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Abstract. In this paper, we get the full expansion for period map from
the moduli space Mg of curves to Ag in Bers coordinates. This gener-
alizes fully the famous Rauch’s variational formula. As applications, we
use this expansion to study its distortion problem.

1. Introduction

In this paper, we study the period mapping J from the moduli space Mg

of compact Riemann surfaces with genera g to the coarse moduli space Ag

of g-dimensional principally polarized Abelian varieties.
There are various methods to give complex orbifold structures on Mg.

These structures are biholomorphically equivalent to each other and deter-
mine a unique one, which we call the canonical complex orbifold structure.
With respect to this structure on Mg, J is holomorphic. Furthermore, it
is the unique one such that J is holomorphic. In view of these, J plays
an important role in the study of Mg. The first basic property of J is its
injectivity. In other words, two compact Riemann surfaces with isomorphic
Jacobians must be biholomorphic to each other. This is exactly the state-
ment of the classical Torelli’s theorem[1]. Its second one is the immersive
property. More precisely, the period mapping J is a holomorphic immersion
on the complement of the hyperelliptic locus Mg −HEg and restricts to an
immersion on HEg. This property is now known as the local Torelli theorem
and is proved by Rauch’s variational formula for J [2].

To discuss the differential geometry of Mg, one way is to compute the
higher differentials of J . It is presumable that J is very curved with re-
spect to the invariant metric on the locally symmetric varietyAg[3,4]. Thus a
higher expansion of J more than the first order term seems to be very mean-
ingful for estimates of its distortion. In our presentation, we would like to
get the full expansion of J . The idea is to deform the canonical holomorphic
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1-forms on a fixed Riemann surface. To achieve this, we employ a funda-
mental construction developed recently by K. Liu, X. Sun and A. Todorov.
By an explicit expansion of the canonical holomorphic 1-forms, we deduce
a generalization of Rauch’s variational formula. Note that our method is
completely different from Rauch’s original one and that of Mayer’s[5,6,7].

This article is organized as follows. In Section 2, we recall some back-
ground materials in moduli theory of compact Riemann surfaces. The de-
formation constructions of holomorphic 1-forms are arranged in the Section
3. Then we use the results of Section 3 to get the full expansion for period
mapping J in Section 4. In particular, we also get the expansion of the
period matrix along a complex curve in Mg. Finally, as applications, we use
our expansion of period mapping to study its distortion problem.

Assume all Riemann surfaces in this article have genera g ≥ 2.

Acknowledgements. The author would like to thank Professor Kefeng
Liu for lots of valuable suggestions and constant encouragement. Thanks
are due to Professor Xiaofeng Sun for his useful discussion.

2. Moduli space and period mapping

We construct the moduli space Mg of compact Riemann surfaces with
genera g via Teichmuller theory. The procedure is as follows. First, we de-
fine a Teichmuller space T (X) associated to X by means of quasi-conformal
mapping theory. Second, we prove this space admits a properly discontinu-
ous holomorphic action by the mapping class group Modg. And then we can
see the quotient analytic space is precisely what we want. The critical step
is the construction of Teichmuller space T (X) of X.

Let X be a closed Riemann surface of genus g ≥ 2. Fix a set of 2g simple
closed curves on X which induces a symplectic homology basis of H1(X,Z).
In other words, we choose 2g simple closed curves {Aα, Bα}g

α=1 on X such
that their intersection matrix is the standard symplectic matrix. Consider
an arbitrary pair (f, S) of a closed Riemann surface S and a quasiconformal
mapping f : X → S. We call the triple (X, f, S) a marked Riemann surface.
Two triples (X, f, S) and (X, g, S′) are said to be Teichmuller equivalent if
g ◦ f−1 : S → S′ is homotopic to a biholomorphic mapping φ : S → S′. Let
[f, S] be the Teichmuller equivalence class of (X, f, S). The set of all these
equivalence classes [f, S] is denoted by T (X) and is called the Teichmuller
space of X. The point [id,X] is called the base point of T (X).

We introduce a topology on T (X) by means of the Teichmuller distance
which is defined in the following:

For any two points p1 = [f1, S1], p2 = [f2, S2] ∈ T (X), let Q(f2 ◦ f−1
1 ) be

the set of all quasiconformal mappings of S1 onto S2 which are homotopic
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to f2 ◦ f−1
1 . The Teichmuller distance d between p1 and p2 is given by

d(p1, p2) = inf
g∈Q(f2◦f−1

1 )
log K(g),

where K(g) is the maximal dilatation of g. This distance makes T (X) a com-
plete topological space. Furthermore, different Teichmuller spaces T (X1)
and T (X2) corresponding to different Riemann surfaces X1 and X2, respec-
tively, are homeomorphic to each other by a base point translation. We call
their common topological space the Teichmuller space of compact Riemann
surfaces of genera g, which we denote by Tg.

Let us describe a local holomorphic coordinate system on Tg around the
base point. Let ω be a fixed Hermitian metric on X = X0. H0,1(X0, T

1,0X0)
the space of harmonic Beltrami differentials on X0 with respect to ω. Choose
a basis {µi}n

i=1 (n = 3g − 3) of H0,1(X0, T
1,0X0). For sufficiently small

t = (t1, · · · , tn) ∈ Cn, we define µt =
∑n

i=1 tiµi. Each µt gives a quasi-
conformal mapping fµt by the existence of solution to the Beltrami equation.
Write Xt = fµt(X). In this way, we construct a family of marked Riemann
surfaces [fµt , Xt]. Meanwhile, the small parameters t = (t1, · · · , tn) form a
local holomorphic coordinate system at the base point [id,X0] ∈ Tg. These
coordinates will be used to deform holomorphic 1-forms in our next section.

For the identification of Riemann’s moduli space Mg, we define a group
action on the Teichmuller space Tg. Let Modg = Mod(X) be the set of
all homotopy classes [h] of quasi-conformal self-mapping of X. It forms an
abstract group by the composition of maps. We call it the mapping class
group Modg of genus g. Every element [h] in Modg acts on Tg by

[h]([f, S]) = [f ◦ h−1, S]

for [f, S] ∈ Tg. Now the moduli space of closed Riemann surfaces of genera g
Mg, i.e. the set of all biholomorphic equivalence classes of closed Riemann
surfaces of genera g, is identified with the quotient space Tg/Modg. With
respect to above canonical complex structure on Tg, the Modg-action is
holomorphic and properly discontinuous. Thus by a theorem of Cartan, the
quotient spaceMg is a 3g−3 dimensional complex analytic space. Moreover,
Mg is a quasi-projective variety and a complex orbifold.

To each pair (f, S) we associate an element π ∈ Hg. Here Hg is the
generalized Siegel upper half plane of dimension g(g+1)

2 . The details are as
follows. For each (f, S), we have a symplectic homology basis {Aα, Bα}g

α=1
which is induced by the quasi-conformal mapping f : X → S from that of
X. By the Hodge-Riemann bilinear relations of holomorphic 1-forms, we
know that there is a unique basis {θα}g

α=1 of H0(S,KS) such that∫

Aα

θβ = δαβ .
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Then the period matrix π = (παβ), where παβ =
∫
Bα

θβ , belongs to Hg. Ac-
tually, this matrix depends only on the Teichmuller equivalence class [f, S]
of (f, S) and gives a natural map, which we call the period map Π, from Tg

to Hg. The basis {θα}g
α=1 is said to be a canonical basis of the space of holo-

morphic Abelian differentials H0(S,KS) on S with respect to {Aα, Bα}g
α=1.

Let Sp(g,Z) be the set of all symplectic matrices with elements in Z.
This group acts on Hg also properly discontinuously. The quotient space
Ag = Hg/Sp(g,Z) is a g(g+1)

2 dimensional complex analytic space. This
space can be identified with the coarse moduli space of principally polarized
Abelian varieties of dimension g[8]. Our previous period mapping Π descends
to a map J from Mg to Ag. This is equivalent to the following commutative
diagram

Tg
Π−−−−→ Hgy

y
Mg

J−−−−→ Ag.

There is a classical result due to Torelli asserts this descending period
mapping J is injective. In fact, it is also a holomorphic immersion out-
side the hyperelliptic locus Mg −HEg and restricts to an immersion on the
hyperelliptic locus HEg.

3. Deformation construction of holomorphic 1-forms

In this section, we formulate the Liu-Sun-Todorov’s construction of defor-
mations of holomorphic 1-forms on a fixed Riemann surface X0.

In above section, we point out a way to define a local holomorphic coor-
dinate system on Teichmuller space. In the following, we will construct this
local coordinate system from another point of view–the deformation theory
of complex structures[9]. Fix a Riemann surface X0 of genus g ≥ 2. As
above, choose a basis {µi}n

i=1 of the space of harmonic Beltrami differentials
H0,1(X0, T

1,0X0) with respect to ω. For sufficiently small t = (t1, · · · , tn) ∈
Cn, define µt =

∑n
i=1 tiµi. Then this µt gives a new complex structure Jt on

X0 by putting Ω1,0
t = (I + µt a)(Ω1,0

0 ), where Ω1,0
0 is the holomorphic cotan-

gent bundle on the original Riemann surface X0 and a denotes the contrac-
tion operation. In this way, we get a small deformation (Jt, X0) = Xt → ∆ε

of X0, where ε is sufficiently small. And t = (t1, · · · , tn) forms a local holo-
morphic coordinate system at the base point p = [id,X0] ∈ Tg.

Let θ ∈ H0(X0,KX0) be a global holomorphic 1-form on X0. We want to
deform it to an element θt in H0(Xt,KXt).
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Theorem 3.1. For each θ ∈ H0(X0,KX0), there exists a unique ηt which
is holomorphic in t for sufficiently small |t|, satisfying
(i) H(ηt) = θ, where H is the harmonic projector on (X0, ω),
(ii) θt = (I + µt a)ηt ∈ H0(Xt,KXt).

Proof. Let G, ∂̄∗, ∂,H be operators on X0. I = (i1, · · · , in) ∈ Zn
+. Then we

define the following forms by iterations

η(0,··· ,0) = θ,

ηI = −G∂̄∗∂(
n∑

j=1

µj a η(i1,··· ,ij−1,··· ,in)).

From the estimates of Green operator G, ∂̄∗ and ∂[9], we see that there is
a constant C = C(m,α) depending X0, m and α such that

‖ηI‖m,α ≤ C‖θ‖m,α,

where ‖ · ‖m,α denotes the Sobolev norm.
Now set

ηt = θ −
∑

j

tj(G∂̄∗∂(µj a θ)) +
∑

|I|≥2

tIηI .

Then it is a well-defined global (1,0)-form on X0 for each sufficiently small
|t| < ε(ε depends on C and θ) and H(ηt) = θ.

By the definition of complex structure on Xt,

θt = (I + µt a)ηt ∈ A1,0(Xt).

In order to prove θt ∈ H0(Xt,KXt), it needs only to check that dθt = 0.

dθt =(∂ + ∂̄)θt

=∂̄(ηt) + ∂(ϕt a ηt)

=
∑

|I|>0

tI(∂̄ηI + ∂(
n∑

j=1

ϕj a η(i1,··· ,ij−1,··· ,in)))

=
∑

|I|>0

tI(∂(I −G∆)(
n∑

j=1

ϕj ∧ η(i1,··· ,ij−1,··· ,in)))

=
∑

|I|>0

tI(∂{H(
n∑

j=1

ϕj ∧ η(i1,··· ,ij−1,··· ,in))})

=0.

Its uniqueness is easy. ¤

We want to express the deformation form θt in a more useful form.
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Corollary 3.1. There are smooth functions f j
(i1,··· ,ij−1,··· ,in) on X0 such that

for |t| < ε,

θt =θ +
∑

j

tj(H(µj a θ) + df j
(0,··· ,0))

+
∑

|I|≥2

tI(
∑

j

H(µj a η(i1,··· ,ij−1,··· ,in)) + df j
(i1,··· ,ij−1,··· ,in)).

Proof. From above theorem, we see that

θt =θ +
∑

|I|>0

tI(I −G∂̄∗∂)(
n∑

j=1

µj a η(i1,··· ,ij−1,··· ,in))

=θ +
∑

|I|>0

tI(I −G∂̄∗∂){
n∑

j=1

H(µj a η(i1,··· ,ij−1,··· ,in)) + ∂̄f j
(i1,··· ,ij−1,··· ,in)}

=θ +
∑

|I|>0

tI{
n∑

j=1

H(µj a η(i1,··· ,ij−1,··· ,in)) + ∂̄f j
(i1,··· ,ij−1,··· ,in) + ∂G∆f j

(i1,··· ,ij−1,··· ,in)}

=θ +
∑

|I|>0

tI{
n∑

j=1

H(µj a η(i1,··· ,ij−1,··· ,in)) + df j
(i1,··· ,ij−1,··· ,in)}.

¤
In the same manner, we may deform holomorphic 1-forms along a sub-

manifold of Mg. For simplicity, we consider the curve case. Let S ⊂Mg be
a 1-dimensional complex submanifold. For any point p = [X0] ∈ S, we take a
local holomorphic coordinate s so that s(p) = 0. Since the Bers coordinates tj
are holomorphic, tj = tj(s) are holomorphic functions of s. The correspond-
ing Beltrami differentials associated to S are given by µs =

∑
j tj(s)µj . Let

µs = sµ(1) + s2µ(2) + · · · be its Taylor series expansion in s. Hence

Theorem 3.2. For each θ ∈ H0(X0,KX0), there exists a unique ηs which
is holomorphic in s for sufficiently small s ∈ S, satisfying
(i) H(ηs) = θ, where H is the harmonic projector on (X0, ω),
(ii) θs = (I + µs a)ηs ∈ H0(Xs,KXs).
Moreover, θs is holomorphic in s and has following expansion

θs = θ +
∑

k≥1

sk{
∑

k1+k2=k,k1≥1

H(µ(k1) a Ak2) + dfk},

where fk are smooth functions on X0, A0 = θ and

Ak = −G∂̄∗∂{
∑

k1+k2=k,k1≥1

µ(k1) a Ak2}.
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4. General expansion of period mapping

Let Π : Tg → Hg be the period mapping. Let [id,X0] be the base point
of Tg. Choose a symplectic homology basis {Aα, Bα}g

α=1 on X0. Assume
{θα}g

α=1 is a canonical basis of the space of holomorphic 1-forms on X0. For
each above local parameter t = (t1, · · · , tn) on Tg, we obtain a new compact
Riemann surface Xt. Before our computations, we recall the Hodge-Riemann
bilinear relations for d-closed forms on compact Riemann surfaces[10].

Lemma 4.1. Let φ, ϕ be two d-closed forms on a compact Riemann surface
S, then the following relation holds

∫

S
φ ∧ ϕ =

∑
γ

{
∫

Aγ

φ

∫

Bγ

ϕ−
∫

Bγ

φ

∫

Aγ

ϕ}.

On each deformed Riemann surface Xt, we construct a holomorphic 1-
form θα

t from θα as in Section 3. Write bαβ(t) =
∫
Aα

θβ
t and παβ(t) =

∫
Bα

θβ
t .

As a corollary of Lemma 4.1, the matrix (bαβ) is non-singular for small |t|.
Set (bαβ) = (bαβ)−1, i.e. bαγbγβ = δαβ = bαγbγβ , and θ̃α

t = bβαθβ
t , then

b̃αβ =
∫
Aα

θ̃β
t = bγβ

∫
Aα

θγ
t = bγβbαγ = δαβ . This shows that the holomorphic

1-forms {θ̃α
t } form a canonical basis of H0(Xt,KXt).

Lemma 4.2. dπαβ

dtk
(0) =

∫
Bα

H(µk a θβ), dbαβ

dtk
(0) =

∫
Aα

H(µk a θβ). Here,
H denotes the harmonic projector on X0.

Proof. By definition of παβ(t) and corollary 3.2, we have

dπαβ

dtk
(0) =

∫

Bα

dθβ
t

dtk
|t=0.

=
∫

Bα

{H(µk a θβ) + dfβ,k}

=
∫

Bα

{H(µk a θβ).

Similarly,
dbαβ

dtk
(0) =

∫

Aα

dθβ
t

dtk
|t=0.

=
∫

Aα

{H(µk a θβ) + dfβ,k}

=
∫

Aα

H(µk a θβ).

¤
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Lemma 4.3.

∫

Aα

H(µk a θβ) =
√−1

2
aαγ

∫

X0

θγ ∧H(µk a θβ).

Proof. Set H(µk a θβ) = cβ
k,γ θ̄γ . Then

∫
Aα

H(µk a θβ) = cβ
k,α. On the other

hand,
√−1

∫
X θα ∧ H(µk a θβ) =

√−1cβ
k,γ

∫
X θα ∧ θ̄γ = 2cβ

k,γaαγ , where

aαβ = Imπαβ(0). These imply that cβ
k,α =

√−1
2 aαγ

∫
X θγ ∧H(µk a θβ). ¤

Based on these two lemmas, we can expand the period matrix π(t) =
(παβ(t)) as a power series of t = (t1, · · · , tn) at the base point of Tg. Write
(aγδ) = (Imπ(0))−1.

Theorem 4.1. For the period mapping Π : Tg → Hg, we have the following
expansion

π̃αβ(t) =παβ(0) +
∫

X0

θα ∧ µt a θβ +
∫

X0

θα ∧ µt a Aβ
t,1

−
√−1

2

∫

X0

θα ∧ µt a θγ · aγδ ·
∫

X0

θδ ∧ µt a θβ

+
∑

k≥3

{
∫

X0

θα ∧ µt a Aβ
t,k−1 +

∑
1≤k1≤k−1

1≤δ≤n

C(α, δ, k1, k, µt)
∫

X0

θδ ∧ µt a Aβ
t,k1−1

+ · · · ,

where Aα
t,0 = θα, Aα

t,k = −G∂̄∗∂(µt a Aα
t,k−1), µt =

∑n
j=1 tjµj and C(α, δ, k1, k, µt)

is a constant depending on its factors.

Proof. In our above notations, it is equivalent to check this expansion for
π̃αβ(t). Since Π is holomorphic, we need only to compute all partial deriva-
tives of π̃αβ(t) at t = 0.
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We write π̃′αβ = dπ̃αβ

dti
. Then

π̃′αβ(0) =π′αβ(0)− παγ(0)bγξ(0)b′ξη(0)bηβ(0)

=
∫

Bα

H(µi a θβ)− παξ(0)b′ξβ(0)

=
∫

Bα

H(µi a θβ)−
∫

Bα

θξ

∫

Aξ

H(µi a θβ)

=
∫

Bα

H(µi a θβ)−
∑

ξ

∫

Bξ

θα

∫

Aξ

H(µi a θβ)

=
∑

ξ

{
∫

Aξ

θα

∫

Bξ

H(µi a θβ)−
∫

Bξ

θα

∫

Aξ

H(µi a θβ)}

=
∫

X0

θα ∧H(µi a θβ)

=
∫

X0

θα ∧ µi a θβ,

where the last second equality comes from Lemma 4.1.
For the second derivatives, we have

∂2π̃αβ

∂tj∂tk
(0) =

∂2

∂tj∂tk
(παγbγβ)(0)

=∂2
tjtk

παβ(0)− ∂tjπαγ∂tkbγβ − ∂tkπαγ∂tjbγβ + παβ∂2
tjtk

bγβ .

By Corollary 3.1, we may expand θt as follows

θα
t = θα +

∑

i

ti(H(µi a θα) + dfα,i) +
∑

j,k

tjtk(H(µj a Aα
k ) + dfα,j

k ) + · · · ,

where Aα
k = −G∂̄∗∂(µk a θα).

Thus

∂2
tjtk

θα(0) = {H(µj a Aα
k ) + dfα,j

k + H(µk a Aα
j ) + dfα,k

j }

and

∂2
tjtk

παβ(0) =
∫

Bα

{H(µj a Aβ
k) + H(µj a Aβ

k)}.
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On the other hand,

∂2
tjtk

bγβ =∂tjbγξ∂tkbξβ − ∂2
tjtk

bγβ + ∂tkbγη∂tjbηβ

=
∫

Aγ

H(µj a θξ)
∫

Aξ

H(µk a θβ)−
∫

Aγ

{H(µj a Aβ
k) + H(µk a Aβ

j )}

+
∫

Aγ

H(µk a θξ)
∫

Aξ

H(µj a θβ).

Hence,

∂2π̃αβ

∂tj∂tk
(0) =

∫

Bα

{H(µj a Aβ
k) + H(µk a Aβ

j )} −
∫

Bα

H(µj a θγ)
∫

Aγ

H(µk a θβ)

−
∫

Bα

H(µk a θγ)
∫

Aγ

H(µj a θβ) +
∫

Bα

θγ{
∫

Aγ

H(µj a θξ)
∫

Aξ

H(µk a θβ)

−
∫

Aγ

{H(µj a Aβ
k) + H(µk a Aβ

j )}+
∫

Aγ

H(µk a θξ)
∫

Aξ

H(µj a θβ)}

=
∫

X0

θα ∧H(µj a Aβ
k) +

∫

X0

θα ∧H(µk a Aβ
j )

−
∫

X0

θα ∧H(µk a θγ) ·
∫

Aγ

H(µj a θβ)

−
∫

X0

θα ∧H(µj a θγ)
∫

Aγ

H(µk a θβ).

In the following, we will derive all of the higher derivatives by another
method other than direct computations. Observe that the period mapping
may be viewed as a composition of t 7→ µt 7→ π(µt) = π(t). Without loss of
generality, we assume first µt = tµ, t ∈ C. In order to simplify the notations,
we make the following conventions. Set fα

−1 = 0, H(µ a Aα
−1) = θα and

Aα
0 = θα. From the construction in Section 3, we know dl

dtl
|t=0θ

β
t = l!{H(µ a

Aβ
l−1) + dfβ

l−1}, l ≥ 0.

Lemma 4.4. dk

dtk
|t=0b

βα(t) = −∑k
k1=1 Ck1

k
dk1

dtk1
|t=0bβδ

dk−k1

dtk−k1
|t=0b

δα.

Proof. 0 = dk

dtk
(bβδb

δα) =
∑k

k1=1 Ck1
k

dk1

dtk1
|t=0bβδ

dk−k1

dtk−k1
|t=0b

δα + dk

dtk
|t=0b

βα(t).
¤
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Now for k ≥ 1

dk

dtk
|t=0π̃αβ(t) =

∫

Bα

dk

dtk
|t=0{θγ

t bγβ(t)}

=
∫

Bα

∑

k1+k2=k

Ck1
k

dk1

dtk1
|t=0θ

γ
t

dk2

dtk2
|t=0b

γβ(t)

=k!
∫

Bα

H(µ a Aβ
k−1)+

∫

Bα

∑
k1+k2=k

k2≥1

Ck1
k k1!H(µ a Aγ

k1−1){
∑

k3+k4=k2
k3≥1

−Ck3
k2

dk3

dtk3
bγδ

dk4

dtk4
bδβ}|t=0

=k!
∫

Bα

H(µ a Aβ
k−1)− k!

∫

Bα

θγ

∫

Aγ

H(µ a Aβ
k−1)

−
∫

Bα

θγ
∑

k3+k4=k
k3≥1,k4≥1

Ck3
k k3!

∫

Aγ

H(µ a Aδ
k3−1)

dk4

dtk4
|t=0b

δβ(t)

+
∫

Bα

∑
k1+k2=k

k1≥1,k2≥1

Ck1
k k1!H(µ a Aδ

k1−1)
dk2

dtk2
|t=0b

δβ(t)

=k!
∫

X0

θα ∧ µ a Aβ
k−1

+
∑

k1+k2=k
k1≥1,k2≥1

Ck1
k k1!

∫

X0

(θα ∧ µ a Aδ
k1−1)

dk2

dtk2
|t=0b

δβ(t).

Now by Lemma 4.3 and Lemma 4.4, we can compute dk2

dtk2
|t=0b

δβ(t) in
terms of integrations over X0. This shows there are constants C(α, δ, k1, k, µ)
such that

1
k!

dk

dtk
|t=0π̃αβ(t) =

∫

X0

θα∧µ a Aβ
k−1+

∑
1≤k1≤k−1

1≤δ≤n

C(α, δ, k1, k, µ)
∫

X0

θδ∧µ a Aβ
k1−1.

In general, the k-homogenous term in the power series expansion of π̃αβ(t)
is given by

∫

X0

θα ∧ µt a Aβ
t,k−1 +

∑
1≤k1≤k−1

1≤δ≤n

C(α, δ, k1, k, µt)
∫

X0

θδ ∧ µt a Aβ
t,k1−1.
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In sum, we obtain

π̃αβ(t) =παβ(0) +
∫

X0

θα ∧ µt a θβ +
∫

X0

θα ∧ µt a Aβ
t,1

−
√−1

2

∫

X0

θα ∧ µt a θγ · aγδ ·
∫

X0

θδ ∧ µt a θβ

+
∑

k≥3

{
∫

X0

θα ∧ µt a Aβ
t,k−1 +

∑
1≤k1≤k−1

1≤δ≤n

C(α, δ, k1, k, µt)
∫

X0

θδ ∧ µt a Aβ
t,k1−1

+ · · · ,

The convergence is verified by the convergence of θα
t in Corollary 3.1. ¤

5. An application

In this section, we use the general expansion of period matrix to study the
distorsion problem[3,4]. We will embark on the complex curve exclusively
and study whether there is a totally geodesic complex curve in Ag which
is also contained in the open Torelli locus J (Mg). Let us first recall some
more facts on the Siegel space Hg. Since it is a Hermitian symmetric space of
non-compact type, it admits a unique (up to a positive constant) invariant
metric which is Kahler. The real symplectic group

Sp(g,R) = {W =
(

A B
C D

)
∈ GL(2g,R)|A,B, C, D ∈ Mg(R),W tJgW = Jg},

where Jg =
(

0 Ig

−Ig 0

)
and Ig is the identity g × g matrix, acts holomorphi-

cally, isometrically and transitively on Hg by

(
(

A B
C D

)
, Z) = (AZ + B)(CZ + D)−1.

Hg can be realized as a bounded domain in C
g(g+1)

2 by Cartan realization

Z 7→ M =
Ig + iZ

Ig − iZ
.

Its image
DIII

g = {M ∈ Mg(C)|M t = M, Ig −M
t
M > 0}

is a bounded complex domain and admits a Bergman metric

ωb = −2i∂∂̄ log det(Ig −M
t
M).

Its pullback by Cartan realization is just the invariant metric on Hg men-
tioned above. Hence the pullback metric is also Sp(g,R)-invariant and de-
scends to the quotientAg. Its sectional curvature lies in the interval [−1,−1

g ].
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Another fact we will use is the characterization of totally geodesic complex
curves in Hg. It is a standard fact that any totally geodesic complex curve
can be transformed by an element in Sp(g,R) to one of the totally geodesic
discs ∆k = {diag(z1, · · · , zk, 0, · · · , 0)|zi = z, 1 ≤ i ≤ k and |z| < 1} after
Cartan realization. Thus there are precisely g equivalent classes of totally
geodesic complex curves in Hg under the action of Sp(g,R).

Definition 1.1. A totally geodesic complex curve X ⊂ Ag is said to be of
type k if and only if X is uniformed by a disc in Hg equivalent to ∆k under
the action of Sp(g,R).

Our main result is following.

Theorem 5.1. Let X be a totally geodesic complex curve of type k in
J (Mg − HEg). If 1 ≤ k ≤ g − 1, then for any point p ∈ X, there ex-
ists a nonzero local holomorphic section θs of Hodge bundle E|X around p
which is of the form θs = θ + df(s), where f(s) is a smooth function on X0.

Proof. Let tj be the Bers coordinates around p on Mg as constructed in
Section 3 and s be a local holomorphic coordinate around p on X which will
be determined later. Then tj = tj(s) is a holomorphic function of s. We
may expand the period matrix π(s) by Theorem 4.1 as a power series in s

along X. Assume µ = µ(1) =
∑

j
dtj
ds (0)µj represents the tangent vector of

X at p. Write
π(s) = π(0) + sP1 + s2P2 + · · · .

By assumption, X may be uniformed by a totally geodesic disc of type k,

so there exists a real symplectic matrix
(

A B
C D

)
satisfying

(5.1) Aπ(s) + B = Z(s)(Cπ(s) + D),

where Z(s) = i
Ig−W (s)
Ig+W (s) and W (s) = diag(

k︷ ︸︸ ︷
z(s), · · · , z(s), 0, · · · , 0). Now take

s = z as the local holomorphic coordinate about p on X. Set C̃ = (c̃αβ) =
A− iC and θ = c̃gγθγ . By comparing the homogenous terms of s on the two
sides of equation (5.1), one gets

(5.2) Aπ(0) + B = i(Cπ(0) + D),

(5.3)l APl = 2i(−1)l

(
Ik 0
0 0

)
(Cπ(0)+D)+

l−1∑

j=1

2i(−1)j

(
Ik 0
0 0

)
CPl−j+iCPl.

Then by (5.3)1

(5.3) C̃P1 =
(∗
~0

)
.



14 FANGLIANG YIN

Lemma 5.1. Each Pl is a symmetric matrix and

Pl = (
∫

X0

θα ∧ {
∑

l1+l2=l,l1≥1

H(µ(l1) a Aβ
l2
)}+

∑
k1+k2=l,1≤δ≤n

1≤k1≤l−1

C(α, δ, k1, l, µ
(1), · · · , µ(k2))

∫

X0

θδ ∧ {
∑

l3+l4=k1
l3≥1

H(µ(l3) a Aβ
l4
)}).

Proof. It follows immediately from the symmetry of period matrix, Theorem
3.2 and Theorem 4.1. ¤

So P1 = (
∫
X0

θα ∧ µ a θβ),
∫

X0

θα ∧ µ a θ = 0, ∀ α.

While X0 is outside the hyperelliptic locus, H(µ a θ) = 0. Consider its
deformation θs as constructed in Theorem 3.2. We show that θs is exactly
what we require. First, θ is nozero. In other words, there is a γ0 such that
c̃gγ0 6= 0. Otherwise, C̃ and C are of the form

(∗
~0

)
.

By equation (5.2), so are B−iD and D. These imply Cπ(0)+D is also of the
above form and consequently not invertible. Contradiction! Second, to prove
θs preserves the cohomology class, we need to check

∑
k1+k2=k,k1≥1 H(µ(k1) a

Ak2) are all zeros. We accomplish it by induction on k and Lemma 5.1. ¤
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