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Abstract

In this paper, we investigate the group-invariant solutions of the hyperbolic geometric flow on Riemann surfaces by
the application of Lie groups in differential equations, including solutions of separation variables, traveling wave type
and radial solutions. In the proceeding of reduction, there come elliptic, hyperbolic, and mixed-types of equations.
For the elliptic equations, some exact solutions are found, while for the hyperbolic, and mixed-types equations, some
implicit solutions are found. We furthermore investigate weather there will be global solution or blow up. Actually,
for any given initial metric on R2 in certain class of metrics, one can always choose suitable initial velocity such that
the solution exists for all time; Moreover, if the initial velocity does not satisfy the condition, then the solution blows
up at finite time.

1. Introduction

The hyperbolic geometric flow, i.e.,the hyperbolic version of Ricci flow has been introduced by Kong and Liu [3]

∂2

∂t2 gi j = −2Ri j = −Rgi j, (1.1)

where R is the scalar curvature.
On Riemann surface (M2, g), the above equation (1.1) can be rewritten as scalar equation (see [4])

utt = ∆ ln u, (1.2)

while the metric is written locally in the following form

gi j = u(x, y, t)δi j.

For the hyperbolic geometric flow, we refer to [4].
In this paper, we find exact solutions of equation (1.2), by looking for group invariance and doing some reduc-

tion [6]. After reduction, there appear many types of equations with two independent variables, including elliptic,
hyperbolic, and mixed-type ones.

Given a further view, in the Ricci case, exact solutions come out easily for the reduced elliptic equations, including
solutions of separation variables, traveling wave type, and radial solutions, We will see them in Section 2 and in the
Appendix. The difference between the original Ricci flow and the hyperbolic version lies in the reduced hyperbolic,
and mixed-types, such as

(ew − 1)wzz − wyy = −eww2
z , (1.3)

wtt − (1 + a2)e−wwzz = −w2
t , (1.4)
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where w = ln u(x, y, t), and z = t − x in the hyperbolic equation (1.3), z = x + ay in the mixed equation (1.4), with
a any given constant. Regard of this, we focus on the Cauchy problem of the hyperbolic equations: when will there
be global solutions, and when will they blow up? That is discussed in Section 3. And both equation (1.3), and (1.4)
share great similarity with the one studied by Kong, Liu and Xu [4]. With a reference to that, we get the following
similar theorems. First of all, we are interested in the following ”initial” metric on a surface of topological type R2.
For equation (1.3), the initial metric

z = 0 : u(x, y, t) = u0(y). (1.5)

For equation (1.4), the initial metric
t = 0 : u(x, y, t) = u0(z), (1.6)

where u0 is a smooth function with bound C2 norm and satisfies

1 < m ≤ u0 ≤ M < ∞. (1.7)

Theorem 1.1 If u1(x) is a smooth function with bounded C1 norm and satisfies

u1(x) ≥

√
1

u0(x) − 1
|u′0(x)|, ∀x ∈ R , (1.8)

then the cauchy problem  (ew − 1)wtt − wxx = −eww2
t ,

t = 0 : ew = u0(x), (ew)t = u1(x)
(1.9)

has a unique global smooth solution for all t ∈ R.

Theorem 1.2 Suppose u′0(x) . 0, and suppose further that there exist a point x0 ∈ R, such that

u′0(x) < 0.

For the following initial velocity

u1(x) =

√
1

u0(x) − 1
u′0(x), ∀x ∈ R,

the solution of the above Cauchy problem blows up.

The paper is organized as follows. In Section 2, we observe the symmetries of the hyperbolic geometric flow and
find some exact solutions. In Section 3, we investigate the global existence and blow up of solutions on the Riemann
surface of topological type R2. Finally, in the Appendix we discuss the symmetries and exact solutions of the Ricci
flow, compared with the hyperbolic geometric flow.

2. Hyperbolic geometric flow

Consider the equation (1.1), for any given surface, its metric is locally conformal to Euclidean metric

gi j = u(x, y, t)δi j,

where u(x, y, t) > 0. Thus
∂2

∂t2 u =
∆ ln u

u
u.

That is
utt = ∆ ln u.

Let w = ln u, then
ewwtt + eww2

t − wxx − wyy = 0. (2.10)

Note that (x, y) is local coordinate in this section.
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2.1 Symmetry Groups

We consider the one-parameter group of infinitesimal transformations (x, y, t,w) (see [10]), given by

x∗ = x + εξ(x, y, t,w) + o(ε2),

y∗ = y + εη(x, y, t,w) + o(ε2),

t∗ = t + ετ(x, y, t,w) + o(ε2),

w∗ = w + εφ(x, y, t,w) + o(ε2),

(2.11)

where ε is group parameter.
It is required that equation (2.10) be invariant under transformation (2.11), and this yields a system of over

determined, linear equations for the infinitesimals (x, y, t,w)

ξ = ξ(x, y),
η = η(x, y),
τ = c1 + c2t,
φ = 2c2 − 2ξx,

ξx − ηy = 0,
ηx + ξy = 0.

In the view of last two equations, we know that that is equivalent to require that ξ+ iη = F(z), z = x+ iy, is holomorphic.
Similar to the Ricci case in the Appendix, let F(z) = k1z + k2 be linear, where k1, k2 are complex constants. That is

τ = c1 + c2t,
ξ = c3 + c4x + c5y,
η = c6 − c5x + c4y,
φ = 2c2 − 2c4,

where ci (i = 1, 2, · · · , 6) are real constants.
And the associated vector fields for the one-parameter Lie group of infinitesimal transformations are

V1 = ∂t,

V2 = ∂x,

V3 = ∂y,

V4 = t∂t + 2∂w,

V5 = y∂x − x∂y,

V6 = x∂x + y∂y − 2∂w.

(2.12)

So the following transformations leave the solutions of equation (2.10) invariant,

G1 : (x, y, t,w)→ (x, y, t + ε,w),
G2 : (x, y, t,w)→ (x + ε, y, t,w),
G3 : (x, y, t,w)→ (x, y + ε, t,w),
G4 : (x, y, t,w)→ (x, y, eεt,w + 2ε),
G5 : (x, y, t,w)→ (y sin ε − x cos ε,−x sin ε − y cos ε, t,w),
G6 : (x, y, t,w)→ (eεx, eεy, t,w − 2ε).



4

Theorem 2.1 If w = f (x, y, t) is a solution to the equation (2.10), then so is

w1 = f (x, y, t − ε),
w2 = f (x − ε, y, t),
w3 = f (x, y − ε, t),
w4 = f (x, y, e−εt) + 2ε,
w5 = f (−y sin ε − x cos ε, x sin ε − y cos ε, t),
w6 = f (e−εx, e−εy, t) − 2ε.

2.2 Reductions and Solutions

With a reference to Xu [10], we have the following theorem,

Theorem 2.2 The operators in (2.12) generate an optimal system S

(a) V6 + a4V4 + a5V5, a6 , 0.
(b) V5 + a4V4, a6 = 0, a5 , 0.
(c1) V4, a6 = a5 = 0, a4 , 0.
(c2) V4 + V2, a6 = a5 = 0, a4 , 0.
(c3) V4 + V3, a6 = a5 = 0, a4 , 0.
(d1) V1, a6 = a5 = a4 = 0, a1 , 0.
(d2) V1 + V2, a6 = a5 = a4 = 0, a1 , 0.
(d3) V1 − V3, a6 = a5 = a4 = 0, a1 , 0.
(e) V2 + a3V3, a6 = a5 = a4 = a1 = 0, a2 , 0.
( f ) V3, a6 = a5 = a4 = a1 = a2 = 0.

.

By this, now we will discuss the reduction and solutions of equation (2.10).
(a)

V = V6 + a4V4 + a5V5

= (x + a5y)∂x + (y − a5x)∂y + a4t∂t + (2a4 − 2)∂w.

Let a4 = 1, a5 = a, where a is an arbitrary constant, then

V = (x + ay)∂x + (y − ax)∂y + t∂t.

The corresponding characteristic equations are

dx
x + ay

=
dy

y − ax
=

dt
t
.

It leads to the invariance
u =

x + ay
t
, v =

ax − y
t
, h = ew.

That is, the invariant solution takes the form
w = ln h(u, v).

Therefore, the equation (2.10) can be reduced to

h2(u2huu + 2uvhuv + v2hvv + 2uhu + 2vhv) − 2(1 + a2)(huuh + hvvh − h2
u − h2

v) = 0. (2.13)

Now look for the ”traveling wave solution ” of the above equation (2.13). Let z = u + δv, h = h(z), thus

h2(z2h′′ + 2zh′) − 2(1 + a2)(1 + δ2)(h′′h − (h′)2) = 0.
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Denote λ = (1 + a2)(1 + δ2) > 0, and we have

z2h′ − 2λ
h′

h
= c1,

with c1 an arbitrary constant. It has the solutions

h(z) =
2λ
z2 ,

if c1 = 0. And the original metric

u(x, y, t) = h(z) =
2λt2

(x + ay + δ(ax − y))2

for z = u + δv = x+ay+δ(ax−y)
t . And it always has singularity at the line x + ay + δ(ax − y) = 0. Moreover, when

t → +∞, u(x, y, t)→ +∞. It means that the metric dilates infinitely.
Acting by G1,G2, · · · ,G6 , one obtain more solutions of equation (2.10) by Theorem 2.1,

u(x, y, t) = e−2ε6+2ε4
2λt̄2

(x̄ + aȳ + δ(ax̄ − ȳ))2 ,

where

x̄ = −xe−ε6 cos ε5 − ye−ε6 sin ε5 − ε2,

ȳ = xe−ε6 sin ε5 − ye−ε6 cos ε5 − ε3,

t̄ = e−ε4 t − ε1,

and εi (i = 1, 2, · · · , 6) are parameters.
(b)

V = V5 + a4V4

= y∂x − x∂y + a4t∂t + 2a4∂w,

with invariance
r =
√

x2 + y2, h = t−2ew.

That is, the invariant solution takes the form
w = ln h(r) + 2 ln t.

And the equation (2.10) reduces to
(h′′h − (h′)2)r + h′h − 2h3r = 0.

Since u(x, y, t) > 0, we find the following solution

h(r) =
1 + (tan( ln r−c2

2c1
))2

4r2c2
1

.

Therefore, the metric

u(x, y, t) = h(r)t2 =
1 + (tan( ln r−c2

2c1
))2

4r2c2
1

t2,

where r =
√

x2 + y2. It has singularity at (0, 0, t), as in Figure 1.
Acting by G1,G2, · · · ,G6, one obtains more solutions of equation (2.10),

u(x, y, t) = e−2ε6+2ε4 t̄2
1 + (tan( ln r̄−c2

2c1
))2

4r̄2c2
1

,
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Figure 1: Radial case

where

t̄ = e−ε4 t − ε1,

r̄2 = (−xe−ε6 cos ε5 − ye−ε6 sin ε5 − ε2)2

+ (xe−ε6 sin ε5 − ye−ε6 cos ε5 − ε3)2.

(c1)
V = V4 = t∂t + 2∂w,

with invariance
x, y, h = t−2ew.

That is, the invariant solution takes the form

w = ln h(x, y) + 2 ln t.

And the equation (2.10) reduces to
hxxh − h2

x + hyyh − h2
y − 2h3 = 0.

Notice that, it is elliptic. Now look for the ”traveling wave solution” of the above equation. Let z = x + δy, h = h(z),
therefore, we have

(1 + δ2)(
h′

h
)′ = 2h.

Denote λ = 1 + δ2, and since u(x, y, t) > 0, we have solutions

(c11)

h(z) =
−1
4c1

[1 + (tan(
√
−λc1(z + c2)2

2λc1
))2], if c1 < 0;

(c12)

h(z) =
(1 + δ2)
(z + c)2 , if c1 = 0.

Hence the metric u(x, y, t) = h(z)t2, taking the form of separation variables, with z = x + δy, and h(z) takes forms in
cases (c11), (c12), respectively.

For case (c11), u(x, y, t) has no singularity. While for case (c12), weather u(x, y, t) has singularity or not depends
on the value of h(0). Actually, if h(0) = (1+δ2)

c2 is small enough, i.e. c2 is large enough, then z + c will nowhere be zero,
since z = x + δy is always small for the snake of local coordinate (x, y) around (0, 0). So u(x, y, t) has no singularity if
h(0) is small enough. Conversely, if h(0) is large enough, i.e. c2 is small, then u(x, y, t) has singularity at the surface
x + δy + c = 0, in this case.
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Figure 2: case (c11) Figure 3: case (c12) c = 1 Figure 4: case (c12) c = 4

In case (c11), Figure 2 is always smooth, and in case (c12), viewing Figure3 and Figure4, they are different
depending on the constant c.

Also, acting by G1,G2, · · · ,G6, one obtain more solutions of equation (2.10) by Theorem 2.1,

u(x, y, t) =
−1
4c1
{1 + (tan(

√
−λc1(z̄ + c2)2

2λc1
))2}e−2ε6+2ε4 t̄2, if c1 < 0;

u(x, y, t) =
2(1 + δ2)
(z̄ + c)2 e−2ε6+ε4 t̄, if c1 = 0;

where

t̄ = e−ε4 t − ε1,

z̄ = (−xe−ε6 cos ε5 − ye−ε6 sin ε5 − ε2)

+ δ(xe−ε6 sin ε5 − ye−ε6 cos ε5 − ε3).

(d2)
V = V1 + V2 = ∂t + ∂x,

with invariance
z = t − x, y.

And the equation (2.10) reduces to
wzz + wyy = ew(wzz + w2

z ), (2.14)

which is actually a mixed equation, and we will have more discussion about it in section 3. Now look for the ”traveling
wave solution” of the above equation (2.14). Let ξ = z + δy, denote λ = 1 + δ2, more exactly, we have

ew − λw = c1ξ + c2.

That is
ew − λw = c1(x − t + δy) + c2.

And we have the following pictures for (y, x,w) at different time. They seem different to each other, by Figure 5,
and Figure 6. Here we set c1 = c2 = 1, δ = 1. If we set y = 0, then we have another kind of picture for (t,w, x), viewing
Figure 7.

(d3)
V = V1 − V3 = ∂t − ∂y

with invariance
z = t + y, x.
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Figure 5: case (d2) t = 0.1 Figure 6: case (d2) t = 1 Figure 7: case (d2) y = 0

Figure 8: case (d3) t = 0.1 Figure 9: case (d3) t = 1 Figure 10: case (d3) y = 0

That is to say, the invariant solution takes the form

w = w(z, x).

And the equation (2.10) reduces to
wzz + wxx = ew(wzz + w2

z ). (2.15)

Also, it is of mixed-type. Now look for the ”traveling wave solution ” of the above equation (2.15). Let η = z + δx =
t + y + δx, denote λ = 1 + δ2, it follows that

ew − λw = c1η + c2.

That is
ew − λw = c1(t + y + δx) + c2.

It is similar to case (d2). Set c1 = c2 = 1, δ = 1, and we have pictures for different time, referring to Figure 8, and
Figure 9. If we set y = 0, then we have another kind of picture for (t,w, x), viewing Figure 10.

(e)
V = V2 + aV3 = ∂x + a∂y,

again, with invariance
z = x − ay, t.

That is to say, the invariant solution takes the form

w = w(z, t).

Thus the equation (2.10) reduces to
ew(wtt + w2

t ) = wzz + a2wzz. (2.16)
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Figure 11: case (e) t = 0.1 Figure 12: case (e)t = 2 Figure 13: case (e)y = 0

Now look for the ”traveling wave solution ” of the above equation (2.16). Let τ = z − δt = x − ay − δt, we have

ew − (1 + a2)w = c1τ + c2.

That is
ew − (1 + a2)w = c1(x − ay − δt) + c2.

It is similar to case (d2). Set c1 = c2 = 1, δ = 1, a = 2, we have pictures for different time, viewing Figure 11, and
Figure 12. If we set y = 0, then we have another kind of picture for (t,w, x), viewing Figure 13.

3. Global existence and blow up of solutions

In this section, suppose the Riemann surface — of topological type R2, has the following initial metric (1.5),
(1.6), (1.7). So here, (x, y) is global coordinates on the Riemann surface. The discussion in this section is similar to
Kong, Liu and Xu [4].

For equation (2.14), which is equivalent to

(ew − 1)wzz − wyy = −eww2
z , (3.17)

it is equation of mixed-type. That is to say, when ew − 1 > 0, it is hyperbolic, while if ew − 1 < 0, it is elliptic. Now, let
us investigate the hyperbolic case explicitly. Let

w2 = wz, w3 = wy,

then (3.17) can be rewritten as the following quasilinear system of first order
wz = w2,

(w3)z − (w2)y = 0,

(w2)z −
1

ew − 1
(w3)y = −

ew

ew − 1
w2

2.

(3.18)

Introduce

p = w2 +

√
1

ew − 1
w3, q = w2 −

√
1

ew − 1
w3.

Denote

λ =

√
1

ew − 1
, κ = −

ew

4(ew − 1)
,



10

we have 
wz =

p + q
2
,

pz − λpy = κ(p2 + 3pq),

qz + λqy = κ(q2 + 3pq).

(3.19)

Observe that z = t − x. By an abuse of notation, replace z by t, y by x. And the Cauchy problem (ew − 1)wtt − wxx = −eww2
t ,

t = 0 : ew = u0(x), (ew)t = u1(x),
(3.20)

is equivalent to 

wt =
p + q

2
,

pt − λpx = κ(p2 + 3pq),

qt + λqx = κ(q2 + 3pq),

t = 0 : w = ln u0(x), p = p0(x), q = q0(x),

(3.21)

where 

p0(x) =
u1(x)
u0(x)

+

√
1

u0(x) − 1
u′0(x)
u0(x)

,

q0(x) =
u1(x)
u0(x)

−

√
1

u0(x) − 1
u′0(x)
u0(x)

,

λ =

√
1

ew − 1
, κ = −

ew

4(ew − 1)
.

(3.22)

Theorem 3.1 If u1(x) is a smooth function with bounded C1 norm and satisfies

u1(x) ≥

√
1

u0(x) − 1
|u′0(x)|, ∀x ∈ R , (3.23)

then the Cauchy problem (3.21), hence (3.20) has a unique global smooth solution for all t ∈ R.

Lemma 3.1 In the existence domain of the smooth solution of the Cauchy problem(3.21), it holds that

0 ≤ p(t, x) ≤ sup
y∈R

p0(y),

0 ≤ q(t, x) ≤ sup
y∈R

q0(y).
(3.24)

Proof Given any point (t, x), there’re two characteristics passing through it, defined by ξ = ξ±(τ; t, x), satisfying
dξ±
dτ
= ±λ(τ; ξ±(τ; t, x)),

ξ±(t; t, x) = x,
(3.25)

respectively. So along the characteristic ξ = ξ−(τ; t, x), it holds that

p(t, x) = p0(ξ−(τ; t, x)) exp(
∫ t

0
κ(p + 3q)(τ; ξ−(τ; t, x))dτ). (3.26)

Noting(3.22) and (3.23), we have
p0(x) ≥ 0, ∀x ∈ R,

and
κ ≤ −

1
4
< 0. (3.27)
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Thus, we obtain
p(t, x) ≥ 0.

Similarly, we have
q(t, x) ≥ 0.

With respect to the fact (3.27), and note that (3.26), we know

0 ≤ p(t, x) ≤ p0(ξ−(0; t, x)) ≤ sup
y∈R

p0(y),

and similar for q(t, x). �

Since we have assume u1(x) is a smooth function with bounded C1 norm, thus
0 ≤ p0(x) ≤ sup

y∈R
p0(y) , P0 < ∞,

0 ≤ q0(x) ≤ sup
y∈R

q0(y) , Q0 < ∞.
(3.28)

Now we can estimate w(t, x) first of all. Note the first equation in (3.21),

w(t, x) = ln u0(x) +
∫ t

0

p + q
2

(τ, x)dτ.

By lemma 3.1, we have

ln u0(x) ≤ w(t, x) ≤ ln u0(x) +
P0 + Q0

2
t. (3.29)

Next we have to estimate px and qx. Let
r = px, s = qx,

then we have

Lemma 3.2 
rt − λrx = κ((3p + 2q)r + 3ps) +

κλ

2
(p − q)(p2 + 3pq),

st + λsx = κ((3q + 2q)s + 3qr) +
κλ

2
(p − q)(q2 + 3pq).

(3.30)

Proof By a direct calculation, we can easily prove (3.30). �

Denote
r0(x) , p′0(x), s0(x) , q′0(x).

Lemma 3.3 In the existence domain of the smooth solution, it holds that

|r(t, x)|, |s(t, x)| ≤ max{sup
y∈R
|r0(y)|, sup

y∈R
|s0(y)|} +C1(exp(G0t) − 1), (3.31)

where C1,G0 are some constants.

Proof Let 

A = κ(3p + 2q), B = 3κp,

Ā = κ(3q + 2p), B̄ = 3κq,

h1 =
κλ

2
(p − q)(p2 + 3pq),

h2 =
κλ

2
(p − q)(q2 + 3pq),

(3.32)
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then the system (3.30) can be rewritten as  rt − λrx = Ar + Bs + h1,

st + λsx = Ās + B̄r + h2.
(3.33)

By Lemma 3.1, A, Ā, B, B̄ ≥ 0, A ≤ B, Ā ≤ B̄. According to the terminology in Kong [2], system (3.33) is weakly
disspative. Therefore , it follows from Theorem 2.3 in Kong [2] that

|r(t, x)|, |s(t, x)| ≤ max{ sup
y∈I(0)
|r0(y)|, sup

y∈I(0)
|s0(y)|} +

∫ t

0
max(sup

I(s)
|h1|, sup

I(s)
|h2|)ds, (3.34)

where
I(0) = [ξ−(0; t, x), ξ+(0; t, x)],

I(s) = {(s, ξ), ξ ∈ [ξ−(s; t, x), ξ+(s; t, x)]}.

Note that we have assumed that 1 < m ≤ u0(x) ≤ M < ∞, and with the estimation of (3.29), hence

1
4

m

(MeG0t − 1)
3
2

≤ |κλ| ≤
1
4

MeG0t

(m − 1)
3
2

.

Notice that ∫ t

0
exp(G0τ)dτ =

1
G0

(eG0t − 1).

Therefore, it follows that ∫ t

0
max(sup

I(s)
|h1|, sup

I(s)
|h2|)ds ≤ C1(eG0t − 1).

Combine with (3.34), we get the result. �

We have estimated w(t, x) by (3.29), furthermore,

(wx)t =
1
2

(px + qx) =
1
2

(r + s).

That is

wx = wx(0, x) +
1
2

∫ t

0
(r + s)(τ, x)dτ.

With respect to (3.31), we know that

|wx(t, x)| ≤
|u′0(x)|
u0(x)

+ (sup
y∈R
|r0(y)| + sup

y∈R
|s0(y)| +C1)t +

C1

G0
(eG0t − 1).

Proof of Theorem 3.1:

Proof Following the estimation of w(t, x) in (3.29), we have√
1

MeG0t − 1
≤ λ ≤

√
1

m − 1
.

Referring to [4], for any interval [a, b], introduce the following triangle domain

M[a,b]= {(t, x) | a +

√
1

m − 1
t ≤ x ≤ b +

√
1

M − 1
t}.

In order to prove Theorem 3.1, it suffices to prove that, for any interval [a, b], the Cauchy problem (3.20) has a unique
smooth solution in M[a,b] . Recall all the estimation we have made above, here comes the priori estimation for any point
(t, x) in M[a,b],

0 ≤ p(t, x) ≤ sup
y∈[a,b]

p0(y) ≤ P0, (3.35)
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0 ≤ q(t, x) ≤ sup
y∈[a,b]

q0(y) ≤ Q0, (3.36)

|r(t, x)|, |s(t, x)| ≤ max{ sup
y∈[a,b]

|r0(y)|, sup
y∈[a,b]

|s0(y)|} +C1(exp(G0t[a,b]) − 1) < ∞, (3.37)

ln m ≤ w(t, x) ≤ ln M +
P0 + Q0

2
t[a,b], (3.38)

|wx(t, x)| ≤

sup
x∈[a,b]

|u′0(x)|

u0(x)
+ ( sup

y∈[a,b]
|r0(y)| + sup

y∈[a,b]
|s0(y)| +C1)t[a,b] +

C1

G0
(eG0t[a,b] − 1), (3.39)

where
t[a,b] =

b − a√
1

m−1 −

√
1

M−1

. (3.40)

The above priori estimation implies that the Cauchy problem (3.21), has a unique smooth solution on the whole triangle
M[a,b], which proves Theorem 3.1. �

Theorem 3.2 Suppose u′0(x) . 0, and suppose further that there exist a point x0 ∈ R, such that

u′0(x) < 0.

For the following initial velocity

u1(x) =

√
1

exp(u0(x) − 1)
u′0(x), ∀x ∈ R,

the solution of the Cauchy problem (3.21) blows up.

Proof As above, it suffices to study the equivalent Cauchy problem,

wt =
p + q

2
,

pt − λpx = κ(p2 + 3pq),

qt + λqx = κ(q2 + 3pq),

t = 0 : w = ln u0(x), p = p0(x), q = 0.

(3.41)

And it reduces to 
wt =

p
2
,

pt − λpx = κp2,

t = 0 : w = ln u0(x), p = p0(x).

(3.42)

Note (3.27), so

pt − λpx ≤ −
1
4

p2.

Along the characteristic ξ = ξ−(τ; t, x), it follows that

p(t, x) ≤
p0(ξ−(0; t, x))

1 + 1
4 p0(ξ−(0; t, x))t

. (3.43)

In particular,

p(t, ξ−(t; 0, x0)) ≤
p0(x0)

1 + 1
4 p0(x0)t

. (3.44)

Note that we have done some replacements at the beginning, so here the t, is actually t − x, may take negative value.
Knowing that p0(x0) < 0, we have

p0(x0)
1 + 1

4 p0(x0)t
↘ −∞, as t ↗ −

4
p0(x0)

,
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which implies
p(t, ξ−(t; 0, x0))↘ −∞,

with respect to the fact
dp
dτ
= κp2 < 0,

along the characteristic ξ = ξ−(τ; 0, x0), and (3.44). Thus the solution of the Cauchy problem (3.21) blows up. �

Remark 1 Actually, there is another chance for system (3.42) to blow up. Now assume u′0(x) ≤ 0, hence p0(x) ≤ 0,
and

p0(x0) = inf
x∈R

p0(x) < 0.

Under these hypothesis,

|p0(ξ−(0; t, x))| < |p0(x0)|,

p0(ξ−(0; t, x)) > p0(x0).
(3.45)

Noting (3.43),

|p(t, x)| ≤
|p0(x0)|

1 − 1
4 |p0(x0)|t

, (3.46)

for t < T1, where T1 =
4

|p0(x0)| . Following (3.42), we have

w(t, x) = ln u0(x) +
∫ t

0

p
2

(τ, x)dτ.

Note that (3.46),

|w(t, x)| ≤ ln M − 2 ln(1 −
1
4
|p0(x0)|t).

Set

t∗ =
4(1 −

√
M)

|p0(x0)|
< T1,

thus we have w(t∗, x) = 0. That’s to say, w(t, x) has been 0, hence κ, λ have both been tending to +∞, before t reaches
T1, which implies the system (3.42) has been blowed up in this way.

For equation (2.15), it is similar to the above case of equation (3.17), and we will have no more discussion.
For equation (2.16), that is

wtt − (1 + a2)e−wwzz = −w2
t . (3.47)

Setting z̃ =
√

1 + a2z, it is just the equation appearing in Kong, Liu and Xu [4], in which weather there is global
solution or solution blowing up has been studied.

Notice that, here z̃ =
√

1 + a2(x − ay), and when a = 0, it reduce to the case — surface of topological type R2,
with initial metric at t = 0 : ds2 = u0(x)(dx2 + dy2), which has been studied in Kong, Liu and Xu [4].

4. Appendix : Ricci flow on Riemann surface

The Ricci flow
∂

∂t
gi j = −2Ri j = −Rgi j,

where R is the scalar curvature. For any surface, its metric is locally conformal to Euclidean metric,

gi j = u(x, y, t)δi j,
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where u(x, y, t) > 0. Thus
∂

∂t
u =
∆ ln u

u
u.

That is
ut = ∆ ln u.

Let w = ln u, it becomes
wxx + wyy − ewwt = 0. (4.48)

4.1 Symmetry Groups

We consider the one-parameter group of infinitesimal transformations (x, y, t,w) (see [10]), given by

x∗ = x + εξ(x, y, t,w) + o(ε2),

y∗ = y + εη(x, y, t,w) + o(ε2),

t∗ = t + ετ(x, y, t,w) + o(ε2),

w∗ = w + εφ(x, y, t,w) + o(ε2),

(4.49)

where ε is group parameter.
It is required that equation (4.48) be invariant under transformation (4.49), and this yields a system of over

determined, linear equations for the infinitesimals (x, y, t,w),

ξ = ξ(x, y),
η = η(x, y),
τ = c1 + c2t,
φ = c2 − 2ξx,

ξx − ηy = 0,
ηx + ξy = 0.

In the view of last two equations, we know that that is equivalent to require that ξ+ iη = F(z), z = x+ iy, is holomorphic.
Now consider the simplest case, let F(z) = k1z + k2 be linear, where k1, k2 are complex constants. Hence

τ = c1 + c2t,
ξ = c3 + c4x + c5y,
η = c6 − c5x + c4y,
φ = c2 − 2c4,

where ci (i = 1, 2, · · · , 6) are real constants.
And the associated vector fields for the one-parameter Lie group of infinitesimal transformations are

V1 = ∂t,

V2 = ∂x,

V3 = ∂y,

V4 = t∂t + ∂w,

V5 = y∂x − x∂y,

V6 = x∂x + y∂y − 2∂w.

(4.50)
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So the following transformations leave the solutions of equation (4.48) invariant,

G1 : (x, y, t,w)→ (x, y, t + ε,w),
G2 : (x, y, t,w)→ (x + ε, y, t,w),
G3 : (x, y, t,w)→ (x, y + ε, t,w),
G4 : (x, y, t,w)→ (x, y, eεt,w + ε),
G5 : (x, y, t,w)→ (y sin ε − x cos ε,−x sin ε − y cos ε, t,w),
G6 : (x, y, t,w)→ (eεx, eεy, t,w − 2ε).

Theorem 4.1 If w = f (x, y, t) is a solution to the equation (4.48), then so is

w1 = f (x, y, t − ε),
w2 = f (x − ε, y, t),
w3 = f (x, y − ε, t),
w4 = f (x, y, e−εt) + ε,
w5 = f (−y sin ε − x cos ε, x sin ε − y cos ε, t),
w6 = f (e−εx, e−εy, t, ) − 2ε.

4.2 Reductions and Solutions

With reference to Xu [10], we have the following theorem,

Theorem 4.2 The operators in (4.50) generate an optimal system S:

(a) V6 + a4V4 + a5V5, a6 , 0.
(b) V5 + a4V4, a6 = 0, a5 , 0.
(c1) V4, a6 = a5 = 0, a4 , 0.
(c2) V4 + V2, a6 = a5 = 0, a4 , 0.
(c3) V4 + V3, a6 = a5 = 0, a4 , 0.
(d1) V1, a6 = a5 = a4 = 0, a1 , 0.
(d2) V1 + V2, a6 = a5 = a4 = 0, a1 , 0.
(d3) V1 − V3, a6 = a5 = a4 = 0, a1 , 0.
(e) V2 + a3V3, a6 = a5 = a4 = a1 = 0, a2 , 0.
( f ) V3, a6 = a5 = a4 = a1 = a2 = 0.

Following Theorem 4.1, we will discuss the reduction and exact solutions of equation (4.48).
(a)

V = V6 + a4V4 + a5V5

= (x + a5y)∂x + (y − a5x)∂y + a4t∂t + (a4 − 2)∂w.

Set a4 = 1, a5 = a, a is an arbitrary constant, then

V = (x + ay)∂x + (y − ax)∂y + t∂t − ∂w.

The corresponding characteristic equations are

dx
x + ay

=
dy

y − ax
=

dt
t
=

dw
−1
,

leading to the invariance
u =

x + ay
t
, v =

ax − y
t
, h = tew.
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Figure 14: case (a1) t = 1 Figure 15: case (a1) t = 0.1 Figure 16: case (a1) t = 0.001

That is the invariant solution takes the form
w = ln h(u, v) − ln t.

Thus equation (4.48) can be reduced to

(1 + a2)(huuh + hvvh) − (1 + a2)(h2
u + h2

v) + uhuh2 + vhvh2 + h3 = 0. (4.51)

Now look for the ”traveling wave solution ” of the above equation. Let z = u + δv, h = h(z), then we get

(1 + a2)(1 + δ2)(h′′h − (h′)2) + zh′h2 + h3 = 0.

Denote λ = (1 + a2)(1 + δ2) > 0, one obtains the solutions,

(a1)

h(z) =
c2

1e
c1
λ z

−λe
c1
λ z + zc1e

c1
λ z + c2c2

1

,

if h′(0) , 0, that is, c1 , 0.

And the original metric,

u(x, y, t) =
h
t
=

c2
1e

c1
λ z

−λe
c1
λ z + zc1e

c1
λ z + c2c2

1

·
1
t
, u(x, y, t) ≥ 0,

where z = u + δv = x+ay+δ(ax−y)
t .

(i) When t is small, z may tend to +∞ or −∞ arbitrarily. so, u(x, y, t) may have singularity, which depends on
the weather c1, c2 are positive or negative, i.e. the boundary condition of h(z).

(ii) When t is large enough, z→ 0, the u(x, y, t) has no singularity, no matter whatever the boundary condition
of h(z) is. Actually, given h(0) = c2

1
−λ+c2c2

1
,−λ+ c2c2

1 , 0. So −λe
c1
λ z + zc1e

c1
λ z + c2c2

1 , 0, when z→ 0, which
also implies the metric u(x, y, t), has no singularity when t is large enough.

What is more, it can be verified by the shape of u(x, y, t), viewing Figure 14, Figure 15 and Figure 16. Here we
set a = 0.1, δ = 0.2, c1 = 1, c2 = 10.

(a2)

h(z) =
2λ

z2 + c
,

if h′(0) = 0, that is, c1 = 0. So

u(x, y, t) =
2λ

z2 + c
1
t
=

2λt
(x + ay + δ(ax − y))2 + ct2 .
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Since u(x, y, t) > 0, thus h(0) = 2λ
c > 0, i.e., c > 0. Therefore, u(x, y, t) has no singularity in this case, viewing

the following picture, and we know that when t → +∞, u(x, y, t)→ 0.

t = 1. Here we set c = 1.

And if we set a4 = 2, a5 = 0, then

V = V6 + 2a4V4 = x∂x + y∂y + 2t∂t.

The characteristic equations are
dx
x
=

dy
y
=

dt
2t
,

leading to the invariant form
ξ =

x
√

t
, η =

y
√

t
,w(ξ, η) = ew.

Hence the equation (4.48) reduces to

wξξ + wηη =
w2
ξ + w2

η

w
−

1
2

w(ξwξ + ηwη).

Look for its ”traveling wave solution”, let z = ξ + δη,w = w(z), we obtain

(1 + δ2)(
w′

w
)′ +

1
2

zw′ = 0.

And we have solution,

w =
2(1 + δ2)

z2 =
2(1 + δ2)
(ξ + δη)2 .

Then

u(x, y, t) = w(ξ, η) =
2(1 + δ2)t
(x + δy)2 ,

and it always has singularity at the surface x + δy = 0. But this time, when t → +∞, u(x, y, t)→ +∞.

Acting by G1,G2, · · · ,G6, one obtains more solutions of equation (4.48) by Theorem 4.1,

u(x, y, t) = e−2ε6+ε4
c2

1e
c1
λ z̄

−λe
c1
λ z̄ + z̄c1e

c1
λ z̄ + c2c2

1

·
1
t̄
,

u(x, y, t) = e−2ε6+ε4
2λ

(z̄)2 + c
·

1
t̄
,

where

z̄ =
x̄ + aȳ + δ(ax̄ − ȳ)

t̄
,

x̄ = −xe−ε6 cos ε5 − ye−ε6 sin ε5 − ε2,

ȳ = xe−ε6 sin ε5 − ye−ε6 cos ε5 − ε3,

t̄ = e−ε4 t − ε1,
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and εi (i = 1, 2, · · · , 6) are parameters .
(b)

V = V5 + a4V4

= y∂x − x∂y + a4t∂t + a4∂w.

The corresponding characteristic equations are

dx
y
=

dy
−x
=

dt
a4t
=

dw
a4
,

leading to invariance

r =
√

x2 + y2, h = t−1ew.

That is the invariant solution takes the form
w = ln h(r) + ln t.

And the equation (4.48) reduces to
(h′′h − (h′)2)r + h′h − h3r = 0.

Since u(x, y, t) > 0, we find the solution

h(r) =
1 + (tan( ln r−c2

2c1
))2

2r2c2
1

.

Therefore, the metric

u(x, y, t) = h(r)t = t
1 + (tan( ln r−c2

2c1
))2

2r2c2
1

,

where r =
√

x2 + y2. It always has singularity at (0, 0, t).
Acting by G1,G2, · · · ,G6, one obtain more solutions of equation (4.48) by Theorem 4.1,

u(x, y, t) = e−2ε6+ε4 t̄
1 + (tan( ln r̄−c2

2c1
))2

2r̄2c2
1

,

where

t̄ = e−ε4 t − ε1,

r̄2 = (−xe−ε6 cos ε5 − ye−ε6 sin ε5 − ε2)2

+ (xe−ε6 sin ε5 − ye−ε6 cos ε5 − ε3)2.

(c1)
V = V4 = t∂t + ∂w,
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Figure 17: case (c11) Figure 18: case (c12) c = 4.

,

Figure 19: case (c12) c = 1.

with invariance
x, y, h = t−1ew.

That is the invariant solution takes the form
w = ln h(x, y) + ln t.

And the equation (4.48) reduces to
hxxh − h2

x + hyyh − h2
y − h3 = 0.

Now look for the ”traveling wave solution ” of the above equation. Let z = x + δy, h = h(z), therefore, we have

(1 + δ2)(
h′

h
)′ = h.

Denote λ = 1 + δ2, and since u(x, y, t) > 0, we have solutions

(c11)

h(z) =
−1
2c1

[1 + (tan(
√
−λc1(z + c2)2

2λc1
))2], if c1 < 0;

(c12)

h(z) =
2(1 + δ2)
(z + c)2 , if c1 = 0.

Hence the metric u(x, y, t) = h(z)t, with z = x + δy, and h(z) takes forms in cases (c11),(c12), respectively.
Now, we can appreciate the beautiful shape of solutions, which possess symmetry, in Figure 17, Figure 18 and

Figure 19, while we set δ = 1.
As before , act by G1,G2, · · · ,G6, one obtain more solutions of equation (4.48) by Theorem 4.1,

u(x, y, t) = e−2ε6+ε4 t̄
−1
2c1

[1 + (tan(
√
−λc1(z̄ + c2)2

2λc1
))2], if c1 < 0;

u(x, y, t) = e−2ε6+ε4 t̄
2(1 + δ2)
(z̄ + c)2 , if c1 = 0,

where

t̄ = e−ε4 t − ε1,

z̄ = (−xe−ε6 cos ε5 − ye−ε6 sin ε5 − ε2)

+ δ(xe−ε6 sin ε5 − ye−ε6 cos ε5 − ε3).
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Figure 20: case (d21) Figure 21: case (d22) t = 1. Figure 22: case (d22) t = 0.1.

(d2)
V = V1 + V2 = ∂t + ∂x

with invariance
z = x − t, y,w = w(z, y).

And the equation (4.48) reduces to
wzz + wyy − ewwz = 0.

Now look for the ”traveling wave solution ” of the above equation. Let ξ = z + δy, h = ew, therefore, we have

(1 + δ2)(
h′

h
)′ = h′.

Denote λ = 1 + δ2, with some calculation, there are solutions

(d21)

h(ξ) =
−c1λec1(ξ+c2)

1 + ec1(ξ+c2) , if −h > c1λ;

(d22)

h(ξ) =
c1λec1(ξ+c2)

1 − ec1(ξ+c2) , if −h < c1λ;

(d23)

h(ξ) =
−λ

ξ + c
, if c1 = 0.

And in the calculation , we know λ h′
h − h = c1λ. So, given h(0), h′(0), thus c1 is determined, and weather h(0) + c1λ is

positive or not, tells which form does h(ξ) takes. Furthermore, we know h(ξ) has asymptote, h(ξ) + c1λ = 0.
Therefore, the metric

u(x, y, t) = ew = h(x − t + δy).

And we can easily see that u(x, y, t) has no singularity in case (d21), while it has singularity at x − t + δy + c2 = 0
in both case (d22), (d23). Furthermore, in (d22), (d23), c2 < 0, since we must have u(x, y, t) > 0. Thus , when
t is large enough, it has no singularity, for x, y are small. When t is small, it may have singularity. Here we set
c1 = −1, c2 = 0, δ = 1, t = 1, in case (d21). And similar for t = 1, 2, 3 . . . which always shows smooth. And in case
(d22), set c1 = 1, c2 = −2, δ = 1. Refer them to Figure 20, Figure 21 and Figure 22.

Acting by G1,G2, · · · ,G6 , one obtains more solutions of equation (4.48) by Theorem 4.1,

u(x, y, t) = e−2ε6+ε4 h(ξ̄),
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Figure 23: case (d31) Figure 24: case (d32) t = 1. Figure 25: case (d32) t = 9.

while

ξ̄ = (−xe−ε6 cos ε5 − ye−ε6 sin ε5 − ε2)

− e−ε4 t + ε1

+ δ(xe−ε6 sin ε5 − ye−ε6 cos ε5 − ε3),

with h(ξ) takes form in case (d21), (d22), (d23), respectively.
(d3)

V = V1 − V3 = ∂t − ∂y.

Similarly, there are solutions

(d31)

h(η) =
−c1λec1(η+c2)

1 + δec1(η+c2) , if −δh > c1λ;

(d32)

h(η) =
c1λec1(η+c2)

1 − δec1(η+c2) , if −δh < c1λ;

(d33)

h(η) =
−λ

δ(η + c)
, if c1 = 0,

while λ = 1 + δ2, η = x + δ(t + y).
And then, the metric u(x, y, t) = h(η). For case (d32) and (d33), since h(η) > 0, the only possible chance is,

c1 > 0, c2 < 0. And weather there is singularity or not, and when, depend on the absolute value of c2, i.e. |c2|. For its
great similarity with case (d2), we will have no more discussion. Here we set c1 = −1, c2 = 0, δ = 1, t = 1, in case
(d31). And similar for t = 2, 3, 4 . . . which always shows smooth. And in case (d32), set c1 = 1, c2 = −10, δ = 1. Refer
them to Figure 23, Figure 24 and Figure 25.

(e)
V = V2 + aV3 = ∂x + a∂y.

Again, there are solutions

(e1)

h(τ) =
c1λec1(τ+c2)

1 + δec1(τ+c2) , if δh < c1λ;

(e2)

h(τ) =
c1λec1(τ+c2)

−1 + δec1(τ+c2) , if δh > c1λ;



(e3)

h(τ) =
−λ

δ(η + c)
, if c1 = 0,

while λ = 1 + a2, τ = x − ay − δt. And u(x, y, t) = h(τ).
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