Time-Periodic Solutions of the Einstein's Field Equations II: Geometric Singularities

KONG DeXing ${ }^{1}$, LIU KeFeng ${ }^{2 \dagger}$ \& SHEN Ming ${ }^{3}$
${ }^{1}$ Department of Mathematics, Zhejiang University, Hangzhou 310027, China
2 Department of Mathematics, University of California at Los Angeles, CA 90095, USA
${ }^{3}$ Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China
(email: kong@cms.zju.edu.cn, liu@math.ucla.edu, shenming0516@163.com)

Abstract

In this paper, we construct several kinds of new time-periodic solutions of the vacuum Einstein's field equations whose Riemann curvature tensors vanish, keep finite or take the infinity at some points in these space-times, respectively. The singularities of these new time-periodic solutions are investigated and some new physical phenomena are discovered.

Keywords: Einstein's field equations, time-periodic solution, Riemann curvature tensor, singularity, event horizon
MSC(2000): 83C05, 83C15, 83C75, 35C05

1 Introduction

This work is a continuation of our previous work [3] "Time-Periodic Solutions of the Einstein's Field Equations I: General Framework". As in [3], we still consider the time-periodic solutions of the following vacuum Einstein's field equations

$$
\begin{equation*}
G_{\mu \nu} \triangleq R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0 \tag{1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
R_{\mu \nu}=0, \tag{2}
\end{equation*}
$$

where $g_{\mu \nu}(\mu, \nu=0,1,2,3)$ is the unknown Lorentzian metric, $R_{\mu \nu}$ is the Ricci curvature tensor, R is the scalar curvature and $G_{\mu \nu}$ is the Einstein tensor.

It is well known that the exact solutions of the Einstein's field equations play a crucial role in general relativity and cosmology. Typical examples are the Schwarzschild solution and Kerr solution. Although many interesting and important solutions have been obtained (see, e.g., [1] and [5]), there are still many fundamental open problems. One such problem is if there exists a "time-periodic" solution, which contains physical singularities such as black hole, to the vacuum Einstein's field equations. This paper continues the discussion of this problem.

[^0]The first time-periodic solution of the vacuum Einstein's field equations was constructed by the first two authors in [3]. The solution presented in [3] is time-periodic, and describes a regular space-time, which has vanishing Riemann curvature tensor but is inhomogenous, anisotropic and not asymptotically flat. In particular, this space-time does not contain any essential singularity, but contains some non-essential singularities which correspond to steady event horizons, time-periodic event horizon and has some interesting new physical phenomena.

In this paper, we focus on finding the time-periodic solutions, which contain geometric singularities (see Definition 1 below) to the vacuum Einstein's field equations (1). We shall construct three kinds of new time-periodic solutions of the vacuum Einstein's field equations (1) whose Riemann curvature tensors vanish, keep finite or go to the infinity at some points in these space-times respectively. The singularities of these new time-periodic solutions are investigated and new physical phenomena are found. Moreover, the applications of these solutions in modern cosmology and general relativity may be expected. In the forthcoming paper [4], we shall construct a time-periodic solution of the Einstein's field equations with physical singularities (see also Definition 1 below), which describes a time-periodic universe with many new and interesting physical phenomena.

The paper is organized as follows. In $\S 2$ we present our procedure of finding new solutions of the vacuum Einstein's field equations and introduce the concepts of "geometric singularity" and "physical singularity". In $\S 3$ we construct three kinds of new time-periodic solutions of the vacuum Einstein's field equations whose Riemann curvature tensors vanish, keep finite or take the infinity at some points in these space-times, respectively. In this section, the singularities of these new time-periodic solutions are also investigated and some new physical phenomena are found and discussed. A summary and some discussions are given in $\S 4$.

2 Procedure of finding new solutions

We consider the metric of the following form

$$
\left(g_{\mu \nu}\right)=\left(\begin{array}{llll}
u & v & p & 0 \tag{3}\\
v & 0 & 0 & 0 \\
p & 0 & f & 0 \\
0 & 0 & 0 & h
\end{array}\right)
$$

where u, v, p, f and h are smooth functions of the coordinates (t, x, y, z). It is easy to verify that the determinant of $\left(g_{\mu \nu}\right)$ is given by

$$
\begin{equation*}
g \triangleq \operatorname{det}\left(g_{\mu \nu}\right)=-v^{2} f h \tag{4}
\end{equation*}
$$

Throughout this paper, we assume that

$$
\begin{equation*}
g<0 \tag{H}
\end{equation*}
$$

Without loss of generality, we may suppose that f and g keep the same sign, for example,

$$
\begin{equation*}
f<0(\text { resp. } f>0) \quad \text { and } \quad h<0(\text { resp. } g>0) . \tag{5}
\end{equation*}
$$

In what follows, we solve the Einstein's field equations (2) under the framework of the Lorentzian metric of the form (3).

By a direct calculation, we have the Ricci tensor

$$
\begin{equation*}
R_{11}=-\frac{1}{2}\left\{\frac{v_{x}}{v}\left(\frac{f_{x}}{f}+\frac{h_{x}}{h}\right)+\frac{1}{2}\left[\left(\frac{f_{x}}{f}\right)^{2}+\left(\frac{h_{x}}{h}\right)^{2}\right]-\left(\frac{f_{x x}}{f}+\frac{h_{x x}}{h}\right)\right\} . \tag{6}
\end{equation*}
$$

It follows from (2) that

$$
\begin{equation*}
\frac{v_{x}}{v}\left(\frac{f_{x}}{f}+\frac{h_{x}}{h}\right)+\frac{1}{2}\left[\left(\frac{f_{x}}{f}\right)^{2}+\left(\frac{h_{x}}{h}\right)^{2}\right]-\left(\frac{f_{x x}}{f}+\frac{h_{x x}}{h}\right)=0 . \tag{7}
\end{equation*}
$$

This is an ordinary differential equation of first order on the unknown function v. Solving (7) gives

$$
\begin{equation*}
v=V(t, y, z) \exp \left\{\int \Theta(t, x, y, z) d x\right\} \tag{8}
\end{equation*}
$$

where

$$
\Theta=\left[\frac{f_{x x}}{f}+\frac{h_{x x}}{h}-\frac{1}{2}\left(\frac{f_{x}}{f}\right)^{2}-\frac{1}{2}\left(\frac{h_{x}}{h}\right)^{2}\right] \frac{f h}{(f h)_{x}}
$$

and $V=V(t, y, z)$ is an integral function depending on t, y and z. Here we assume that

$$
\begin{equation*}
(f h)_{x} \neq 0 \tag{9}
\end{equation*}
$$

In particular, taking the ansatz

$$
\begin{equation*}
f=-K(t, x)^{2}, \quad h=N(t, y, z) K(t, x)^{2} \tag{10}
\end{equation*}
$$

and substituting it into (8) yields

$$
\begin{equation*}
v=V K_{x} \tag{11}
\end{equation*}
$$

By the assumptions (H) and (9), we have

$$
\begin{equation*}
V \neq 0, \quad K \neq 0, \quad K_{x} \neq 0 \tag{12}
\end{equation*}
$$

Noting (10) and (11), by a direct calculation we obtain

$$
\begin{equation*}
R_{13}=-\frac{V_{z} K_{x}}{K V} \tag{13}
\end{equation*}
$$

It follows from (2) that

$$
R_{13}=0
$$

Combining (12) and (13) gives

$$
\begin{equation*}
V_{z}=0 \tag{14}
\end{equation*}
$$

This implies that the function V depends only on t, y but is independent of x and z. Noting (10)-(11) and using (14), we calculate

$$
\begin{equation*}
R_{12}=-\frac{1}{2 V}\left(\frac{p_{x x}}{K_{x}}-\frac{K_{x x} p_{x}}{K_{x}^{2}}-\frac{2 p K_{x}}{K^{2}}+\frac{2 K_{x} V_{y}}{K}\right) \tag{15}
\end{equation*}
$$

Solving p from the equation $R_{12}=0$ yields

$$
\begin{equation*}
p=A K^{2}+V_{y} K+\frac{B}{K}, \tag{16}
\end{equation*}
$$

where A and B are integral functions depending on t, y and z. Noting (10)-(11) and using (14) and (16), we observe that the equation $R_{23}=0$ is equivalent to

$$
\begin{equation*}
B_{z}-2 K^{3} A_{z}=0 \tag{17}
\end{equation*}
$$

Since K is a function depending only on t, x, and A, B are functions depending on t, y and z, we can obtain that

$$
\begin{equation*}
B=2 K^{3} A+C(t, x, y) \tag{18}
\end{equation*}
$$

where C is an integral function depending on t, x and y. For simplicity, we take

$$
\begin{equation*}
A=B=C=0 \tag{19}
\end{equation*}
$$

Thus, (16) simplifies to

$$
\begin{equation*}
p=V_{y} K \tag{20}
\end{equation*}
$$

From now on, we assume that the function N only depends on y, that is to say,

$$
\begin{equation*}
N=N(y) \tag{21}
\end{equation*}
$$

Substituting (10)-(11), (14) and (20)-(21) into the equation $R_{02}=0$ yields

$$
\begin{equation*}
u_{x} V_{y}+V\left(u_{y x}-4 V_{y} K_{x t}\right)=0 \tag{22}
\end{equation*}
$$

Solving u from the equation (22) leads to

$$
\begin{equation*}
u=2 K_{t} V . \tag{23}
\end{equation*}
$$

Noting (10)-(11), (14), (20)-(21) and (23), by a direct calculation we obtain

$$
\begin{gather*}
R_{03}=0 \tag{24}\\
\left\{\begin{array}{c}
R_{22}=\left(4 N^{2} V^{2}\right)^{-1}\left[2 N V^{2} N_{y y}-4 N^{2} V V_{y y}+4 N^{2} V_{y}^{2}-2 N V N_{y} V_{y}-V^{2} N_{y}^{2}\right] \\
R_{33}=-\left(4 N V^{2}\right)^{-1}\left[2 N V^{2} N_{y y}-4 N^{2} V V_{y y}+4 N^{2} V_{y}^{2}-2 N V N_{y} V_{y}-V^{2} N_{y}^{2}\right]
\end{array}\right. \tag{25}
\end{gather*}
$$

and
$R_{00}=\left(2 K N V^{2}\right)^{-1}\left[4 N V_{t} V_{y}^{2}+2 N V^{2} V_{t y y}-2 N V V_{t} V_{y y}-4 N V V_{y} V_{t y}-V N_{y} V_{t} V_{y}+V^{2} N_{y} V_{t y}\right]$.
Therefore, under the assumptions mentioned above, the Einstein's field equations (2) are reduced to

$$
\begin{equation*}
-\frac{N_{y y}}{N}+\frac{1}{2}\left(\frac{N_{y}}{N}\right)^{2}+2 \frac{V_{y y}}{V}+\frac{N_{y} V_{y}}{N V}-2\left(\frac{V_{y}}{V}\right)^{2}=0 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
4 V_{y}^{2} V_{t}+2 V^{2} V_{y y t}-2 V V_{y y} V_{t}-4 V V_{y} V_{y t}-\frac{V V_{y} V_{t} N_{y}}{N}+\frac{V^{2} V_{y t} N_{y}}{N}=0 \tag{28}
\end{equation*}
$$

On the other hand, (27) can be rewritten as

$$
\begin{equation*}
2\left(\frac{V_{y}}{V}\right)_{y}+\frac{V_{y} N_{y}}{V N}-\left(\frac{N_{y}}{N}\right)_{y}-\frac{1}{2}\left(\frac{N_{y}}{N}\right)^{2}=0 \tag{29}
\end{equation*}
$$

and (28) is equivalent to

$$
\begin{equation*}
2\left(\frac{V_{y}}{V}\right)_{y t}+\left(\frac{V_{y}}{V}\right)_{t} \frac{N_{y}}{N}=0 \tag{30}
\end{equation*}
$$

Noting (21) and differentiating (29) with respect to t gives (30) directly. This shows that (29) implies (30). Hence in the present situation, the Einstein's field equations (2) are essentially (29). Solving V from the equation (29) yields

$$
\begin{equation*}
V=w(t)|N(y)|^{1 / 2} \exp \left\{q(t) \int|N(y)|^{-1 / 2} d y\right\} \tag{31}
\end{equation*}
$$

where $w=w(t)$ and $q=q(t)$ are two integral functions only depending on t. Thus, we can obtain the following solution of the vacuum Einstein's field equations in the coordinates (t, x, y, z)

$$
\begin{equation*}
d s^{2}=(d t, d x, d y, d z)\left(g_{\mu \nu}\right)(d t, d x, d y, d z)^{T} \tag{32}
\end{equation*}
$$

where

$$
\left(g_{\mu \nu}\right)=\left(\begin{array}{cccc}
2 K_{t} V & K_{x} V & K V_{y} & 0 \tag{33}\\
K_{x} V & 0 & 0 & 0 \\
K V_{y} & 0 & -K^{2} & 0 \\
0 & 0 & 0 & N K^{2}
\end{array}\right)
$$

in which $N=N(y)$ is an arbitrary function of $y, K=K(t, x)$ is an arbitrary function of t, x, and V is given by (31).

By calculations, the Riemann curvature tensor reads

$$
\begin{equation*}
R_{\alpha \beta \mu \nu}=0, \quad \forall \alpha \beta \mu \nu \neq 0202 \text { or } 0303, \tag{34}
\end{equation*}
$$

while

$$
\begin{equation*}
R_{0202}=K w q q^{\prime}|N|^{-1 / 2} \exp \left\{q \int|N|^{-1 / 2} d y\right\} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0303}=K w q q^{\prime}|N|^{1 / 2} \exp \left\{q \int|N|^{-1 / 2} d y\right\} \tag{36}
\end{equation*}
$$

In order to analyze the singularities of the space-time (32), we introduce
Definition $1 A$ point P in the space-time is called a geometric singular point, if there are some indexes $\alpha_{0}, \beta_{0}, \mu_{0}, \nu_{0} \in\{0,1,2,3\}$ such that

$$
R_{\alpha_{0} \beta_{0} \mu_{0} \nu_{0}}= \pm \infty \quad \text { but } \quad|\mathbf{R}| \triangleq\left|R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta}\right|<\infty \quad \text { at } P ;
$$

P is called a physical singular point, if it holds that

$$
\mathbf{R}= \pm \infty \quad \text { at } P
$$

A low-dimensional sub-manifold Σ is called a geometric (resp. physical) singularity, if every point $(t, x, y, z) \in \Sigma$ is geometric (resp. physical) singular point.

In Definition 1, the low-dimensional sub-manifold Σ might be a point, curve or surface in the space-time. On the other hand, physicists usually call "geometric singularities" defined in Definition 1 the coordinate singularities.

According to Definition 1, it is easy to check that, in the Schwarzschild space-time, the event horizon $r=2 M$ is geometric singularity, while the black hole $r=0$ is physical singularity.

3 Time-periodic solutions

This section is devoted to constructing some new time-periodic solutions of the vacuum Einstein's field equations.

3.1 Regular time-periodic space-times with vanishing Riemann curvature tensor

Take $q=$ constant and let $V=\rho(t) \kappa(y)$, where κ is defined by

$$
\begin{equation*}
\kappa(y)=c_{1} \sqrt{|N|} \exp \left\{c_{2} \int|N|^{-1 / 2} d y\right\} \tag{37}
\end{equation*}
$$

in which c_{1} and c_{2} are two integrable constants. In this case, the solution to the vacuum Einstein's filed equations in the coordinates (t, x, y, z) reads

$$
\begin{equation*}
d s^{2}=(d t, d x, d y, d z)\left(g_{\mu \nu}\right)(d t, d x, d y, d z)^{T}, \tag{38}
\end{equation*}
$$

where

$$
\left(g_{\mu \nu}\right)=\left(\begin{array}{cccc}
2 \rho \kappa \partial_{t} K & \rho \kappa \partial_{x} K & \rho K \partial_{y} \kappa & 0 \tag{39}\\
\rho \kappa \partial_{x} K & 0 & 0 & 0 \\
\rho K \partial_{y} \kappa & 0 & -K^{2} & 0 \\
0 & 0 & 0 & N K^{2}
\end{array}\right)
$$

Theorem 1 The vacuum Einstein's filed equations (2) have a solution described by (38) and (39), and the Riemann curvature tensor of this solution vanishes.

As an example, let

$$
\left\{\begin{array}{l}
w(t)=\cos t \tag{40}\\
q(t)=0 \\
K(t, x)=e^{x} \sin t \\
N(y)=-(2+\sin y)^{2}
\end{array}\right.
$$

In the present situation, we obtain the following solution of the vacuum Einstein's filed equations (2)

$$
\left(\eta_{\mu \nu}\right)=\left(\begin{array}{cccc}
\eta_{00} & \eta_{01} & \eta_{02} & 0 \tag{41}\\
\eta_{01} & 0 & 0 & 0 \\
\eta_{02} & 0 & \eta_{22} & 0 \\
0 & 0 & 0 & \eta_{33}
\end{array}\right)
$$

where

$$
\left\{\begin{align*}
\eta_{00} & =2 e^{x}(2+\sin y) \cos ^{2} t \tag{42}\\
\eta_{01} & =\frac{1}{2} e^{x}(2+\sin y) \sin (2 t) \\
\eta_{02} & =\frac{1}{2} e^{x} \cos y \sin (2 t) \\
\eta_{22} & =-\left[e^{x} \sin t\right]^{2} \\
\eta_{33} & =-\left[e^{x}(2+\sin y) \sin t\right]^{2}
\end{align*}\right.
$$

By (4),

$$
\begin{equation*}
\eta \triangleq \operatorname{det}\left(\eta_{\mu \nu}\right)=-\frac{1}{4} e^{6 x}(2+\sin y)^{4} \sin ^{4} t \sin ^{2}(2 t) \tag{43}
\end{equation*}
$$

Property 1 The solution (41) of the vacuum Einstein's filed equations (2) is time-periodic.
Proof. In fact, the first equality in (42) implies that

$$
\eta_{00}>0 \quad \text { for } t \neq k \pi+\pi / 2 \quad(k \in \mathbb{N}) \text { and } x \neq-\infty
$$

On the other hand, by direct calculations,

$$
\begin{aligned}
& \left|\begin{array}{cc}
\eta_{00} & \eta_{01} \\
\eta_{01} & 0
\end{array}\right|=-\frac{1}{4} e^{2 x}(2+\sin y)^{2} \sin ^{2}(2 t)<0 \\
&
\end{aligned}\left|\begin{array}{ccc}
\eta_{00} & \eta_{01} & \eta_{02} \\
\eta_{01} & 0 & 0 \\
\eta_{02} & 0 & \eta_{22}
\end{array}\right|=-\eta_{01}^{2} \eta_{22}>0, ~ l
$$

and

$$
\left|\begin{array}{cccc}
\eta_{00} & \eta_{01} & \eta_{02} & 0 \\
\eta_{01} & 0 & 0 & 0 \\
\eta_{02} & 0 & \eta_{22} & 0 \\
0 & 0 & 0 & \eta_{33}
\end{array}\right|=-\eta_{01}^{2} \eta_{22} \eta_{33}<0
$$

for $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x \neq-\infty$.
In Property 3 below, we will show that $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ are the singularities of the space-time described by (41), but they are neither geometric singularities nor physical singularities, these non-essential singularities correspond to the event horizons of the space-time described by (41) with (42); while, when $x=-\infty$, the space-time (41) degenerates to a point.

The above discussion implies that the variable t is a time coordinate. Therefore, it follows from (42) that the Lorentzian metric

$$
\begin{equation*}
d s^{2}=(d t, d x, d y, d z)\left(\eta_{\mu \nu}\right)(d t, d x, d y, d z)^{T} \tag{44}
\end{equation*}
$$

is indeed a time-periodic solution of the vacuum Einstein's field equations (2), where $\left(\eta_{\mu \nu}\right)$ is given by (41). This proves Property 1.

Noting (34)-(36) and the second equality in (40) gives

Property 2 The Lorentzian metric (44) (in which $\left(\eta_{\mu \nu}\right)$ is given by (41) and (42)) describes a regular space-time, this space-time is Riemannian flat, that is to say, its Riemann curvature tensor vanishes.

Remark 1 The first time-periodic solution to the vacuum Einstein's field equations was constructed by Kong and Liu [3]. The time-periodic solution presented in [3] also has the vanishing Riemann curvature tensor.

It follows from (43) that the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x= \pm \infty$ are singularities of the space-time (44) (in which $\left(\eta_{\mu \nu}\right)$ is given by (41) and (42)), however, by Property 2, these singularities are neither geometric singularities nor physical singularities. According to the definition of event horizon (see e.g., Wald [6]), it is easy to show that the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x=+\infty$ are the event horizons of the space-time (44) (in which $\left(\eta_{\mu \nu}\right)$ is given by (41) and (42)). Therefore, we have

Property 3 The Lorentzian metric (44) (in which $\left(\eta_{\mu \nu}\right)$ is given by (41) and (42)) contains neither geometric nor physical singularities. These non-essential singularities consist of the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x= \pm \infty$. The singularities $t=k \pi, k \pi+\pi / 2 \quad(k \in$ \mathbb{N}) and $x=+\infty$ correspond to the event horizons, while, when $x=-\infty$, the space-time (44) degenerates to a point.

We now investigate the physical behavior of the space-time (44).
Fixing y and z, we get the induced metric

$$
\begin{equation*}
d s^{2}=\eta_{00} d t^{2}+2 \eta_{01} d t d x \tag{45}
\end{equation*}
$$

Consider the null curves in the (t, x)-plan, which are defined by

$$
\begin{equation*}
\eta_{00} d t^{2}+2 \eta_{01} d t d x=0 \tag{46}
\end{equation*}
$$

Noting (42) gives

$$
\begin{equation*}
d t=0 \quad \text { and } \quad \frac{d t}{d x}=-\tan t \tag{47}
\end{equation*}
$$

Thus, the null curves and light-cones are shown in Figure 1.
We next study the geometric behavior of the t-slices.
For any fixed $t \in \mathbb{R}$, it follows from (44) that the induced metric of the t-slice reads

$$
\begin{equation*}
d s^{2}=\eta_{22} d y^{2}+\eta_{33} d z^{2}=-e^{2 x} \sin ^{2} t\left[d y^{2}+(2+\sin y)^{2} d z^{2}\right] . \tag{48}
\end{equation*}
$$

When $t=k \pi(k \in \mathbb{N})$, the metric (48) becomes

$$
d s^{2}=0
$$

This implies that the t-slice reduces to a point. On the other hand, in the present situation, the metric (44) becomes

$$
d s^{2}=2 e^{x}(2+\sin y) d t^{2}
$$

When $t \neq k \pi(k \in \mathbb{N})$, (48) shows that the t-slice is a three-dimensional cone-like manifold centered at $x=-\infty$.

Figure 1: Null curves and light-cones in the domains $0<t<\pi / 2$ and $\pi / 2<t<\pi$.

3.2 Regular time-periodic space-times with non-vanishing Riemann curvature tensor

We next construct the regular time-periodic space-times with non-vanishing Riemann curvature tensor.

To do so, let

$$
\left\{\begin{array}{l}
w(t)=\cos t \tag{49}\\
q(t)=\sin t \\
K(x, t)=e^{x} \sin t \\
N=-\frac{1}{(2+\sin y)^{2}}
\end{array}\right.
$$

Then, by (31),

$$
V=\frac{\cos t \exp \{(2 y-\cos y) \sin t\}}{2+\sin y} .
$$

Thus, in the present situation, we have the following solution of the vacuum Einstein's field equations (2)

$$
\widetilde{\eta}_{\mu \nu}=\left(\begin{array}{cccc}
\widetilde{\eta}_{00} & \widetilde{\eta}_{01} & \widetilde{\eta}_{02} & 0 \tag{50}\\
\widetilde{\eta}_{01} & 0 & 0 & 0 \\
\widetilde{\eta}_{02} & 0 & \widetilde{\eta}_{22} & 0 \\
0 & 0 & 0 & \widetilde{\eta}_{33}
\end{array}\right),
$$

where

$$
\left\{\begin{align*}
\widetilde{\eta}_{00} & =\frac{2 e^{x} \cos ^{2} t \exp \{(2 y-\cos y) \sin t\}}{2+\sin y} \tag{51}\\
\widetilde{\eta}_{01} & =\frac{e^{x} \sin (2 t) \exp \{(2 y-\cos y) \sin t\}}{2(2+\sin y)} \\
\widetilde{\eta}_{02} & =e^{x+(2 y-\cos y) \sin t\left\{\sin t \cos t-\frac{\cos t \cos y}{(2+\sin y)^{2}}\right\} \sin t} \\
\widetilde{\eta}_{22} & =-e^{2 x} \sin ^{2} t \\
\widetilde{\eta}_{33} & =-\frac{e^{2 x} \sin ^{2} t}{(2+\sin y)^{2}}
\end{align*}\right.
$$

By (4),

$$
\begin{equation*}
\widetilde{\eta} \triangleq \operatorname{det}\left(\widetilde{\eta}_{\mu \nu}\right)=-\left(\widetilde{\eta}_{01}\right)^{2} \widetilde{\eta}_{22} \widetilde{\eta}_{33}=-\frac{e^{6 x+2(2 y-\cos y) \sin t} \sin ^{2}(2 t) \sin ^{4} t}{4(2+\sin y)^{4}} \tag{52}
\end{equation*}
$$

Introduce

$$
\triangle(t, x, y)=6 x+2(2 y-\cos y) \sin t
$$

Thus, it follows from (52) that

$$
\begin{equation*}
\tilde{\eta}<0 \tag{53}
\end{equation*}
$$

for $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $\triangle \neq-\infty$. It is obvious that the hypersurfaces $t=$ $k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $\triangle= \pm \infty$ are the singularities of the space-time described by (50) with (51). As in Subsection 3.1, we can prove that the hypersurfaces $t=k \pi, k \pi+\pi / 2(k \in \mathbb{N})$ are neither geometric singularities nor physical singularities, these non-essential singularities correspond to the event horizons of the space-time described by (50) with (51).

Similar to Property 1, we have
Property 4 The solution (50) (in which $\left(\widetilde{\eta}_{\mu \nu}\right)$ is given by (51)) of the vacuum Einstein's filed equations (2) is time-periodic.

Similar to Property 2, we have
Property 5 The Lorentzian metric (50) (in which $\left(\widetilde{\eta}_{\mu \nu}\right)$ is given by (51)) describes a regular space-time, this space-time has a non-vanishing Riemann curvature tensor.

Proof. In the present situation, by (34)

$$
\begin{equation*}
R_{\alpha \beta \mu \nu}=0, \quad \forall \alpha \beta \mu \nu \neq 0202 \text { or } 0303, \tag{54}
\end{equation*}
$$

while

$$
\begin{equation*}
R_{0202}=e^{x+(2 y-\cos y) \sin t}(2+\sin y) \cos ^{2} t \sin ^{2} t \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0303}=\frac{e^{x} \cos ^{2} t \sin ^{2} t \exp \{(2 y-\cos y) \sin t\}}{2+\sin y} \tag{56}
\end{equation*}
$$

Property 5 follows from (54)-(56) directly. Thus the proof is completed.
In particular, when $t \neq k \pi, k \pi+\pi / 2(k \in \mathbb{N})$, it follows from (55) and (56) that

$$
\begin{equation*}
R_{0202}, R_{0303} \longrightarrow \infty \quad \text { as } x+(2 y-\cos y) \sin t \rightarrow \infty \tag{57}
\end{equation*}
$$

However, a direct calculation gives

$$
\begin{equation*}
\mathbf{R} \triangleq R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta} \equiv 0 . \tag{58}
\end{equation*}
$$

Thus, we obtain
Property 6 The Lorentzian metric (50) (in which ($\widetilde{\eta}_{\mu \nu}$) is given by (51)) contains neither geometric nor physical singularities. These non-essential singularities consist of the hypersurfaces $t=k \pi, k \pi+\pi / 2(k \in \mathbb{N})$ and $\triangle= \pm \infty$, in which the hypersurfaces $t=k \pi, k \pi+\pi / 2(k \in \mathbb{N})$ are the event horizons. Moreover, the Riemann curvature tensor satisfies the properties (57) and (58).

We next analyze the singularity behavior of $\Delta= \pm \infty$.
Case 1: Fixing $y \in \mathbb{R}$, we observe that

$$
\triangle \rightarrow \pm \infty \Longleftrightarrow x \rightarrow \pm \infty .
$$

This situation is similar to the case $x \rightarrow \pm \infty$ discussed in Subsection 3.1. That is to say, $x=+\infty$ corresponds to the event horizon, while, when $x \rightarrow-\infty$, the space-time (50) with (51) degenerates to a point.
Case 2: Fixing $x \in \mathbb{R}$, we observe that

$$
\triangle \rightarrow \pm \infty \Longleftrightarrow y \rightarrow \pm \infty .
$$

In the present situation, it holds that

$$
t \neq k \pi \quad(k \in \mathbb{N})
$$

Without loss of generality, we may assume that

$$
\sin t>0 .
$$

For the case that $\sin t<0$, we have a similar discussion. Thus, noting (57), we have

$$
R_{0202}, R_{0303} \longrightarrow \infty \text { as } y \rightarrow \infty .
$$

Moreover, by the definition of the event horizon we can show that $y=+\infty$ is not a event horizon. On the other hand, when $y \rightarrow-\infty$, the space-time (50) with (51) degenerates to a point.

Case 3: For the situation that $x \rightarrow \pm \infty$ and $y \rightarrow \pm \infty$ simultaneously, we have a similar discussion, here we omit the details.

For the space-time (50) with (51), the null curves and light-cones are shown just as in Figure 1. On the other hand, for any fixed $t \in \mathbb{R}$, the induced metric of the t-slice reads

$$
\begin{equation*}
d s^{2}=\widetilde{\eta}_{22} d y^{2}+\widetilde{\eta}_{33} d z^{2}=-e^{2 x} \sin ^{2} t\left[d y^{2}+(2+\sin y)^{-2} d z^{2}\right] . \tag{59}
\end{equation*}
$$

Obviously, in the present situation, the t-slice possesses similar properties shown in the last paragraph in Subsection 3.1.

In particular, if we take (t, x, y, z) as the spherical coordinates (t, r, θ, φ) with $t \in \mathbb{R}, r \in$ $[0, \infty), \theta \in[0,2 \pi), \varphi \in[-\pi / 2, \pi / 2]$, then the metric (50) with (51) describes a regular timeperiodic space-time with non-vanishing Riemann curvature tensor. This space-time does not
contain any essential singularity, these non-essential singularities consist of the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ which are the event horizons. The Riemann curvature tensor satisfies (58) and

$$
R_{0202}, R_{0303} \longrightarrow \infty \quad \text { as } r \rightarrow \infty .
$$

Moreover, when $t \neq k \pi(k \in \mathbb{N})$, the t-slice is a three dimensional bugle-like manifold with the base at $x=0$; while, when $t=k \pi(k \in \mathbb{N})$, the t-slice reduces to a point.

3.3 Time-periodic space-times with geometric singularities

This subsection is devoted to constructing the time-periodic space-times with physical singularities.

To do so, let

$$
\left\{\begin{array}{l}
w(t)=\cos t \tag{60}\\
q(t)=\sin t \\
K(x, t)=\frac{\sin t}{x^{2}} \\
N=-\frac{1}{(2+\cos y)^{2}}
\end{array}\right.
$$

Then, by (31) we have

$$
V=\frac{\cos t \exp \{(2 y+\sin y) \sin t)\}}{2+\cos y}
$$

Thus, in the present situation, the solution of the vacuum Einstein's field equations (2) in the coordinates (t, x, y, z) reads

$$
\begin{equation*}
d s^{2}=(d t, d x, d y, d z)\left(\hat{\eta}_{\mu \nu}\right)(d t, d x, d y, d z)^{T} \tag{61}
\end{equation*}
$$

where

$$
\left(\hat{\eta}_{\mu \nu}\right)=\left(\begin{array}{cccc}
\hat{\eta}_{00} & \hat{\eta}_{01} & \hat{\eta}_{02} & 0 \tag{62}\\
\hat{\eta}_{01} & 0 & 0 & 0 \\
\hat{\eta}_{02} & 0 & \hat{\eta}_{22} & 0 \\
0 & 0 & 0 & \hat{\eta}_{33}
\end{array}\right)
$$

in which

$$
\left\{\begin{align*}
\hat{\eta}_{00} & =\frac{2 \cos ^{2} t \exp \{(\sin y+2 y) \sin t\}}{(2+\cos y) x^{2}} \tag{63}\\
\hat{\eta}_{01} & =-\frac{\sin (2 t) \exp \{(\sin y+2 y) \sin t\}}{(2+\cos y) x^{3}} \\
\hat{\eta}_{02} & =\frac{\sin t}{x^{2}}\left\{\frac{\cos t \sin y}{(2+\cos y)^{2}}+\frac{\sin (2 t)}{2}\right\} \exp \{(\sin y+2 y) \sin t\} \\
\hat{\eta}_{22} & =-\frac{\sin ^{2} t}{x^{4}} \\
\hat{\eta}_{33} & =-\frac{\sin ^{2} t}{(2+\cos y)^{2} x^{4}}
\end{align*}\right.
$$

By (4), we have

$$
\begin{equation*}
\hat{\eta} \triangleq \operatorname{det}\left(\hat{\eta}_{\mu \nu}\right)=-\left(\hat{\eta}_{01}\right)^{2} \hat{\eta}_{22} \hat{\eta}_{33}=-\frac{e^{2(2 y+\sin y) \sin t} \sin ^{2}(2 t) \sin ^{4} t}{x^{14}(2+\cos y)^{4}} . \tag{64}
\end{equation*}
$$

It follows from (63) that

$$
\begin{equation*}
\hat{\eta}<0 \tag{65}
\end{equation*}
$$

for $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x \neq 0$. Obviously, the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x=0$ are the singularities of the space-time described by (61) with (62)-(63). As before, we can prove that the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ are not essential (or, say, physical) singularities, and these non-essential singularities correspond to the event horizons of the space-time described by (61) with (62)-(63), however $x=0$ is an essential (or, say, physical) singularity (see Property 8 below).

Similar to Property 1, we have
Property 7 The solution (61) (in which ($\hat{\eta}_{\mu \nu}$) is given by (62) and (63)) of the vacuum Einstein's field equations (2) is time-periodic.

Proof. In fact, the first equality in (63) implies that

$$
\begin{equation*}
\hat{\eta}_{00}>0 \quad \text { for } t \neq k \pi+\pi / 2 \quad(k \in \mathbb{N}) \text { and } x \neq 0 \tag{66}
\end{equation*}
$$

On the other hand, by direct calculations we have

$$
\begin{gather*}
\left|\begin{array}{cc}
\hat{\eta}_{00} & \hat{\eta}_{01} \\
\hat{\eta}_{01} & 0
\end{array}\right|=-\hat{\eta}_{01}^{2}<0, \tag{67}\\
\left|\begin{array}{ccc}
\hat{\eta}_{00} & \hat{\eta}_{01} & \hat{\eta}_{02} \\
\hat{\eta}_{01} & 0 & 0 \\
\hat{\eta}_{02} & 0 & \hat{\eta}_{22}
\end{array}\right|=-\hat{\eta}_{01}^{2} \hat{\eta}_{22}>0 \tag{68}
\end{gather*}
$$

and

$$
\left|\begin{array}{cccc}
\hat{\eta}_{00} & \hat{\eta}_{01} & \hat{\eta}_{02} & 0 \tag{69}\\
\hat{\eta}_{01} & 0 & 0 & 0 \\
\hat{\eta}_{02} & 0 & \hat{\eta}_{22} & 0 \\
0 & 0 & 0 & \hat{\eta}_{33}
\end{array}\right|=-\hat{\eta}_{01}^{2} \hat{\eta}_{22} \hat{\eta}_{33}<0
$$

for $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ and $x \neq 0$.
The above discussion implies that the variable t is a time coordinate. Therefore, it follows from (63) that the Lorentzian metric (61) is indeed a time-periodic solution of the vacuum Einstein's field equations (2), where ($\hat{\eta}_{\mu \nu}$) is given by (63). This proves Property 7.

Property 8 When $t \neq k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$, for any fixed $y \in \mathbb{R}$ it holds that

$$
\begin{equation*}
R_{0202} \rightarrow+\infty \quad \text { and } \quad R_{0303} \rightarrow+\infty, \quad \text { as } x \rightarrow 0 \tag{70}
\end{equation*}
$$

Proof. By direct calculations, we obtain from (35) and (36) that

$$
\begin{equation*}
R_{0202}=\frac{(2+\cos y) \sin ^{2}(2 t) \exp \{(\sin y+2 y) \sin t\}}{4 x^{2}}, \tag{71}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0303}=\frac{\sin ^{2}(2 t) \exp \{(\sin (y)+2 y) \sin t\}}{4 x^{2}(2+\cos y)} \tag{72}
\end{equation*}
$$

(70) follows from (71) and (72) directly. The proof is finished.

On the other hand, a direct calculation yields

$$
\begin{equation*}
\mathbf{R} \triangleq R^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta} \equiv 0 \tag{73}
\end{equation*}
$$

Therefore, we have
Property 9 The Lorentzian metric (61) describes a time-periodic space-time, this space-time contains two kinds of singularities: the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$, which are neither geometric singularities nor physical singularities and correspond to the event horizons, and $x=0$, which is a geometric singularity.

We now analyze the behavior of the singularities of the space-time characterized by (61) with (63).

By (64), we shall investigate the following cases: (a) $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N}) ;(\mathrm{b})$ $y \rightarrow \pm \infty$; (c) $x \rightarrow \pm \infty$; (d) $x \rightarrow 0$.

Case a: $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$. According to the definition of the event horizon, the hypersurfaces $t=k \pi, k \pi+\pi / 2 \quad(k \in \mathbb{N})$ are the event horizons of the space-time described by (61) with (63). On the other hand, by Definition 1, they are neither geometric singularities nor physical singularities.

Case b: $y \rightarrow \pm \infty$. Noting (64), in this case we may assume that $t \neq k \pi(k \in \mathbb{N})$ (if $t=k \pi$, then the situation becomes trivial). Without loss of generality, we may assume that $\sin t>0$. Therefore, it follows from (71) and (72) that, for any fixed $x \neq 0$ it holds that

$$
\begin{equation*}
R_{0202}, \quad R_{0303} \longrightarrow \infty \quad \text { as } y \rightarrow+\infty \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0202}, \quad R_{0303} \longrightarrow 0 \quad \text { as } y \rightarrow-\infty . \tag{75}
\end{equation*}
$$

(74) implies that $y=+\infty$ is also a geometric singularity, while $y=-\infty$ is not because of (75).

Case c: $x \rightarrow \pm \infty$. By (63), in this case the space-time characterized by (61) reduces to a point.

Case d: $x \rightarrow 0$. Property 8 shows that $x=0$ is a geometric singularity. This is the biggest difference between the space-times presented in Subsections 3.1-3.2 and the one given this subsection. In order to illustrate its physical meaning, we take (t, x, y, z) as the spherical coordinates (t, r, θ, φ) with $t \in \mathbb{R}, r \in[0, \infty), \theta \in[0,2 \pi), \varphi \in[-\pi / 2, \pi / 2]$. In the coordinates (t, r, θ, φ), the metric (61) with (63) describe a time-periodic space-time which possesses three kind of singularities:
(i) $t=k \pi, k \pi+\pi / 2(k \in \mathbb{N})$: they are the event horizons, but neither geometric singularities nor physical singularities;
(ii) $r \rightarrow+\infty$: the space-time degenerates to a point;
(iii) $r \rightarrow 0$: it is a geometric singularity.

For the case (iii), in fact Property 8 shows that every point in the set

$$
\mathfrak{S}_{B} \triangleq\{(t, r, \theta, \varphi) \mid r=0, t \neq k \pi, k \pi+\pi / 2(k \in \mathbb{N})\}
$$

is a singular point. Noting (34) and (70), we name the set of singular points \mathfrak{S}_{B} as a geometric black hole. Property 8 also shows that the space-time (61) is not homogenous and not asymptotically flat. This space-time perhaps has some new applications in cosmology due to the recent WMAP data, since the recent WMAP data show that our Universe exists anisotropy (see [2]). This inhomogenous property of the new space-time (61) may provide a way to give an explanation of this phenomena.

We next investigate the physical behavior of the space-time (61).
Fixing y and z, we get the induced metric

$$
\begin{equation*}
d s^{2}=\hat{\eta}_{00} d t^{2}+2 \hat{\eta}_{01} d t d x \tag{76}
\end{equation*}
$$

Consider the null curves in the (t, x)-plan defined by

$$
\begin{equation*}
\hat{\eta}_{00} d t^{2}+2 \hat{\eta}_{01} d t d x=0 \tag{77}
\end{equation*}
$$

Noting (63) leads to

$$
\begin{equation*}
d t=0 \quad \text { and } \quad \frac{d t}{d x}=-\frac{2 \tan t}{x} \tag{78}
\end{equation*}
$$

Let

$$
\begin{equation*}
\rho=2 \ln |x| . \tag{79}
\end{equation*}
$$

Then the second equation in (78) becomes

$$
\begin{equation*}
\frac{d t}{d \rho}=-\tan t \tag{80}
\end{equation*}
$$

Thus, in the (t, ρ)-plan the null curves and light-cones are shown in Figure 1 in which x should be replaced by ρ.

We now study the geometric behavior of the t-slices.
For any fixed $t \in \mathbb{R}$, the induced metric of the t-slice reads

$$
\begin{equation*}
d s^{2}=-\frac{\sin ^{2} t}{x^{4}}\left[d y^{2}+(2+\cos y)^{-2} d z^{2}\right] \tag{81}
\end{equation*}
$$

When $t=k \pi(k \in \mathbb{N})$, the metric (81) becomes

$$
d s^{2}=0
$$

This implies that the t-slice reduces to a point. On the other hand, in this case the metric (61) becomes

$$
d s^{2}=\frac{2}{(2+\cos y) x^{2}} d t^{2}
$$

When $t \neq k \pi(k \in \mathbb{N}),(81)$ shows that the t-slice is a three-dimensional manifold with cone-like singularities at $x=\infty$ and $x=-\infty$, respectively. In particular, if we take (t, x, y, z) as the spherical coordinates (t, r, θ, φ), then the induced metric (81) becomes

$$
\begin{equation*}
d s^{2}=-\frac{\sin ^{2} t}{r^{4}}\left[d \theta^{2}+(2+\cos \theta)^{-2} d \varphi^{2}\right] \tag{82}
\end{equation*}
$$

In this case the t-slice is a three-dimensional cone-like manifold centered at $r=\infty$.
At the end of this subsection, we would like to emphasize that the space-time (61) possesses a geometric singularity, i.e., $x=0$ which is named as a geometric black hole in this paper.

4 Summary and discussion

In this paper we describe a new method to find exact solutions of the vacuum Einstein's field equations (1). Using our method, we can construct many interesting exact solutions, in particular, the time-periodic solutions of the vacuum Einstein's field equations. More precisely, we have constructed three kinds of new time-periodic solutions of the vacuum Einstein's field equations: the regular time-periodic solution with vanishing Riemann curvature tensor, the regular time-periodic solution with finite Riemann curvature tensor and the time-periodic solution with geometric singularities. We have also analyzed the singularities of these new time-periodic solutions and investigate some new physical phenomena enjoyed by these new space-times. Here we would like to point out that, in this paper, when we discuss the time-periodic solutions, we use the time-coordinate t. In fact, we can also discuss the time-periodic solutions and singularities by means of a coordinate invariant way, in this way (and only this way), we need not introduce a special coordinate system.

In particular, in the spherical coordinates (t, r, θ, φ) we construct a time-periodic spacetime with a geometric singularity. This space-time possesses an interesting and important singularity which is named as the geometric black hole. This space-time is inhomogenous and not asymptotically flat and can perhaps be used to explain the phenomenon that our Universe exists anisotropy from the recent WMAP data (see [2]). We believe some applications of these new space-times in modern cosmology and general relativity can be expected.

Acknowledgements The authors thank Prof. Chong-Ming Xu for helpful discussions and valuable suggestions. The authors also cordially thank the referees for pertinent comments and valuable suggestions.

References

[1] Bičák, J., Selected solutions of Einstein's field equations: their role in general relativity and astrophysics, in Einstein's field equations and their physical implications, Lecture Notes in Phys. 540, Berlin: Springer, 2000, 1-126.
[2] Hinshaw, G., Nolta, M. R., Bennett, C. L. et al., Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis, The Astrophysical Journal Supplement Series, 2007, 170: 288-334.
[3] Kong, D. X., Liu K. F., Time-Periodic Solutions of the Einstein's Field Equations I: General Framework, to appear in Science in China Series A: Mathematics.
[4] Kong, D. X., Liu K. F., Shen, M., Time-Periodic Solutions of the Einstein's Field Equations III: Physical Singularities, to appear.
[5] Stephani, H., Kramer, D., MacCallum, M. et al., Exact solutions of Einstein's field equations (second edition), Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 2003.
[6] Wald, R. M., General relativity, Chicago and London: the University of Chicago Press, 1984.

[^0]: Received --, 2009; accepted --, 2009
 DOI:
 \dagger Corresponding author
 The work of Kong was supported in part by the NSF of China (Grant No. 10671124) and the Qiu-Shi Professor Fellowship from Zhejiang University, China; the work of Liu was supported by the NSF and NSF of China

