q .

Here, 〈·〉 is the symmetric product defined by (4.4), and ňµ;k,Q are invariants
related to the integer invariants in the LMOV conjecture. The symmetry
property of ňµ;k,Q is discussed in section 5. For more details of the infinite
product formula for the Chern-Simons partition function of a link L, please
refer to (4.7).

The paper is organized as follows. In section 2, we define the quantum slN
invariants by the HOMFLY skein model. Chern-Simons theory and LMOV
conjecture are described in section 3. In section 4, we will derive Chern-
Simons partition function as infinite product. In section 5, we will discuss
the symmetry of q → q−1 and the rank-level duality.

2 Quantum slN invariants

2.1 Preliminary

We start by reviewing some preliminary on the representations of symmetric
groups and symmetric functions.
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A partition of n is a tuple of positive integers µ = (µ1, µ2, . . . , µk) such
that |µ| ,

∑k
i=1 µi = n and µ1 ≥ µ2 ≥ · · · ≥ µk > 0, where |µ| is called the

degree of µ and k is called the length of µ, denoted by ℓ(µ). A partition can
be represented by a Young diagram, for example, partition (5, 4, 2, 1) can be
identified as the following Young diagram:

.

Denote by Y the set of all Young diagrams. Let χA be the character of irre-
ducible representation of symmetric group, labelled by partition A . Given
a partition µ, define mj = card(µk = j; k ≥ 1). The order of the conjugate
class of type µ is given by:

zµ =
∏

j≥1

jmjmj!.

The orthogonality of the character formula gives

∑

µ

χA(Cµ)χB(Cµ)

zµ
= δA,B =

{

1, if A = B;
0, otherwise.

The theory of symmetric functions has a close relationship with the repre-
sentations of symmetric group. The symmetric power functions of a given
set of variables x = {xj}j≥1 are defined as the direct limit of the Newton
polynomials:

pn(x) =
∑

j≥1

xn
j , pµ(x) =

∏

i≥1

pµi
(x),

and we have the following formula which determines the Schur function

sA(x) =
∑

µ

χA(Cµ)

zµ
pµ(x) .

Given x = {xi}i≥1, y = {yj}j≥1, define

x ∗ y = {xi · yj}i≥1,j≥1. (2.1)

We also define xd = {xd
i }i≥1. The d-th Adam operation of a Schur function

is given by sA(x
d).
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2.2 The HOMFLY skien models

The quantum group invariants can be defined over any semi-simple Lie al-
gebra g. Here, we are particularly interested in the SU(N) Chern-Simons
gauge theory, hence we will study the quantum slN invariants, which can be
identified as the colored HOMFLY polynomials.

We will start by introducing the Framed HOMFLY polynomial, an invari-
ant of framed oriented links. Define the skein Rn

n(q, t) by linear combinations
of oriented n-tangles modulo the following relations:

− =
(

q−
1
2 − q

1
2

)

,

and = t−
1
2 .

(2.2)

The HOMFLY skein of an planar annulus, with some designated input and
output boundary points, is defined as linear combinations of oriented tangles
in the annulus, modulo Reidemeister moves II and III and the above two
relations (2.2). The coefficient ring is Z

[

q±
1
2 , t±

1
2

]

with finitely many products

of
(

q−
k
2 −q

k
2

)

in the denominators. The skein of the annulus is denoted by C.
This is a commutative algebra with a product given by placing one annulus
outside another.

From the HOMFLY skein of annulus, we can obtain the framed HOMFLY
polynomial of links, denoted by H(L). Here we normalize H as:

H(unknot) =
t−

1
2 − t

1
2

q−
1
2 − q

1
2

.

These invariants can be recursively computed through the HOMFLY skein.

2.3 The quantum group invariants

The colored HOMFLY polynomials are defined through satellite knot. A
satellite of K is determined by choosing a diagram Q in the annulus. Draw
Q on the annular neighborhood of K determined by the framing to give a
satellite knot K ⋆Q. See the following figure for a satellite of a framed trefoil
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knot with Q:

K = , Q = , K ⋆ Q = .

We will refer to this construction as decorating K with the pattern Q.
The HOMFLY polynomial H(K ⋆ Q) of the satellite depends on Q only
as an element of the skein C of the annulus. C can be regarded as the
parameter space for these invariants of K. We will call it the HOMFLY
satellite invariants of K.

There is a known set of idempotent elements, Eλ, one for each partition
λ of n. They were originally described in [2, 8]. Take the closure of Eλ, we
have Qλ ∈ C. {Qλ}λ∈Y form a basis of C.

The quantum slN invariant for the irreducible module VA1 , . . . , VAL, la-
beled by the corresponding partitions A1, . . . , AL, can be identified as the
HOMFLY invariants for the link decorated by QA1 , . . . , QAL. Write ~A =
(A1, . . . , AL). The quantum slN invariants of the link is given by

W ~A(L; q, t) = H(L ⋆⊗L
α=1QAα) , (2.3)

and we can define the following invariants:

Z~µ(L; q, t) =
∑

~A=(A1,...,AL)

( L
∏

α=1

χAα(Cµα)

)

W ~A(L; q, t) . (2.4)

2.4 Notations

Here we make the following convention for the notations in this article.

• We will consistently denote by L a link and by L the number of com-
ponents in L.

• The irreducible Uq(slN) module associated to L will be labelled by their
highest weights, thus by Young diagrams. We usually denote it by a
vector form ~A = (A1, . . . , AL).
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• Let ~x = (x1, . . . , xL) is L sets of variables, each of which is associated to
a component of L and ~µ = (µ1, . . . , µL) ∈ YL be a tuple of L partitions.
Define:

[n] = q−
n
2 − q

n
2 , [~µ] =

L
∏

α=1

[µα], z~µ =

L
∏

α=1

zµα,

χ ~A(C~µ) =

L
∏

α=1

χAα(Cµα), s ~A(~x) =

L
∏

α=1

sAα(xα), p~µ(~x) =

L
∏

α=1

pµα(xα).

3 Chern-Simons theory

3.1 Chern-Simons partition function

The Chern-Simons partition function of the link L is the following generating
series of quantum group invariants weighted by Schur functions:

ZCS(L; q, t) = 1 +
∑

~A

W ~A(L; q, t)s ~A(~x) ,

or equivalently by the reformulated invariants Z~µ:

ZCS(L; q, t) = 1 +
∑

~µ

Z~µ(L; q, t)

z~µ
p~µ(~x) . (3.1)

Free energy is defined by

F (L; q, t) = logZCS(L; q, t) =
∑

~µ

F~µ(L; q, t)

z~µ
p~µ(~x) . (3.2)

Here, we expand the free energy and get the definition of F~µ(L; q, t) according
to the above formula.

3.2 Transformation function

Define the following transformation function for two partitions, A and B, of
n:

TAB(x) =
∑

µ

χA(Cµ)χB(Cµ)

zµ
pµ(x) . (3.3)
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By a simple algebra, its inverse is given by

T −1
AB (x) =

∑

µ

χA(Cµ)χB(Cµ)

zµ

1

pµ(x)
. (3.4)

One immediately sees the following:

∑

A

TAB(x)sA(y) =
∑

A

∑

µ

χA(Cµ)χB(Cµ)

zµ
pµ(x)sA(y)

=
∑

µ

χB(Cµ)

zµ
pµ(y)

∑

A

χA(Cµ)sA(x)

=
∑

µ

χB(Cµ)

zµ
pµ(y)pµ(x)

= sB(x ∗ y) . (3.5)

Here in the last step, x ∗ y is defined in (2.1). Similarly, we have

∑

A

T −1
AB (x)sA(x ∗ y) = sB(y) (3.6)

Define variables q̺ = {qj−
1
2}j≥1 and qd̺ = {qd(j−

1
2
)}j≥1. We have

1

[n]
= pn(q

̺) . (3.7)

3.3 LMOV conjecture

Based on the large N duality between Chern-Simons gauge theory and topo-
logical string theory, Labastida, Mariño, Ooguri, and Vafa made a conjec-
ture on the existence of a series of integer invariants in Chern-Simons theory
[9, 4, 3].

Free energy has the following expansion

F =
∑

~A

∞
∑

d=1

1

d
f ~A(q

d, td)s ~A

(

(~x)d
)

,
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where

s ~A

(

(~x)d
)

=

L
∏

α=1

sAα

(

{(xα
j )

d}j≥1

)

The Labastida-Mariño-Ooguri-Vafa conjecture proved in [6] can be stated
as the following theorem:

Theorem 3.1 (Liu-Peng). Notations are as above. Define

P ~B(q, t) =
∑

~A

f ~A(q, t)
L
∏

α=1

T −1
AαBα(q̺) . (3.8)

Then

P ~B(q, t) ∈ [1]−2 · Z
[

[1]2, t±
1
2

]

. (3.9)

4 Infinite product formula

To derive an infinite product formula, we will state the result for a knot at
first, since the notations in the computation for a knot are relatively simpler.

4.1 The case of a knot

Set y = x ∗ q̺, then pn(x ∗ q̺) = pn(x) · pn(q
̺). We have

pµ(y) = pµ(x)pµ(q
̺).

Consider free energy weighted by the Schur function of y, LMOV conjecture
implies the following reformulation of free energy:

F (q, t; y) =
∞
∑

d=1

∑

A

1

d
fA(q

d, td)sA(y
d)

=
∞
∑

d=1

∑

A

1

d

∑

B

T −1
AB (q

d̺)PB(q
d, td)sA(y

d) ,
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where

[1]2 · PB(q, t) =
∑

Q∈Z/2

∞
∑

g=0

NB; g,Q

(

q−
1
2 − q

1
2

)2g
tQ (4.1)

is a polynomial of [1]2 and t±
1
2 with integer coefficients, NB;g,Q. By (3.6), we

have

F (q, t; y) =

∞
∑

d=1

∑

B

1

d
PB(q

d, td)sB(x
d) .

There exist integers nB; g,Q such that

∞
∑

g=0

NB; g,Q

(

q−
1
2 − q

1
2

)2g
=

∞
∑

g=0

nB; g,Q

g
∑

k=0

qg−2k . (4.2)

This is due to the equivalence of two integral bases of Uq(sl2) modules: one
is obtained by all the irreducible modules of Uq(sl2), Vn, for each n ≥ 0; the
other one is obtained by V ⊗n

1 for n ≥ 0 since V1 ⊗ Vn = Vn+1 ⊕ Vn−1.

By (3.9) NB;g,Q vanish for sufficiently large g and |Q|, thus nB; g,Q vanish
for sufficiently large g and |Q|. We have

PB(q, t) =
∑

Q∈Z/2

∞
∑

g=0

NB; g,Q

(

q−
1
2 − q

1
2

)2g−2
tQ

=
∑

Q

tQ
(

q−
1
2 − q

1
2

)2

∞
∑

g=0

nB; g,Q

g
∑

k=0

qg−2k

=
∑

Q

tQ
∞
∑

m=1

mqm
∞
∑

g=0

nB; g,Q

g
∑

k=0

qg−2k

=
∑

Q∈Z/2

∞
∑

m=1

∞
∑

g=0

g
∑

k=0

mnB; g,Q qg−2k+mtQ ,

which leads to

F =
∑

B

∞
∑

d=1

∑

Q∈Z/2

∞
∑

m=1

∞
∑

g=0

g
∑

k=0

1

d
mnB; g,Qt

dQqd(g−2k+m)sB(x
d)

=
∑

Q,m,g

g
∑

k=0

∑

B,µ

mnB; g,Q
χB(Cµ)

zµ

∞
∑

d=1

1

d
qd(g−2k+m)pµ(x

d)tdQ . (4.3)
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Now focus on the following computation:

∑

d≥1

1

d
ωdpµ(x

d) =
∑

d≥1

1

d
ωd

ℓ(µ)
∏

j=1

∑

i≥1

x
dµj

k

=
∑

d≥1

1

d
ωd

∑

i1,...,iℓ

(xµ1

i1
· · ·xµℓ

iℓ
)d

=
∑

i1,...,iℓ

∑

d≥1

1

d
(ωxµ1

i1
· · ·xµℓ

iℓ
)d

= −
∑

i1,...,iℓ

log(1− ωxµ1

i1
· · ·xµℓ

iℓ
).

Let ω = tQqg−2k+m and apply the above computation in (4.3),

F =
∑

Q,m,k

∑

B,µ

(−mnB; g,Q)
χB(Cµ)

zµ

∑

i1,...,iℓ(µ)

log
(

1− qg−2k+mtQxµ1

i1
· · ·x

µℓ(µ)

iℓ(µ)

)

.

Define the symmetric product as shown in the following formula:

〈

1− ωxµ
〉

=
∏

xi1
,...,xiℓ(µ)

(

1− ωxµ1

i1
· · ·x

µℓ(µ)

iℓ(µ)

)

, (4.4)

and

ňµ; g,Q =
∑

B

χB(Cµ)

zµ
nB; g,Q. (4.5)

Therefore, for ZCS = expF , we obtain the following infinite product formula:

ZCS(K; q, t; y) =
∏

µ∈Y

∏

Q∈Z/2

∞
∏

m=1

∞
∏

g=o

g
∏

k=0

〈

1− qg−2k+mtQxµ
〉−mňµ; g,Q (4.6)

Remark 4.1. In the above infinite product formula, since for a given µ,
ňµ;g,Q vanish for sufficiently large g and |Q| due to the vanishing property of
nB; g,Q, the products involved with Q and g are in fact finite products for a
fixed partition, µ.
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4.2 The case of a link

After going over subsection 4.1, we find that the computation can be carried
over to the case of a link. Given a link L of L components, let ~y = (y1, . . . , yL)
and ~x = (x1, . . . , xL) satisfying yi = q̺∗xi, for i = 1, · · · , L. We define n ~B;g,Q

and ň~µ;g,Q as the following:

∞
∑

g=0

N ~B;g,Q =

∞
∑

g=0

n ~B;g,Q

g
∑

k=0

qg−2k, ň~µ;g,Q =
∑

~B

χ ~A(C~µ)

z~µ
n ~B;g,Q .

Again, the vanishing result of N ~B;g,Q implies that n ~B;g,Q and ň~µ;g,Q vanish for
sufficiently large g and |Q|.

Let ~µ = (µ1, . . . , µL) and ~x = (x1, . . . , xL). Denote by ℓi the length of µi.
Generalize the symmetric product in (4.4) to ~µ and ~x as:

〈

1− ω xµ1

1 · · ·xµL

L

〉

=
L
∏

α=1

∏

iα,1,...,iα,ℓα

(

1− ω
L
∏

α=1

(

(xα)
µα
1

iα,1
· · · (xα)

µα
ℓα

iα,ℓα

)

)

.

Follow the similar computation, we have the infinite product formula for the
Chern-Simons partition function of L:

ZCS(L; q, t; ~y) =
∏

~µ∈YL

∏

Q∈Z/2

∞
∏

m=1

∞
∏

g=0

g
∏

k=0

〈

1− qg−2k+m tQ xµ1

1 · · ·xµL

L

〉−mň~µ; g,Q .

(4.7)

Similar as Remark 4.1, the products related to Q and g are finite for a fixed
~µ.

4.3 The case of the unknot

The Chern-Simons partition function of the unknot is given by

ZCS(unknot; q, t) = 1 +
∑

A∈Y

dimq VA · sA(x). (4.8)

Here, dimq VA is the quantum dimension of the irreducible Uq(slN) module
VA. The formula of quantum dimension is given by (the formula of the
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quantum dimension can be found in many literatures, for example, [6] ):

dimq VA =
∑

µ

χA(Cµ)

zµ

ℓ(µ)
∏

j=1

t−
µj
2 − t

µj
2

q−
µj
2 − q

µj
2

.

A similar computation as shown in the previous section leads to the following
infinite product formula:

ZCS(unknot; q, t; y) =
∞
∏

m=1

∏

i

(

1− qmt
1
2xi

)m

(

1− qmt−
1
2xi

)m . (4.9)

By a comparison with (4.6), we have

ňµ; g,Q = δµ, · δg,0 · sign(−Q) .

5 Symmetry property

We will discuss some symmetry properties of the infinite product formula
given in section 4. Here, we will express it for a knot. The case of links is
exactly similar, otherwise we will make a remark of their difference.

5.1 The symmetry of q → q−1

In the derivation of the infinite product formula, we assume |q| < 1 for taylor
expansion of 1

[1]2
. In the case of |q| > 1, the taylor expansion is given by

1

[1]2
=

∞
∑

m=1

mq−m .

Therefore, the infinite product formula will be:

ZCS(K; q, t; y) =
∏

µ∈Y

∏

Q∈Z/2

∞
∏

m=1

∞
∏

g=o

g
∏

k=0

〈

1− qg−2kq−mtQxµ
〉−mňµ; g,Q

=
∏

µ∈Y

∏

Q∈Z/2

∞
∏

m=1

∞
∏

g=o

g
∏

k=0

〈

1− q−g+2(g−k)q−mtQxµ
〉−mňµ; g,Q

=
∏

µ∈Y

∏

Q∈Z/2

∞
∏

m=1

∞
∏

g=o

g
∏

k=0

〈

1−
(

q−1
)g−2k+m

tQxµ
〉−mňµ; g,Q .
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The substitution of k to g − k is used in the last equation. This is the
symmetry of q → q−1 for the infinite product formula.

5.2 Rank-level duality

Rank-level duality is essentially a symmetry of quantum group invariants
relating a labeling color to its transpose, which can be expressed as the
following identity:

WAt(s−1,−v) = WA(s, v) , (5.1)

where s = q
1
2 , v = t

1
2 . From [6], we can actually obtain the following stronger

version:

WAt(s−1, v) = (−1)|A|WA(s, v), (5.2)

WA(s,−v) = (−1)|A|WA(s, v). (5.3)

Remark 5.1. The above two equations of the strong version rank-level dual-
ity can be interpreted by the 1/N expansion for the Chern-Simons partition
function and the monodromy of t → e2πit.

We now give a proof of this strong version of the rank-level duality. (5.2)
is equivalent to proposition 5.2 in [6]:

WAt(q, t) = (−1)|A|WA(q
−1, t) .

To prove (5.3), we will investigate the HOMFLY polynomial invariants
of knots first. By the HOMFLY skein relation:

t−
1
2 − t

1
2 =

(

q−
1
2 − q

1
2

)

, (5.4)

in the HOMFLY polynomial, the degrees of t are either all integers or half
integers. This can be done through a resolution of the crossings. The un-
knot obviously satisfies this property. Suppose that for any planar diagram
representing a link with number of crossings less or equal to n, the degrees of
t in the HOMFLY polynomial of the link are either integers or half integers,
we immediately see that switching positive crossing to negative crossing will
keep this property by (5.4). This will reduce the verification to the case of
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disjointed unknots. To generalize this result to the quantum slN invariants,
we will apply (5.31) in [6] to directly obtain that Zµ(q, t) defined in (3.1)
satisfies that

t−|µ|/2Zµ ∈ Q
[(

q−
1
2 − q

1
2

)±1
, t±1

]

,

by the observation that in vd − v−d, changing the sign of v will result in a
multiplication of (−1)d. This completes the proof of (5.3).

(5.2) leads to the symmetry of the following integer invariants by expan-
sion:

NAt; g,Q = (−1)|A|NA; g,−Q. (5.5)

Applying it to (4.5) and combining the fact that

χAt(Cµ) = (−1)|µ|−ℓ(µ)χA(Cµ) ,

we have the following symmetry about µ and Q:

ňµ; g,−Q = (−1)ℓ(µ)ňµ; g,Q . (5.6)

This is (4.44) in [7], the rank-level duality of the SU(N)k and SU(k)N
Chern-Simons gauge theories.

5.3 Concluding remarks

The infinite product formula derived in section 4 is interestingly related to a
conjecture on the modularity property of the Chern-Simon partition function,
which is hardly seen from the knot theory point of view. We hope this formula
will shed a new light on the study of knot invariants. A complete understand-
ing in this aspect will lead to a deep insight of the Chern-Simons/topological
string duality.
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