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Geometry of Hermitian manifolds
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Abstract

On Hermitian manifolds, the second Ricci curvature tensors of various metric connec-
tions are closely related to the geometry of Hermitian manifolds. By refining the Bochner
formulas for any Hermitian complex vector bundle (Riemannain real vector bundle) with
an arbitrary metric connection over a compact Hermitian manifold, we can derive various
vanishing theorems for Hermitian manifolds and complex vector bundles by the second
Ricci curvature tensors. We will also introduce a natural geometric flow on Hermitian
manifolds by using the second Ricci curvature tensor.

1 Introduction

It is well-known([5]) that on a compact Kéhler manifold, if the Ricci curvature is positive,
then the first Betti number is zero; if the Ricci curvature is negative, then there is no holo-
morphic vector field. The key ingredient for the proofs of such results is the Kahler symmetry.
On the other hand, on an Hermitian manifold, we don’t have such symmetry and there are
several different Ricci curvatures. While on a Kéahler manifold, all these Ricci curvatures
coincide, since the Chern curvature on a Kéhler manifold coincides with the curvature of the
(complexified) Levi-Civita connection. We can see this more clearly on an abstract Hermitian
holomorphic bundle E. The Chern connection V¢ on E is the unique connection which
is compatible with the holomorphic structure and the Hermitian metric on £. Hence, the
Chern curvature ©F € I'(M,AMT*M ® E* ® E). There are two methods to take trace of
OF. If we take trace of ©F on the part Fnd(E) = E* ® E, we get a (1,1)-form on M which
it is called the first Ricci curvature. It is well known that the first Ricci curvature represents
the first Chern class of the bundle. On the other hand, if we take trace on the (1,1)-part
using the metric of the manifold, we obtain an endomorphism of E, Tr,0F € I'(M, E* ® E).
It is called the second Ricci curvature of ©F. The first and second Ricci curvatures have
different geometric meanings, which were not clearly studied in some earlier literatures. We
should point out that the nonexistence of holomorphic sections is characterized by the second
Ricci curvature. Let E be the holomorphic tangent bundle TH0M. If M is Kihler, the first
and second Ricci curvature are the same by the Kéahler symmetry. Unfortunately, on an
Hermitian manifold, the Chern curvature is not symmetric, i.e., the first and second Ricci
curvatures are different. Moreover, in general they can not be compared. An interesting
example is the Hopf manifold S?"*! x S!. The canonical metric on it has strictly positive
second Ricci curvature!

In this paper, we study the nonexistence of holomorphic and harmonic sections of an
abstract vector bundle over a compact Hermitian manifold. Let E be a holomorphic vector
bundle over a compact Hermitian manifold (M,w). Since the holomorphic section space
H°(M, F) is independent on the connections of F, we can choose any connection on it. As
we mentioned above, the key part, is the second Ricci curvature of the connection. For
example, on the holomorphic tangent bundle 7190 of an Hermitian manifold M, there are
three common connections
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(1) the complexified Levi-Civita connection V on T10M;
(2) the Chern connection V¢ on T1OM;
(3) the Bismut connection V¥ on T19M.

It is well-known that if M is Kéhler, all three connections are the same. However, in general,
the relations among them are somewhat mysterious. In this paper, we derive certain relations
about their curvatures on certain Hermitian manifolds.

Let E be an Hermitian complex (possibly non-holomorphic) vector bundle or a Riemannian
real vector bundle over a compact Hermitian manifold (M,w). Let 0g, g be the (1,0), (0,1)
part of V¥ respectively. The (1,1)-curvature of V¥ is denoted by R¥ € I'(M,AV'T*M ®
E* ® E). Tt can be viewed as a representation of the operator dpdg + 0pdr. We can define
harmonic section spaces associated to (£, V) by

HLI(M, B) = {p € ®U(M, B) | pp = dpp = 0} (1.1)

In general, on a complex vector bundle F, there is no such terminology like “holomorphic

section of E”. However, if the vector bundle E is holomorphic and V¥ is the Chern connec-

tion on F i.e. dg = 0, then ’H%’q(M , ) is isomorphic to the Dolbeault cohomology group
E

Hg’q(M, E) and Hg(M, E) is the holomorphic section space H(M, E) of E.

Theorem 1.1. Let E be an Hermitian complex vector bundle or a Riemannian real vector
bundle over a compact Hermitian manifold (M,w) and VF be any metric connection on E.

(1) If the second Hermitian-Ricci curvature Tr,RY is nonpositive everywhere, then every
0p-closed section of E is parallel, i.e. VFs =0;

(2) If the second Hermitian-Ricci curvature Tr,RF is nonpositive everywhere and negative
at some point, then ”H%E (M,E)=0;

(3) If the second Hermitian-Ricci curvature Tr,RY is p-nonpositive everywhere and p-negative
at some point, then ’H%E(M, AIE) =0 for any p < ¢ < rank(E).

The proof of this theorem is based on generalized Bochner-Kodaira identities on vector
bundles over Hermitian manifolds (Theorem 4.5). We prove that (Theorem 4.8) the torsion
integral of the Hermitian manifold can be killed if the background Hermitian metric w is
Gauduchon, i.e. 90w™ ' = 0. On the other hand, in the conformal class of any Hermi-
tian metric, the Gauduchon metric always exists ([21]). So we can change the background
metric in the conformal way and the positivity of the second Hermitian-Ricci curvature is
preserved. This method is very useful on Hermitian manifolds. Kobayashi-Wu([31]) and
Gauduchon([19]) obtained similar result in the special case when V¥ is the Chern connection
of the Hermitian holomorphic vector bundle F. Now we go back to the Hermitian manifold
(M,w).

Corollary 1.2. Let (M,w) be a compact Hermitian manifold

(1) if the second Ricci-Chern curvature Tr,© is nonnegative everywhere and positive at
some point, then Hg’O(M) =0 for any 1 < p <n. In particular, the arithmetic genus
X(M,0) =1;

(2) if the second Ricci-Chern curvature Tr,© is nonpositive everywhere and negative at some
point, then the holomorphic vector bundle APTYOM has no holomorphic vector field for
any 1 <p < n.



Since the first Ricci-Chern curvature and the second Ricci-Chern curvature of an Hermitian
manifold can not be compared, we can not derive that the manifold M is Kahler, even if
the second Ricci-Chern curvature is positive everywhere. In general, the first Ricci-Chern
curvature is d-closed but the second Ricci-Chern curvature is not d-closed and so they are in
the different (d,d, d)-cohomology classes. For example, the Hopf manifold S?"*! x S! with
standard Hermitian metric has strictly positive second Ricci-Chern curvature and nonnegative
first Ricci-Chern curvature, but it is non-Kéahler. For more details, see Proposition 6.4.

Now we consider several special Hermitian manifolds. An interesting class of Hermitian
manifolds is the balanced Hermitian manifolds, i.e., Hermitian manifolds with coclosed Kéahler
forms. It is well-known that every Kéahler manifold is balanced. In some literatures, they are
also called semi-Kéhler manifolds. In complex dimension 1 and 2, every balanced Hermitian
manifold is Kéhler. However, in higher dimensions, there exist non-Kéhler manifolds which
admit balanced Hermitian metrics. Such examples were constructed by E. Calabi([7]), see also
[23] and [36]. There are also some other important classes of non-Kéhler balanced manifolds,
such as: complex solvmanifolds, 1-dimensional families of Kéhler manifolds (see [30]) and
compact complex parallelizable manifolds (except complex torus) (see [46]). On the other
hand, Alessandrini- Bassaneli( [2]) proved that every Moishezon manifold is balanced and
so balanced manifolds can be constructed from Kéhler manifolds by modification. For more
examples, see [3], [36], [16] and [17].

Every balanced metric w is a Gauduchon metric. In fact, d*w = 0 is equivalent to dw” ! = 0
and so 90w" ! = 0. By [21], every Hermitian manifold has a Gauduchon metric. However,
there are many manifolds which can not support balanced metrics. For example, the Hopf
surface S® x S' is non-Kéhler, so it has no balanced metric. For more discussion , one can
see [7], [36],[42], [2] and [3].

On a compact balanced Hermitian manifold M, we can detect the holomorphic section
spaces Hg’O(M ) by Levi-Civita connection. Let V be the complexified Levi-Civita connection
and V', V” the (1,0) and (0,1) components of V respectively. In general, holomorphic p-
forms are not V”-closed. The Ricci curvatures related to the Levi-Civita connection are
defined in 2.11 and 2.29.

Theorem 1.3. Let (M,w) be a compact balanced Hermitian manifold. If the Hermitian-Ricci
curvature (Rﬁ) of M is nonnegative everywhere, then

(1) If ¢ is a holomorphic p-form, then App = 0 and so hPP(M) < hOP(M) for any 1 < p <
n;

(2) If the Hermitian-Ricci curvature (R;3) is positive at some point, then Hg’O(M) =0 for

any 1 < p <n. In particular, the arithmetic genus x(M,QO) = 1.
The dual of Theorem 1.3 is
Theorem 1.4. Let (M,w) be a compact balanced Hermitian manifold. If 2]%%2,) — R is

nonpositive everywhere and negative at some point, there is no holomorphic vector field on
M.

Remark 1.5. It is easy to see that the Hermitian-Ricci curvature tensor (Rﬁ) and second

Ricci-Chern curvature tensor ©®) := Tr, 0 can not be compared. Therefore, Theorem 1.3
and Corollary 1.2 are independent of each other. For the same reason, Theorem 1.4 and
Corollary 1.2 are independent. Balanced Hermitian manifolds with nonnegative Hermitian-
Ricci curvatures are discussed in Proposition 3.5.



As we discuss in the above, on Hermitian manifolds, the second Ricci curvature tensors
of various metric connections are closely related to the geometry of Hermitian manifolds. A
natural idea is to define a flow by using second Ricci curvature tensors of various metric
connections. For example,

oh
= = —0@ 4 puh, peR (1.2)

on a general Hermitian manifold (M, h) by using the second Ricci-Chern curvature. This flow
preserves the Kahler and the Hermitian structure and has short time solution on any compact
Hermitian manifold. It is very similar to and closely related to the Hermitian Yang-Mills flow,
the Kéahler-Ricci flow and the harmonic map heat flow. It may be a bridge to connect them.
In this paper we only briefly discuss its basic properties. In a subsequent paper([33]) we will
study its geometric and analytic property in detail.

We would like to thank Yi Li, Jeffrey Streets, Valetino Tosatti for their useful comments
on an earlier version of this paper.

2 Various connections and curvatures on Hermitian manifolds

2.1 Complexified Riemannian curvature

Let (M, g) be a Riemannian manifold with Levi-Civita connection V, the curvature R of
(M,qg,V) is defined as

R(X,Y,Z, W) :g((VXVy—VyVX—V[X,y}) Z,W) (2.1)

On an Hermitian manifold (M, h), let V be the complexified Levi-Civita connection and g
the background Riemannian metric. Two metrics are related by

ds? = dsg — V—1wy, (2.2)

where wy, is the fundamental (1,1)-form (or Kéahler form) associated to h. For any two
holomorphic vector fields X,Y € I'(M, T M),

h(X,Y) =2¢(X,Y) (2.3)

This formula will be used in several definitions. In the local holomorphic coordinates {z!,--- 2"}
on M, the complexified Christoffel symbols are given by

_|_

1 0 0 0 1 oh oh oh
FgB _ Z_ CE( JAE 9BE gAB) N Z —hCE( AE 4 BE AB) (2.4)

g B A o.E )T B A T .E
E2 0z 0z 0z E2 0z 0z 0z

where A, B,C,E € {1,--- ,n,1,--- , @} and 24 = 2* if A =1, 24 =7 if A =1. For example

1. .5 /0hs  Oh, 1. .5 /0hz Oh;
k _ Zpkl Jjt il k _ Zpkl Jt g
by =gt <azi " 82j>’ b=l <8zi a%) (25)
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The complexified curvature components are
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Hence
D ED % B  wF 1 F 1D
Ripe =Y Rapeph®’ = — 9.8~ g.a T Laclrs —Tpolar (2.6)
B

By the Hermitian property, we have, for example

; ort,  Ork, l L
i 3 S s 3
==\ T ~ 7 Tl ~ b~ IR0 2.7
Remark 2.1. We have Rapcp = Rcpap. In particular,
Rz = Rz (2.8)

Unlike the Kéhler case, we can define several Ricci curvatures:

Definition 2.2. (1) The complezified Ricci curvature on (M, h) is defined by
g = (R + Ryz) (2.9)
The complexified scalar curvature of h is defined as
sn = W%, (2.10)
(2) The Hermitian-Ricci curvature is
Ryg = hﬁRiij (2.11)

The Hermitian-scalar curvature of h is given by

S:=h"R,; (2.12)

Lemma 2.3. On an Hermitian manifold,
Rapcp = Rapep, %= Ag Rz =Ry (2.13)

and ~
Ryg = <2Rk3iz - Rkiﬁ) (2.14)

Proof. The Hermitian property of curvature tensors is obvious. By first Bianchi identity, we
have
Ry i+ Rygp + Bygiz = 0

That is Rm‘j—z = ka - Rm;. The curvature formula 2.9 turns to be
Kz = h <2Rk§i2 - ka) (2.15)
O

Definition 2.4. The Ricci curvatures are called positive ( resp. nonnegative, negative, non-
positive) if the corresponding Hermitian matrices are positive ( resp. nonnegative, negative,
non-positive).

The following three formulas are used frequently in the sequel.



Lemma 2.5. Assume h;; =i at a fized point p € M, we have the following formula

P 1 [ 9%h; 82%
ijkt 2 k@zj 02107t
+1 Ohig ahqz Ohig Oh; +1 Ohig Ol Ohyg Oz
4\ 0z azJ zk 8z 4\ 9zk 9z 0zt gzt
4\ 9zt 0z azk azq 0z4 977 0z9 9zt ’
1 (g dhig s Ohig Ohyg Oz Oy Ohyg
4\ 920 9z 82’“ ozt 029 0z4 024 0z4

By a linear transformation on the local holomorphic coordinates, one can get the following
Lemma. For more details, we refer the reader to [14].

Lemma 2.6. Let (M,h,w) be an Hermitian manifold. For any p € M, there exist local
holomorphic coordinates {z"'} centered at a point p such that

hiz(p) = 6ij and Ffj(p) =0 (2.17)
By Lemma 2.6, we have a simplified version of curvatures:

Lemma 2.7. Assume hﬁ(p) = 0;; and Ffj(p) =0 at a fized point p € M,

o= b , — : : 2.1
Rijia 2 (azkazﬂ Mp R Zq: < 02 051 | 9k azf> (2.18)
For Hermitian-Ricci curvatures
= 1 Phg  Phys Ohgg Ohyg ~ Ohyg Ohyg
C BURL - — __ st ks \ _ qt “kq kg ~""qt
By = Ripg = =3 Z (azkazs T ot ) ; ( 92 0% | 0 07 ) (2.19)
and
1 Oh;  0%hgs Ohg Ohgg — Ohys Ohug
Up Up_ __ _ = k? s5 ) _ q¢ 9lsg g3 q
W Rygy = h Rz = —5 Z <azsazs * am#) qZ <azk 0z | 02 oFt > (2.20)
For complexified Ricci curvature,
1 82hsz 0?hys 82hk2 0?hgs
Za = 3 Z <azkazs + azsazf> - Z <azsazs + azkazf>

Ohgz Oh Ohyg Oh g Ohgg Ohgg ~ Ohgs Ohg
+ Z( ql kq kq q€> _22 < qt a4 Z kq) (2.21)
q,S

0z 0z° azs 0zs 0zk 9z° 025 9zt

2.2 Curvature of complexified Levi-Civita connection on T4\
Since 1M is a subbundle of TcM, there is an induced connection V on T1OM given by
V=roV:TYM 3% T(M,TcM & TeM) 5 T(M, TeM @ TVOM) (2.22)
The curvature R € D(M,N*TcM @ T*"OM @ TOM) of Vv is given by

E(X,Y)S = ﬁxﬁys - ﬁyﬁxs — ﬁ[X,Y]S (2.23)
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for any X,Y € TcM and s € TYOM. It has components

~ or or!
Bk = azik - azfék — D5 T, + DTl (2.24)
where 3 3 3 3
Rl-—Z, ) = = RY o — 2.25
(82A’ 823> Dk zl: ABk 50 (2:25)
For example,
R- = Oy i I r’ rs Tl 2.26
ijk o7 @Zz + S kst (2.26)

With respect to the Hermitian metric h on T°M, we can define
n
Rypu = Z Rprhg (2.27)

Definition 2.8. The first Ricci curvature of the Hermitian vector bundle (T LM, @) is
defined by

R =W R (2.28)
The second Ricci curvature of it is
R = hiR (2.29)

The scalar curvature of ¥V on TYOM is denoted by
LC ij 1k 1>
S¥ =h'h R (2.30)
By Lemma 2.6, we have the following formulas

Lemma 2.9. On an Hermitian manifold (M, h), on a point p with h;z(p) = é;; and Ffj(p) =
0,

5 1 < 82}%’2 + 82h’fj) _ ahqz Ohyg (2.31)

R = —5\ okaz + 97102 07 0%

For the Ricci curvatures,

. 2p 0?h,~ Oh = Oh,~
RY = _%Z ( Ohy 9T ) - a Oig (2.32)
k b

ij 02k07  02107" = 0z 07
i S 1 Phg Pl 8h ah

Rﬁ - _§zk: (82’“524 z’é)zj > o (2.33)
Moreover,

AU O _ g pm pa Tk
Ry = Ry = hygh" LT — Tl = >

<ahiq 8hq§ Ohig ahqf)
k.q

gzF 02k 92k 9zF



2.3 Curvature of Chern connection on 7'°M

On the Hermitian holomorphic vector bundle (T%°M, h), the Chern connection VE is the
unique connection which is compatible with the complex structure and the Hermitian metric.
Its curvature components are

O-;=—— Kkt : : 2.35
ikt 02107 07l 0z (2:35)
It is well-known that the first Ricci-Chern curvature
V=1 . .
0 .= XYW g,i A gzi (2.36)
2w
represents the first Chern class of M where
2
) ke _8 log det(h,;)
@ﬁ =h @ijkﬁ = sios (2.37)
The second Ricci-Chern curvature components are
(2) _ ke
@Z.3 =h @kzif (2.38)
The scalar curvature of the Chern connection is defined by
CH ij 1, ke
S =hYh O 717 (2.39)

2.4 Curvature of Bismut connection on 7'°M

In [4], Bismut defined a class of connections on Hermitian manifolds. In this subsection,
we choose one of them (see [35], p. 21). The Bismut connection V® on the holomorphic
tangent bundle (T1°M, h) is characterized by

vB=v458 (2.40)
where SP is 1-form with values in End(T°M)
h(SP(X)Y, Z) = 28(SE(X)V, Z) = V=1(0 - D)n(X, Y, Z) (2.41)

for any Y, Z € T'OM and X € TcM. Let flﬁa and fgﬁa be the Christoffel symbols of the

Bismut connection where i, j,«, 5 € {1,--- ,n}. We use different types of letters since the
Bismut connection is not torsion free.

Lemma 2.10. We have the following relations between T and r,

ohg -
0z’

PiaE = hﬁl“;’a = Fiaﬁ + PaEi = 2P50¢E (242)

joll =

Proof. Let X = %,Y = %, Z = %. Since wy, = @hmﬁdzm A dz™, we obtain

~ _ 1 0hpn 0 9 0
— B _ _Ymn g pgmgen | Y Y Y
V—=1(0 — 0)wi(X,Y,Z) 2 9zp datdz"dz <8zi’8zj’83k>
_ 1 (ohg Ohg
2\ 9z 0zt

= Dighis =Ly,



On the other hand

o 0 ~
B -7 -
Using the definition of Bismut connection, we get
~ 8hi§
Lig=Tliag +t Loz = 5a0 (2.44)
The proof of the other one is similar. O

The Bismut curvature B € I' (M, AY'T* M ® End(T'M)) is given by

= arﬁ
g _ oLy =y S8 Ty T8
Bﬁa_ 82’]‘?‘+ az Yy F JFF]OCPw (2.45)

Lemma 2.11. Assume hﬁ(p) = ;5 and Ffj(p) =0 at a fized point p € M,

27 27 _ 27 _ _
B- . —— 0 .hw + Ohay O h‘“? + 5 Yy ah”.ﬁ - 42 Oy Oy (2.46)
ol 0210z 021078 0207 —~ 02 07 oz azz
Proof. 1t follows by 2.42 and 2.45. O
We can define the first Ricci-Bismut curvature Bg), the second Ricci-Bismut curvature Bg)
SBM

and scalar curvature similarly.

2.5 Relations among the four curvatures on Hermitian manifolds

Proposition 2.12. On an Hermitian manifold (M, h), we have

Rijki = Riijv RTij = RTij (2.47)
and for any u,v € C",

~

ey
(Rim - Rz’ij) w0 <0 (2.48)
In particular, Rz‘j < ]3%(31) and Rz‘j < ]3%(32) in the sense of Hermitian matrices.

Proof. Let

o) t
Tﬁki = Rz‘jki - Rijke ijrzshtz (2.49)

Without loss generality, we assume h; = 0;; at a fixed point, then

zng Z ijs is¢ — Z FiEZF]EE (250)
s

1 (Ohg Ohs
Uit = B <8Esz T o7t > =L (2.51)

i k=t
and so Tijkeuu vt < 0. O

where

Remark 2.13. (1) Because of the second order terms in R, ﬁ, O and B, we can not compare
R, R with ©, B.

(2) Since the third order terms of 992 are not zero in general. Therefore it is possible that
OW and ©@ are not in the same (d, 0, 0)-cohomology class. For the same reason B()
and B® are not in the same (d, d, d)-cohomology class.

(3) If the manifold (M, h) is Kéhler, then all curvatures are the same.



3 Curvature relations on special Hermitian manifolds

3.1 Curvatures relations on balanced Hermitian manifolds

The following lemma is well-known( for example [18]), and we include a proof here in our
setting.

Lemma 3.1. Let (M,w) be a compact Hermitian manifold. The following conditions are
equivalent:

(1) d*w=0;
(2) dw™ ! =0;
(3) For any smooth function f € C*°(M),
— a2f
—A A Apgf =—hV—2_
af =Azf =0sf = a0

(4) Ffézoforanylgign.

Proof. On a compact Hermitian manifold, d*w = — *d xw = —¢, * dw™ "' where ¢, is a
constant depending only on the complex dimension n of M. On the other hand, the Hodge
* is an isomorphism, and so (1) and (2) are equivalent. If f is a smooth function on M,

21077 ij 0z° (3‘2)

Apf = —hii - i, + 2h9TE 2k

{Aaf = 0L 4 opiTL o
210z
On the other hand, o o B B
R9TE = —T7_pkY and  AYTE = i pkt (3.3)

1] kj 7t V4
Therefore (3) and (4) are equivalent. For the equivalence of (1) and (4), see Lemma 8.8. [

Definition 3.2. An Hermitian manifold (M,w) is called balanced if it satisfies one of the
conditions in Lemma 3.1.

On a balanced Hermitian manifold, there are more symmetries on the second derivatives of
the metric.

Lemma 3.3. Let (M, h) be a balanced Hermitian manifold. On a point p with hz(p) = 0;;
and l“fj (p) =0,

Ohg Ohss
oz 2. oz 0 (3:4)
and 9%h 02 0? Oh; 0
~ R - B e
M. — ki _ ii 9 q.g k'q )
22,: 0zk07z 22: 02107" 22: 0zkozt - 0zt 0z (3:5)

Proof. At a fixed point p, if hﬁ =0 and Ffj =0, then

oz 07

(3.6)
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The balanced condition ), I? =0 is reduced to
Z ah” = Z = (3.7)
by formula 3.6. By the balanced condition
oM _ 0 <1hiq <ahm . %))
D2k 92k ozt 0zt

- —Z Ph.  hy Zahqzah,ca
N k070 zkaz — gzt 0zt

Z7q

Hence, we obtain formula 3.5. O

Proposition 3.4. Let (M, h) be a balanced Hermitian manifold. At a point p with hﬁ(p) = 0ij
and Ffj(p) = 0, we have following formulas about various Ricci curvatures:

o R T T o
R - z;;fg z( ) o
B - S DGR e
L I
Ha =~ aa;ha]gi _Z@};z 852? B aah; ZZ‘?) (3:13)

Proof. In 2.32, 2.33, 2.37,2.38, 2.19, 2.21, we get expressions for all Ricci curvatures on
Hermitian manifolds. By balanced relations 3.4 and 3.5, we get simplified versions of all
Ricci curvatures. O

Proposition 3.5. (1) A balanced Hermitian manifold with positive Hermitian-Ricci curva-
ture Rz is Kahler.

(2) Let (M,h) be a compact balanced Hermitian manifold. If the Hermitian-Ricci curvature
is nonnegative everywhere and positive at some point, then M is Moishezon.

Proof. (1) On a balanced Hermitian manifold
@5}’ R“) > R (3.14)

)

If Rﬁ is Hermitian positive, then (92(,3 is Hermitian positive, and so

Q= ——"2;165 log det (h; ;) (3.15)
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is a Kéhler metric.
(2) If the Hermitian-Ricci curvature is nonnegative everywhere and positive at some point,

so is (92(,31_). The Hermitian line bundle L = det(T19M) satisfies

/ c1(L)" >0 (3.16)
M

By Siu-Demailly’s solution of Grauert-Riemenschneider conjecture ([39] [9]), M is Moishezon.
O

3.2 Curvature relations on Hermitian manifolds with A(00w) = 0

Now we consider a compact Hermitian manifold (M,w) with A(00w) = 0. The condition
A(00w) = 0 is equivalent to

Oh.~ Oh,+ Oh,.~ 0%h, -
i kk ik kj
E L g . , 1
- <8zk82k * 8z’83J> - (82’“8?3 * 82282’“) (3:17)

for any 4, 5. We can use 3.17 to simplify Ricci curvatures and get relations among them.

Proposition 3.6. Let (M, h) be a compact Hermitian manifold with A(00w) = 0. At a point
p with h;;(p) = bi; and Ffj (p) = 0, the following identities about Ricci curvatures hold:

o - T T
oF = Yot 619
Ry = —%Z(ﬁj};’f aﬁa#) afaa’l'?q (3.20)
% - 3 ) T
o - S S () 52)
o - zz( o) 628
Ry = "Z<aazjgf am#) %:(ZZ;Z 8a}l]zﬁ+aa];a Z:Lj) (3:24)
i = “Z<§:ng aﬁa#)+Zq:<aa];wa}?q+aa};qacg> (3.25)

< gt Ohig 8th 8hkq>

0zk ozt 82:Z ozt

Proposition 3.7. If (M,w) is a compact Hermitian manifold with A(00w) = 0, then

B® <o gnd BY <e® (3.26)
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in the sense of Hermitian matrices and identities hold if and only if (M,w) is Kdhler. More-
over,

0@ 4 B@ — o) L pO) (3.27)

Finally, we would like to discuss the relations of balanced manifolds and strong Kahler
manifolds with torsion. By [2], every Moishezon manifold is balanced, i.e. there exists a
smooth Hermitian metric w such that d*w = 0. On the other hand, by Demailly-Paun [10](
see also [27]), on each Moishezon manifold, there exists a singular Hermitian metric w such
that 00w = 0 in the sense of current. However, these two conditions can not be satisfied
simultaneously in the smooth sense on an Hermitian non-K&hler manifold. It is known in [1]
and also [15], but merits a proof in our setting.

Proposition 3.8. Let (M,w) be a compact Hermitian manifold. If d*w = 0 and A(00w) = 0,
then dw =0, i.e. (M,w) is Kdhler. In pa@z’culan if a compact Hermitian manifold admits a
smooth metric w such that d*w =0 and 00w = 0, then it is Kdhler.

Proof. Let (M,w) be a balanced Hermitian manifold with A(OOw) = 0. The condition
A(00w) = 0 is equivalent to

Ohg Phg  — Ohg oy
u . L . 2
2 oo ¥ 2 paigs ~ 2 grom 2 gt (328)

By formula 3.5, at a point p with h;z = d;; and I‘fj (p) =0, we have

Oh,; h, oh.; 92h,-
ZZ.: 9kosl Z T Z oFo7 Z 92197

0zkoz r 0z 9z
That is 9
> Ohii N~ Ohig Oz Ol (3.29)
0zkoz —~ 0210%" pr 0zt 0z
Taking trace of it, we obtain
Ohkg Ohig
a5 Yar g _ O _ 3.30
Z 0zt 0z 0zt ( )
q;i,k
at point p. Since p is arbitrary, we have dw = 0, therefore, (M,w) is Kéhler. O

4 Bochner formulas on Hermitian complex and Riemannian
real vector bundles over compact Hermitian manifolds

Let (M, h,w) be a compact Hermitian manifold. The complexified Levi-Civita connection
V on Tc M induces a linear connection on QP4(M):

V:QPYM) — QY M) ® (Qp’q(M) o QP Lt (A @ QpH’q_l(M)) (4.1)
We consider the following two canonical components of V,

{V’ L QPA(M) — QYO(M) @ QP(M) (4.2)

V7 QPA(M) — QO (M) @ QPI(M)

13



Note that V # V' + V" if (M, h,w) is not Kéhler. The following calculation rule follows
immediately

VieAp) = (Vo) A+ oAV (4.3)
for any ¢, € Q°(M).

Lemma 4.1. On an Hermitian manifold (M,h), we have

Oh(e, 1) = h(V'p,) + h(p, V") Zh(p, 1) = h(Vip, ) + h(ep, V1))
Oh(p, 1) = h(V"p, ) + h(p, V'1) a5 (0. 0) = h(Vip,0) + h(p, Vi)
(4.4)

for any o, € QP1(M).

Remark 4.2. (1) Here we use the compact notations

Vi=V,, VI=V',

oz ozJ

Note that V;—. =V/=0and V; # V], V; # V;—..

(2) If we regard APYT*M as an abstract vector bundle E, the above lemma says that V'
and V" are compatible with the Hermitian metric on E.

Now we go to an abstract setting. Let E be an Hermitian complex (possibly non-holomorphic)
vector bundle or a Riemannian real vector bundle over a compact Hermitian manifold (M, w).
There is a natural decomposition

v =vVELyE (4.5)

where

{V’E :T(M,E) — QYO(M, E) (46)

V'E.D(M,E) — QVY(M, E)

!

V'EZ and V'E induce two differential operators. The first one is dp : OPI(M,E) —
QPTL4(M, E) defined by

Op(p®s) = (0p) ®s+ (—1)PTlp A VEs (4.7)

for any ¢ € QP4(M) and s € T'(M, E). The other one is g : QP¢(M, E) — QPTL4(M, E)
defined by B B
IE(p®s) = (0p) @ s+ (—1)PTp AV Es (4.8)

for any ¢ € QP9(M) and s € I'(M, E). The following formula is well-known
(8}_«75}3 + 5}38}3) ((,D & S) =pA (8E5E + 5}_«78}3) S (4.9)

for any ¢ € QP4(M) and s € T'(M, E). The operator dg0r + Ogdg is represented by its
(1,1) curvature tensor R¥ € I'(M,AMT*M ® E). For any p,¢» € Q%*(M,E), there is a
sesquilinear pairing L
{p, ¥} = o AYPleq, ep) (4.10)
if p = @, and 1 = P eg in the local frames {e,} on E. By the metric compatible property
of VE,
0{p, v} = {0pp, ¥} + (~1)P"{p, Opy} (4.11)

if o € OPI(M, E).

14



Let w be the Kéhler form of the Hermitian metric h, i.e.,
Ve
2
On the Hermitian manifold (M, h,w), the norm on QP9(M) is defined by

W= hﬁdzi A dZ (4.12)

wh on wh —
i) = [ e = o [ Mo %= [ ons (4.13

The norm on QP4(M, E) is defined by
(o) = [ ooy = [ (" AsP) feare) (414)

for ¢, € QP9(M, E). The dual operators of 9,0, and 5*E are denoted by 9%,9", 0y and
5*}3 respectively.

The following lemma was firstly shown by Demailly using Taylor expansion method( e.g.
[8]). For the convenience of the reader, we will take another approach which seems to be
useful in local computations.

Lemma 4.3. Let (M,h,w) be a compact Hermitian manifold. If T is the operator of type
(1,0) defined by T = [A,20w] on Q°(M, E),

{[A’a] = V-1 (5* Jﬁ*) (4.15)
[A,0] = —V=T(0" +7%)
For the dual equation, it is
{[5*, L) = V=10 +7) (416)
0% L] = —/—1(0 +7)
where L is the operator Ly = 2w A ¢ and A is the adjoint operator of L.
Proof. See Appendix Lemma 8.7. O

In the rest of this section F is assumed to be an Hermitian complex vector bundles or a
Riemannian real vector bundle over a compact Hermitian manifold M.

Lemma 4.4. Let VF be a metric connection on E over a compact Hermitian manifold
(M,w). If T is the operator of type (1,0) defined by T = [A,20w] on Q*(M, E), then

(1) [0p, L] = V=105 + 7);

(2) (05, L] = —V~1(0p +7);

(3) [A, 98] = V=105 +7) ;

(4) [A,08] = —V/—1(05 + 7).

Proof. See Appendix Lemma 8.10. O

Theorem 4.5. Let V¥ be a metric connection E over a compact Hermitian manifold (M,w).

A5E =Ny, +v-—1 [OEEE + 5E8E, A] + (OpT" +770ER) — (EE?* + ?*EE) (4.17)
where

AaE = 8E8E + GTEOE
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Proof. 1t follows from Lemma 4.4. O
We make a useful observation on the torsion 7:

Lemma 4.6. For any s € I'(M, E), we have
T(s) = —2v/—1 <5*w) -8, 7(s) =2vV—-1(0%w) - s (4.19)
Proof. By definition

([A,20w]) s = 2A((Ow) - s)

= 2(A(0w))-s
= —2v-1 (5*w> -8
Here we use the identity B
d'w = v—1A(8w) (4.20)
where the proof of it is contained in Lemma 8.8 of the Appendix. O

Corollary 4.7. If (M,w) is a compact balanced Hermitian manifold, and VE a metric con-
nection on E over M, then

||5ESH2 = H6E8H2 + (\/—1 [8E5E +5E8E,A] 8,8) (4.21)
for any s € I'(M, E).

Proof. Since for any s € I'(M,E), 7s =7s = 0 and 7*s = 7*s = 0 on a balanced Hermitian
manifold. O

Theorem 4.8. Let (M,w) be an Hermitian manifold with 00w" ™' = 0. If V¥ is a metric
connection on E over M, then

0= [0ps|* = |0ps|]* + (V=1 [0p0r + 0pdp, A] s, 5) (4.22)
for any s € T'(M, E) with Ogs = 0.
Proof. We only have to prove that
((OpT* + 7°0p)s — (OpT" + 7T 0g)s,s) =0 (4.23)

which is equivalent to (Ogs,7s) = 0 since 7*s = 7*s = dgs = 0. By formula 4.19 and Stokes’
Theorem,

(t*0ps,s) = (Ogs,Ts) = /M {0ps,x(15)}
= 2\/—_1/M {aEs, * (5*w . s)}
= 2\/—_1/M {0Es, (*5*w> 's}
= —2V-1 /M {8,5;; <<*5*w) : S)}
= —2\/—_1 /M {S, <5 * 5*w> -5 — <*5*w> A 5}33}
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It is easy to see that o B B
D% 0'w=—0% %0 %w = c,00w" "+ =0 (4.24)

since *w = c,w" ! where ¢, is a constant depending only on the complex dimension of M.
Hence

(Ops,Ts) = 2¢/—1 /M {s, <*5*w> /\EES} =0 (4.25)
since dgs = 0. Ol

Remark 4.9. By these formula, we can obtain classical vanishing theorems on Kéhler man-
ifolds and rigidity of harmonic maps between Hermitian and Riemannian manifolds.

5 Vanishing theorems on Hermitian manifolds

5.1 Vanishing theorems on compact Hermitian manifolds

Let E be an Hermitian complex (possibly non-holomorphic) vector bundle or a Riemannian
real vector bundle over a compact Hermitian manifold (M,w). Let 0g, g be the (1,0), (0,1)
part of V¥ respectively. The (1,1)-curvature of V¥ is denoted by R¥ € I'(M, AV T*M ®
E*®E). It is a representation of the operator Op0p+0p0r. We can define harmonic section
spaces associated to (E,VF) by

HEU(M, E) = {p € Q9(M, E) | Ipp = Dpp = 0} (5.1)

In general, on a complex vector bundle F, there is no such terminology like “holomorphic

section of E”. However, if the vector bundle E is holomorphic and V¥ is the Chern connec-

tion of F i.e. O = 0, then H%’q(M , ) is isomorphic to the Dolbeault cohomology group
E

HZ(M, E) and HJ(M, E) is the holomorphic section spaces H%(M, E) of E.

Definition 5.1. Let A be an r x r Hermitian matrix and Ay < --- < A, be eigenvalues of A.
A is said to be p-nonnegative (resp. positive, negative, nonpositive) for 1 < p < r if

Aiy +-- 4+ X, 20( resp. >0,<0,<0) forany 1<i3<ig<---<ip,<n (52)

Theorem 5.2. Let VE be any metric connection of an Hermitian complex vector bundle or
a Riemannian real vector bundle E over a compact Hermitian manifold (M, h,w).

(1) If the second Hermitian-Ricci curvature Tr,RY is nonpositive everywhere, then every
0p-closed section of E is parallel, i.e. VFs =0;

(2) If the second Hermitian-Ricci curvature Tr,RF is nonpositive everywhere and negative
at some point, then ”H%E (M,E)=0;

(3) If the second Hermitian-Ricci curvature Tr, RY is p-nonpositive everywhere and p-negative
at some point, then H%E (M,NE) =0 for any p < q < rank(E).

Proof. By [21], there exists a smooth function u : M — R such that wg = €ew is a
Gauduchon metric, i.e. 88&18‘1 = 0. Now we replace the metric w on M by the Gauduchon
metric wg. By the relation wg = e“w, we get

TrooRY = e “Tr,RF (5.3)
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Therefore, the positivity conditions in the Theorem are preserved. Let s € I'(M, E) with
0gs = 0, by formula 4.22, we obtain

0= ||8ES||2 + (\/—1 [8E5E +5E8E,AG] S,s) = H6E8||2 — (TT‘wGRES,S) (5.4)

where B B ‘ ‘
RE = 0p0p + 0pdp = R%adzl NdZF ®e* ® eg (5.5)

Since the second Hermitian-Ricci curvature Tr,,, R¥ has components

RO!B = hZC]T' Rﬁag (56)

formula 5.4 can be written as
0= |0gs| —/ Ragso‘gﬁ (5.7)
M

Now (1) and (2) follow by identity 5.7 with the curvature conditions immediately. For (3),
we set F' = AYE with p < ¢ <7 = rank(E). Let \; < --- < )\, be the eigenvalues of T'r,, RE,
then we know

Aot Ay >0 (5.8)

and it is strictly positive at some point. If p < ¢ < r, the smallest eigenvalue of T, RF is
A1 +- -+, > 0 and it is strictly positive at some point. By (2), we know ’H% (M,F)=0. O
E

If V¥ is the Chern connection of the Hermitian holomorphic vector bundle E, we know

Mg, (M,E) = H°(M,E)

/)

since 0 = V 'E — 9 for the Chern connection.

Corollary 5.3 (Kobayashi-Wu[31], Gauduchon [19]). Let V¥ be the Chern connection of an
Hermitian holomorphic vector bundle E over a compact Hermitian manifold (M, h,w).

(1) If the second Ricci-Chern curvature Tr,RY is nonpositive everywhere, then every holo-
morphic section of E is parallel, i.e. VEs =0;

(2) If the second Ricci-Chern curvature Tr,RF is nonpositive everywhere and negative at
some point, then E has no holomorphic section, i.e. H'(M,E) = 0;

(3) If the second Ricci-Chern curvature Tr, R is p-nonpositive everywhere and p-negative
at some point, then A1E has no holomorphic section for any p < p < rank(FE).

Now we can apply it to the tangent and cotangent bundles of compact Hermitian manifolds.

Corollary 5.4. Let (M,w) be a compact Hermitian manifold and © is the Chern curvature
of the Chern connection VH on the holomorphic tangent bundle T*OM.

(1) If the second Ricci-Chern curvature 0@ is nonpositive everywhere and negative at some
point, then M has no holomorphic vector field, i.e. H°(M,T*°M) = 0;

(2) If the second Ricci-Chern curvature 0®) is nonnegative everywhere and positive at some
point, then M has no holomorphic p-form for any 1 < p < n, i.e. Hg’O(M) =0; In
particular, the arithmetic genus

X(M,0) = (=1)PhPO(M) =1 (5.9)
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(3) If the second Ricci-Chern curvature 0® s p-nonnegative everywhere and p-positive at
some point, then M has no holomorphic q-form for any p < q < n, i.e. H%’O(M) = 0.
In particular, if the scalar curvature SCH is nonnegative everywhere and positive at

some point, then HO(M,mKy;) = 0 for all m > 1 where Ky is the canonical line
bundle of M.

Proof. Let E = T%“M and h be an Hermitian metric on E such that the second Ricci-Chern
curvature T'ry, © of (E,h) satisfies the assumption. It is obvious that all section spaces in
consideration are independent of the choice of the metrics and connections.

The metric on the vector bundle F is fixed. Now we choose a Gauduchon metric wg = e*wy,
on M. Then the second Ricci-Chern curvature ©2) = T rwe©® = e “I'r,, © shares the semi-
definite property with 6@ = T r.,©. For the safety, we repeat the arguments in Theorem
5.2 briefly. If s is a holomorphic section of E, i.e., 0gs = 0s = 0, by formula 4.22, we obtain

0= H6E8||2 + (\/—1 [OEEE +5E8E,AG] 8,8) = H6E8H2 — (T’r’wc@s,s) (5.10)

If Tr,O is nonpositive everywhere, then dgs = 0 and so VFs = 0. If Tr,0© is nonpositive
everywhere and negative at some point, we get s = 0, therefore HO(M,T"°M) = 0. The
proofs of the other parts are similar. O

Remark 5.5. It is well-known that the first Ricci-Chern curvature ©() represents the first
Chern class of M. But on an Hermitian manifold, it is possible that the second Ricci-Chern
curvature O is not in the same (d,d, d)-cohomology class as O, For example, S* x S!
with canonical metric has strictly positive second Ricci-Chern curvature but it is well-known
that it has vanishing first Chern number ¢?. For more details see Proposition 6.4. Therefore,
©® in Proposition 5.4 can NOT be replaced by OW . It seems to be an interesting question:
if (M,w) is a compact Hermitian manifold and its first Ricci-Chern curvature is nonnegative
everywhere and positive at some point, is the first Betti number of M zero? In particular, is
it Kéahler in dimension 27

As special cases of our results, the following results for Kahler manifolds are well-known,
and we list them here for the convenience of the reader. Let (M, h,w) be a compact Kéhler
manifold.

(1) If the Ricci curvature is nonnegative everywhere, then any holomorphic (p,0) form is
parallel;

(2) If the Ricci curvature is nonnegative everywhere and positive at some point, then h?° = 0
for p=1,--- n. In particular, the arithmetic genus x(M,O) =1 and by (M) = 0;

(3) If the scalar curvature is nonnegative everywhere and positive at some point, then h™? =
0.

(A) If the Ricci curvature is nonpositive everywhere, then any holomorphic vector field is
parallel;

(B) If the Ricci curvature is nonpositive everywhere and negative at some point, there is no
holomorphic vector field.
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5.2 Vanishing theorems on special Hermitian manifolds

Let (M, h,w) be a compact Hermitian manifold and V be the Levi-Civita connection.

Lemma 5.6. Let (M,w) be a compact balanced Hermitian manifold. For any (p,0)-form ¢
on M,

(1) If ¢ is holomorphic, then 0*p =0
(2) If Vip =0, then 0p = 0.

Proof. For simplicity, we assume p = 1. For the general case, the proof is the same. By
Lemma 8.5, we know, for any (1,0)-form ¢ = @;dz",

7 0
"o =—-h"— 5.11
@ 557 (5.11)
where we use the balanced condition hﬁf% = 0. If ¢ is holomorphic, then gg} = 0, hence
0*p = 0. On the other hand,
Vo= (28 _pmy N axi @ dx (5.12)
¥ = 8,2) Jt Pm .
If Vo =0, we obtain
dp = 0pi dz? AN dz' =T ppmdz? Adz' =0 (5.13)
(70 - 82] - jy,‘;pm — .
O

Theorem 5.7. Let (M,w) be a compact balanced Hermitian manifold with Levi-Civita con-
nection V.

(1) If the Hermitian-Ricci curvature (Rﬁ) s p-nonnegative everywhere, then any holomor-
phic (q,0)-form (p < q < n) is O-harmonic; in particular, h¥°(M) < h%9(M) for any
P=q=n;

(2) If the Hermitian-Ricci curvature (Rz‘j) 18 p-nonnegative everywhere and p-positive at
some point, H%’O(M) =0 foranyp <q<n;
In particular,

(3) if the Hermitian-Ricci curvature (R;5) is nonnegative everywhere and positive at some
point, then Hg’O(M) =0, forp=1,---,n and so the arithmetic genus x(M,0) =1
and by (M) < h%Y(M).

(4) if the Hermitian-scalar curvature S is nonnegative everywhere and positive at some point,
then
HY(M,mKy) =0 for any m>1

where Ky = det T*OM .

Proof. At first, we assume p = 1 for (1) and (2). Now we consider £ = T*LOM with the
induced metric connection V¥ = V for h (see 2.22). By formula 4.7, we have

|0Es|*> = |0gs|* + vV~1 ([RF,A] 5,5) (5.14)
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where R is the (1,1)-part curvature of E with respect to the connection VE. More precisely,

_ _ ~ . o
= 0p0p + Ipdp = — R d2' N dZ) © —— @ dz* (5.15)

since E is the dual vector bundle of T*°M and the (1,1)-part of the curvature of T19M is

d
Rf A2 N dZ @ dz” ® 57 (5.16)

If s = fidz" is a holomorphic 1-form, i.e.

0s = 0f; dz ANdz' =0 (5.17)
oz’
then
3 afi k j i k j i
Ops = | = — fil% | d7z7 @ dz" = — f1,I'%.dZ7 @ dz (5.18)
0z Ji Ji

Without loss of generality, we assume hﬁ = 0;; at a given point. By Proposition 2.12, the
quantity

Bps? = 3 SiTuT56T5m = O (RS = Ryg) £if, (5.19)

,‘],t,TL i,n
On the other hand
V=1([R", A] Z RY [T, (5.20)

That is
0ps|* — V=1([RF,A]s,s) = =Y R:fif, <0 (5.21)

if the Hermitian-Ricci curvature (R, ;) of (M, h,w) is nonnegative everywhere. Then we get
0 < |0ps|? = |0gs|* = V-1 ([RF,A] 5,5) <0 (5.22)
That is Ogs = 0. Since

af;

_IE. _ e e
Ogs =V S—Vs—Vs—<aZj

, . .
— ngij> dz) @ dz'
we obtain V’'s = 0. By Lemma 5.6, we know Ags = 0. In summary, we get

H°(M) c Hy’(M) = Hy' (M) (5.23)

If the Hermitian-Ricci curvature (R, ;) is nonnegative everywhere and positive at some point,
then f; = 0 for each 4, that is s = 0. So we proved H%’O(M ) = 0. The general cases follow by
the same arguments as Theorem 5.2 and Theorem 5.4. O

The dual of Theorem 5.7 is

Theorem 5.8. Let (M, h,w) be a compact balanced Hermitian manifold.
(1) If 21/?\1%2.) — Rg is nonpositive everywhere, then any holomorphic vector field is V'-closed;

(2) If 21/?\1%2.) —R; s nonpositive everywhere and negative at some point, there is no holomor-

phic vector field.
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Proof. Let E = TY9M and ¥V the induced connection on it. If s = f azi is a holomorphic
section, then

_ ; 9
Ops = ['TL,d7 @ 5.0 (5.24)

Without loss generality, we assume hﬁ = 0;; at a given point. By Proposition 2.12,

Foal? = VTR A s5) = (RE = Ry) 17+ RFSP

_ <21§g) —Rg) Fif

By formula 4.17,

0 < [|0ps|? = |[Frs||? — v—1 ([felvl,A} s,s) (5.25)
So if 21/?\1%2.) — R;; is nonpositive everywhere, Ops =V's =0. If 2§Z%2.) — R;; is nonpositive
everywhere and negative at some point, there is no holomorphic vector field. O

)

Remark 5.9. (1) It is obvious that the second Ricci-Chern curvature 0 and Hermitian-
Ricci curvature R;; can not be compared. Therefore, Theorem 5.4 and Theorem 5.7
are independent of each other. For the same reason, Theorem 5.4 and Theorem 5.8 are
independent.

(2) For a special case in Theorem 5.7, if the Hermitian-Ricci curvature R,; is nonnegative
everywhere and positive at some point, by Proposition 3.5, the manifold (M,w) is
Moishezon. It is well-known that every 2-dimensional Moishezon /balanced manifold is
Kéhler, but there are many Moishezon non-Kéahler manifolds in higher dimension( See

[36]).
The following result was firstly obtained in [25]:

Corollary 5.10. Let (M,w) be a compact Hermitian manifold with A(00w) = 0. Let VB be
the Bismut connection on T CM.

(1) If the first Ricci-Bismut curvature BW s nonnegative everywhere, then every holomor-
phic (p,0)-form is parallel with respect to the Chern connection VOH

(2) If the first Ricci-Bismut curvature BW is nonnegative everywhere and positive at some
point, then M has no holomorphic (p,0)-form for any 1 < p <n, i.e. Hg’O(M) =0; in
particular, the arithmetic genus x(M, Q) = 1.

(3) If the first Ricci-Bismut curvature BW s p-nonnegative everywhere and p-positive at
some point then M has no holomorphic (q,0)-form for anyp < q < n, i.e. H%’O(M) =0.

In particular, if the scalar curvature SPM of the Bismut connection is nonnegative

everywhere and positive at some point, then HO(M, mKy) =0 for any m > 1.
Proof. By Proposition 3.7, if A(90w) = 0, then
BY <o? (5.26)
Now we can apply Corollary 5.4 to get (1), (2) and (3). O

Remark 5.11. For more vanishing theorems on special Hermitian manifolds, one can see
[1], [25], [16], [L7] and references therein.
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6 Examples of non-Kahler manifolds with nonnegative curva-
tures

Let M = S?"~! x S! be the standard n-dimensional (n > 2) Hopf manifold. It is diffeo-
morphic to C" — {0} /G where G is cyclic group generated by the transformation z — %z. It
has an induced complex structure of C" — {0}. For more details about such manifolds, we
refer the reader to [30]. On M, there is a natural metric

h= Z Wdz ® dz' (6.1)

The following identities follow immediately
8hk2 B 45kg§i 8hk2 B _4(5M,Zj
P PR - A P

(6.2)

and ) | |2 o
9%h,5 0;712|% — 2227
_kt —45,%”—6 (6.3)
0z'077 |z
Example 6.1 (Curvatures of Chern connection). Direct computation shows that, the Chen
curvature components are

82hkf n hmahkq 8hp2 . 45k1(5ij|z|2 — iji)

O-;=—— ™"t : - = 6.4
ikt 02077 0zt 07 | 2|6 (64)
and the first and second Ricci-Chern curvatures are
o " (Ouell? — 22) @ _ (n— 1ok (6.5)
WS RR 0 TR TP |
It is easy to see that the eigenvalues of @) are
n
M =0do=: =\ ——— 6.6
1 Y 2 n |Z|2 ( )
Hence, ©() is nonnegative and 2-positive everywhere.
Example 6.2 (Curvatures of Levi-Civita connection). Similarly, we have
5'5§k + (5M§i 5'k2’£ — 5kgzj
g, = -2 7 rt = M 6.7
ik 2’2‘2 ’ gk 2‘2’2 ( )
and _ o
Z?Pfk - 5]9(51'3' + 5ié(5jk 5igzj2k + 02! Z" (6 8)
ozl 2|22 2|z[4 ‘
ort 5inbir — 8100 (Sin2t — §1.029)F
ik _ Ojkdie — Opedis  (Ojnz” — Onez’)Z (6.9)
0zt 2|z|? 2|z[4 ’
The complexified Riemannian curvature components are
¢ . .
ory, oy Siedjr iz Z + ;427
‘o ik L sl 5 10 _ ik Oil ik
Rﬁk = ( 55 azl +F I‘ s szs rs kI‘ZS e EL (6.10)
and =k l=1 2 =k
2000 0;027Z% + 0;1,2°Z" 0 —
R = il jk w2’ 2"+ k2R 7 sz ké|Z| 4Z z (611)
K |24 210 2|2|
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Example 6.3 ( Curvatures of Bismut connection). By definition 2.45 and Lemma 2.10, we
obtain

¢ 5jk5ié — 5k€5ij 5Z-j3kzé + 5k42izj — 52'52ij — 5jk2izé
g (6.12)
ijk ’2‘2 ’2‘4
Two Ricci curvatures are
2 — 8;i|z|? —Zt2d
B _ g _ 2=n)(dyl2]* —7'27) (6.13)

ij ij 4|z|2
On the other hand, by 6.3, it is easy to see 90w = 0 and BM) = 0 for n = 2.

Proposition 6.4. Let M = S~ x S' be the standard n-dimensional (n > 2) Hopf manifold
with canonical metric h,

(1) (M, h) has positive second Ricci-Chern curvature ©®);

(2) (M, h) has nonnegative first Ricci-Chern curvature O, i.e., ¢; (M) > 0. Moreover,
/ (M) =0 (6.14)
M

(3) (M, h) is semi-positive in the sense of Griffiths, i.e.
@ﬁkzuiﬂjvkﬁz >0 (6.15)
for any u,v € C";

(4) R, is nonnegative and 2-positive everywhere;

(5) (M,h) has nonpositive and 2-negative first Ricci-Bismut curvature. In particular, (S® x
S', w) satisfies 00w = 0 and has vanishing first Ricci-Bismut curvature BW,

Although we know all Betti numbers of Hopf manifold S?*~! x S', h? is not so obvious.
Corollary 6.5. Let (M,h) be n-dimensional Hopf manifold with n > 2,
(1) RPO(M) =0 for p>1 and x(M,0) = 1. In particular, h%* (M) > 1.

(2) dimc H'(M,mK) =0 for any m > 1 where K = det(T*10M).

7 A natural geometric low on Hermitian manifolds

As we discussed in the above sections, on Hermitian manifolds, the second Ricci curvature
tensors of various metric connections are closely related to the geometry of Hermitian man-
ifolds. A natural idea is to define a flow by using second Ricci curvature tensors of various
metric connections. We describe it in the following.

Let (M, h) be a compact Hermitian manifold. Let V be an arbitrary metric connection on
the holomorphic tangent bundle (E,h) = (TY°M, h).

V:E— QYE) (7.1)
It has two components V' and V",

V=V +V' (7.2)
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V' and V" induce two differential operators
O : QPI(E) — QPTH(E) (7.3)

Op : QPYU(E) — QPITY(E) (7.4)

Let RF be the (1,1) curvature of the metric connection V. More precisely RF is a represen-
tation of Ogdg + Opdg. It is easy to see that

RE e D(M,AM'T*M @ End(F)) (7.5)

and locally, we can write it as
RE = RgAdzi NdZ @ et @ep (7.6)
Here we set ey = 6%,63 = dzP where A,B = 1,--- ,n, since the geometric meanings of
j and A are different. It is well-known that a metric connection V is determined by its

Christoffel symbols

Voea=Tlep, V.oea=T2ep (7.7)
921 EEd J

In particular, we don’t have notations such as I ﬁi. It is obvious that

B
A _org, o _

— C B C B

We set the second Hermitian-Ricci curvature tensor of (V,h) as
R® =nIR; pe’ @ e (M, E* © E) (7.9)
In general we can study a new class of flows on Hermitian manifolds

{% = F(h) = ph (7.10)
h(0) = ho
where F can be a linear combination of the first and the second Hermitian-Ricci curvature
tensors of different metric connections on (7'M, h). For examples, F(h) = —O3), the
second Ricci-Chern curvature tensor of the Chern connection, and F(h) = —§(2), the second
Hermitian-Ricci curvature tensor of the complexified Levi-Civita connection, or the second
Ricci curvature of any other Hermitian connection. Quite interesting is to take F(h) =
sOW 4+ (1 — 5)0®@ as the mixed Ricci-Chern curvature, or F(h) = B® — 2R? where B®
is the second Ricci curvature of the Bismut connection. More generally, we can set F(h) to
be certain suitable functions on the metric h. For example, if F(h) = (ApS) h, the above
equation will be the Hermitian Calabi flows.

The following result holds for quite general F(h), but here for simplicity we will only take
F(h) = —0® as an example.

{% =0t uh (7.11)
h(0) = hg

where p is a real parameter. By formula 2.38, the second Ricci-Chern curvature tensor has
components

2 _
0@ — pie, = i Iy iy Ol s
ij

W 0207 0z o7 (7:12)
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Theorem 7.1. Let (M, hy) be a compact Hermitian manifold.

(1) There exists small € such that, the solution of flow 7.11 exists for |t| < €, and it preserves
the Hermitian structure;

(2) The flow 7.11 preserves the Kdhler structure, i.e., if the initial metric ho is Kdahler, then
h(t) are also Kdhler.

Proof. (1). Let A. be the canonical Laplacian operator on the Hermitian manifold (M, h)
defined by
_ H?
A, = hP? . 7.13
¢ 0zP0z1 ( )
2
]
elliptic. The local existence of the flow 7.11 follows by general theory of parabolic PDE, and
the solution is an Hermitian metric on M.

(2). The coefficients of the tensor dw are given by

Therefore, the second Ricci-Chern curvature —02’ has leading term Achﬁ which is strictly

Oh=  Oh,=
] kj
. R ] 7.14
fzgk o2k Ozt ( )
Under the flow 7.11, we have
of - 002 9ol
ot = ot~ + g (7.15)

fz’jk(o) =0

At first, we observe that f= (t) = 0 is a solution of 7.15. In fact, if fiz,(t) = 0, then h(t)
are Kahler metrics, and so

0® _ ol _ _82 log det(hm)

ol 02 0%
Therefore,
2 2
3923) - 59,%) _ Plogdet(hym) . 0*log det(hya) _ (716)
0zt 0zk 02'02%0zj 02'02%0zj ’

kj j

3 7 — 8—2’3 = A, <fi3k> + lower order terms (7.17)
z z
Hence the solution of 7.15 is unique. O

Remark 7.2. Theorem 7.1 holds also for quite general F(h) which we will study in detail
in a subsequent paper [33].

The flow 7.11 has close connections to several important geometric flows:

1. It is very similar to the Hermitian Yang-Mills flow on holomorphic vector bundles. More
precisely, if the flow 7.11 has long time solution and it converges to an Hermitian metric
hso such that o

2

The Hermitian metric ho is Hermitian-Einstein. So, by [34], the holomorphic tangent
bundle T7O9M is stable. As shown in Example 6.1, the Hopf manifold S?**! x S! is
stable for any n > 1. In fact, in the definition of @g.), if we take trace by using the
initial metric hg, then we get the original Hermitian-Yang-Mills flow equation.
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2. If the initial metric is Kahler, then this flow is reduced to the usual Kéahler-Ricci
flow ([6]).

3. The flow 7.11 is similar to the harmonic map flow equation as shown in Theorem 7.1.
It is strictly parabolic, and so the long time existence depends on certain curvature
condition of the target manifold as discussed in the pioneering work of Eells-Sampson
n [11]. The long time existence of this flow and other geometric properties of our new
flow will be studied in our subsequent work.

Certain geometric flows and related results have been considered on Hermitian manifolds
recently, we refer the reader to [43], [44], [45] and [22].

8 Appendix: The proof of the refined Bochner formulas

Lemma 8.1. On a compact Hermitian manifold (M, h,w), we have

[A,20w] =A+B+C (8.1)
where ~
A= —hFhgnTdzs A d2' T
ST e ROEk (8.2)
A = —hStFZEdz LI;
B=—2rlds NdF I,
- Yo (8.3)
B = 2hPIT5.dz" T, I
J
C = A(20w) = 2T’_dz
- - e (8.4)
C" =2hi'T5.I; = 20T,
ji
Moreover,
(1) [A,A] = —V=1B;
(2) [A,B] = —v—1(2A" + B+ C");
(3) [A,C] = —/—1C".
Proof. All formulas follow by direct computation. O
Definition 8.2. With respect to V' and V”, we define
D' :=dz* ANV,
P (85)
D" :=dz? NV
j

The dual operators of 8,9, D', D" with respect to the norm in 4.13 are denoted by 9*,8", &', 8"
and define ~

(5/ = —h”I,V’l

0 I (8.6)

5 = — WLV

where I the contraction operator and I; =1 o and I; =1 o .
oz ozt

Remark 8.3. It is obvious that these first order differential operators D', D", §( and & are
well-defined and they don’t depend on the choices of holomorphic frames. If (M, h) is Kéhler,

*

D/:a7DN:57(56:5/:8* andag:é”:g_
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Lemma 8.4. In the local holomorphic coordinates,

(‘?:D'—E and 9 =D"—

B
2 2

Proof. We only have to check them on functions and 1-forms.

Lemma 8.5. On a compact Hermitian manifold (M, h), we have
{5// _ 56/ _C

= 2

C*

8 =6 —-5

* __ S/ B*+C*
{a =0 — &4

For 0 and 0, we have

% _ o B'4C"
R

Proof. For any ¢ € QP4~1(M) and v € QP4(M), by stokes’ theorem

0 =

—~

(i A *1))

Q

— (d_] /\gp/\*w)
(@ o)

J <<(’D’ WL T’Z)> W")
dlog det(hmn)> w"

(S30.0716) o ) (. 171)
(

Q3
t\zl

N

A/~ Q

n!

S TSI ET s
// ‘Q%‘Q

That is

o' 70log det(hmy

(8.7)

(8.8)

S5 () + (5 ) ) Pt

(D", ) = (d?j AV%’%w) = —( ”V’Nf) ( <5Z] +h 0z

Now we will compute the second and third terms on the right hand side.

Ohit hﬂalogdet(h 7) _ st % B Oh
07 027 027 0z

On the other hand

> 2hﬂrt — _opitri_
3l

~ WL = WLV - W (v; aa >
Z

= 0 - WL

In summary, by 8.10, 8.11 and 8.12, the adjoint operator ¢” of D" is

—k

C

5§ = (5" T ) + 20T 1, = 5 -
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(8.10)

(8.11)

(8.12)
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Since 0 = D" — g, we get

Lemma 8.6. On a compact Hermitian manifold (M, h), we have

D) =v=T(6"+5) L= v+ 6
T L = VI

A,D) = —V=1( + )
Proof. By definition
(AD)e = (VIWILI) (@2 A Vig)
= —VEINL; (42 A V)
= VWLV + V-1hdz" LIV
= V=16 + dZF AV, (\/—_1hi31i15.gp>
= V-10) + D'Ap
where we use the metric compatible condition

Viw=0= Vi (Ap) = A(V},p)

Lemma 8.7. On a compact Hermitian manifold (M, h), we have
A.0] = V=T (97 +7)
A7) = —v1(0" + %)

For the dual case, it is

[0*, L] = —/—1(0+7)
Proof. By Lemma 8.6, 8.4 and 8.1,

{[5*, L =+v=10+7)

A,8] = [AD]- [ B]

B ( LA B +C>
B ( C A+ B +C>
- 2

= V=10 +

The other relations follow by complex conjugate and adjoint operations.
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Lemma 8.8. On an Hermitian manifold (M, h,w),
9w = V=IA(0w) = M—ll“%d/ (8.17)

Proof. We have

5= A(Ow) = I‘jzdz

On the other hand, by Lemma 8.5 and djw = 0

o (ag_w)w:_&_c_w

J 71,51k \/__1 m n c
= (h@hmh r%dszpfg) <Thmndz NAE" ) = w
\/__1 Z'f' 7. 6*
= ——h@h JFZ—.dzZ 5w
= Y-
= V- szdz
= V—1A(0w)

O

Now we assume F is an Hermitian complex vector bundle or a Riemannian vector bundle
over a compact Hermitian manifold (M, h,w) and V¥ is a metric connection on FE.

Lemma 8.9. We have the following formula:
Tp(p@s) =@ ¢)@s—hi (I ) AVEs (8.18)
for any ¢ € QP4(M) and s € T'(M, E).
Proof. The proof of is the same as Lemma 8.5. O
Lemma 8.10. If 7 is the operator of type (1,0) defined by 7 = [A,20w] on Q*(M, E), then
(1) [Op, L] = vV=1(0p +7);
(2) 05, L] = —/~1(0p +7);
(3) [A,95] = V=105 +7") ;
(4) [A,05] = —V/—1(05 + 7).
Proof. We only have to prove (3). For any ¢ € Q*(M) and s € T'(M, E),
(Adp)(p®s) = A (acp ® s+ (—1)¥lp A aEs)
( (—0)PZTIRM LI, (o A Ops)
(ADp) @ s + (1) =TI, (L) A Ops)
= (AOp) @ s+ (— 1)|“0|\/_th (I (Iz0)) N Ops — \/—_lhkzlg(cp) A I0ps
(Adp) @ s + (—1)1?l(Ap) A Ogs — \/—_hkzlz(cp) AVEs

Adyp) ® s +
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On the other hand

OpM)(p®s) = O0p((Ap)®s)
= (0Ap) ® s+ (—1)?l(Ap) A Ops

Therefore
[A0pl(p®s) = (M) ®@s— V-1 (p) AVEs
= -1 ((8* +7 > > V—_lhszz(gp) AVEs
= \/_1<(9E+T ) (p®s)
where the last step follows by 8.18. O
References
[1] Alexandrov, B.; Ivanov, S. Vanishing theorems on Hermitian manifolds. Differential

2]

[11]

[12]
[13]

[14]

Geom. Appl. 14 (2001), no. 3, 251-265.

Alessandrini, L.; Bassaneli, G. Metric properties of manifolds bimeromorphic to compact
Kaehler manifolds, J. Diff. Geometry 37 (1993), 95-121.

Alessandrini, L.; Bassanelli, G. A class of balanced manifolds. Proc. Japan Acad. Ser. A
Math. Sci. 80 (2004), no. 1, 6-7.

Bismut, J.-M. A local index theorem for non Kéhler manifolds. Math. Ann. 284 (1989),
no. 4, 681-699.

Bochner, S. Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52, 776-797 (1946).

Cao, H.-D. Deformation of Kéhler metrics to Kéhler-Einstein metrics on compact Kéhler
manifolds. Invent. Math. 81 (1985), no. 2, 359-372.

Calabi, E.; Eckmann, B. A class of compact, complex manifolds which are not algebraic.
Ann. of Math. (2) 58, (1953) 494-500.

Demailly, J-P. Complex analytic and algebraic geometry. book online http://www-
fourier.ujf-grenoble.fr/ demailly /books.html.

Demailly, J-P. Une preuve simple de la conjecture de Grauert-Riemenschneider. Lecture
Notes in Math., 1295, 24-47, Springer, Berlin, 1987.

Demailly, J.; Paun, M. Numerical characterization of the K&hler cone of a compact
Kéhler manifold. Ann. of Math. (2) 159 (2004), no. 3, 1247-1274.

Eells, J.; Sampson, J. Harmonic mappings of Riemannian manifolds. Amer. J. Math.
86(1964) 109-160.

Enrietti, N. Static SK'T metrics on Lie groups. arXiv:1009.0620

Fino, A.; Grantcharov, G. Properties of manifolds with skew-symmetric torsion and
special holonomy. Adv. Math. 189 (2004), no. 2, 439-450.

Fino, A.; Tomassini, A. Blow-ups and resolutions of strong Kéhler with torsion metrics.
Adv. Math. 221 (2009), no. 3, 914-935

31



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Fino, A.; Parton, M.; Salamon, Simon Families of strong KT structures in six dimensions.
Comment. Math. Helv. 79 (2004), no. 2, 317-340.

Ganchev, G.; Ivanov, S. Holomorphic and Killing vector fields on compact balanced
Hermitian manifolds. Internat. J. Math. 11 (2000), no. 1, 15-28.

Ganchev, G.; Ivanov, S. Harmonic and holomorphic 1-forms on compact balanced Her-
mitian manifolds. Differential Geom. Appl. 14 (2001), no. 1, 79-93.

Gauduchon, P. Le theoreme de I'excentricité nulle, C. R. Acad. Sci. Paris Ser. A, 285
(1977), 387-390.

Gauduchon, P. Fibrés hermitiens a endomorphisme de Ricci non-négatif, Bull. Soc.
Math. France 105 (1977), 113-140.

Gauduchon, P. Hermitian connections and Dirac operators, Bol. U. M. I. ser. VII, vol.
XI-B, supl. 2 (1997), 257-289.

Gauduchon, P. La 1-forme de torsion d’'une variété hermitienne compacte. Math. Ann.
267 (1984), no. 4, 495-518.

Gill, M. Convergence of the parabolic complex Monge-Ampre equation on compact Her-
mitian manifolds. arXiv:1009.5756.

Gray, A. Some examples of almost Hermitian manifolds. Illinois J. Math. 10 1966, 353-
366.

Hamilton, R. Three-manifolds with positive Ricci curvature. J. Differential Geom. 17
(1982), no. 2, 255-306.

Ivanov, S.; Papadopoulos, G. Vanishing theorems and string backgrounds. Classical
Quantum Gravity 18 (2001), no. 6, 1089-1110.

Ji, S. Currents, metrics and Moishezon manifolds. Pacific J. Math. 158 (1993), no. 2,
335-351.

Ji, S.; Shiffman, B. Properties of compact complex manifolds carrying closed positive
currents. J. Geom. Anal. 3 (1993), no. 1, 37-61.

Jost, J.; Yau, S.-T. A nonlinear elliptic system for maps from Hermitian to Riemannian
manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170 (1993), no. 2,
221-254.

Kobayashi, S. Differential Geometry of complex vector bundles, Iwanami Shoten, Pub-
lishers and Princeton Univ. Press. 1987.

Kobayashi, S.; Nomizu, K. Foundations of differential geometry. Vol. II. Interscience
Publishers John Wiley-Sons, Inc., New York-London-Sydney 1969.

Kobayashy, S.; Wu, H. On holomorphic sections of certain Hermitian vector bundles,
Math. Ann. 189 (1970), 1-4.

Li, J.; Yau, S.-T. Hermitian-Yang-Mills connection on non-Kéahler manifolds. Mathemat-
ical aspects of string theory (San Diego, Calif., 1986), 560C573, Adv. Ser. Math. Phys.,
1, World Sci. Publishing, Singapore, 1987.

32



Li,Y.; Liu, K.; Yang, X. Hermitian geometric flow I.

Liu, K.; Yang, X. Harmonic maps between compact Hermitian manifolds. Sci. China
Ser. A 51 (2008), no. 12, 2149-2160.

Ma, X.; Marinescu, G. Holomorphic Morse inequalities and Bergman kernels. Progress
in Mathematics, 254. Birkh&duser Verlag, Basel, 2007

Michelson, M.L. On the existence of special metrics in complex geometry, Acta Math.
143 (1983), 261-295.

Petersen, P. Riemannian geometry. Second edition. Graduate Texts in Mathematics,
171. Springer, New York, 2006.

Shiffman, B.; Sommese, A.J. Vanishing theorems on complex manifolds. Progress in
Mathematics, 56. Birkhauser 1985.

Siu, Y. A vanishing theorem for semipositive line bundles over non-Kéahler manifolds. J.
Differential Geom. 19 (1984), no. 2, 431-452.

Siu, Y-T.; Yau, S-T. Compact Kahler manifolds of positive bisectional curvature. Invent.
Math. 59 (1980), no. 2, 189-204.

Tosatti, V.; Weinkove, B. The complex Monge-Ampre equation on compact Hermitian
manifolds. J. Amer. Math. Soc. 23 (2010), no.4, 1187-1195

Tosatti, V.; Weinkove, B. Estimates for the complex Monge-Ampre equation on Hermi-
tian and balanced manifolds. Asian J. Math. 14 (2010), no.1, 19-40.

Streets, J., Tian, G., Hermitian curvature flow, arXiv: 0804.4109.
Streets, J., Tian, G., A parabolic flow of pluriclosed metrics, arXiv: 0903.4418.
Streets, J., Tian, G., Regularity results for pluriclosed flow, 1008.2794.

Urakawa, H. Complex Laplacians on compact complex homogeneous spaces. J. Math.
Soc. Japan 33 (1981), no. 4, 619-638

Wu, H. Bochner technique in Differential Geometry, Math. Reports, vol.3, part 2, 1988.
Yang, H-C. Complex parallelisable manifold, Proc. Amer. Math. Soc., 51(1954), 771-776.

Yano, K.; Bochner, S. Curvature and Betti numbers. Annals of Mathematics Studies,
No. 32. Princeton University Press, Princeton, N. J., 1953

Yau, S.-T. On the Ricci curvature of a compact Kahler manifold and the complex Monge-
Ampre equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411.

Zheng, F. Complex differential geometry. AMS/IP Studies in Advanced Mathematics,
18. American Mathematical Society, Providence, RI; International Press, Boston, MA,
2000

Department of Mathematics, University of California at Los Angeles,
Los Angeles, CA, 90095-1555
E-mail Address: liu@math.ucla.edu; xkyang@math.ucla.edu

33



	1 Introduction
	2 Various connections and curvatures on Hermitian manifolds
	2.1 Complexified Riemannian curvature
	2.2 Curvature of complexified Levi-Civita connection on T1,0M
	2.3 Curvature of Chern connection on T1,0M
	2.4 Curvature of Bismut connection on T1,0M
	2.5 Relations among the four curvatures on Hermitian manifolds

	3 Curvature relations on special Hermitian manifolds
	3.1 Curvatures relations on balanced Hermitian manifolds
	3.2 Curvature relations on Hermitian manifolds with ()=0

	4 Bochner formulas on Hermitian complex and Riemannian real vector bundles over compact Hermitian manifolds
	5 Vanishing theorems on Hermitian manifolds
	5.1 Vanishing theorems on compact Hermitian manifolds
	5.2 Vanishing theorems on special Hermitian manifolds

	6 Examples of non-Kähler manifolds with nonnegative curvatures
	7 A natural geometric flow on Hermitian manifolds
	8 Appendix: The proof of the refined Bochner formulas

