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Geometry of Hermitian manifolds

Kefeng Liu, Xiaokui Yang

Abstract

On Hermitian manifolds, the second Ricci curvature tensors of various metric connec-
tions are closely related to the geometry of Hermitian manifolds. By refining the Bochner
formulas for any Hermitian complex vector bundle (Riemannain real vector bundle) with
an arbitrary metric connection over a compact Hermitian manifold, we can derive various
vanishing theorems for Hermitian manifolds and complex vector bundles by the second
Ricci curvature tensors. We will also introduce a natural geometric flow on Hermitian
manifolds by using the second Ricci curvature tensor.

1 Introduction

It is well-known([5]) that on a compact Kähler manifold, if the Ricci curvature is positive,
then the first Betti number is zero; if the Ricci curvature is negative, then there is no holo-
morphic vector field. The key ingredient for the proofs of such results is the Kähler symmetry.
On the other hand, on an Hermitian manifold, we don’t have such symmetry and there are
several different Ricci curvatures. While on a Kähler manifold, all these Ricci curvatures
coincide, since the Chern curvature on a Kähler manifold coincides with the curvature of the
(complexified) Levi-Civita connection. We can see this more clearly on an abstract Hermitian
holomorphic bundle E. The Chern connection ∇CH on E is the unique connection which
is compatible with the holomorphic structure and the Hermitian metric on E. Hence, the
Chern curvature ΘE ∈ Γ(M,Λ1,1T ∗M ⊗ E∗ ⊗ E). There are two methods to take trace of
ΘE. If we take trace of ΘE on the part End(E) = E∗ ⊗E, we get a (1, 1)-form on M which
it is called the first Ricci curvature. It is well known that the first Ricci curvature represents
the first Chern class of the bundle. On the other hand, if we take trace on the (1, 1)-part
using the metric of the manifold, we obtain an endomorphism of E, TrωΘ

E ∈ Γ(M,E∗ ⊗E).
It is called the second Ricci curvature of ΘE . The first and second Ricci curvatures have
different geometric meanings, which were not clearly studied in some earlier literatures. We
should point out that the nonexistence of holomorphic sections is characterized by the second
Ricci curvature. Let E be the holomorphic tangent bundle T 1,0M . If M is Kähler, the first
and second Ricci curvature are the same by the Kähler symmetry. Unfortunately, on an
Hermitian manifold, the Chern curvature is not symmetric, i.e., the first and second Ricci
curvatures are different. Moreover, in general they can not be compared. An interesting
example is the Hopf manifold S

2n+1 × S
1. The canonical metric on it has strictly positive

second Ricci curvature!
In this paper, we study the nonexistence of holomorphic and harmonic sections of an

abstract vector bundle over a compact Hermitian manifold. Let E be a holomorphic vector
bundle over a compact Hermitian manifold (M,ω). Since the holomorphic section space
H0(M,E) is independent on the connections of E, we can choose any connection on it. As
we mentioned above, the key part, is the second Ricci curvature of the connection. For
example, on the holomorphic tangent bundle T 1,0M of an Hermitian manifold M , there are
three common connections
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(1) the complexified Levi-Civita connection ∇ on T 1,0M ;

(2) the Chern connection ∇CH on T 1,0M ;

(3) the Bismut connection ∇B on T 1,0M .

It is well-known that if M is Kähler, all three connections are the same. However, in general,
the relations among them are somewhat mysterious. In this paper, we derive certain relations
about their curvatures on certain Hermitian manifolds.

Let E be an Hermitian complex (possibly non-holomorphic) vector bundle or a Riemannian
real vector bundle over a compact Hermitian manifold (M,ω). Let ∂E , ∂E be the (1, 0), (0, 1)
part of ∇E respectively. The (1, 1)-curvature of ∇E is denoted by RE ∈ Γ(M,Λ1,1T ∗M ⊗
E∗ ⊗E). It can be viewed as a representation of the operator ∂E∂E + ∂E∂E . We can define
harmonic section spaces associated to (E,∇E) by

Hp,q

∂E
(M,E) = {ϕ ∈ Ωp,q(M,E) | ∂Eϕ = ∂

∗
Eϕ = 0} (1.1)

In general, on a complex vector bundle E, there is no such terminology like “holomorphic
section of E”. However, if the vector bundle E is holomorphic and ∇E is the Chern connec-
tion on E i.e. ∂E = ∂, then Hp,q

∂E
(M,E) is isomorphic to the Dolbeault cohomology group

Hp,q

∂
(M,E) and H0

∂
(M,E) is the holomorphic section space H0(M,E) of E.

Theorem 1.1. Let E be an Hermitian complex vector bundle or a Riemannian real vector
bundle over a compact Hermitian manifold (M,ω) and ∇E be any metric connection on E.

(1) If the second Hermitian-Ricci curvature TrωR
E is nonpositive everywhere, then every

∂E-closed section of E is parallel, i.e. ∇Es = 0;

(2) If the second Hermitian-Ricci curvature TrωR
E is nonpositive everywhere and negative

at some point, then H0
∂E

(M,E) = 0;

(3) If the second Hermitian-Ricci curvature TrωR
E is p-nonpositive everywhere and p-negative

at some point, then H0
∂E

(M,ΛqE) = 0 for any p ≤ q ≤ rank(E).

The proof of this theorem is based on generalized Bochner-Kodaira identities on vector
bundles over Hermitian manifolds (Theorem 4.5). We prove that (Theorem 4.8) the torsion
integral of the Hermitian manifold can be killed if the background Hermitian metric ω is
Gauduchon, i.e. ∂∂ωn−1 = 0. On the other hand, in the conformal class of any Hermi-
tian metric, the Gauduchon metric always exists ([21]). So we can change the background
metric in the conformal way and the positivity of the second Hermitian-Ricci curvature is
preserved. This method is very useful on Hermitian manifolds. Kobayashi-Wu([31]) and
Gauduchon([19]) obtained similar result in the special case when ∇E is the Chern connection
of the Hermitian holomorphic vector bundle E. Now we go back to the Hermitian manifold
(M,ω).

Corollary 1.2. Let (M,ω) be a compact Hermitian manifold

(1) if the second Ricci-Chern curvature TrωΘ is nonnegative everywhere and positive at
some point, then Hp,0

∂
(M) = 0 for any 1 ≤ p ≤ n. In particular, the arithmetic genus

χ(M,O) = 1;

(2) if the second Ricci-Chern curvature TrωΘ is nonpositive everywhere and negative at some
point, then the holomorphic vector bundle ΛpT 1,0M has no holomorphic vector field for
any 1 ≤ p ≤ n.
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Since the first Ricci-Chern curvature and the second Ricci-Chern curvature of an Hermitian
manifold can not be compared, we can not derive that the manifold M is Kähler, even if
the second Ricci-Chern curvature is positive everywhere. In general, the first Ricci-Chern
curvature is d-closed but the second Ricci-Chern curvature is not d-closed and so they are in
the different (d, ∂, ∂)-cohomology classes. For example, the Hopf manifold S

2n+1 × S
1 with

standard Hermitian metric has strictly positive second Ricci-Chern curvature and nonnegative
first Ricci-Chern curvature, but it is non-Kähler. For more details, see Proposition 6.4.

Now we consider several special Hermitian manifolds. An interesting class of Hermitian
manifolds is the balanced Hermitian manifolds, i.e., Hermitian manifolds with coclosed Kähler
forms. It is well-known that every Kähler manifold is balanced. In some literatures, they are
also called semi-Kähler manifolds. In complex dimension 1 and 2, every balanced Hermitian
manifold is Kähler. However, in higher dimensions, there exist non-Kähler manifolds which
admit balanced Hermitian metrics. Such examples were constructed by E. Calabi([7]), see also
[23] and [36]. There are also some other important classes of non-Kähler balanced manifolds,
such as: complex solvmanifolds, 1-dimensional families of Kähler manifolds (see [36]) and
compact complex parallelizable manifolds (except complex torus) (see [46]). On the other
hand, Alessandrini- Bassaneli( [2]) proved that every Moishezon manifold is balanced and
so balanced manifolds can be constructed from Kähler manifolds by modification. For more
examples, see [3], [36], [16] and [17].

Every balanced metric ω is a Gauduchon metric. In fact, d∗ω = 0 is equivalent to dωn−1 = 0
and so ∂∂ωn−1 = 0. By [21], every Hermitian manifold has a Gauduchon metric. However,
there are many manifolds which can not support balanced metrics. For example, the Hopf
surface S

3 × S
1 is non-Kähler, so it has no balanced metric. For more discussion , one can

see [7], [36],[42], [2] and [3].
On a compact balanced Hermitian manifold M , we can detect the holomorphic section

spaces Hp,0

∂
(M) by Levi-Civita connection. Let ∇ be the complexified Levi-Civita connection

and ∇′, ∇′′ the (1, 0) and (0, 1) components of ∇ respectively. In general, holomorphic p-
forms are not ∇′′-closed. The Ricci curvatures related to the Levi-Civita connection are
defined in 2.11 and 2.29.

Theorem 1.3. Let (M,ω) be a compact balanced Hermitian manifold. If the Hermitian-Ricci
curvature (Rij) of M is nonnegative everywhere, then

(1) If ϕ is a holomorphic p-form, then ∆∂ϕ = 0 and so hp,0(M) ≤ h0,p(M) for any 1 ≤ p ≤
n;

(2) If the Hermitian-Ricci curvature (Rij) is positive at some point, then Hp,0

∂
(M) = 0 for

any 1 ≤ p ≤ n. In particular, the arithmetic genus χ(M,O) = 1.

The dual of Theorem 1.3 is

Theorem 1.4. Let (M,ω) be a compact balanced Hermitian manifold. If 2R̂
(2)

ij
− Rij is

nonpositive everywhere and negative at some point, there is no holomorphic vector field on
M.

Remark 1.5. It is easy to see that the Hermitian-Ricci curvature tensor (Rij) and second

Ricci-Chern curvature tensor Θ(2) := TrωΘ can not be compared. Therefore, Theorem 1.3
and Corollary 1.2 are independent of each other. For the same reason, Theorem 1.4 and
Corollary 1.2 are independent. Balanced Hermitian manifolds with nonnegative Hermitian-
Ricci curvatures are discussed in Proposition 3.5.
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As we discuss in the above, on Hermitian manifolds, the second Ricci curvature tensors
of various metric connections are closely related to the geometry of Hermitian manifolds. A
natural idea is to define a flow by using second Ricci curvature tensors of various metric
connections. For example,

∂h

∂t
= −Θ(2) + µh, µ ∈ R (1.2)

on a general Hermitian manifold (M,h) by using the second Ricci-Chern curvature. This flow
preserves the Kähler and the Hermitian structure and has short time solution on any compact
Hermitian manifold. It is very similar to and closely related to the Hermitian Yang-Mills flow,
the Kähler-Ricci flow and the harmonic map heat flow. It may be a bridge to connect them.
In this paper we only briefly discuss its basic properties. In a subsequent paper([33]) we will
study its geometric and analytic property in detail.

We would like to thank Yi Li, Jeffrey Streets, Valetino Tosatti for their useful comments
on an earlier version of this paper.

2 Various connections and curvatures on Hermitian manifolds

2.1 Complexified Riemannian curvature

Let (M,g) be a Riemannian manifold with Levi-Civita connection ∇, the curvature R of
(M,g,∇) is defined as

R(X,Y,Z,W ) = g
((
∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z,W

)
(2.1)

On an Hermitian manifold (M,h), let ∇ be the complexified Levi-Civita connection and g
the background Riemannian metric. Two metrics are related by

ds2h = ds2g −
√
−1ωh (2.2)

where ωh is the fundamental (1, 1)-form (or Kähler form) associated to h. For any two
holomorphic vector fields X,Y ∈ Γ(M,T 1,0M),

h(X,Y ) = 2g(X,Y ) (2.3)

This formula will be used in several definitions. In the local holomorphic coordinates {z1, · · · , zn}
on M , the complexified Christoffel symbols are given by

ΓC
AB =

∑

E

1

2
gCE

(∂gAE

∂zB
+
∂gBE

∂zA
− ∂gAB

∂zE
)
=
∑

E

1

2
hCE

(∂hAE

∂zB
+
∂hBE

∂zA
− ∂hAB

∂zE
)

(2.4)

where A,B,C,E ∈ {1, · · · , n, 1, · · · , n} and zA = zi if A = i, zA = zi if A = i. For example

Γk
ij =

1

2
hkℓ
(
∂hjℓ
∂zi

+
∂hiℓ
∂zj

)
, Γk

ij
=

1

2
hkℓ
(
∂hjℓ

∂zi
−
∂hji

∂zℓ

)
(2.5)

The complexified curvature components are

RABCD : = 2g

((
∇ ∂

∂zA
∇ ∂

∂zB
−∇ ∂

∂zB
∇ ∂

∂zA

) ∂

∂zC
,
∂

∂zD

)

= h

((
∇ ∂

∂zA
∇ ∂

∂zB
−∇ ∂

∂zB
∇ ∂

∂zA

) ∂

∂zC
,
∂

∂zD

)
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Hence

RD
ABC =

∑

E

RABCEh
ED = −

(
∂ΓD

AC

∂zB
− ∂ΓD

BC

∂zA
+ ΓF

ACΓ
D
FB − ΓF

BCΓ
D
AF

)
(2.6)

By the Hermitian property, we have, for example

Rl
ijk

= −
(
∂Γl

ik

∂zj
−
∂Γl

jk

∂zi
+ Γs

ikΓ
l
js
− Γs

jk
Γl
is − Γs

jk
Γl
is

)
(2.7)

Remark 2.1. We have RABCD = RCDAB . In particular,

Rijkℓ = Rkℓij (2.8)

Unlike the Kähler case, we can define several Ricci curvatures:

Definition 2.2. (1) The complexified Ricci curvature on (M,h) is defined by

Rkℓ := hij
(
Rkjiℓ +Rkijℓ

)
(2.9)

The complexified scalar curvature of h is defined as

sh := hkℓRkℓ (2.10)

(2) The Hermitian-Ricci curvature is

Rkℓ := hijRijkℓ (2.11)

The Hermitian-scalar curvature of h is given by

S := hkℓRkℓ (2.12)

Lemma 2.3. On an Hermitian manifold,

RABCD = RABCD, Rkℓ = Rℓk, Rkℓ = Rℓk (2.13)

and
Rkℓ = hij

(
2Rkjiℓ −Rkℓij

)
(2.14)

Proof. The Hermitian property of curvature tensors is obvious. By first Bianchi identity, we
have

Rkijℓ +Rkjℓi +Rkℓij = 0

That is Rkijℓ = Rkjiℓ −Rkℓij . The curvature formula 2.9 turns to be

Rkℓ = hij
(
2Rkjiℓ −Rkℓij

)
(2.15)

Definition 2.4. The Ricci curvatures are called positive ( resp. nonnegative, negative, non-
positive) if the corresponding Hermitian matrices are positive ( resp. nonnegative, negative,
non-positive).

The following three formulas are used frequently in the sequel.
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Lemma 2.5. Assume hij = δij at a fixed point p ∈M , we have the following formula

Rijkℓ = −1

2

(
∂2hiℓ
∂zk∂zj

+
∂2hkj

∂zi∂zℓ

)

+
1

4

(
∂hkq
∂zi

∂hqℓ

∂zj
+
∂hiq
∂zk

∂hqj

∂zℓ

)
+

1

4

(
∂hiq
∂zk

∂hqℓ

∂zj
+
∂hkq
∂zi

∂hqj

∂zℓ

)

+
1

4

(
∂hqℓ
∂zi

∂hkj
∂zq

+
∂hqj
∂zk

∂hiℓ
∂zq

)
+

1

4

(
∂hiℓ
∂zq

∂hkq

∂zj
+
∂hkj
∂zq

∂hiq

∂zℓ

)
(2.16)

−1

4

(
∂hqℓ
∂zi

∂hkq
∂zj

+
∂hqj
∂zk

∂hiq

∂zℓ

)
− 1

4

(
∂hiℓ
∂zq

∂hkj
∂zq

+
∂hkj
∂zq

∂hiℓ
∂zq

)

By a linear transformation on the local holomorphic coordinates, one can get the following
Lemma. For more details, we refer the reader to [44].

Lemma 2.6. Let (M,h, ω) be an Hermitian manifold. For any p ∈ M , there exist local
holomorphic coordinates {zi} centered at a point p such that

hij(p) = δij and Γk
ij(p) = 0 (2.17)

By Lemma 2.6, we have a simplified version of curvatures:

Lemma 2.7. Assume hij(p) = δij and Γk
ij(p) = 0 at a fixed point p ∈M ,

Rijkℓ = −1

2

(
∂2hiℓ
∂zk∂zj

+
∂2hkj

∂zi∂zℓ

)
−
∑

q

(
∂hqℓ
∂zi

∂hkq
∂zj

+
∂hqj
∂zk

∂hiq

∂zℓ

)
(2.18)

For Hermitian-Ricci curvatures

Rkℓ = hijRijkℓ = −1

2

∑

s

(
∂2hsℓ
∂zk∂zs

+
∂2hks

∂zs∂zℓ

)
−
∑

q,s

(
∂hqℓ
∂zs

∂hkq
∂zs

+
∂hkq
∂zs

∂hqℓ
∂zs

)
(2.19)

and

hijRkjiℓ = hijRiℓkj = −1

2

∑

s

(
∂2hkℓ
∂zs∂zs

+
∂2hss

∂zk∂zℓ

)
−
∑

q,s

(
∂hqℓ
∂zk

∂hsq
∂zs

+
∂hqs
∂zs

∂hkq

∂zℓ

)
(2.20)

For complexified Ricci curvature,

Rkℓ =
1

2

∑

s

(
∂2hsℓ
∂zk∂zs

+
∂2hks

∂zs∂zℓ

)
−
∑

s

(
∂2hkℓ
∂zs∂zs

+
∂2hss

∂zk∂zℓ

)

+
∑

q,s

(
∂hqℓ
∂zs

∂hkq
∂zs

+
∂hkq
∂zs

∂hqℓ
∂zs

)
− 2

∑

q,s

(
∂hqℓ
∂zk

∂hsq
∂zs

+
∂hqs
∂zs

∂hkq

∂zℓ

)
(2.21)

2.2 Curvature of complexified Levi-Civita connection on T 1,0M

Since T 1,0M is a subbundle of TCM , there is an induced connection ∇̂ on T 1,0M given by

∇̂ = π ◦ ∇ : T 1,0M
∇→ Γ(M,TCM ⊗ TCM)

π→ Γ(M,TCM ⊗ T 1,0M) (2.22)

The curvature R̂ ∈ Γ(M,Λ2TCM ⊗ T ∗1,0M ⊗ T 1,0M) of ∇̂ is given by

R̂(X,Y )s = ∇̂X∇̂Y s− ∇̂Y ∇̂Xs− ∇̂[X,Y ]s (2.23)
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for any X,Y ∈ TCM and s ∈ T 1,0M . It has components

R̂l
ABk =

∂Γl
Bk

∂zA
− ∂Γl

Ak

∂zB
− Γs

AkΓ
l
Bs + Γs

BkΓ
l
As (2.24)

where

R̂

(
∂

∂zA
,
∂

∂zB

)
∂

∂zk
=
∑

l

R̂l
ABk

∂

∂zℓ
(2.25)

For example,

R̂l
ijk

= −
(
∂Γl

ik

∂zj
−
∂Γl

jk

∂zi
+ Γs

ikΓ
l
js
− Γs

jk
Γl
si

)
(2.26)

With respect to the Hermitian metric h on T 1,0M , we can define

R̂ABkl =
n∑

s=1

R̂s
ABkhsℓ (2.27)

Definition 2.8. The first Ricci curvature of the Hermitian vector bundle
(
T 1,0M, ∇̂

)
is

defined by

R̂
(1)

ij
= hkℓR̂ijkℓ (2.28)

The second Ricci curvature of it is

R̂
(2)

kℓ
= hijR̂ijkℓ (2.29)

The scalar curvature of ∇̂ on T 1,0M is denoted by

SLC = hijhkℓR̂ijkℓ (2.30)

By Lemma 2.6, we have the following formulas

Lemma 2.9. On an Hermitian manifold (M,h), on a point p with hij(p) = δij and Γk
ij(p) =

0,

R̂ijkℓ = −1

2

(
∂2hiℓ
∂zk∂zj

+
∂2hkj

∂zi∂zℓ

)
−
∑

q

∂hqℓ
∂zi

∂hkq

∂zj
(2.31)

For the Ricci curvatures,

R̂
(1)

ij
= −1

2

∑

k

(
∂2hik
∂zk∂zj

+
∂2hkj

∂zi∂zk

)
−
∑

k,q

∂hqk
∂zi

∂hkq
∂zj

(2.32)

and

R̂
(2)

ij
= −1

2

∑

k

(
∂2hik
∂zk∂zj

+
∂2hkj

∂zi∂zk

)
−
∑

k,q

∂hiq

∂zk
∂hqj
∂zk

(2.33)

Moreover,

R̂
(1)

ij
− R̂

(2)

ij
= hmjh

ℓkΓq

ki
Γm
ℓq − Γq

kj
Γk
iq =

∑

k,q

(
∂hiq

∂zk
∂hqj
∂zk

− ∂hiq
∂zk

∂hqj

∂zk

)
(2.34)
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2.3 Curvature of Chern connection on T 1,0M

On the Hermitian holomorphic vector bundle (T 1,0M,h), the Chern connection ∇CH is the
unique connection which is compatible with the complex structure and the Hermitian metric.
Its curvature components are

Θijkℓ = − ∂2hkℓ
∂zi∂zj

+ hpq
∂hpℓ
∂zj

∂hkq
∂zi

(2.35)

It is well-known that the first Ricci-Chern curvature

Θ(1) :=

√
−1

2π
Θ

(1)

ij
dzi ∧ dzj (2.36)

represents the first Chern class of M where

Θ
(1)

ij
= hkℓΘijkℓ = −∂

2 log det(hkℓ)

∂zi∂zj
(2.37)

The second Ricci-Chern curvature components are

Θ
(2)

ij
= hkℓΘkℓij (2.38)

The scalar curvature of the Chern connection is defined by

SCH = hijhkℓΘijkℓ (2.39)

2.4 Curvature of Bismut connection on T
1,0
M

In [4], Bismut defined a class of connections on Hermitian manifolds. In this subsection,
we choose one of them (see [35], p. 21). The Bismut connection ∇B on the holomorphic
tangent bundle (T 1,0M,h) is characterized by

∇B = ∇+ SB (2.40)

where SB is 1-form with values in End(T 1,0M)

h(SB(X)Y,Z) = 2g(SB(X)Y,Z) =
√
−1(∂ − ∂)ωh(X,Y,Z) (2.41)

for any Y,Z ∈ T 1,0M and X ∈ TCM . Let Γ̃β
iα and Γ̃β

jα
be the Christoffel symbols of the

Bismut connection where i, j, α, β ∈ {1, · · · , n}. We use different types of letters since the
Bismut connection is not torsion free.

Lemma 2.10. We have the following relations between Γ̃ and Γ,

Γ̃iαβ := hβγΓ
γ
iα = Γiαβ + Γαβi =

∂hiβ
∂zα

, Γ̃jαβ = 2Γjαβ (2.42)

Proof. Let X = ∂
∂zi
, Y = ∂

∂zj
, Z = ∂

∂zk
. Since ωh =

√
−1
2 hmndz

m ∧ dzn, we obtain

√
−1(∂ − ∂)ωh(X,Y,Z) = −1

2

∂hmn

∂zp
dzpdzmdzn

(
∂

∂zi
,
∂

∂zj
,
∂

∂zk

)

=
1

2

(
∂hik
∂zj

−
∂hjk
∂zi

)

= Γs
jk
his = Γjki

8



On the other hand

h

(
∇B

∂

∂zi

∂

∂zj
,
∂

∂zk

)
= Γ̃ijk (2.43)

Using the definition of Bismut connection, we get

Γ̃iαβ = Γiαβ + Γαβi =
∂hiβ
∂zα

(2.44)

The proof of the other one is similar.

The Bismut curvature B ∈ Γ
(
M,Λ1,1T ∗M ⊗ End(T 1,0M)

)
is given by

Bβ

ijα
= −∂Γ̃

β
iα

∂zj
+
∂Γ̃β

jα

∂zi
− Γ̃γ

iαΓ̃
β

jγ
+ Γ̃γ

jα
Γ̃β
iγ (2.45)

Lemma 2.11. Assume hij(p) = δij and Γk
ij(p) = 0 at a fixed point p ∈M ,

Bijαβ = −
(
∂2hiβ

∂zj∂zα
+

∂2hαj

∂zi∂zβ
−
∂2hαβ

∂zi∂zj

)
+
∑

γ

∂hαγ
∂zi

∂hγβ

∂zj
− 4

∑

γ

∂hαγ

∂zj
∂hγβ
∂zi

(2.46)

Proof. It follows by 2.42 and 2.45.

We can define the first Ricci-Bismut curvature B
(1)

ij
, the second Ricci-Bismut curvature B

(2)

ij

and scalar curvature SBM similarly.

2.5 Relations among the four curvatures on Hermitian manifolds

Proposition 2.12. On an Hermitian manifold (M,h), we have

Rijkl = R̂ijkℓ, Rijkℓ = R̂ijkℓ (2.47)

and for any u, v ∈ C
n, (

Rijkℓ − R̂ijkℓ

)
uiujvkvℓ ≤ 0 (2.48)

In particular, Rij ≤ R̂
(1)

ij
and Rij ≤ R̂

(2)

ij
in the sense of Hermitian matrices.

Proof. Let
Tijkℓ = Rijkℓ − R̂ijkℓ = Γs

jk
Γt
ishtℓ (2.49)

Without loss generality, we assume hij = δij at a fixed point, then

Tijkℓ =
∑

s

ΓjksΓisℓ = −
∑

s

ΓisℓΓjsk (2.50)

where

Γisℓ =
1

2

(
∂hiℓ
∂zs

− ∂his

∂zℓ

)
= −Γiℓs (2.51)

and so Tijkℓu
iujvkvℓ ≤ 0.

Remark 2.13. (1) Because of the second order terms in R, R̂, Θ and B, we can not compare
R, R̂ with Θ, B.

(2) Since the third order terms of ∂Θ(2) are not zero in general. Therefore it is possible that
Θ(1) and Θ(2) are not in the same (d, ∂, ∂)-cohomology class. For the same reason B(1)

and B(2) are not in the same (d, ∂, ∂)-cohomology class.

(3) If the manifold (M,h) is Kähler, then all curvatures are the same.

9



3 Curvature relations on special Hermitian manifolds

3.1 Curvatures relations on balanced Hermitian manifolds

The following lemma is well-known( for example [18]), and we include a proof here in our
setting.

Lemma 3.1. Let (M,ω) be a compact Hermitian manifold. The following conditions are
equivalent:

(1) d∗ω = 0;

(2) dωn−1 = 0;

(3) For any smooth function f ∈ C∞(M),

1

2
∆df = ∆∂f = ∆∂f = −hij ∂2f

∂zi∂zj
(3.1)

(4) Γℓ
iℓ
= 0 for any 1 ≤ i ≤ n.

Proof. On a compact Hermitian manifold, d∗ω = − ∗ d ∗ ω = −cn ∗ dωn−1 where cn is a
constant depending only on the complex dimension n of M . On the other hand, the Hodge
∗ is an isomorphism, and so (1) and (2) are equivalent. If f is a smooth function on M ,

{
∆∂f = −hij ∂2f

∂zi∂zj
+ 2hijΓℓ

ij

∂f

∂zℓ

∆∂f = −hij ∂2f

∂zi∂zj
+ 2hijΓk

ji

∂f
∂zk

(3.2)

On the other hand,

hijΓℓ
ij
= −Γj

kj
hkℓ and hijΓk

ji
= −Γi

ℓi
hkℓ (3.3)

Therefore (3) and (4) are equivalent. For the equivalence of (1) and (4), see Lemma 8.8.

Definition 3.2. An Hermitian manifold (M,ω) is called balanced if it satisfies one of the
conditions in Lemma 3.1.

On a balanced Hermitian manifold, there are more symmetries on the second derivatives of
the metric.

Lemma 3.3. Let (M,h) be a balanced Hermitian manifold. On a point p with hij(p) = δij

and Γk
ij(p) = 0,

∑

s

∂hsi
∂zs

=
∑

s

∂hss
∂zi

= 0 (3.4)

and ∑

i

∂2hiℓ
∂zk∂zi

=
∑

i

∂2hki
∂zi∂zℓ

=
∑

i

∂2hii
∂zk∂zℓ

− 2
∑

i,q

∂hqℓ
∂zi

∂hkq
∂zi

(3.5)

Proof. At a fixed point p, if hij = 0 and Γk
ij = 0, then

∂hij

∂zk
= −∂hik

∂zj
(3.6)
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The balanced condition
∑

s Γ
s
is
= 0 is reduced to

∑

s

∂hss
∂zi

=
∑

s

∂hsi
∂zs

= 0 (3.7)

by formula 3.6. By the balanced condition

0 =
∂Γi

ℓi

∂zk
=

∂

∂zk

(
1

2
hiq
(
∂hiq

∂zℓ
− ∂hiℓ
∂zq

))

=
1

2

∑

i

(
∂2hii
∂zk∂zℓ

− ∂2hiℓ
∂zk∂zi

)
−
∑

i,q

∂hqℓ
∂zi

∂hkq
∂zi

Hence, we obtain formula 3.5.

Proposition 3.4. Let (M,h) be a balanced Hermitian manifold. At a point p with hij(p) = δij

and Γk
ij(p) = 0, we have following formulas about various Ricci curvatures:

Θ
(1)

kℓ
= R̂

(1)

kℓ
= B

(1)

kℓ
= −

∑

i

∂2hii
∂zk∂zℓ

+
∑

q,i

∂hqℓ
∂zi

∂hkq
∂zi

(3.8)

Θ
(2)

kℓ
= −

∑

i

∂2hkℓ
∂zi∂zi

+
∑

i,q

∂hqℓ

∂zi
∂hkq
∂zi

(3.9)

R̂
(2)

kℓ
= −

∑

i

∂2hii
∂zk∂zℓ

+
∑

i,q

(
2
∂hqℓ
∂zi

∂hkq
∂zi

− ∂hkq
∂zi

∂hqℓ
∂zi

)
(3.10)

B
(2)

kℓ
= −

∑

i

∂2hii
∂zk∂zℓ

+
∑

i,q

(
5
∂hqℓ

∂zi
∂hkq
∂zi

− 4
∂hkq

∂zi
∂hqℓ
∂zi

)
(3.11)

Rkℓ = −
∑

i

∂2hii
∂zk∂zℓ

+
∑

i,q

(
∂hqℓ
∂zi

∂hkq
∂zi

− ∂hkq
∂zi

∂hqℓ
∂zi

)
(3.12)

Rkℓ = −
∑

i

∂2hkℓ
∂zi∂zi

−
∑

i,q

(
∂hqℓ

∂zi
∂hkq
∂zi

− ∂hkq

∂zi
∂hqℓ
∂zi

)
(3.13)

Proof. In 2.32, 2.33, 2.37,2.38, 2.19, 2.21, we get expressions for all Ricci curvatures on
Hermitian manifolds. By balanced relations 3.4 and 3.5, we get simplified versions of all
Ricci curvatures.

Proposition 3.5. (1) A balanced Hermitian manifold with positive Hermitian-Ricci curva-
ture Rij is Kähler.

(2) Let (M,h) be a compact balanced Hermitian manifold. If the Hermitian-Ricci curvature
is nonnegative everywhere and positive at some point, then M is Moishezon.

Proof. (1) On a balanced Hermitian manifold

Θ
(1)

ij
= R̂

(1)

ij
≥ Rij (3.14)

If Rij is Hermitian positive, then Θ
(1)

ij
is Hermitian positive, and so

Ω = −
√
−1

2π
∂∂ log det(hkℓ) (3.15)
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is a Kähler metric.
(2) If the Hermitian-Ricci curvature is nonnegative everywhere and positive at some point,

so is Θ
(1)

ij
. The Hermitian line bundle L = det(T 1,0M) satisfies

∫

M

c1(L)
n > 0 (3.16)

By Siu-Demailly’s solution of Grauert-Riemenschneider conjecture ([39] [9]),M is Moishezon.

3.2 Curvature relations on Hermitian manifolds with Λ(∂∂ω) = 0

Now we consider a compact Hermitian manifold (M,ω) with Λ(∂∂ω) = 0. The condition
Λ(∂∂ω) = 0 is equivalent to

∑

k

(
∂hij

∂zk∂zk
+

∂hkk
∂zi∂zj

)
=
∑

k

(
∂hik
∂zk∂zj

+
∂2hkj

∂zi∂zk

)
(3.17)

for any i, j. We can use 3.17 to simplify Ricci curvatures and get relations among them.

Proposition 3.6. Let (M,h) be a compact Hermitian manifold with Λ(∂∂ω) = 0. At a point
p with hij(p) = δij and Γk

ij(p) = 0, the following identities about Ricci curvatures hold:

Θ
(1)

kℓ
= −

∑

i

∂2hii
∂zk∂zℓ

+
∑

q,i

∂hqℓ

∂zi
∂hkq
∂zi

(3.18)

Θ
(2)

kℓ
= −

∑

i

∂2hkℓ
∂zi∂zi

+
∑

i,q

∂hqℓ
∂zi

∂hkq
∂zi

(3.19)

R̂
(1)

kℓ
= −1

2

∑

i

(
∂2hkℓ
∂zi∂zi

+
∂2hii
∂zk∂zℓ

)
−
∑

i,q

∂hqℓ

∂zi
∂hkq
∂zi

(3.20)

R̂
(2)

kℓ
= −1

2

∑

i

(
∂2hkℓ
∂zi∂zi

+
∂2hii
∂zk∂zℓ

)
−
∑

i,q

∂hkq
∂zi

∂hqℓ
∂zi

(3.21)

B
(1)

kℓ
= −

∑

i

∂2hkℓ
∂zi∂zi

+
∑

i,q

(
∂hqℓ

∂zi
∂hkq
∂zi

− 4
∂hqℓ
∂zi

∂hkq

∂zi

)
(3.22)

B
(2)

kℓ
= −

∑

i

∂2hii
∂zk∂zℓ

+
∑

i,q

(
∂hqℓ
∂zi

∂hkq
∂zi

− 4
∂hkq
∂zi

∂hqℓ
∂zi

)
(3.23)

Rkℓ = −1

2

∑

i

(
∂2hkℓ
∂zi∂zi

+
∂2hii
∂zk∂zℓ

)
−
∑

i,q

(
∂hqℓ

∂zi
∂hkq
∂zi

+
∂hkq

∂zi
∂hqℓ
∂zi

)
(3.24)

Rkℓ = −1

2

∑

i

(
∂2hkℓ
∂zi∂zi

+
∂2hii
∂zk∂zℓ

)
+
∑

i,q

(
∂hqℓ
∂zi

∂hkq
∂zi

+
∂hkq
∂zi

∂hqℓ
∂zi

)
(3.25)

−2
∑

q,i

(
∂hqℓ
∂zk

∂hiq
∂zi

+
∂hqi
∂zi

∂hkq

∂zℓ

)

Proposition 3.7. If (M,ω) is a compact Hermitian manifold with Λ(∂∂ω) = 0, then

B(2) ≤ Θ(1) and B(1) ≤ Θ(2) (3.26)

12



in the sense of Hermitian matrices and identities hold if and only if (M,ω) is Kähler. More-
over,

Θ(2) +B(2) = Θ(1) +R(1) (3.27)

Finally, we would like to discuss the relations of balanced manifolds and strong Kähler
manifolds with torsion. By [2], every Moishezon manifold is balanced, i.e. there exists a
smooth Hermitian metric ω such that d∗ω = 0. On the other hand, by Demailly-Paun [10](
see also [27]), on each Moishezon manifold, there exists a singular Hermitian metric ω such
that ∂∂ω = 0 in the sense of current. However, these two conditions can not be satisfied
simultaneously in the smooth sense on an Hermitian non-Kähler manifold. It is known in [1]
and also [15], but merits a proof in our setting.

Proposition 3.8. Let (M,ω) be a compact Hermitian manifold. If d∗ω = 0 and Λ(∂∂ω) = 0,
then dω = 0, i.e. (M,ω) is Kähler. In particular, if a compact Hermitian manifold admits a
smooth metric ω such that d∗ω = 0 and ∂∂ω = 0, then it is Kähler.

Proof. Let (M,ω) be a balanced Hermitian manifold with Λ(∂∂ω) = 0. The condition
Λ(∂∂ω) = 0 is equivalent to

∑

i

∂hii
∂zk∂zℓ

+
∑

i

∂2hkℓ
∂zi∂zi

=
∑

i

∂hiℓ
∂zk∂zi

+
∑

i

∂2hki
∂zi∂zℓ

(3.28)

By formula 3.5, at a point p with hij = δij and Γk
ij(p) = 0, we have

∑

i

∂hii
∂zk∂zℓ

+
∑

i

∂2hkℓ
∂zi∂zi

=
∑

i

∂hiℓ
∂zk∂zi

+
∑

i

∂2hki
∂zi∂zℓ

= 2
∑

i

∂hii
∂zk∂zℓ

− 4
∑

q,i

∂hqℓ
∂zi

∂hkq
∂zi

That is ∑

i

∂hii
∂zk∂zℓ

=
∑

i

∂2hkℓ
∂zi∂zi

+ 4
∑

q,i

∂hqℓ
∂zi

∂hkq
∂zi

(3.29)

Taking trace of it, we obtain

4
∑

q,i,k

∂hqk
∂zi

∂hkq
∂zi

= 0 ⇐⇒ ∂hkq
∂zi

= 0 (3.30)

at point p. Since p is arbitrary, we have dω ≡ 0, therefore, (M,ω) is Kähler.

4 Bochner formulas on Hermitian complex and Riemannian

real vector bundles over compact Hermitian manifolds

Let (M,h, ω) be a compact Hermitian manifold. The complexified Levi-Civita connection
∇ on TCM induces a linear connection on Ωp,q(M):

∇ : Ωp,q(M) −−→ Ω1(M)⊗
(
Ωp,q(M)⊕ Ωp−1,q+1(M)⊕ Ωp+1,q−1(M)

)
(4.1)

We consider the following two canonical components of ∇,
{
∇′ : Ωp,q(M) → Ω1,0(M)⊗ Ωp,q(M)

∇′′ : Ωp,q(M) → Ω0,1(M)⊗ Ωp,q(M)
(4.2)
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Note that ∇ 6= ∇′ + ∇′′ if (M,h, ω) is not Kähler. The following calculation rule follows
immediately

∇′(ϕ ∧ ψ) =
(
∇′ϕ

)
∧ ψ + ϕ ∧∇′ψ (4.3)

for any ϕ,ψ ∈ Ω•(M).

Lemma 4.1. On an Hermitian manifold (M,h), we have

{
∂h(ϕ,ψ) = h(∇′ϕ,ψ) + h(ϕ,∇′′ψ)

∂h(ϕ,ψ) = h(∇′′ϕ,ψ) + h(ϕ,∇′ψ)
⇐⇒

{
∂
∂zi
h(ϕ,ψ) = h(∇′

iϕ,ψ) + h(ϕ,∇′′
i
ψ)

∂
∂zj

h(ϕ,ψ) = h(∇′′
j
ϕ,ψ) + h(ϕ,∇′

jψ)

(4.4)
for any ϕ,ψ ∈ Ωp,q(M).

Remark 4.2. (1) Here we use the compact notations

∇′
i = ∇′

∂

∂zi

, ∇′′
j
= ∇′′

∂

∂zj

Note that ∇′
j
= ∇′′

i = 0 and ∇i 6= ∇′
i, ∇j 6= ∇′

j
.

(2) If we regard Λp,qT ∗M as an abstract vector bundle E, the above lemma says that ∇′

and ∇′′ are compatible with the Hermitian metric on E.

Now we go to an abstract setting. LetE be an Hermitian complex (possibly non-holomorphic)
vector bundle or a Riemannian real vector bundle over a compact Hermitian manifold (M,ω).
There is a natural decomposition

∇ = ∇′E +∇′′E (4.5)

where {
∇′E : Γ(M,E) −−→ Ω1,0(M,E)

∇′′E : Γ(M,E) −−→ Ω0,1(M,E)
(4.6)

∇′E and ∇′′E induce two differential operators. The first one is ∂E : Ωp,q(M,E) −−→
Ωp+1,q(M,E) defined by

∂E(ϕ⊗ s) = (∂ϕ) ⊗ s+ (−1)p+qϕ ∧ ∇′Es (4.7)

for any ϕ ∈ Ωp,q(M) and s ∈ Γ(M,E). The other one is ∂E : Ωp,q(M,E) −−→ Ωp+1,q(M,E)
defined by

∂E(ϕ⊗ s) =
(
∂ϕ
)
⊗ s+ (−1)p+qϕ ∧ ∇′′Es (4.8)

for any ϕ ∈ Ωp,q(M) and s ∈ Γ(M,E). The following formula is well-known

(
∂E∂E + ∂E∂E

)
(ϕ⊗ s) = ϕ ∧

(
∂E∂E + ∂E∂E

)
s (4.9)

for any ϕ ∈ Ωp,q(M) and s ∈ Γ(M,E). The operator ∂E∂E + ∂E∂E is represented by its
(1, 1) curvature tensor RE ∈ Γ(M,Λ1,1T ∗M ⊗ E). For any ϕ,ψ ∈ Ω•,•(M,E), there is a
sesquilinear pairing

{ϕ,ψ} = ϕα ∧ ψβ〈eα, eβ〉 (4.10)

if ϕ = ϕαeα and ψ = ψβeβ in the local frames {eα} on E. By the metric compatible property
of ∇E,

∂{ϕ,ψ} = {∂Eϕ,ψ} + (−1)p+q{ϕ, ∂Eψ} (4.11)

if ϕ ∈ Ωp,q(M,E).

14



Let ω be the Kähler form of the Hermitian metric h, i.e.,

ω =

√
−1

2
hijdz

i ∧ dzj (4.12)

On the Hermitian manifold (M,h, ω), the norm on Ωp,q(M) is defined by

(ϕ,ψ) =

∫

M

〈ϕ,ψ〉ω
n

n!
=

2n

(p+ q)!

∫

M

h(ϕ,ψ)
ωn

n!
=

∫

M

ϕ ∧ ∗ψ (4.13)

The norm on Ωp,q(M,E) is defined by

(ϕ,ψ) =

∫

M

{ϕ, ∗ψ} =

∫

M

(
ϕα ∧ ∗ψβ

)
〈eα, eβ〉 (4.14)

for ϕ,ψ ∈ Ωp,q(M,E). The dual operators of ∂, ∂, ∂E and ∂
∗
E are denoted by ∂∗, ∂

∗
, ∂∗E and

∂
∗
E respectively.
The following lemma was firstly shown by Demailly using Taylor expansion method( e.g.

[8]). For the convenience of the reader, we will take another approach which seems to be
useful in local computations.

Lemma 4.3. Let (M,h, ω) be a compact Hermitian manifold. If τ is the operator of type
(1, 0) defined by τ = [Λ, 2∂ω] on Ω•(M,E),

{
[Λ, ∂] =

√
−1
(
∂
∗
+ τ∗

)

[
Λ, ∂

]
= −

√
−1(∂∗ + τ∗)

(4.15)

For the dual equation, it is {
[∂

∗
, L] =

√
−1(∂ + τ)

[∂∗, L] = −
√
−1(∂ + τ)

(4.16)

where L is the operator Lϕ = 2ω ∧ ϕ and Λ is the adjoint operator of L.

Proof. See Appendix Lemma 8.7.

In the rest of this section E is assumed to be an Hermitian complex vector bundles or a
Riemannian real vector bundle over a compact Hermitian manifold M .

Lemma 4.4. Let ∇E be a metric connection on E over a compact Hermitian manifold
(M,ω). If τ is the operator of type (1, 0) defined by τ = [Λ, 2∂ω] on Ω•(M,E), then

(1) [∂
∗
E, L] =

√
−1(∂E + τ);

(2) [∂∗E , L] = −
√
−1(∂E + τ);

(3) [Λ, ∂E ] =
√
−1(∂

∗
E + τ∗) ;

(4) [Λ, ∂E ] = −
√
−1(∂∗E + τ∗).

Proof. See Appendix Lemma 8.10.

Theorem 4.5. Let ∇E be a metric connection E over a compact Hermitian manifold (M,ω).

∆∂E
= ∆∂E +

√
−1
[
∂E∂E + ∂E∂E ,Λ

]
+ (∂Eτ

∗ + τ∗∂E)− (∂Eτ
∗ + τ∗∂E) (4.17)

where {
∆∂E

= ∂E∂
∗
E + ∂

∗
E∂E

∆∂E = ∂E∂
∗
E + ∂∗E∂E

(4.18)

15



Proof. It follows from Lemma 4.4.

We make a useful observation on the torsion τ :

Lemma 4.6. For any s ∈ Γ(M,E), we have

τ(s) = −2
√
−1
(
∂
∗
ω
)
· s, τ(s) = 2

√
−1 (∂∗ω) · s (4.19)

Proof. By definition

([Λ, 2∂ω]) s = 2Λ ((∂ω) · s)
= 2 (Λ(∂ω)) · s
= −2

√
−1
(
∂
∗
ω
)
· s

Here we use the identity
∂
∗
ω =

√
−1Λ(∂ω) (4.20)

where the proof of it is contained in Lemma 8.8 of the Appendix.

Corollary 4.7. If (M,ω) is a compact balanced Hermitian manifold, and ∇E a metric con-
nection on E over M , then

‖∂Es‖2 = ‖∂Es‖2 +
(√

−1
[
∂E∂E + ∂E∂E ,Λ

]
s, s
)

(4.21)

for any s ∈ Γ(M,E).

Proof. Since for any s ∈ Γ(M,E), τs = τs = 0 and τ∗s = τ∗s = 0 on a balanced Hermitian
manifold.

Theorem 4.8. Let (M,ω) be an Hermitian manifold with ∂∂ωn−1 = 0. If ∇E is a metric
connection on E over M , then

0 = ‖∂Es‖2 = ‖∂Es‖2 +
(√

−1
[
∂E∂E + ∂E∂E ,Λ

]
s, s
)

(4.22)

for any s ∈ Γ(M,E) with ∂Es = 0.

Proof. We only have to prove that

(
(∂Eτ

∗ + τ∗∂E)s− (∂Eτ
∗ + τ∗∂E)s, s

)
= 0 (4.23)

which is equivalent to (∂Es, τs) = 0 since τ∗s = τ∗s = ∂Es = 0. By formula 4.19 and Stokes’
Theorem,

(τ∗∂Es, s) = (∂Es, τs) =

∫

M

{∂Es, ∗(τs)}

= 2
√
−1

∫

M

{
∂Es, ∗

(
∂
∗
ω · s

)}

= 2
√
−1

∫

M

{
∂Es,

(
∗∂∗ω

)
· s
}

= −2
√
−1

∫

M

{
s, ∂E

((
∗∂∗ω

)
· s
)}

= −2
√
−1

∫

M

{
s,
(
∂ ∗ ∂∗ω

)
· s−

(
∗∂∗ω

)
∧ ∂Es

}
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It is easy to see that
∂ ∗ ∂∗ω = −∂ ∗ ∗∂ ∗ ω = cn∂∂ω

n−1 = 0 (4.24)

since ∗ω = cnω
n−1 where cn is a constant depending only on the complex dimension of M .

Hence

(∂Es, τs) = 2
√
−1

∫

M

{
s,
(
∗∂∗ω

)
∧ ∂Es

}
= 0 (4.25)

since ∂Es = 0.

Remark 4.9. By these formula, we can obtain classical vanishing theorems on Kähler man-
ifolds and rigidity of harmonic maps between Hermitian and Riemannian manifolds.

5 Vanishing theorems on Hermitian manifolds

5.1 Vanishing theorems on compact Hermitian manifolds

Let E be an Hermitian complex (possibly non-holomorphic) vector bundle or a Riemannian
real vector bundle over a compact Hermitian manifold (M,ω). Let ∂E , ∂E be the (1, 0), (0, 1)
part of ∇E respectively. The (1, 1)-curvature of ∇E is denoted by RE ∈ Γ(M,Λ1,1T ∗M ⊗
E∗⊗E). It is a representation of the operator ∂E∂E+∂E∂E . We can define harmonic section
spaces associated to (E,∇E) by

Hp,q

∂E
(M,E) = {ϕ ∈ Ωp,q(M,E) | ∂Eϕ = ∂

∗
Eϕ = 0} (5.1)

In general, on a complex vector bundle E, there is no such terminology like “holomorphic
section of E”. However, if the vector bundle E is holomorphic and ∇E is the Chern connec-
tion of E i.e. ∂E = ∂, then Hp,q

∂E
(M,E) is isomorphic to the Dolbeault cohomology group

Hp,q

∂
(M,E) and H0

∂
(M,E) is the holomorphic section spaces H0(M,E) of E.

Definition 5.1. Let A be an r× r Hermitian matrix and λ1 ≤ · · · ≤ λr be eigenvalues of A.
A is said to be p-nonnegative (resp. positive, negative, nonpositive) for 1 ≤ p ≤ r if

λi1 + · · · + λip ≥ 0( resp. > 0, < 0,≤ 0) for any 1 ≤ i1 < i2 < · · · < ip ≤ n (5.2)

Theorem 5.2. Let ∇E be any metric connection of an Hermitian complex vector bundle or
a Riemannian real vector bundle E over a compact Hermitian manifold (M,h, ω).

(1) If the second Hermitian-Ricci curvature TrωR
E is nonpositive everywhere, then every

∂E-closed section of E is parallel, i.e. ∇Es = 0;

(2) If the second Hermitian-Ricci curvature TrωR
E is nonpositive everywhere and negative

at some point, then H0
∂E

(M,E) = 0;

(3) If the second Hermitian-Ricci curvature TrωR
E is p-nonpositive everywhere and p-negative

at some point, then H0
∂E

(M,ΛqE) = 0 for any p ≤ q ≤ rank(E).

Proof. By [21], there exists a smooth function u : M −−→ R such that ωG = euω is a
Gauduchon metric, i.e. ∂∂ωn−1

G = 0. Now we replace the metric ω on M by the Gauduchon
metric ωG. By the relation ωG = euω, we get

TrωG
RE = e−uTrωR

E (5.3)
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Therefore, the positivity conditions in the Theorem are preserved. Let s ∈ Γ(M,E) with
∂Es = 0, by formula 4.22, we obtain

0 = ‖∂Es‖2 +
(√

−1
[
∂E∂E + ∂E∂E ,ΛG

]
s, s
)
= ‖∂Es‖2 −

(
TrωG

REs, s
)

(5.4)

where
RE = ∂E∂E + ∂E∂E = Rβ

ijα
dzi ∧ dzj ⊗ eα ⊗ eβ (5.5)

Since the second Hermitian-Ricci curvature TrωG
RE has components

Rαβ = hijGRijαβ (5.6)

formula 5.4 can be written as

0 = ‖∂Es‖2 −
∫

M

Rαβs
αsβ (5.7)

Now (1) and (2) follow by identity 5.7 with the curvature conditions immediately. For (3),
we set F = ΛqE with p ≤ q ≤ r = rank(E). Let λ1 ≤ · · · ≤ λr be the eigenvalues of TrωG

RE,
then we know

λ1 + · · ·+ λp ≥ 0 (5.8)

and it is strictly positive at some point. If p ≤ q ≤ r, the smallest eigenvalue of TrωG
RF is

λ1+· · ·+λq ≥ 0 and it is strictly positive at some point. By (2), we knowH0
∂E

(M,F ) = 0.

If ∇E is the Chern connection of the Hermitian holomorphic vector bundle E, we know

H0
∂E

(M,E) ∼= H0(M,E)

since ∂E = ∇′′E = ∂ for the Chern connection.

Corollary 5.3 (Kobayashi-Wu[31], Gauduchon [19]). Let ∇E be the Chern connection of an
Hermitian holomorphic vector bundle E over a compact Hermitian manifold (M,h, ω).

(1) If the second Ricci-Chern curvature TrωR
E is nonpositive everywhere, then every holo-

morphic section of E is parallel, i.e. ∇Es = 0;

(2) If the second Ricci-Chern curvature TrωR
E is nonpositive everywhere and negative at

some point, then E has no holomorphic section, i.e. H0(M,E) = 0;

(3) If the second Ricci-Chern curvature TrωR
E is p-nonpositive everywhere and p-negative

at some point, then ΛqE has no holomorphic section for any p ≤ p ≤ rank(E).

Now we can apply it to the tangent and cotangent bundles of compact Hermitian manifolds.

Corollary 5.4. Let (M,ω) be a compact Hermitian manifold and Θ is the Chern curvature
of the Chern connection ∇CH on the holomorphic tangent bundle T 1,0M .

(1) If the second Ricci-Chern curvature Θ(2) is nonpositive everywhere and negative at some
point, then M has no holomorphic vector field, i.e. H0(M,T 1,0M) = 0;

(2) If the second Ricci-Chern curvature Θ(2) is nonnegative everywhere and positive at some
point, then M has no holomorphic p-form for any 1 ≤ p ≤ n, i.e. Hp,0

∂
(M) = 0; In

particular, the arithmetic genus

χ(M,O) =
∑

(−1)php,0(M) = 1 (5.9)
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(3) If the second Ricci-Chern curvature Θ(2) is p-nonnegative everywhere and p-positive at
some point, then M has no holomorphic q-form for any p ≤ q ≤ n, i.e. Hq,0

∂
(M) = 0.

In particular, if the scalar curvature SCH is nonnegative everywhere and positive at
some point, then H0(M,mKM ) = 0 for all m ≥ 1 where KM is the canonical line
bundle of M .

Proof. Let E = T 1,0M and h be an Hermitian metric on E such that the second Ricci-Chern
curvature Trωh

Θ of (E, h) satisfies the assumption. It is obvious that all section spaces in
consideration are independent of the choice of the metrics and connections.

The metric on the vector bundle E is fixed. Now we choose a Gauduchon metric ωG = euωh

on M . Then the second Ricci-Chern curvature Θ̃(2) = TrωG
Θ = e−uTrωh

Θ shares the semi-
definite property with Θ(2) = Trωh

Θ. For the safety, we repeat the arguments in Theorem
5.2 briefly. If s is a holomorphic section of E, i.e., ∂Es = ∂s = 0, by formula 4.22, we obtain

0 = ‖∂Es‖2 +
(√

−1
[
∂E∂E + ∂E∂E ,ΛG

]
s, s
)
= ‖∂Es‖2 − (TrωG

Θs, s) (5.10)

If TrωΘ is nonpositive everywhere, then ∂Es = 0 and so ∇Es = 0. If TrωΘ is nonpositive
everywhere and negative at some point, we get s = 0, therefore H0(M,T 1,0M) = 0. The
proofs of the other parts are similar.

Remark 5.5. It is well-known that the first Ricci-Chern curvature Θ(1) represents the first
Chern class of M . But on an Hermitian manifold, it is possible that the second Ricci-Chern
curvature Θ(2) is not in the same (d, ∂, ∂)-cohomology class as Θ(1). For example, S3 × S

1

with canonical metric has strictly positive second Ricci-Chern curvature but it is well-known
that it has vanishing first Chern number c21. For more details see Proposition 6.4. Therefore,
Θ(2) in Proposition 5.4 can not be replaced by Θ(1). It seems to be an interesting question:
if (M,ω) is a compact Hermitian manifold and its first Ricci-Chern curvature is nonnegative
everywhere and positive at some point, is the first Betti number of M zero? In particular, is
it Kähler in dimension 2?

As special cases of our results, the following results for Kähler manifolds are well-known,
and we list them here for the convenience of the reader. Let (M,h, ω) be a compact Kähler
manifold.

(1) If the Ricci curvature is nonnegative everywhere, then any holomorphic (p, 0) form is
parallel;

(2) If the Ricci curvature is nonnegative everywhere and positive at some point, then hp,0 = 0
for p = 1, · · · , n. In particular, the arithmetic genus χ(M,O) = 1 and b1(M) = 0;

(3) If the scalar curvature is nonnegative everywhere and positive at some point, then hn,0 =
0.

(A) If the Ricci curvature is nonpositive everywhere, then any holomorphic vector field is
parallel;

(B) If the Ricci curvature is nonpositive everywhere and negative at some point, there is no
holomorphic vector field.
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5.2 Vanishing theorems on special Hermitian manifolds

Let (M,h, ω) be a compact Hermitian manifold and ∇ be the Levi-Civita connection.

Lemma 5.6. Let (M,ω) be a compact balanced Hermitian manifold. For any (p, 0)-form ϕ
on M ,

(1) If ϕ is holomorphic, then ∂∗ϕ = 0;

(2) If ∇′ϕ = 0, then ∂ϕ = 0.

Proof. For simplicity, we assume p = 1. For the general case, the proof is the same. By
Lemma 8.5, we know, for any (1, 0)-form ϕ = ϕidz

i,

∂∗ϕ = −hij ∂ϕi

∂zj
(5.11)

where we use the balanced condition hijΓs
ij

= 0. If ϕ is holomorphic, then ∂ϕi

∂zj
= 0, hence

∂∗ϕ = 0. On the other hand,

∇′ϕ =

(
∂ϕi

∂zj
− Γm

jiϕm

)
dzj ⊗ dzi (5.12)

If ∇′ϕ = 0, we obtain

∂ϕ =
∂ϕi

∂zj
dzj ∧ dzi = Γm

jiϕmdz
j ∧ dzi = 0 (5.13)

Theorem 5.7. Let (M,ω) be a compact balanced Hermitian manifold with Levi-Civita con-
nection ∇.

(1) If the Hermitian-Ricci curvature (Rij) is p-nonnegative everywhere, then any holomor-

phic (q, 0)-form (p ≤ q ≤ n) is ∂-harmonic; in particular, hq,0(M) ≤ h0,q(M) for any
p ≤ q ≤ n;

(2) If the Hermitian-Ricci curvature (Rij) is p-nonnegative everywhere and p-positive at

some point, Hq,0

∂
(M) = 0 for any p ≤ q ≤ n;

In particular,

(3) if the Hermitian-Ricci curvature (Rij) is nonnegative everywhere and positive at some

point, then Hp,0

∂
(M) = 0, for p = 1, · · · , n and so the arithmetic genus χ(M,O) = 1

and b1(M) ≤ h0,1(M).

(4) if the Hermitian-scalar curvature S is nonnegative everywhere and positive at some point,
then

H0(M,mKM ) = 0 for any m ≥ 1

where KM = detT ∗1,0M .

Proof. At first, we assume p = 1 for (1) and (2). Now we consider E = T ∗1,0M with the
induced metric connection ∇E = ∇̂ for h (see 2.22). By formula 4.7, we have

‖∂Es‖2 = ‖∂Es‖2 +
√
−1
([
RE,Λ

]
s, s
)

(5.14)
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where RE is the (1, 1)-part curvature of E with respect to the connection ∇E. More precisely,

RE = ∂E∂E + ∂E∂E = −R̂ℓ
ijk
dzi ∧ dzj ⊗ ∂

∂zℓ
⊗ dzk (5.15)

since E is the dual vector bundle of T 1,0M and the (1, 1)-part of the curvature of T 1,0M is

R̂ℓ
ijk
dzi ∧ dzj ⊗ dzk ⊗ ∂

∂zℓ
(5.16)

If s = fidz
i is a holomorphic 1-form, i.e.

∂s =
∂fi
∂zj

dzj ∧ dzi = 0 (5.17)

then

∂Es =

(
∂fi
∂zj

− fkΓ
k
ji

)
dzj ⊗ dzi = −fkΓk

ji
dzj ⊗ dzi (5.18)

Without loss of generality, we assume hij = δij at a given point. By Proposition 2.12, the
quantity

|∂Es|2 =
∑

i,j,t,n

fifnΓjtiΓjtn =
∑

i,n

(
R̂

(2)

ni
−Rni

)
fifn (5.19)

On the other hand √
−1
〈[
RE,Λ

]
s, s
〉
=
∑

i,n

R̂
(2)

ni
fifn (5.20)

That is
|∂Es|2 −

√
−1
〈[
RE,Λ

]
s, s
〉
= −

∑

i,n

Rnififn ≤ 0 (5.21)

if the Hermitian-Ricci curvature (Rni) of (M,h, ω) is nonnegative everywhere. Then we get

0 ≤ ‖∂Es‖2 = ‖∂Es‖2 −
√
−1
([
RE,Λ

]
s, s
)
≤ 0 (5.22)

That is ∂Es = 0. Since

∂Es = ∇′Es = ∇̂′s = ∇′s =

(
∂fi
∂zj

− fℓΓ
ℓ
ij

)
dzj ⊗ dzi

we obtain ∇′s = 0. By Lemma 5.6, we know ∆∂s = 0. In summary, we get

H1,0

∂
(M) ⊂ H1,0

∂ (M) ∼= H0,1

∂
(M) (5.23)

If the Hermitian-Ricci curvature (Rni) is nonnegative everywhere and positive at some point,

then fi = 0 for each i, that is s = 0. So we proved H1,0

∂
(M) = 0. The general cases follow by

the same arguments as Theorem 5.2 and Theorem 5.4.

The dual of Theorem 5.7 is

Theorem 5.8. Let (M,h, ω) be a compact balanced Hermitian manifold.

(1) If 2R̂
(2)

ij
−Rij is nonpositive everywhere, then any holomorphic vector field is ∇′-closed;

(2) If 2R̂
(2)

ij
−Rij is nonpositive everywhere and negative at some point, there is no holomor-

phic vector field.
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Proof. Let E = T 1,0M and ∇̂ the induced connection on it. If s = f i ∂
∂zi

is a holomorphic
section, then

∂Es = f iΓℓ
ji
dzj ⊗ ∂

∂zℓ
(5.24)

Without loss generality, we assume hij = δij at a given point. By Proposition 2.12,

|∂Es|2 −
√
−1
〈[
R̂1,1,Λ

]
s, s
〉

=
(
R̂

(2)

ij
−Rij

)
f if

j
+ R̂

(2)

ij
f if

j

=
(
2R̂

(2)

ij
−Rij

)
f if

j

By formula 4.17,

0 ≤ ‖∂Es‖2 = ‖∂Es‖2 −
√
−1
([
R̂1,1,Λ

]
s, s
)

(5.25)

So if 2R̂
(2)

ij
− Rij is nonpositive everywhere, ∂Es = ∇′s = 0. If 2R̂

(2)

ij
− Rij is nonpositive

everywhere and negative at some point, there is no holomorphic vector field.

Remark 5.9. (1) It is obvious that the second Ricci-Chern curvature Θ
(2)

kℓ
and Hermitian-

Ricci curvature Rkℓ can not be compared. Therefore, Theorem 5.4 and Theorem 5.7
are independent of each other. For the same reason, Theorem 5.4 and Theorem 5.8 are
independent.

(2) For a special case in Theorem 5.7, if the Hermitian-Ricci curvature Rkℓ is nonnegative
everywhere and positive at some point, by Proposition 3.5, the manifold (M,ω) is
Moishezon. It is well-known that every 2-dimensional Moishezon/balanced manifold is
Kähler, but there are many Moishezon non-Kähler manifolds in higher dimension( See
[36]).

The following result was firstly obtained in [25]:

Corollary 5.10. Let (M,ω) be a compact Hermitian manifold with Λ(∂∂ω) = 0. Let ∇B be
the Bismut connection on T 1,0M .

(1) If the first Ricci-Bismut curvature B(1) is nonnegative everywhere, then every holomor-
phic (p, 0)-form is parallel with respect to the Chern connection ∇CH ;

(2) If the first Ricci-Bismut curvature B(1) is nonnegative everywhere and positive at some
point, then M has no holomorphic (p, 0)-form for any 1 ≤ p ≤ n, i.e. Hp,0

∂
(M) = 0; in

particular, the arithmetic genus χ(M,O) = 1.

(3) If the first Ricci-Bismut curvature B(1) is p-nonnegative everywhere and p-positive at
some point thenM has no holomorphic (q, 0)-form for any p ≤ q ≤ n, i.e. Hq,0

∂
(M) = 0.

In particular, if the scalar curvature SBM of the Bismut connection is nonnegative
everywhere and positive at some point, then H0(M,mKM ) = 0 for any m ≥ 1.

Proof. By Proposition 3.7, if Λ(∂∂ω) = 0, then

B(1) ≤ Θ(2) (5.26)

Now we can apply Corollary 5.4 to get (1), (2) and (3).

Remark 5.11. For more vanishing theorems on special Hermitian manifolds, one can see
[1], [25], [16], [17] and references therein.
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6 Examples of non-Kähler manifolds with nonnegative curva-

tures

Let M = S
2n−1 × S

1 be the standard n-dimensional (n ≥ 2) Hopf manifold. It is diffeo-
morphic to C

n − {0}/G where G is cyclic group generated by the transformation z → 1
2z. It

has an induced complex structure of Cn − {0}. For more details about such manifolds, we
refer the reader to [30]. On M , there is a natural metric

h =
n∑

i=1

4

|z|2 dz
i ⊗ dzi (6.1)

The following identities follow immediately

∂hkℓ
∂zi

= −4δkℓz
i

|z|4 ,
∂hkℓ
∂zj

= −4δkℓz
j

|z|4 (6.2)

and
∂2hkℓ
∂zi∂zj

= −4δkℓ
δij |z|2 − 2zizj

|z|6 (6.3)

Example 6.1 (Curvatures of Chern connection). Direct computation shows that, the Chen
curvature components are

Θijkℓ = − ∂2hkℓ
∂zi∂zj

+ hpq
∂hkq
∂zi

∂hpℓ

∂zj
=

4δkl(δij |z|2 − zjzi)

|z|6 (6.4)

and the first and second Ricci-Chern curvatures are

Θ
(1)

kℓ
=
n
(
δkℓ|z|2 − zℓzk

)

|z|4 , Θ
(2)

kℓ
=

(n− 1)δkℓ
|z|2 (6.5)

It is easy to see that the eigenvalues of Θ(1) are

λ1 = 0, λ2 = · · · = λn =
n

|z|2 (6.6)

Hence, Θ(1) is nonnegative and 2-positive everywhere.

Example 6.2 (Curvatures of Levi-Civita connection). Similarly, we have

Γℓ
ik = −δiℓz

k + δkℓz
i

2|z|2 , Γℓ
jk

=
δjkz

ℓ − δkℓz
j

2|z|2 (6.7)

and
∂Γℓ

ik

∂zj
= −δkℓδij + δiℓδjk

2|z|2 +
δiℓz

jzk + δkℓz
jzi

2|z|4 (6.8)

∂Γℓ
jk

∂zi
=
δjkδiℓ − δkℓδij

2|z|2 − (δjkz
ℓ − δkℓz

j)zi

2|z|4 (6.9)

The complexified Riemannian curvature components are

Rℓ
ijk

= −
(
∂Γℓ

ik

∂zj
−
∂Γℓ

jk

∂zi
+ Γs

ikΓ
ℓ
js
− Γs

jk
Γℓ
is − Γs

jk
Γℓ
is

)
=
δiℓδjk
2|z|2 − δiℓz

jzk + δjkz
ℓzi

4|z|4 (6.10)

and

Rijkℓ =
2δiℓδjk
|z|4 − δiℓz

jzk + δjkz
ℓzi

|z|6 , Rkℓ =
δkℓ|z|2 − zℓzk

2|z|4 (6.11)
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Example 6.3 ( Curvatures of Bismut connection). By definition 2.45 and Lemma 2.10, we
obtain

Bℓ
ijk

=
δjkδiℓ − δkℓδij

|z|2 +
δijz

kzℓ + δkℓz
izj − δiℓz

kzj − δjkz
izℓ

|z|4 (6.12)

Two Ricci curvatures are

B
(1)

ij
= B

(2)

ij
=

(2− n)(δij |z|2 − zizj)

4|z|2 (6.13)

On the other hand, by 6.3, it is easy to see ∂∂ω = 0 and B(1) = 0 for n = 2.

Proposition 6.4. Let M = S
2n−1×S

1 be the standard n-dimensional (n ≥ 2) Hopf manifold
with canonical metric h,

(1) (M,h) has positive second Ricci-Chern curvature Θ(2);

(2) (M,h) has nonnegative first Ricci-Chern curvature Θ(1), i.e., c1(M) ≥ 0. Moreover,

∫

M

cn1 (M) = 0 (6.14)

(3) (M,h) is semi-positive in the sense of Griffiths, i.e.

Θijkℓu
iujvkvℓ ≥ 0 (6.15)

for any u, v ∈ C
n;

(4) Rkℓ is nonnegative and 2-positive everywhere;

(5) (M,h) has nonpositive and 2-negative first Ricci-Bismut curvature. In particular, (S3 ×
S
1, ω) satisfies ∂∂ω = 0 and has vanishing first Ricci-Bismut curvature B(1).

Although we know all Betti numbers of Hopf manifold S
2n−1 × S

1, hp,0 is not so obvious.

Corollary 6.5. Let (M,h) be n-dimensional Hopf manifold with n ≥ 2,

(1) hp,0(M) = 0 for p ≥ 1 and χ(M,O) = 1. In particular, h0,1(M) ≥ 1.

(2) dimCH
0(M,mK) = 0 for any m ≥ 1 where K = det(T ∗1,0M).

7 A natural geometric flow on Hermitian manifolds

As we discussed in the above sections, on Hermitian manifolds, the second Ricci curvature
tensors of various metric connections are closely related to the geometry of Hermitian man-
ifolds. A natural idea is to define a flow by using second Ricci curvature tensors of various
metric connections. We describe it in the following.

Let (M,h) be a compact Hermitian manifold. Let ∇ be an arbitrary metric connection on
the holomorphic tangent bundle (E, h) = (T 1,0M,h).

∇ : E −−→ Ω1(E) (7.1)

It has two components ∇′

and ∇′′

,

∇ = ∇′

+∇′′

(7.2)
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∇′

and ∇′′

induce two differential operators

∂E : Ωp,q(E) −−→ Ωp+1,q(E) (7.3)

∂E : Ωp,q(E) −−→ Ωp,q+1(E) (7.4)

Let RE be the (1, 1) curvature of the metric connection ∇. More precisely RE is a represen-
tation of ∂E∂E + ∂E∂E . It is easy to see that

RE ∈ Γ(M,Λ1,1T ∗M ⊗ End(E)) (7.5)

and locally, we can write it as

RE = RB
ijA
dzi ∧ dzj ⊗ eA ⊗ eB (7.6)

Here we set eA = ∂
∂zA

, eB = dzB where A,B = 1, · · · , n, since the geometric meanings of
j and A are different. It is well-known that a metric connection ∇ is determined by its
Christoffel symbols

∇ ∂

∂zi
eA = ΓB

iAeB , ∇ ∂

∂zj
eA = ΓB

jA
eB (7.7)

In particular, we don’t have notations such as ΓB
Ai. It is obvious that

RA
ijB

= −∂Γ
B
iA

∂zj
+
∂ΓB

jA

∂zi
− ΓC

iAΓ
B
jC

+ ΓC
jA
ΓB
iC (7.8)

We set the second Hermitian-Ricci curvature tensor of (∇, h) as

R(2) = hijRijABe
A ⊗ eB ∈ Γ(M,E∗ ⊗ E

∗
) (7.9)

In general we can study a new class of flows on Hermitian manifolds

{
∂h
∂t

= F(h) + µh

h(0) = h0
(7.10)

where F can be a linear combination of the first and the second Hermitian-Ricci curvature
tensors of different metric connections on (T 1,0M,h). For examples, F(h) = −Θ(2), the
second Ricci-Chern curvature tensor of the Chern connection, and F(h) = −R̂(2), the second
Hermitian-Ricci curvature tensor of the complexified Levi-Civita connection, or the second
Ricci curvature of any other Hermitian connection. Quite interesting is to take F(h) =
sΘ(1) + (1 − s)Θ(2) as the mixed Ricci-Chern curvature, or F(h) = B(2) − 2R̂(2) where B(2)

is the second Ricci curvature of the Bismut connection. More generally, we can set F(h) to
be certain suitable functions on the metric h. For example, if F(h) = (∆hS)h, the above
equation will be the Hermitian Calabi flows.

The following result holds for quite general F(h), but here for simplicity we will only take
F(h) = −Θ(2) as an example.

{
∂h
∂t

= −Θ(2) + µh

h(0) = h0
(7.11)

where µ is a real parameter. By formula 2.38, the second Ricci-Chern curvature tensor has
components

Θ
(2)

kℓ
= hijΘijkℓ = −hij ∂

2hkℓ
∂zi∂zj

+ hijhpq
∂hkq
∂zi

∂hpℓ

∂zj
(7.12)
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Theorem 7.1. Let (M,h0) be a compact Hermitian manifold.

(1) There exists small ε such that, the solution of flow 7.11 exists for |t| < ε, and it preserves
the Hermitian structure;

(2) The flow 7.11 preserves the Kähler structure, i.e., if the initial metric h0 is Kähler, then
h(t) are also Kähler.

Proof. (1). Let ∆c be the canonical Laplacian operator on the Hermitian manifold (M,h)
defined by

∆c = hpq
∂2

∂zp∂zq
. (7.13)

Therefore, the second Ricci-Chern curvature −Θ
(2)

ij
has leading term ∆chij which is strictly

elliptic. The local existence of the flow 7.11 follows by general theory of parabolic PDE, and
the solution is an Hermitian metric on M .

(2). The coefficients of the tensor ∂ω are given by

fijk =
∂hij
∂zk

−
∂hkj
∂zi

(7.14)

Under the flow 7.11, we have




∂fijk
∂t

=
∂Θ

(2)

kj

∂zi
−

∂Θ
(2)

ij

∂zk
+ µfijk

fijk(0) = 0
(7.15)

At first, we observe that fijk(t) ≡ 0 is a solution of 7.15. In fact, if fijk(t) ≡ 0, then hij(t)
are Kähler metrics, and so

Θ
(2)

ij
= Θ

(1)

ij
= −∂

2 log det(hmn)

∂zi∂zj

Therefore,

∂Θ
(2)

kj

∂zi
−
∂Θ

(2)

ij

∂zk
= −∂

3 log det(hmn)

∂zi∂zk∂zj
+
∂3 log det(hmn)

∂zi∂zk∂zj
= 0 (7.16)

On the other hand,

∂Θ
(2)

kj

∂zi
−
∂Θ

(2)

ij

∂zk
= ∆c

(
fijk

)
+ lower order terms (7.17)

Hence the solution of 7.15 is unique.

Remark 7.2. Theorem 7.1 holds also for quite general F(h) which we will study in detail
in a subsequent paper [33].

The flow 7.11 has close connections to several important geometric flows:

1. It is very similar to the Hermitian Yang-Mills flow on holomorphic vector bundles. More
precisely, if the flow 7.11 has long time solution and it converges to an Hermitian metric
h∞ such that

Θ
(2)

ij
= µhij (7.18)

The Hermitian metric h∞ is Hermitian-Einstein. So, by [34], the holomorphic tangent
bundle T 1,0M is stable. As shown in Example 6.1, the Hopf manifold S

2n+1 × S
1 is

stable for any n ≥ 1. In fact, in the definition of Θ
(2)

ij
, if we take trace by using the

initial metric h0, then we get the original Hermitian-Yang-Mills flow equation.
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2. If the initial metric is Kähler, then this flow is reduced to the usual Kähler-Ricci
flow([6]).

3. The flow 7.11 is similar to the harmonic map flow equation as shown in Theorem 7.1.
It is strictly parabolic, and so the long time existence depends on certain curvature
condition of the target manifold as discussed in the pioneering work of Eells-Sampson
in [11]. The long time existence of this flow and other geometric properties of our new
flow will be studied in our subsequent work.

Certain geometric flows and related results have been considered on Hermitian manifolds
recently, we refer the reader to [43], [44], [45] and [22].

8 Appendix: The proof of the refined Bochner formulas

Lemma 8.1. On a compact Hermitian manifold (M,h, ω), we have

[Λ, 2∂ω] = A+B + C (8.1)

where {
A = −hkℓhimΓm

sℓ
dzs ∧ dziIk

A
∗
= −hstΓi

sk
dzkIiIt

(8.2)

{
B = −2Γℓ

ij
dzi ∧ dzjIℓ

B
∗
= 2hpjΓs

ℓj
dzℓIpIs

(8.3)

{
C = Λ(2∂ω) = 2Γℓ

jℓ
dzj

C
∗
= 2hjℓΓs

jsIℓ = −2hjiΓℓ
ji
Iℓ

(8.4)

Moreover,

(1) [Λ, A] = −
√
−1B

∗
;

(2) [Λ, B] = −
√
−1(2A

∗
+B

∗
+ C

∗
);

(3) [Λ, C] = −
√
−1C

∗
.

Proof. All formulas follow by direct computation.

Definition 8.2. With respect to ∇′ and ∇′′, we define

{
D′ := dzi ∧ ∇′

i

D′′ := dzj ∧ ∇′′
j

(8.5)

The dual operators of ∂, ∂,D′,D′′ with respect to the norm in 4.13 are denoted by ∂∗, ∂
∗
, δ′, δ′′

and define {
δ′0 := −hijIi∇′′

j

δ′′0 := −hjiIi∇′
j

(8.6)

where I the contraction operator and Ii = I ∂

∂zi
and Ii = I ∂

∂zi
.

Remark 8.3. It is obvious that these first order differential operators D′,D′′, δ′0 and δ′′0 are
well-defined and they don’t depend on the choices of holomorphic frames. If (M,h) is Kähler,
D′ = ∂, D′′ = ∂, δ′0 = δ′ = ∂∗ and δ′′0 = δ′′ = ∂

∗
.
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Lemma 8.4. In the local holomorphic coordinates,

∂ = D′ − B

2
and ∂ = D′′ − B

2
(8.7)

Proof. We only have to check them on functions and 1-forms.

Lemma 8.5. On a compact Hermitian manifold (M,h), we have

{
δ′′ = δ′′0 − C

∗

2

δ′ = δ′0 − C∗

2

(8.8)

For ∂ and ∂, we have {
∂∗ = δ′0 − B∗+C∗

2

∂
∗
= δ′′0 − B

∗

+C
∗

2

(8.9)

Proof. For any ϕ ∈ Ωp,q−1(M) and ψ ∈ Ωp,q(M), by stokes’ theorem

0 =

∫

M

∂(ϕ ∧ ∗ψ)

=

∫

M

∂

∂zj
(
dzj ∧ ϕ ∧ ∗ψ

)

=

∫

M

∂

∂zj

(
〈dzj ∧ ϕ,ψ〉ω

n

n!

)

=

∫

M

∂

∂zj

(〈
ϕ, hjiIiψ

〉 ωn

n!

)

=

∫

M

(〈
∇′′

j
ϕ, hjiIiψ

〉
+
〈
ϕ,∇′

jh
jiIiψ

〉
+
〈
ϕ, hjiIiψ

〉 ∂ log det(hmn)

∂zj

)
ωn

n!

=

∫

M

(〈
dzj ∧ ∇′′

j
ϕ,ψ

〉
+
〈
ϕ, hji∇′

jIiψ
〉
+

〈
ϕ,
∂hji

∂zj
Iiψ

〉
+
〈
ϕ, hjiIiψ

〉 ∂ log det(hmn)

∂zj

)
ωn

n!

That is

(D′′ϕ,ψ) =
(
dzj ∧ ∇′′

j
ϕ,ψ

)
= −

(
ϕ, hji∇′

jIiψ
)
−
(
ϕ,

(
∂hji

∂zj
+ hji

∂ log det(hmn)

∂zj

)
Iiψ

)

(8.10)
Now we will compute the second and third terms on the right hand side.

∂hji

∂zj
+ hji

∂ log det(hmn)

∂zj
= hjihst

(
∂hst
∂zj

−
∂hjt
∂zs

)
= 2hjiΓt

jt
= −2hjℓΓi

jℓ
(8.11)

On the other hand

− hji∇′
jIi = −hjiIi∇′

j − hjiI

(
∇′

j

∂

∂zi

)

= δ′′0 − hjiΓℓ
ji
Iℓ (8.12)

In summary, by 8.10, 8.11 and 8.12, the adjoint operator δ′′ of D′′ is

δ′′ =
(
δ′′0 − hjiΓℓ

ji
Iℓ

)
+ 2hjiΓℓ

ji
Iℓ = δ′′0 − C

∗

2
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Since ∂ = D′′ − B
2 , we get

∂
∗
= δ′′ − B

∗

2
= δ′′0 − B

∗
+ C

∗

2

Lemma 8.6. On a compact Hermitian manifold (M,h), we have

{
[Λ,D′] =

√
−1
(
δ′′ + C

∗

2

)

[Λ,D′′] = −
√
−1(δ′ + C∗

2 )
and

{
[δ′′, L] =

√
−1(D′ + C

2 )

[δ′, L] = −
√
−1(D′′ + C

2 )
(8.13)

Proof. By definition

(ΛD′)ϕ =
(√

−1hijIiIj

)
(dzk ∧ ∇′

kϕ)

= −
√
−1hijIi

(
dzk ∧ Ij∇′

kϕ
)

= −
√
−1hijIj∇′

iϕ+
√
−1hijdzkIiIj∇′

kϕ

=
√
−1δ′′0 + dzk ∧ ∇′

k

(√
−1hijIiIjϕ

)

=
√
−1δ′′0 +D′Λϕ

where we use the metric compatible condition

∇′ω = 0 =⇒ ∇′
k(Λϕ) = Λ(∇′

kϕ) (8.14)

Lemma 8.7. On a compact Hermitian manifold (M,h), we have

{
[Λ, ∂] =

√
−1
(
∂
∗
+ τ∗

)

[
Λ, ∂

]
= −

√
−1(∂∗ + τ∗)

(8.15)

For the dual case, it is {
[∂

∗
, L] =

√
−1(∂ + τ)

[∂∗, L] = −
√
−1(∂ + τ)

(8.16)

Proof. By Lemma 8.6, 8.4 and 8.1,

[Λ, ∂] = [Λ,D′]−
[
Λ,
B

2

]

=
√
−1

(
δ′′0 +

2A
∗
+B

∗
+ C

∗

2

)

=
√
−1

(
δ′′ +

C
∗

2
+

2A
∗
+B

∗
+ C

∗

2

)

=
√
−1(∂

∗
+ τ∗)

The other relations follow by complex conjugate and adjoint operations.
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Lemma 8.8. On an Hermitian manifold (M,h, ω),

∂
∗
ω =

√
−1Λ(∂ω) =

√
−1Γj

ℓj
dzℓ (8.17)

Proof. We have
C

2
= Λ(∂ω) = Γℓ

jℓ
dzj

On the other hand, by Lemma 8.5 and δ′′0ω = 0

∂
∗
ω =

(
δ′′0 − B

∗
+ C

∗

2

)
ω = −B

∗
ω

2
− C

∗

2
ω

=
(
hℓkh

pjhisΓk
ij
dzℓIpIs

)(√
−1

2
hmndz

m ∧ dzn
)
− C

∗

2
ω

= −
√
−1

2
hℓkh

ijΓk
ij
dzℓ − C

∗

2
ω

=

√
−1

2
Γj

ℓj
dzℓ − C

∗

2
ω

=
√
−1Γj

ℓj
dzℓ

=
√
−1Λ(∂ω)

Now we assume E is an Hermitian complex vector bundle or a Riemannian vector bundle
over a compact Hermitian manifold (M,h, ω) and ∇E is a metric connection on E.

Lemma 8.9. We have the following formula:

∂
∗
E(ϕ⊗ s) = (∂

∗
ϕ)⊗ s− hij

(
Ijϕ
)
∧∇E

i s (8.18)

for any ϕ ∈ Ωp,q(M) and s ∈ Γ(M,E).

Proof. The proof of is the same as Lemma 8.5.

Lemma 8.10. If τ is the operator of type (1, 0) defined by τ = [Λ, 2∂ω] on Ω•(M,E), then

(1) [∂
∗
E, L] =

√
−1(∂E + τ);

(2) [∂∗E , L] = −
√
−1(∂E + τ);

(3) [Λ, ∂E ] =
√
−1(∂

∗
E + τ∗) ;

(4) [Λ, ∂E ] = −
√
−1(∂∗E + τ∗).

Proof. We only have to prove (3). For any ϕ ∈ Ω•(M) and s ∈ Γ(M,E),

(Λ∂E)(ϕ ⊗ s) = Λ
(
∂ϕ⊗ s+ (−1)|ϕ|ϕ ∧ ∂Es

)

= (Λ∂ϕ) ⊗ s+ (−1)|ϕ|
√
−1hkℓIkIℓ (ϕ ∧ ∂Es)

= (Λ∂ϕ) ⊗ s+ (−1)|ϕ|
√
−1hkℓIk

((
Iℓϕ
)
∧ ∂Es

)

= (Λ∂ϕ) ⊗ s+ (−1)|ϕ|
√
−1hkℓ

(
Ik
(
Iℓϕ
))

∧ ∂Es−
√
−1hkℓIℓ(ϕ) ∧ Ik∂Es

= (Λ∂ϕ) ⊗ s+ (−1)|ϕ|(Λϕ) ∧ ∂Es−
√
−1hkℓIℓ(ϕ) ∧ ∇E

k s
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On the other hand

(∂EΛ)(ϕ⊗ s) = ∂E ((Λϕ) ⊗ s)

= (∂Λϕ)⊗ s+ (−1)|ϕ|(Λϕ) ∧ ∂Es

Therefore

[Λ, ∂E ](ϕ⊗ s) = ([Λ, ∂]ϕ) ⊗ s−
√
−1hkℓIℓ(ϕ) ∧ ∇E

k s

=
√
−1
((
∂
∗
+ τ∗

)
ϕ
)
⊗ s−

√
−1hkℓIℓ(ϕ) ∧∇E

k s

=
√
−1
(
∂
∗
E + τ∗

)
(ϕ⊗ s)

where the last step follows by 8.18.
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