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Abstract

In this paper we investigate the time-machine problem in the electromagnetic field. Based

on a metric which is a more general form of Ori’s, we solve the Einstein’s equations with the

energy-momentum tensors for electromagnetic field and construct the time-machine solutions,

which solve the time machine problem in electromagnetic field.

PACS numbers: 04.20.Jb; 04.20.Dw; 98.80.Jk; 02.30.Jr

1 Introduction

In recent years time-machine problem has been concerned a lot (see [?]-[?]). Time-machines are
space-time configurations including closed timelike curves (CTCs), and allowing physical observers
to return to their own past. Recently, Ori (see [?]) presented a class of curved space-time vacuum
solutions which develop closed timelike curves at some particular moment, and then used these
vacuum solutions to construct a time-machine model. In this model, the causality violation occurs
inside an empty torus which constitutes the time-machine core and the matter field surrounding
this empty torus satisfies the weak, strong and dominant energy conditions (see [?]). It is regular,
asymptotically-flat and topologically-trival. More precisely, Ori described the geometry of the
time-machine core by investigating the vacuum solution of Einstein’s field equations

ds2 = −2dzdt + dx2 + dy2 + [u(x, y, z)− t]dz2. (1.1)

The coordinates (t, x, y) get all real values. z is a cyclic coordinate (0 ≤ z ≤ L), for some L > 0,
with z = L and z = 0 identified. f is restricted in the sense fxx + fyy = 0 for the vacuum
solutions. More recently, Ori(see [?]) presented a new asymptotically flat time-machine model
made of vacuum and dust.

It is well known that models of the electromagnetic field play an essential role in the study of
modern cosmology. The time-machine in electromagnetic field is also very important and interest-
ing. We investigate this problem in this paper for a more general form

ds2 = −2dzdt + dx2 + dy2 + f(t, x, y, z)dz2. (1.2)
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It’s clear that this metric include Ori’s. Using the metric (1.2), we solve the Einstein’s equations
with the energy-momentum tensors for electromagnetic field and give an interesting example of
electromagnetic field time-machine solution.

2 Time-machine in the electromagnetic field

Consider the Einstein’s equations with the electromagnetic field energy-momentum tensor

Gµν = 8πTµν (µ, ν = 0, 1, 2, 3), (2.1)

where Gµν
4
= Rµν − 1

2
gµνR, and Tµν is the energy-momentum tensor. For the electromagnetic

field,

Tµν = FµλFλ
ν −

1
4
gµνFαβFαβ , (2.2)

in which electromagnetic tensor Fµν reads

(Fµν) =




0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0




, (2.3)

where Ei = Ei(t, x, y, z)(i = 1, 2, 3) is electric field strength and Bi = Bi(t, x, y, z)(i = 1, 2, 3) is
magnetic Field Strength, and gµν is a metric in the following form

(gµν) =




0 0 0 −1

0 1 0 0

0 0 1 0

−1 0 0 f(t, x, y, z)




. (2.4)

Since Tµν is trace-free, so the equation (??) becomes

Rµν = 8πTµν . (2.5)

Noting (??), (??) and (??), by a direct calculation we obtain

(Tµν) =




T00 T01 T02 T03

T01 T11 T12 T13

T02 T12 T22 T23

T03 T13 T23 T33




. (2.6)

where
T00 = −E2

1 − E2
2 , (2.7)

T01 = E2B3 − E1E3, (2.8)

T02 = −E1B3 − E2E3, (2.9)

T03 =
1
2

[−E2
3 −B2

3 + E2
1f + E2

2f
]
, (2.10)
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T11 = −E1B2 − E2B1 +
1
2

[−E2
3 −B2

3 + E2
1f − E2

2f
]
, (2.11)

T12 = E1B1 − E2B2 + E1E2f, (2.12)

T13 = B1B3 − E3B2 + E1E3f, (2.13)

T22 = E1B2 + E2B1 +
1
2

[−E2
3 −B2

3 − E2
1f + E2

2f
]
, (2.14)

T23 = E3B1 + B2B3 + E2E3f, (2.15)

T33 = −B2
1 −B2

2 + E2
3f +

{
−E2B1 + E1B2 +

1
2

[−E2
3 + B2

3 − E2
1f − E2

2f
]}

f. (2.16)

A direct calculation gives

(Rµν) =




0 0 0 −1
2
ftt

0 0 0 −1
2
ftx

0 0 0 −1
2
fty

−1
2
ftt −1

2
ftx −1

2
fty

1
2

(ftt − fxx − fyy)




. (2.17)

Therefore, by (??)-(??) we have the following equations




E1 = E2 = E3 = B3 = 0,

ftt = ftx = fty = 0,

−ftt + fxx + fyy

2
= 8π(B2

1 + B2
2).

(2.18)

By the second equation of (??), we obtain

f(t, x, y, z) = h(x, y, z)− α(z)t, (2.19)

i.e.,
ds2 = −2dzdt + dx2 + dy2 + [h(x, y, z)− α(z)t]dz2, (2.20)

where α = α(z) and h = h(x, y, z) are two integral function. Substituting (??) into the third
equation of (??) gives

hxx + hyy = 16π(B2
1 + B2

2). (2.21)

Here we require c ≤ α ≤ C and h > 0, where c and C are two positive constants. We can
immediately observe that the metric (??) develops CTCs at sufficiently large t (see [?]).

The spacetime is curved for generic h with

Rizjz = −h,ij

2
,

and all the other components vanishing, where i and j stand for x and y respectively. It is easy to
see that the metric (2.20) becomes locally flat when h = h(z). This is just Misner space generalized
to four dimensions in a straightforward manner (see [?]).

Remark 2.1 It’s clear that when α(z) = 1, the metric (??) is nothing but Ori’s metric.
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The generalized covariant Maxwell equations are

F[µν;τ ] = 0 (2.22)

and
Fµν

; ν = Jµ, (2.23)

where Jµ is four-dimensional vector flow. Considering the out of the electromagnetic field is
vacuum, we have Fµν

; ν = 0. By the antisymmetry of Fµν , the equation (??) is equivalent to

Fµν,τ + Fντ,µ + Fτµ,ν = 0, (2.24)

and we can also get

Fµν
; ν =

1√−g
(
√−gFµν),ν (2.25)

where g = −1 is the determinant of (gµν). From (??) and (??), we obtain the following equations

∂B1

∂t
= 0, (2.26)

∂B2

∂t
= 0, (2.27)

∂B1

∂x
+

∂B2

∂y
= 0, (2.28)

∂B2

∂x
− ∂B1

∂y
= 0. (2.29)

By (??) and (??), it’s easy to prove that the electromagnetic field energy-momentum tensors satisfy
the conservation laws, i.e., Tµν

; ν = 0.
According to (??)-(??) and (??), we assume

B1 = B̃1H, B2 = B̃2H, h = 16πh̃H2, (2.30)

where B̃1 = B̃1(x, y), B̃2 = B̃2(x, y), h̃ = h̃(x, y) and H = H(z). Then, we have

B̃1 = H1 + H2, (2.31)

B̃2 = iH1 − iH2, (2.32)

∆h̃ = 4H1H2, (2.33)

where H1 = H1(x + iy) and H2 = H2(x − iy) are two arbitrary second-order continuously differ-
entiable functions.

Especially, we consider the real solutions, thus

B̃1 = ReV, (2.34)

B̃2 = −ImV, (2.35)

∆h̃ = |V |2, (2.36)
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where V = V (x + iy) is an analytic function.
Thus, using (??)-(??), (??)-(??) and (??), we can get the solutions of the Einstein-Maxwell equa-
tions 




E1 = E2 = E3 = B3 = 0,

B1 = Re{V }H,

B2 = −Im{V }H,

f = 16πh̃H2 − αt,

(2.37)

where h̃ and V satisfy (??).
Example

Let
V = exp(−x− iy), (2.38)

H = sin z. (2.39)

α = 1 + sin2 z. (2.40)

Then we can get the following solutions of the Einstein-Maxwell equations

B1 = exp(−x) cos y sin z, (2.41)

B2 = exp(−x) sin y sin z, (2.42)

f = 16π

[
h1 + h2 +

exp(−2x)
4

]
sin2 z − (1 + sin2 z)t, (2.43)

where h1 = h1(x + iy) and h2 = h2(x − iy) are also two second-order continuously conjugated
differentiable functions.

In particular, we choose

h1 =
exp(−2x− 2iy)

8
, (2.44)

h2 =
exp(−2x + 2iy)

8
, (2.45)

then we obtain
f = 4π exp(−2x)(cos 2y + 1) sin2 z − (1 + sin2 z)t. (2.46)

It is easy to get that
f → 0 as x → +∞, (2.47)

which implies that the geometry degenerates to the Misner space generalized to four dimensions
in a straightforward manner.

3 Discussion and Summary

The intent of the energy conditions is to provide simple criteria which rule out many un-physical
situations while admitting any physically reasonable situation. In fact, some possible matter
tensors which are known to be physically reasonable and even realistic because they have been
experimentally verified to actually fail various energy conditions. Observation of dark energy or
the cosmological constant demonstrates that even the averaged strong energy condition must be
false in cosmological solutions. Extending these results is an open problem (see [?] and [?]).
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It follows from the equation (??), (??) and (??) that

(Tµν) =




−B2
1 −B2

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




, (3.1)

and
Tµ

µ = 0. (3.2)

It’s clear that the electromagnetic field energy-momentum tensor do not satisfy the energy condi-
tions except the trace energy condition. On the other hand, comparing to Ori’s model, the model
we present is more applicable and natural in some sense. Thus, the solution we obtain in this paper
maybe useful for the study of electromagnetic field in modern cosmology and general relativity.

References

[1] M. Alcubierre, Classical Quantum Gravity 11, L73 (1994).

[2] K. Godel, Rev. Mod. Phys. 21, 447 (1949)

[3] J. R. Gott, Phys. Rev. Lett. 66, 1126 (1991).

[4] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988).

[5] A. Ori, Phys. Rev. Lett. 71, 2517 (1993).

[6] A. Ori, Phys. Rev. Lett. 95, no.2, 021101 (2005).

[7] S. W. Hawking and G. F. R. Ellis, Large Scale Structure of Space-Time (Cambridge University
Press, Cambridge, England, 1975).

[8] A. Ori, Phys. Rev. 76, no.4, 044001 (2007).

[9] C. W. Misner, in Relativity Theory and Astrophysics I: Relativity and Cosmology, edited by
J. Ehlers (American Mathematical Society, Providence, 1967).

[10] Sean M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, ISBN
0-8053-8732-3 (2004).

[11] Eric Poisson, A Relativist’s Toolkit: The Mathematics of Black Hole Mechanics, ISBN 0-521-
83091-5 (2004).

6


