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1 Introduction

The Einstein’s field equations are the fundamental equations in general relativity and cosmology. The
general version of the gravitational field equations or the Einstein’s field equations read

Rμν − 1
2
gμνR + Λgμν =

8πG

c4
Tμν , (1.1)

where gμν (μ, ν = 0, 1, 2, 3) is the unknown Lorentzian metric, Rμν is the Ricci curvature tensor, R =
gμνRμν is the scalar curvature, where gμν is the inverse of gμν , Λ is the cosmological constant, G stands
for the Newton’s gravitational constant, c is the velocity of the light and Tμν is the energy-momentum
tensor. In a vacuum, i.e., in regions of space-time in which Tμν = 0, the Einstein’s field equations (1.1)
reduce to

Rμν − 1
2
gμνR + Λgμν = 0, (1.2)

or equivalently,
Rμν = Λgμν . (1.3)

In particular, if the cosmological constant Λ vanishes, i.e., Λ = 0, then equation (1.2) becomes

Rμν − 1
2
gμνR = 0, (1.4)
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or equivalently,

Rμν = 0. (1.5)

Each of the equations (1.2)–(1.5) can be called the vacuum Einstein’s field equations.
The mathematical study on the Einstein’s field equations includes, roughly speaking, the following two

aspects: (i) establishing the well-posedness theory of solutions; (ii) finding exact solutions with physical
background. Up to now, very few results on the well-posedness for the Einstein’s field equations have
been established. In their classical monograph [4], Christodoulou and Klainerman proved the global
nonlinear stability of the Minkowski space for the vacuum Einstein’s field equations, i.e. they showed
the nonlinear stability of the trivial solution of the vacuum Einstein’s field equations. Recently, by using
wave coordinates, Lindblad and Rodnianski gave a simpler proof (see [18]). In her Ph.D. thesis [25],
Zipser generalizes the result of Christodoulou and Klainerman [4] to the Einstein-Maxwell equations. As
for finding exact solutions, many works have been done and many interesting results have been obtained
(see, e.g., [3, 22, 2]). In what follows, we will briefly recall some basic facts about the exact solutions of
the Einstein’s field equations.

The exact solutions are very helpful to understand the theory of general relativity and the universe.
The typical examples are the Schwarzschild solution and the Kerr solution (see [3]). These solutions
provide two important physical space-times: the Schwarzschild solution describes a stationary, spherically
symmetric and asymptotically flat space-time, while the Kerr solution provides a stationary, axisymmetric
and asymptotically flat space-time.

The study on exact solutions of the Einstein’s field equations has a long history. In December 1915,
Schwarzschild discovered the first non-trivial solution to the vacuum Einstein’s field equations which is a
static solution with zero angular momentum (see [21]). In 1951, Vaidya [23] generalized the Schwarzschild
solution to non-vacuum Einstein’s field equations, the Vaidya solution is neither static nor stationary, but
it can be used to describe the gravitational field of a radiating star. The unique two-parameter family of
solutions which describes the space-time around black holes is the Kerr family discovered by Roy Partrick
Kerr in 1963 (see [12]). These solutions are very important in studying black holes in the Nature which is
just the study of these solutions (see [3]). Various generalizations of the Kerr solution have been done (see,
e.g., [22] and [2]). Gowdy [7, 8] constructed a new kind of solutions of the vacuum Einstein’s equations,
these solutions provide a new type of cosmological model. This model describes a closed inhomogeneous
universe, space sections of these universes have either the three-sphere topology S3 or the wormhole
(hypertorus) topology S1⊗S2. Recently, Ori [19] presented a class of curved-spacetime vacuum solutions
which develop closed timelike curves at some particular moment, and used these vacuum solutions to
construct a time-machine model. The Ori model is regular, asymptotically flat, and topologically trivial.

From the above discussions, we see that the exact solutions play a crucial role in general relativity and
cosmology, so it is always interesting to find new exact solutions for the Einstein’s equations. Although
many interesting and important solutions have been obtained, there are still many fundamental but
open problems. One interesting open problem is if there exists a “time-periodic” solution to the vacuum
Einstein’s field equations. One of the main results in this paper is a solution of this problem.

In this paper, we focus on finding the exact solutions of the vacuum Einstein’s field equations (1.3) and
(1.5). We will present a general framework to find exact solutions. Under this framework, we can construct
some interesting and important exact solutions, for example, the time-periodic solution of the vacuum
Einstein’s field equations. We analyze the singularities of time-periodic solutions and investigate some
new physical phenomena enjoyed by these new space-times. We find that the new time-periodic solutions
have degenerate event horizon and the time-periodic event horizon, which are two new phenomena in
space-time geometry. The applications of these solutions and their new properties in modern cosmology
and general relativity may be expected.

More precisely, the time-periodic solution to the vacuum Einstein’s field equations in the spherical
coordinates (t, r, θ, ϕ) can be written in the following form

ds2 = (dt, dr, dθ, dϕ)(ημν )(dt, dr, dθ, dϕ)T, (1.6)
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where

(ημν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G −G +
Mr

r − m
QK 0

−G +
Mr

r − m
G − 2Mr

r − m
−QK 0

QK −QK −K2 0

0 0 0 −K2 sin2 θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.7)

in which ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

G = 1 + 2εΩ+ sin θ cos (t − r),

K = r + m ln |r − m| + ε sin (t − r),

M = Ω+ sin θ,

Q = −1
2
(1 + 2 sin θ)Ω−.

(1.8)

In the above, ε ∈ (− 1
8 , 1

8 ) and m ∈ R are two parameters, and Ω± are defined by

Ω± = | tan θ/2| 12 ± | tan θ/2|− 1
2 . (1.9)

In Section 5 we analyze the singularity behaviors and obtain the following theorem which is one of the
main results of this paper,

Theorem 1.1. The vacuum Einstein’s field equations have a time-periodic solution (1.6), this solution
describes a regular space-time, which has vanishing Riemannian curvature tensor but is not homogenous
and not asymptotically flat. This space-time does not contain any essential singularity, but contains some
non-essential singularities which correspond to three event horizons: a degenerate event horizon, a steady
event horizon and time-periodic event horizons.

According to the authors’ knowledge, (1.6) gives the first time-periodic solution to the vacuum Ein-
stein’s field equations.

We would like to point out that, by using our method, we can rederive almost all known exact solutions
to the vacuum Einstein’s field equations. Our method can also be used to find exact solutions of the
Einstein’s field equations in higher dimensions which will be of interests in string theory.

The paper is organized as follows. In Section 2, we present a general version of the Lorentzian metric
to the Einstein’s field equations. By using the version of the Lorentzian metric presented in Section 2,
in Section 3 we describe a new method to construct exact solutions to the Einstein’s field equations.
Section 4 is devoted to constructing the time-periodic solution to the vacuum Einstein’s field equations.
In Section 5, we investigate the singularities behavior and the physical properties of the time-periodic
solution. Section 6 is devoted to the discussion on other interesting exact solutions. Several general
remarks on the method and results presented in this paper are given in Section 7.

2 The Lorentzian metric

The Einstein’s field equations are a second-order global hyperbolic system of highly nonlinear partial
differential equations with respect to the Lorentzian metric gμν (μ, ν = 0, 1, 2, 3). To solve the Einstein’s
field equations, one key point is to choose a suitable coordinate system. A good coordinate system can
simplify the equations and make them easier to solve. In the study on the Einstein’s field equations, there
are two famous coordinate systems: harmonic coordinates and the Gaussian coordinates. The harmonic
coordinates {xμ} satisfy

gμνΓγ
μν = 0, γ = 0, 1, 2, 3,

where Γγ
μν are the Christoffel symbols given by

Γγ
μν =

1
2
gγδ

{
∂gνδ

∂xμ
+

∂gμδ

∂xν
− ∂gμν

∂xδ

}
,
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in which gγδ is the inverse of gμν . This kind of coordinate system plays an important role in the study of
the theoretical aspects, such as the well-posedness, geometric and analysis properties of solutions, of the
Einstein’s field equations (see e.g., [5] and [18]). Another important coordinate system is the Gaussian
coordinates. In the Gaussian coordinates, the Lorentzian metric of the (curved) space-time described by
the Einstein’s field equations can be written, at least locally, as

(gμν) =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 g11 g12 g13

0 g21 g22 g23

0 g31 g32 g33

⎞
⎟⎟⎟⎟⎠

, (2.1)

where (gij)3i,j=1 stands for a family of Riemannian metrics. Kossowski and Kriele [17] showed that any
solution to the vacuum Einstein’s field equations can be written as the form (2.1). Substituting (2.1) into
the vacuum Einstein’s field equations leads to

∂2gij

∂t2
+ 2Rij +

1
2
gpq ∂gij

∂t

∂gpq

∂t
− gpq ∂gip

∂t

∂gjq

∂t
= 0 (2.2)

and some constraints (see [14]). In the class of solutions of the equations (2.2), we can further choose
some solutions which satisfy other constraint equations, then these solutions solve the vacuum Einstein’s
field equations (1.5), thus we construct the solutions of the complete vacuum Einstein’s field equations
(see [10]). Motivated by this method as well as the Schwarzschild solution and the Kerr solution, in this
paper we present an effective and very general framework to construct exact solutions of the vacuum
Einstein’s field equations. Our method and results can be generalized to general gravitational field
equations (1.1).

Consider the metric of the following form

(gμν) =

⎛
⎜⎜⎜⎜⎝

g00 g01 g02 g03

g10 g11 0 0

g20 0 g22 0

g30 0 0 g33

⎞
⎟⎟⎟⎟⎠

, (2.3)

where gμν are smooth functions of the coordinates (x0, x1, x2, x3) and satisfy g0i = gi0. In the coordinate
basis (x0, x1, x2, x3) the line element reads

ds2 = gμνdxμdxν . (2.4)

For simplicity of notations, we denote the coordinates (x0, x1, x2, x3) by (t, x, y, z) and rewrite (2.3) as

(gμν) =

⎛
⎜⎜⎜⎜⎝

u v p q

v w 0 0

p 0 ρ 0

q 0 0 σ

⎞
⎟⎟⎟⎟⎠

, (2.5)

where u, v, p, q, w, ρ and σ are smooth functions of the coordinates (t, x, y, z). It is easy to verify that the
determinant of (gμν) is given by

g
�
= det(gμν) = uwρ σ − v2ρ σ − p2wσ − q2wρ (2.6)

and the inverse of (gμν) reads

(gμν) =
1
g

⎛
⎜⎜⎜⎜⎝

wρσ −vρσ −wpσ −wqρ

−vρσ uρσ − p2σ − q2ρ vpσ vqρ

−wpσ vpσ uwσ − v2σ − q2w pqw

−wqρ vqρ pqw uwρ − v2ρ − p2w

⎞
⎟⎟⎟⎟⎠

. (2.7)
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Throughout this paper, we assume that

g < 0. (H1)

On the other hand, it is easy to see that at least two of these functions w, ρ, σ have the same sign.
Without loss of generality, we may suppose that ρ and σ keep the same sign, for example,

ρ > 0 and σ > 0. (H2)

Remark 2.1. (H1) is a very natural assumption for the Lorentzian metrics, while the assumption (H2)
is motivated by the Minkowski space-time and the Schwarzschild metric.

By a direct calculation, the characteristic polynomial of gμν reads

f(λ) =λ4 − (w + u + σ + ρ)λ3

+
(
uρ + wρ + wσ + ρ σ + uw + uσ − v2 − q2 − p2

)
λ2

+
(
p2σ + v2ρ − uwρ − uσ ρ − wσ ρ + q2ρ + v2σ + p2w − uwσ + q2w

)
λ

+ uwσ ρ − wq2ρ − p2wσ − v2σ ρ. (2.8)

It follows from (2.8) that ⎧⎪⎪⎨
⎪⎪⎩

f(w) = −v2(ρ − w)(σ − w),

f(ρ) = −p2(w − ρ)(σ − ρ),

f(σ) = −q2(w − σ)(ρ − σ).

(2.9)

Note that the assumption (H1) is equivalent to

f(0) = uwσ ρ − wq2ρ − p2wσ − v2σ ρ < 0. (2.10)

On the other hand, by (2.8) we have

f(λ) → ∞ as |λ| → ∞. (2.11)

We divide the discussions into three cases as follows.

Case I. w, ρ, σ are distinct from each other
For simplicity, we assume that

w < ρ < σ (2.12)

always holds in the whole region under consideration. For other cases, we have a similar discussion. In
the present situation, it follows from the last two equations in (2.9) that

f(ρ) > 0 and f(σ) < 0. (2.13)

Thus, combining (2.10) and (2.11), we know that the characteristic polynomial f(λ) has four distinct real
roots, denoted by λi (i = 1, 2, 3, 4), these roots have the same regularity as (gμν) and satisfy

λ1 < 0 < λ2 < ρ < λ3 < σ < λ4. (2.14)

This implies that the metric (gμν) is Lorentzian, provided that the assumptions (H1) and (H2) are
satisfied.

The other cases (e.g., ρ < w < σ) can be treated in the the same way.

Remark 2.2. Typical examples of Case I are the Schwarzschild metric, the Kerr metric and the
Gowdy metric.
Case II. w = ρ = σ
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In this situation, the roots of the characteristic polynomial f(λ) read
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1
�
=

w + u

2
−
√

w2 − 2 uw + u2 + 4 q2 + 4 p2 + 4 v2

2
,

λ2
�
=

w + u

2
+

√
w2 − 2 uw + u2 + 4 q2 + 4 p2 + 4 v2

2
,

λ3 = λ4 = w.

(2.15)

Noting the assumptions (H1) (namely (2.10)), (H2) and the fact w = ρ = σ, we have

λ1 < 0 < λ2, λ3 = λ4 = w > 0. (2.16)

(2.16) implies that the metric (gμν) is Lorentzian, provided that the assumptions (H1) and (H2) are
satisfied.

Remark 2.3. In this case, the eigenvalues λ1 and λ2 are continuous but may not be C1 smooth.

Remark 2.4. For Case II, a typical example is the Minkowski metric, i.e.,

(gμν) = diag {−1, 1, 1, 1}.

Case III. ρ = σ �= w or ρ = w �= σ or σ = w �= ρ

We only consider the case: ρ = σ �= w. The other cases can be treated similarly.
By (2.10) and (2.11), there exist λ± such that

λ− = max{λ | f(λ) = 0, λ ∈ R
−} < 0 (2.17)

and
λ+ = min{λ | f(λ) = 0, λ ∈ R

+} > 0. (2.18)

Case III-1. w < ρ = σ

In the present situation, we consider

(
gε

μν

) �
=

⎛
⎜⎜⎜⎜⎝

u v p q

v w 0 0

p 0 ρ 0

q 0 0 ρ + ε

⎞
⎟⎟⎟⎟⎠

, (2.19)

where ε > 0 is a small parameter. Obviously,

w < ρ < ρ + ε.

Similarly to Case I, the roots of the characteristic polynomial fε(λ) associated with gε
μν has four distinct

real roots, denoted by λε
i (i = 1, 2, 3, 4), these roots have the same regularity as (gμν) and satisfy

λε
1 < 0 < λε

2 < ρ < λε
3 < ρ + ε < λε

4. (2.20)

Letting ε → 0, we get

λε
1 → λ1

�
= λ−, λε

2 → λ2
�
= λ+, λε

3 → λ3, λε
4 → λ4, (2.21)

where λ3,4 are functions of u, v, p, q, w, ρ and satisfy

λ3, λ4 � λ+. (2.22)

Thus, we have
λ1 < 0 < λ2, λ3, λ4. (2.23)
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Moreover, by a direct calculation we observe that there exists at least one of λ2, λ3, λ4 which is ρ. (2.23)
implies that the metric (gμν) is Lorentzian, provided that the assumptions (H1) and (H2) are satisfied.

Case III-2. ρ = σ < w

In the present situation, we consider

(
ĝε

μν

) �
=

⎛
⎜⎜⎜⎜⎝

u v p q

v w 0 0

p 0 ρ 0

q 0 0 ρ − ε

⎞
⎟⎟⎟⎟⎠

, (2.24)

where ε > 0 is a small parameter. Obviously,

ρ − ε < ρ < w.

Similarly to Case I, the characteristic polynomial f̂ε(λ) associated with ĝε
μν has four real roots, denoted

by λ̂ε
i (i = 1, 2, 3, 4), these roots satisfy

λ̂ε
1 < 0 < λ̂ε

2 < ρ < λ̂ε
3 < w < λε

4. (2.25)

Similarly to Case III-1, letting ε → 0, we get

λ̂ε
1 → λ1

�
= λ−, λ̂ε

2 → λ2
�
= λ+, λ̂ε

3 → λ3, λ̂ε
4 → λ4, (2.26)

where λ3,4 are functions of u, v, p, q, w, ρ and satisfy (2.22). Therefore,

λ1 < 0 < λ2, λ3 < w < λ4. (2.27)

Moreover, there exists (at least) one of λ2, λ3 is ρ. (2.27) implies that the metric (gμν) is Lorentzian,
provided that the assumptions (H1) and (H2) are satisfied.

Remark 2.5. For Case III, the typical examples are the Gödel metric (see [6]) and the Ori metric
(see [19]).

Summarizing the above discussions, we have the following theorem.

Theorem 2.1. Under the assumptions (H1) and (H2), the metric (gμν) is Lorentzian.
Throughout this paper, we always suppose that the assumptions (H1) and (H2) are satisfied.
It is rather easy to see that the forms of the metric (gμν) given in (2.3) or (2.5) include the Minkowski

metric, the Schwarzschild, the Kerr metric, the Gowdy metric, the Gödel metric as well as the metric
associated with the time machine introduced by Ori recently, etc.

On the other hand, for any (1 + 3)-dimensional Lorentzian metric (gμν), we have

Theorem 2.2. By a suitable transformation on gμν , any (1 + 3)-dimensional Lorentzian metric (gμν)
can be rewritten in the form (2.3) with properties (H1) and (H2).

Proof. Since (gμν) is a (1+3)-dimensional Lorentzian metric, without loss of generality, we may assume

that G �
= (gij)3i,j=1 is Riemannian. Therefore, there exists an invertible matrix Q = (qi,j) such that

QGQT = diag{λ1, λ2, λ3}. (2.28)

Thus, there exists an invertible matrix

Q̃ �
=

(
q00 0

0T Q

)

such that

Q̃

⎛
⎜⎜⎜⎜⎝

g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

⎞
⎟⎟⎟⎟⎠

Q̃T =

⎛
⎜⎜⎜⎜⎝

g̃00 g̃01 g̃02 g̃03

g̃10 g̃11 0 0

g̃20 0 g̃22 0

g̃30 0 0 g̃33

⎞
⎟⎟⎟⎟⎠

, (2.29)
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where 0 = (0, 0, 0) and q00 is a non-vanishing function of gμν . (2.29) implies that there exists an invertible
transformation on gμν such that the (1 + 3)-dimensional Lorentzian metric (gμν) can be rewritten in the
form (2.3) with properties (H1) and (H2). This proves Theorem 2.2. �

We now consider the solutions of the Einstein’s field equations. By Bianchi identities and Theorems
2.1 and 2.2, we believe that the general form of the solutions of the Einstein’s field equations takes one
of the following forms

(ημν)
�
=

⎛
⎜⎜⎜⎜⎝

u v p q

v 0 0 0

p 0 ρ 0

q 0 0 σ

⎞
⎟⎟⎟⎟⎠

, (Type I)

(ημν)
�
=

⎛
⎜⎜⎜⎜⎝

0 v p q

v w 0 0

p 0 ρ 0

q 0 0 σ

⎞
⎟⎟⎟⎟⎠

(Type II)

or

(ημν)
�
=

⎛
⎜⎜⎜⎜⎝

u v p 0

v w 0 0

p 0 ρ 0

0 0 0 σ

⎞
⎟⎟⎟⎟⎠

. (Type III)

For Type I, the assumption (H1) is equivalent to

v �= 0. (2.30)

Therefore, by Theorem 2.1 we have

Theorem 2.3. If the assumptions (H1) and (H2) are satisfied, namely,

ρ > 0, σ > 0 and v �= 0, (2.31)

then the metric (ημν) is Lorentzian.
For Type II, we have

Theorem 2.4. If w, ρ, σ keep the same sign, then the hypotheses (H1) and (H2) are satisfied, and the
metric (ημν) is Lorentzian.

Similarly, for Type III we have

Theorem 2.5. If u is negative, namely, u < 0, and w, ρ, σ are positive, then the hypotheses (H1) and
(H2) are satisfied, and the metric (ημν) is Lorentzian.

We are interested in finding exact solutions of the Einstein’s field equations of the above Types I–III.

3 General framework to find exact solutions

The aim of this paper is to construct exact solutions of the vacuum Einstein’s field equations. In order to
illustrate our method, as an example, we use the Lorentzian metric Type I to construct some interesting
exact solutions for the vacuum Einstein’s field equations (1.2). More precisely, we use the metric

(ημν)
�
=

⎛
⎜⎜⎜⎜⎝

u v p q

v 0 0 0

p 0 ρ 0

q 0 0 σ

⎞
⎟⎟⎟⎟⎠

(3.1)
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to solve the vacuum Einstein’s field equations (1.2), namely,

Rμν − 1
2
ημνR + Λημν = 0. (3.2)

where u, v, p, q, ρ and σ are smooth functions of the coordinates (t, x, y, z). The equations (3.2) can be
rewritten as

Gμν = −Λημν , (3.3)

where Gμν = Rμν − 1
2ημνR stands for the Einstein tensor. Noting (3.1), we have

G11 = −1
2

{
vx

v

(
ρx

ρ
+

σx

σ

)
+

1
2

[(
ρx

ρ

)2

+
(

σx

σ

)2]
−
(

ρxx

ρ
+

σxx

σ

)}
, (3.4)

One of the equations (3.2) reads
G11 = −Λη11, (3.5)

namely,
vx

v

(
ρx

ρ
+

σx

σ

)
+

1
2

[(
ρx

ρ

)2

+
(

σx

σ

)2]
−
(

ρxx

ρ
+

σxx

σ

)
= 0. (3.6)

We assume that
(ρσ)x �= 0. (H3)

Solving the ODE (3.6) gives

v = v0 exp
{∫ [

ρxx

ρ
+

σxx

σ
− 1

2

(
ρx

ρ

)2

− 1
2

(
σx

σ

)2]
ρσ

(ρσ)x
dx

}
, (3.7)

where v0 = v0(t, y, z) is an integral function depending on t, y and z. In particular, by taking the ansatz

ρ = ρ̃(t, y, z) exp{2f(t, x)}, σ = σ̃(t, y, z) exp{2f(t, x)}, (3.8)

(3.7) becomes
v = v0fxef . (3.9)

We now calculate G12.
Noting the ansatz (3.8) and (3.9), we have

G12 = − 1
2v0

{
pxx

fxef
− px(fxx + f2

x)
f2

xef
− 2pfx

ef
+ 2

∂v0

∂y
fx

}
. (3.10)

By (3.2), we have G12 = 0, namely,

pxx

fxef
− px(fxx + f2

x)
f2

xef
− 2pfx

ef
+ 2

∂v0

∂y
fx = 0. (3.11)

(3.11) is an ODE for the unknown p. Solving (3.11), we can obtain

p = p(f(t, x), v0(t, y, z), p0(t, y, z), p1(t, y, z)), (3.12)

where p depends on f , v0 and two arbitrary integral functions p0 and p1, which depends on (t, y, z).
Similarly, we solve G13 = 0 and get

q = q(f(t, x), v1(t, y, z), q0(t, y, z), q1(t, y, z)). (3.13)

Solving G23 = 0, we can get the relations on the functions p0, q0, ρ̃ and σ̃

R(p0, q0, ρ̃, σ̃) = 0 and q1 = p1 = 0. (3.14)
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On the other hand, solving G22 = −Λρ, and G33 = −Λσ, namely

G22 = −Λρ̃ exp{2f}, G33 = −Λσ̃ exp{2f}, (3.15)

we can get one relation (because of the symmetry on y and z) about f, p0, q0, ρ̃, σ̃, denoted by

R2(p0, q0, f, ρ̃, σ̃) = 0. (3.16)

We next solve G01 = −Λv, i.e., G01 = −Λv0fxef and obtain u = u(p0, q0, ρ̃, σ̃, f, u0, u1), where u0, u1

are two arbitrary integral functions depending on (t, y, z).
We now solve G02 = −Λp and G03 = −Λq, namely,

G02 = −Λp(v0, f, p0, q0) and G03 = −Λq(v0, f, p0, q0). (3.17)

This gives two relations

Ri(p0, q0, f, v0, ρ̃, σ̃, u0, u1) = 0, i = 3, 4. (3.18)

Finally, we solve G00 = −Λu and get the following relation

R5(p0, q0, f, v0, ρ̃, σ̃, u0, u1) = 0. (3.19)

Thus, we can successfully solve the full Einstein’s field equations (3.2).
At the end of this section, for Type I metrics, our method can be described by the following algorithm:

G11 = 0

G12 = 0 G13 = 0

G23 = 0

G22 = −Λρ G33 = −Λσ

G01 = −Λv

G02 = −Λp G03 = −Λq

G00 = −Λu

� �

� �

� �

� �

	 


� �

Figure 1 The algorithm to construct the exact solutions

For Type II and Type III metrics, we can develop a similar algorithm. Here we omit the details.
At the end of this section, we would like to point out the following remarks:

Remark 3.1. Our method can be used to solve the Einstein’s field equations with physically relevant
energy-momentum tensors, e.g., the tensor for perfect fluid: Tγδ = (μ + p)uγuδ + pgγδ, where μ > 0 is
the density, p is the pressure, u stands for the space-time velocity of the fluid with uγuγ = −1.

Remark 3.2. The method presented in this paper can also be used to solve the Einstein’s field
equations in higher space-time dimensions.
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4 Time-periodic solutions

By the method presented in last section, we can construct many new exact solutions to the vacuum
Einstein’s field equations

Gμν = 0. (4.1)

For example, in the coordinates (τ, r̃, θ̃, ϕ̃), taking the ansatz in (3.8) as follows

ρ̃ = −1, σ̃ = − sin2 θ̃, f = ln[r̃ + τ + ε sin τ ],

one can obtain an interesting solution with the form

η̃μν =

⎛
⎜⎜⎜⎜⎝

η̃00 η̃01 η̃02 0

η̃01 0 0 0

η̃02 0 η̃22 0

0 0 0 η̃33

⎞
⎟⎟⎟⎟⎠

, (4.2)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̃00 = 1 + 2εΩ̃+ sin θ̃ cos τ +
2Ω̃+ sin θ̃

m

{
exp

(
r̃ + τ

m

)
+ m

}
,

η̃01 =
Ω̃+ sin θ̃

m

{
exp

(
r̃ + τ

m

)
+ m

}
,

η̃02 =
1
2
(1 + 2 sin θ̃)Ω̃− [r̃ + τ + ε sin τ ] ,

η̃22 = − [r̃ + τ + ε sin τ ]2 ,

η̃33 = − [r̃ + τ + ε sin τ ]2 sin2 θ̃,

(4.3)

in which ε is a parameter, m �= 0 is a constant, and

Ω̃+ = | tan θ̃/2| 12 + | tan θ̃/2|−1
2 , Ω̃− = | tan θ̃/2| 12 − | tan θ̃/2|− 1

2 . (4.4)

The solution (4.2) belongs to the class of type I, also belongs to the class of type III.

Remark 4.1. When sin θ̃ = ±1, (2.12) is not satisfied. This is due to the choice of the polar
coordinates. In this case, the resulting singularities are not essential.

Making the transformation ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = τ + r̃,

r = m + exp
(

τ + r̃

m

)
,

θ = θ̃,

ϕ = ϕ̃.

(4.5)

Then the solution to (4.1) becomes, in the coordinates (t, r, θ, ϕ),

ds2 = (dt, dr, dθ, dϕ)(ημν )(dt, dr, dθ, dϕ)T , (4.6)

where

(ημν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G −G +
Mr

r − m
QK 0

−G +
Mr

r − m
G − 2Mr

r − m
−QK 0

QK −QK −K2 0

0 0 0 −K2 sin2 θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.7)
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in which ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G = 1 + 2εΩ+ sin θ cos (t − r),

K = r + m ln |r − m| + ε sin (t − r),

M = Ω+ sin θ,

Q = −1
2
(1 + 2 sin θ)Ω−.

(4.8)

In (4.8), Ω± are defined by
Ω± = | tan θ/2| 12 ± | tan θ/2|− 1

2 . (4.9)

An important property of the space-time described by (4.6) is given by the following theorem.

Theorem 4.1. When ε takes its value in the interval (− 1
8 , 1

8 ), i.e., ε ∈ (− 1
8 , 1

8 ), the solution (4.6) to
the vacuum Einstein’s field equations is time-periodic.

Proof. Noting ε ∈ (− 1
8 , 1

8 ), we have

η00 = G = 1 + 2εΩ+ sin θ cos (t − r)

= 1 + 4ε

(√√√√
∣∣∣∣∣
sin θ

2

cos θ
2

∣∣∣∣∣+
√√√√
∣∣∣∣∣
sin θ

2

cos θ
2

∣∣∣∣∣
)

sin
θ

2
cos

θ

2
cos(t − r)

� 1 − 4|ε|
(√∣∣∣∣sin3 θ

2

∣∣∣∣
∣∣∣∣cos

θ

2

∣∣∣∣+
√∣∣∣∣cos3

θ

2

∣∣∣∣
∣∣∣∣sin

θ

2

∣∣∣∣
)
|cos(t − r)|

� 1 − 8|ε| > 1 − 8 × 1
8

= 0. (4.10)

On the other hand, by calculations we have
∣∣∣∣∣∣∣∣

G −G +
Mr

r − m

−G +
Mr

r − m
G − 2Mr

r − m

∣∣∣∣∣∣∣∣
= − (Mr)2

(r − m)2
< 0 (4.11)

for r �= 0, m and θ �= 0, π,
∣∣∣∣∣∣∣∣∣∣∣∣

G −G +
Mr

r − m
QK

−G +
Mr

r − m
G − 2Mr

r − m
−QK

QK −QK −K2

∣∣∣∣∣∣∣∣∣∣∣∣

= K2 (Mr)2

(r − m)2
> 0 (4.12)

and ∣∣∣∣∣∣∣∣∣∣∣∣

G −G +
Mr

r − m
QK 0

−G +
Mr

r − m
G − 2Mr

r − m
−QK 0

QK −QK −K2 0

0 0 0 −K2 sin2 θ

∣∣∣∣∣∣∣∣∣∣∣∣

= −K4 sin2 θ
(Mr)2

(r − m)2
< 0 (4.13)

for r �= 0, m, θ �= 0, π and K �= 0. In next section, we will show that θ = 0, π, r = 0, m and {(t, r)|K =
K(t, r) = 0} are not essential singularities, the singularities at θ = 0, π are due to the use of the polar
coordinates, the singularities r = 0, m and {(t, r)|K = K(t, r) = 0} correspond to the event horizons
which can be removed by making suitable transformation of variables.
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The above discussion implies that the variable t is a time coordinate. Therefore, it follows from (4.7)
and (4.8) that the Lorentzian metric (4.6) is indeed a time-periodic solution of the vacuum Einstein’s
field equations. This proves Theorem 4.1. �

Remark 4.2. The time-periodic solution (4.6) was first obtained by us in early 2007. The authors
have presented this solution in several conferences for the past year. As mentioned above, according to
the authors’ knowledge, this is the first time-periodic solution to the vacuum Einstein’s field equations.

Remark 4.3. In July 2006, the first author discussed with Dr Gu about some ideas in the present
paper. We noted that for the case of Type I metric, Gu [9] constructed some interesting exact solutions,
however none of which is time-periodic, because the variable t in these solutions can not be taken as the
time coordinate.

Direct computations give us the following property of the time-periodic solutions.

Lemma 4.1. In the geometry of the space-time (4.6), it holds that

∂K

∂t
=

G − 1
2M

,
∂2K

∂t2
=

1
2M

∂G

∂t
, (4.14)

∂Ω+

∂θ
=

Ω−

2 sin θ
,

∂Ω−

∂θ
=

Ω+

2 sin θ
,

∂M

∂θ
= Q, (4.15)

∂G

∂r
= −∂G

∂t
,

∂2G

∂r∂t
= −∂2G

∂t2
,

∂2G

∂θ∂r
= − ∂2G

∂θ∂t
, (4.16)

∂K

∂t
+

∂K

∂r
=

r

r − m
,

∂2K

∂t∂r
= −∂2K

∂t2
,

∂2K

∂θ∂r
= − ∂2K

∂t∂θ
, (4.17)

∂Q

∂θ
= Q cot θ − 3Ω+

4 sin θ
, Q

∂K

∂t
=

1
2

∂G

∂θ
,

∂2G

∂θ2
= 2

∂K

∂t

∂Q

∂θ
, (4.18)

2Q cos θ

Ω+
− 3

4
− Q2

(Ω+)2
− 1

(Ω+)2
= − sin2 θ, (4.19)

2Q cot θ − 3
4

Ω+

sin θ
− 1 + Q2

M
= −M. (4.20)

Proof. This lemma can be proved by direct calculations. �

Remark 4.4. The relations given in Lemma 4.1 will play an important role in the future study on the
geometry of the time-periodic space-time (4.6).

There are several important questions which deserve further study: (1) what is the topological structure
of the time-periodic space-time (4.6)? (2) does the space-time (4.6) have a compact Cauchy surface? (3)
an important point is to consider the structure of the maximal globally hyperbolic part of the space-time
(4.6), the question is whether this also exhibits time periodicity. Problems (2) and (3) were suggested by
Andersson [1].

5 Singularity behaviors and physical properties

This section is devoted to the analysis of singularities and the physical properties of the time-periodic
solution (4.6).

For the metric (4.7), by a direct calculation, we have

g
�
= det(ημν) = −M2K4 r2

(r − m)2
sin2 θ. (5.1)
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Combing (4.8) and (5.1) gives

g = −(Ω+)2 sin4 θ [r + m ln |r − m| + ε sin (t − r)]4
r2

(r − m)2
. (5.2)

Noting (4.4), we obtain from (5.2) that

r = 0, r = m and r + m ln |r − m| + ε sin (t − r) = 0 (5.3)

are singularities for the solution metric (4.6).

Remark 5.1. When θ = 0, π, the determinant g of the metric (ημν) also vanishes because of the use
of polar coordinates. So θ = 0, π are not real singularities.

By a direct calculation, we have

Rαβγδ = 0 and Rαβγδ = 0, α, β, γ, δ = 0, 1, 2, 3. (5.4)

This gives
Rμν = 0, μ, ν = 0, 1, 2, 3 (5.5)

and
‖R‖ �

= RαβγδRαβγδ = 0. (5.6)

(5.5) implies that the Lorentzian metric (4.6) is indeed a solution of the vacuum Einstein’s field equation
(4.1), and (5.6) implies that this solution does not have any essential singularity. Therefore, on the one
hand, similarly to the Schwartzschild space-time, the cases r = m and r + m ln |r − m|+ ε sin (t − r) = 0
correspond to the event horizon; on the other hand, in contrast to the Schwartzschild space-time, the
case r = 0 also corresponds to the “event horizon”, which degenerates to a point. It is well-known that,
in the Schwartzschild space-time, r = 0 corresponds to the black hole. In other words, the solution
(4.6) describes an essentially regular space-time, it does not contain any essential singularity like black
hole. It is an interesting topic to see how to cancel this kind of singularities by making some coordinate
transformation. Therefore, we have

Property 5.1. The Lorentzian metric (4.6) describes a regular space-time, this space-time is Rieman-
nian flat in the sense of (5.4), it does not contain any essential singularity. However it contains some
non-essential singularities which correspond to event horizons.

Property 5.2. The non-essential singularities of the space-time (4.6) consist of three parts r = 0,
r = m and r + m ln |r − m| + ε sin (t − r) = 0. The case r = 0 is a degenerate event horizon; r = m is a
steady event horizon; and r + m ln |r − m| + ε sin (t − r) = 0 is the “time-periodic” event horizon.

According to the authors’ knowledge, the degenerate event horizon and the time-periodic event horizon
are two new phenomena in space-time geometry.

We next consider the time-periodic event horizon in detail. Without loss of generality, we may assume
that ε and m are positive constants. We have two cases: 0 � r � m and r > m.

Case I. 0 � r � m

Let
f(r; t) = r + m ln |m − r| + ε sin (t − r). (5.7)

For any fixed t ∈ R, it holds that
f(r; t) −→ −∞ as r → m (5.8)

and
f(r; t) −→ ∞ as r → ∞. (5.9)

At r = 0, we consider
m ln m + ε sin t = 0, (5.10)

i.e.,

sin t = −m lnm

ε
. (5.11)
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It is obvious that (5.11) has a solution if and only if
∣∣∣∣
m ln m

ε

∣∣∣∣ � 1. (5.12)

In what follows, we always assume the condition (5.12). Therefore, it follows from (5.11) that

f(0; tk) = 0, (5.13)

where

tk = 2kπ + arcsin
{
−m ln m

ε

}
, (5.14)

in which k ∈ Z.
We now divide the discussion into two cases.

Case I-1. 0 < m � 1
In this case, we have

−m lnm

ε
� 0, (5.15)

and then

arcsin
{
−m lnm

ε

}
� 0. (5.16)

Therefore,

tk = 2kπ + arcsin
{
−m ln m

ε

}
, k = 0, 1, 2, . . . . (5.17)

Case I-2. 1 < m

In this case,

−m lnm

ε
< 0, (5.18)

and

arcsin
{
−m lnm

ε

}
< 0. (5.19)

Thus, we shall take

tk = 2(k + 1)π + arcsin
{
−m lnm

ε

}
, k = 0, 1, 2, . . . . (5.20)

In both Case I-1 and Case I-2, by fixing k ∈ {0, 1, 2, . . .} and noting (5.8), we see that there exists a
maximum r− ∈ [0, m) such that, for any given r ∈ [0, r−], the equation for t

f(r; t) = 0 (5.21)

has solutions. When r = r−, we denote the solution by t−k . It holds that

f(r−; t−k ) = 0. (5.22)

Summarizing the above discussion, we observe that, for Case I, the time-periodic event horizons are given
in Figure 2.
Case II. r > m

Similarly to the discussion of Case I, in this case the time-periodic event horizons are given in Figure
3.

In Figure 3, r0 and r+ are defined in the following way: noting (5.8) and (5.9), we see that there exists
a minimum r0 ∈ (m,∞) and a maximum r+ ∈ (m,∞) such that, for any given r ∈ [r0, r+], the equation
for t

f(r; t) = 0 (5.23)

has solutions. In particular, when r = r0 (resp. r = r+), we denote the solution by tk (resp. by t+k ).
That is to say, it holds that

f(r0; tk) = 0 and f(r+; t+k ) = 0. (5.24)
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Figure 2 Time-periodic event horizons for Case I Figure 3 Time-periodic event horizons for Case II

Therefore, we have proved the following property.

Property 5.3. The non-essential singularities of the space-time (4.6) consists of three parts r = 0,
r = m and r+m ln |r − m|+ε sin (t − r) = 0. r = 0 is a degenerate event horizon, r = m is a steady event
horizon, and r + m ln |r − m| + ε sin (t − r) = 0 are the “time-periodic” event horizons. Time-periodic
event horizons form and disappear in finite times, they propagate time-periodically.

On the other hand, by some elementary matrix transformations, the metric (ημν) can be reduced to

(η̂μν) = diag
{

G,− M2r2

G(r − m)2
,−K2,−K2 sin2 θ

}
. (5.25)

Note that (4.8) gives

(η̂μν) ∼ diag
{

1 + 2εΩ+ sin θ cos (t − r),− (Ω+)2 sin2 θ

1 + 2εΩ+ sin θ cos (t − r)
,−r2,−r2 sin2 θ

}
. (5.26)

In (5.26), we have made use of the fact that, when r is large enough, it holds that K ∼ r because of the
second equation in (4.8). (5.26) implies that the space-time (4.6) is not homogenous and asymptotically
flat, more precisely not asymptotically Minkowski, because the first component in (5.26) depends strongly
on the angle θ. Therefore, we have

Property 5.4. The space-time (4.6) is not homogenous and asymptotically flat.

Remark 5.2. Property 5.4 perhaps has some new applications in cosmology due to the recent WMAP
data, since the recent WMAP data show that our Universe exists anisotropy (see [11]). This inhomogenous
property of the new space-time (4.6) may provide a way to give an explanation of this phenomena.

Summarizing the above discussion gives the following theorem.

Theorem 5.1. The vacuum Einstein’s field equations have a time-periodic solution (4.6), this solution
describes a regular space-time, which has vanishing Riemann curvature tensor but is not homogenous and
not asymptotically flat. This space-time does not contain any essential singularity, but contains some
non-essential singularities which correspond to three event horizons: a degenerate event horizon, a steady
event horizon and time-periodic event horizons.

6 Other examples

In this section, we illustrate that our method can be used to obtain other important solutions to the
vacuum Einstein’s field equations. Here we only briefly account for the known solutions, we will discuss
in more details of some new solutions in the forthcoming papers [15, 16].
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Ori’s time-machine model. Ori [19] presented a class of curved-spacetime vacuum solutions which
develop closed timelike curves at some particular moment, and then used these vacuum solutions to
construct a time-machine model. His solution is given by

ds2 = dx2 + dy2 − 2dzdt + [f(x, y, z) − t]dz2, (6.1)

where f is an arbitrary (properly periodic in z) satisfying fxx + fyy = 0. In the coordinates (z, t, x, y),
the metric (6.1) belongs to both Type I and Type III metrics. The solution (6.1) can be obtained easily
by using our method.
Gowdy’s universes. In 1971 and 1975, Gowdy [7, 8] gave the Gowdy universes in the form

ds2 = e−2U
[
e2k(dρ2 − dt2) + sin2 t sin2 ρdϕ2

]
+ e2Udz2, (6.2)

where U staisfies
(Uρ sinρ)ρ sin t − (Ut sin t)t sin ρ = 0. (6.3)

In the coordinates (t, ρ, ϕ, z), the metric (6.2) belongs to the class of Type III. The solution (6.2) can be
easily obtained by our method.
Khan-Penrose’s solution. In 1971, Khan-Penrose [13] constructed a vacuum solution to the Einstein’s
field equations of the form

ds2 =
1 − η2

(1 − η2)1/4(1 − μ2)1/4

(
dμ2

1 − μ2
− dη2

1 − η2

)
+
√

(1 − η2)(1 − μ2)
(

1 − η

1 + η
dx2 +

1 + η

1 − η
dy2

)
. (6.4)

In the coordinates (η, μ, x, y), the metric (6.4) belongs to the class of Type III. Using our method, we can
easily obtain the solution (6.4).

In fact, many classical exact solutions to the Einstein’s field equations, for example, the Schwarzschild
solution, the Kerr solution, etc. can be obtained by the method presented in this paper. Here we omit
the details.

7 Summary and discussion

In this paper we present a general framework to find exact solutions to the Einstein’s field equations
(1.1). Using our method, we can construct some important exact solutions including the time-periodic
solutions of the vacuum Einstein’s field equations. These solutions enjoy some interesting properties, for
example, although these solutions possess singularities, their Riemann curvature tensors vanish at any
point in the these space-times, this implies that these space-times are Riemann flat. We also analyze
the singularities of the time-periodic solutions and investigate some new physical phenomena enjoyed
by these new space-times. In the series of works [15, 16], we will construct time-periodic solutions of
the vacuum Einstein’s field equations whose Riemann curvature tensors keep finite or take the infinity
at some points in these space-times, respectively. More precisely, the solutions constructed in [15, 16]
contain geometric singularities or physical singularities or both singularities (see [15, 16] for the details).

We remark that, by using our method, we can obtain almost all known solutions to the Einstein’s
field equations. Our method can also be used to find exact solutions of the higher dimensional Einstein’s
field equations, which play an important role in string theory. The structures of these new space-times,
the behaviors of their singularities and some new nonlinear phenomena appeared in the time-periodic
solutions are very interesting and important. We expect some applications of these new phenomena and
the time-periodic solutions in modern cosmology and general relativity.
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