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Abstract

For a 1 + 3 dimensional Lorentzian manifold (M, g), general
form of solutions of the Einsteins field equations takes one of type
I, II, III(see [1]). For type I, there is a known result in [3]. In this
paper, we try to find out the necessary and sufficient conditions
for the Lorentzian metric to take the form of type II and III, and
we show how to construct the new coordinate system.

1 Introduction

For a 1+3 dimensional Lorentzian manifold (M, g) with coordinates
ξµ(µ ∈ {0, 1, 2, 3}). Kong and Liu conjecture in [1] that general form of
the solutions of the Einsteins field equations takes one of the following
forms:

(I)

gµν =


∗ ∗ ∗ ∗
∗ 0 0 0
∗ 0 ∗ 0
∗ 0 0 ∗

 ,

(II)

gµν =


0 ∗ ∗ ∗
∗ ∗ 0 0
∗ 0 ∗ 0
∗ 0 0 ∗

 ,
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(III)

gµν =


∗ 0 ∗ ∗
0 ∗ 0 0
∗ 0 ∗ 0
∗ 0 0 ∗

 .

For type I, Gu has the following theorem [3].

Theorem 1.1. In the 1+3 dimensional Lorentzian manifold (M, g) with
coordinate ξµ, where µ ∈ {0, 1, 2, 3} and ξ0 corresponds to the time-like
coordinate, the metric gµν can be converted into type I via a coordinate
transformation, if and only if there is a smooth null vector field V µ∂µ

on M
gµνV µV ν = 0,

and the 1-form
ω = gµνV µdξν

is integrable.

In this paper, we consider Lorentzian metric of type II and type
III, and have the following theorems.

Theorem 1.2. In the 1+3 dimensional Lorentzian manifold (M, g) with
coordinate ξµ, where µ ∈ {0, 1, 2, 3} and ξ0 corresponds to the time-like
coordinate, the metric gµν can be converted into type II via a coordinate
transformation, if and only if there is a smooth null vector field V µ∂µ

on M
gµνV µV ν = 0. (1.1)

Theorem 1.3. In the 1+3 dimensional Lorentzian manifold (M, g) with
coordinate ξµ, where µ ∈ {0, 1, 2, 3} and ξ0 corresponds to the time-like
coordinate, the metric gµν can be converted into type III via a coordinate
transformation, if and only if there are two orthogonal smooth vector
field Aµ∂µ, Bν∂ν on M ,

gµνAµBν = 0, (1.2)

with
gµνBµBν < 0,

and
gµνAµAν > 0

everywhere on M . And the 1-form

ω = gµνBµdξν (1.3)

is integrable.

In the next section, we shall prove Theorems 1.2, 1.3, respectively.
For more explicit explanation about some conceptions, see [2].
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2 Lorentzian metric of type II and type III

Consider Lorentzian metric of type II, we now give the proof of
Theorem 1.2.

Proof. For the sufficient part, Denote l the integral curve with tangent
vector V µ = dξµ(τ)

dτ . Now we construct the coordinate t as

t = t(ξν). (2.1)

We have
dt =

∂t

∂ξµ
dξµ. (2.2)

Taking the trajectories of the integral curve l as the t coordinate lines,
then along these t lines, we have dξµ = V µdτ. Substituting it into (2.2),
we get

V µ∂µt =
dt

dτ
, f, (2.3)

where f > 0, is any given smooth function, which acts as the scale t
coordinate. Solving (2.3), we obtain the coordinate transformation (2.1).
Then on the hypersurface H = {ξµ | t(ξµ) = c}, where c is any given
constant, we can always find spatial coordinate (z, x, y), such that the
coordinate base (∂z, ∂x, ∂y) keeps orthogonal. And then the Lorentzian
metric in new coordinate system (t, z, x, y) takes the following form

ηαβ =


u v p q
v −w2 0 0
p 0 −a2 0
q 0 0 −b2

 .

Since the trajectories of curve l acts as t-lines, and we have gµνV µV ν = 0,
hence along t-lines

gµν
dξµ(t)

dt

dξν(t)
dt

= 0.

Under coordinate transformation between (ξµ) and (δµ) = (t, z, x, y), µ ∈
{0, 1, 2, 3}, the Lorentzain metric transforms like

ηαβ = gµν
∂ξµ

∂δα

∂ξν

∂δβ
. (2.4)

Take α = β = 0, thus we get

η00 = gµν
∂ξµ

∂t

∂ξν

∂t
.

Along t-lines, that is

u = η00 = gµν
dξµ(t)

dt

dξν(t)
dt

= 0.
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Thus u = 0.
For the necessary part, if the Lorentzian metric gµν can be con-

verted into type II, that is, it takes the following form

gµν =


0 v p q
v −w2 0 0
p 0 −a2 0
q 0 0 −b2

 .

Take
V µ = (h(ξν), 0, 0, 0),

since g00 = 0, we get
gµνV µV ν = 0.

The proof is finished.

Consider Lorentzian metric of type III, we now give the proof of
Theorem 1.3.

Proof. For the sufficient part, define

dz̃ = KgµνBµdξν ,

where K is a factor to make the 1-form ω become an exact differen-
tial form. In fact, the integrable condition is equivalent to the exact
differential form due to (1.2).

Denote A the integral curve with tangent vector

Aν =
dξν(τA)

dτA
,

and B the integral curve with tangent vector

Bν =
dξν(τB)

dτB
,

where τA, τB are the parameters of the curve A, and curve B respectively.
Along curve A:(ξν(τA)),

dz̃(τA) = gµνBµ dξν(τA)
dτA

dτA = gµνBµAνdτA = 0.

For any given constant z̃0, the hypersurface H = {ξµ | z̃(ξµ) = z̃0}
contains the family of curve A. Moreover, Bµ∂µ is orthogonal to H.
Actually, along any given curve (ξµ(τ)) ⊂ H, since dz̃ = 0, hence

gµνBµ dξν

dτ
= 0.
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That is
(Bµ∂µ) ⊥ (

dξν

dτ
∂ν).

Therefore, we have
(Bµ∂µ) ⊥ H.

The 2-dimensional surface {ξµ | z̃(ξµ)|ξ0=constant = z̃0} corre-
sponds to a 2-dimensional surface S. The initial surface is S0 = {ξµ |
z̃(ξm)|ξ0=c0 = z̃0}, (m = 1, 2, 3). By the above discussion, (Bµ∂µ) ⊥ H,
therefore S is orthogonal to curve B which is generated by Bµ∂µ.

First of all, we construct the coordinate t as

t = t(ξν). (2.5)

We have
dt =

∂t

∂ξµ
dξµ. (2.6)

Taking the trajectories of curve A, as the t coordinate line, then along
these t lines, we have dξµ = AµdτA. Substituting it into (2.6), we get

Aµ∂µt =
dt

dτA
, g, (2.7)

where g > 0, is any given smooth function, which acts as the scale
t coordinate. Solving (2.7), we obtain the coordinate transformation
(2.5).

Next, we construct the coordinate z as

z = z(ξµ). (2.8)

We have
dz =

∂z

∂ξµ
dξµ. (2.9)

Taking the trajectories of curve B, as the z coordinate lines, then along
these z lines, we have dξµ = BµdτB . Substituting it into (2.9), we get

Bµ∂µz =
dz

dτB
, f, (2.10)

where f > 0 is any given smooth function, which acts as the scale of z
coordinate. Since the initial surface S0 is orthogonal to curve B, we may
add the boundary condition on surface S0

z|S0 = z0, (2.11)

where z0 is any given constant. Since gµνBµBν < 0, we may take
f = −gµνBµBν , and set z0 = −z̃0. Solve equation (2.10), with boundary
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condition (2.11), we know that z = −z̃(ξµ) is a solution. Since (Bµ∂µ) ⊥
H = {ξµ | z(ξm) = constant}, hence (Bµ∂µ) ⊥ S(t0, z), combine with
(2.11), we know that the propagating distance of S0 → S defines the new
coordinate z, so we can denote the propagating surface as S(t0, z0) →
S(t0, z) for clearness.

For the 2-dimensional surface S(t0, z0), not loss generality, we can
assume the parameter coordinate (x, y) are orthogonal grid. Otherwise,
we can take the 2-principal curves of the surface as coordinate lines (x, y)
to get orthogonal coordinates. Since z coordinate corresponds to an
equidistant translation of the 2-dimensional surface S(t0, z0) → S(t0, z),
the (x, y) grid on the surface S(t0, z) along the curve B keeps orthogonal,
and then all space-like coordinate bases (∂z, ∂x, ∂y) also keep orthogonal.
So the spatial coordinates (z, x, y) form an global orthogonal coordinate
grid, and then the Lorentzian metric in new coordinate system (t, z, x, y)
takes the following form

ηαβ =


u v p q
v w 0 0
p 0 −a2 0
q 0 0 −b2

 .

Since the trajectories of curve A acts as t-lines, the trajectories of
curve B acts as z-lines, and we have gµνAµBν = 0, hence along t-lines
∩ z-lines,

gµν
dξµ(t)

dt

dξν(z)
dz

= 0.

Take α = 0, β = 1 in (2.4),

η01 = gµν
∂ξµ

∂t

∂ξν

∂z
.

Hence along t-lines ∩ z-lines, that is

v = η01 = gµν
dξµ(t)

dt

dξν(z)
dz

= 0.

Thus v = 0. Similarly, gµνBµBν < 0, and gµνAµAν > 0, then we have
u > 0, w < 0.

For the necessary part, if the Lorentzian metric gµν can be con-
verted into type III, that is, it takes the following form

gµν =


u2 0 p q
0 −w2 0 0
p 0 −a2 0
q 0 0 −b2

 .
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Take
Bµ = (0,

k

w2
, 0, 0),

Aµ = (h(ξν), 0, 0, 0),

where k is constant, and h(ξν) arbitrary smooth function. The 1-form
(1.3) becomes

ω = gµνBµdξν = kdz,

which is an exact differential form. And

gµνBµAν = 0,

gµνBµBν = − k2

w2
< 0,

gµνAµAν = h2u2 > 0.

The proof is finished.

Remark 1. The integrable condition of the 1-form ω (1.3) in theorem
1.3 is equivalent to that ω is an exact differential form, because the vector
field Bµ∂µ can multiply an arbitrary factor function K(ξµ) due to (1.2).
Then that is to say, there is a scalar field z(ξµ), such that

Bµ = ∂µz.

Remark 2. For the coordinate functions

t = t(ξµ), x = x(ξµ), y = y(ξµ)

defines in theorem 1.3, they all satisfy the following partial differential
equation

Bµ∂µF (ξν) = 0. (2.12)

Proof. Since (Bµ∂µ) ⊥ H = {ξµ | z = constant}, that is z lines are
orthogonal to the hypersurface H, hence along z coordinate lines we
have

dt = ∂µtdξµ = Bµ∂µtdτ = 0,

dx = ∂µxdξµ = Bµ∂µxdτ = 0,

dy = ∂µydξµ = Bµ∂µydτ = 0.

The proof is finished.

Remark 3. Theorem 1.2 implies that, any Lorentzain metric solving
Einstein’s field equations, can be converted into type II by coordinate
transformations. Theorem 1.3 says that, there are some obstructions for
Lorentzain metric solving Einstein’s field equations to be converted into
type III.



8

References

[1] De-Xing Kong & Kefeng Liu, Time-periodic solutions of the Ein-
stein’s field equations I: general framework, Science China Mathe-
matics 53 (2010), 1213-1230.

[2] S.W.Hawking & G.F.R.Ellis, The Large scale structure of space-
time, Cambridge university Press, 2004.

[3] Ying-Qiu Gu, A Canonical Form of the Metric in General Relativity,
arXiv:0710.5792v3, Nov. 2009.


