THE LAPALACE TRANSFORM OF THE CUT-AND-JOIN EQUATION OF

MARINO-VAFA FORMULA AND ITS APPLICATIONS

SHENGMAO ZHU

ABSTRACT. By the same method introduced in [9], we calculate the Laplace transform of the
celebrated cut-and-join equation of Marino-Vafa formula discovered by C. Liu, K. Liu and J.
Zhou [17]. Then, we study the applications of the polynomial identity (1) obtained in theorem
1.1 of this paper. We show the proof Bouchard-Marifio conjecture for C* which was given by
L. Chen [5] firstly. Subsequently, we will present how to obtain series Hodge integral identities
from this polynomial identity (1). In particular, the main result in [9] is one of special case in
such series of Hodge integral identities. At last, we give a explicit formula for the computation
of Hodge integral (75, AgA1)y where by, = (b1, ..., by).
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In a recent paper [9], Eynard, Mulase and Safnuk stated the Laplace transform of the cut-and-
join equation satisfied by the partition function of Hurwitz numbers. They obtained a polynomial
identity of linear Hodge integrals. As an application, they proved the Bouchard-Marino conjec-
ture on Hurwitz numbers. Then, Mulase and Zhang [20] stated that this polynomial identity
can also be used to derive the DV'V equation and Ag-integral with the same method introduced

by [14].
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In 2003, C. Liu, K. Liu and J. Zhou [17] proved the celebrated Marino-Vafa conjecture [19].
The main step in their proof is to show the generating function of Hodge integral with triple A-
classes C(\, p; 7) satisfies the cut-and-join equation. Combining the cut-and-join restriction from
combinatorial side formula [21], they finished the proof of Marifio-Vafa formula. Moreover, the
famous ELSV [7] formula for Hurwitz numbers is a large framing limit of Marino-Vafa formula
[18].

With the above motivations, we calculate the Laplace transform of the cut-and-join equation
for Marifio-Vafa’s case in the first part of this paper. The main result is

Theorem 1.1. For g > 1 and | > 1, we have the following equation:

W) =42 3 (= Der D, Tyl + (52 4 1w, Ty ) By 21:7)

br,>0

~

_ 1 A
O Z (15, T 92( \llb (ti;T) + ro—— \Ilb +1(t2,7')> ‘l’bL\{i}(tL\{i}QT)

bL>0 =1

(r +Tz 2 .
= Yo D Ty (Mg W g (tragiyi7)

1<i<j<l  a>0

bLA (i} 20
(t = DT+ ) aga(tis 1) — (= DT + ) Vaga(ty;7)
t; — 1
l
(12 + 7)1
+ 9 Z Z <(72 + 7){(Tar Tas o 1y Lg—1(7)) g1
i=1 a1>0
az2>0
bL\{i}>0
stable 2
- Z <TalTbIF91 (T)>91 <Ta2 Tz ng (T)>gz H \Ijan-&-l (tiQ T)‘lij\{i} (tL\{i}; T)
g1+g92=g n=1
TI1T=L\(i}

Where L = {1,2,..,1} is an index set, and for any subset I C L, we denote

tr = (ti)ier, br = {bili € T}, 7, = [ 700> W, (tr,7) = [ W, (i, 7)
i€l iel
and Tg(1) = Ay (DA (=7 — 1)Aj (), ¥ U, (t;7) = (%%)n <7+1) for n > 0. The last
summation in the formula is taken over all partitions of g and disjoint subsets T |[ J = L subject
to the stability condition 2g1 — 1+ |Z| > 0 and 2g2 — 1+ |J| > 0.

We remark that theorem 1.1 is equivalent to the symmetrized cut-and-joint equation of
Marino-Vafa formula obtained by L. Chen [4]. We will present this equivalence in appendix
B.

In [3], V. Bouchard and M. Marifio proposed a conjecture for the calculation of topological
string amplitudes of the toric three fold C* based on the recent work [2].(We will call this
conjecture as Bouchard-Marifio conjecture for C3. The Bourchard-Marifio conjecture for Hurwitz
number proved in [9] is the large framing limit of it). We calculate in section 4 that, the
topological relation in Bouchard-Marifio conjecture for C? is equivalent to the following identity
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of Hodge integral

(2) (P27 (7, Dylr)gd sy, (t2:7)

b >0

= l 22 Z TbL\{“} ( )> Pa(tl,ti;T)dtldtid‘ibe\{lyi}(tL\{l’i};7')
’L 2 abL\{l,l}

+ 3 @)+ ) ey T (D)g 1

a1,a2>0
br\{1y

stable

= > T T (g r11(Tas o, Tan (M) go 151 | Par.as (b13 T)dtrd Wy, 1y (Er 135 7)
g1+g92=9g
T IT=L\{i}

On the other hand, thanks to the Marifio-Vafa formula, the topological amplitudes of C3 is
completely determined by the relation (1) in theorem 1.1. In section 4, we will illustrate that
the identity (2) is implied in (1). Therefore, the Bouchard-Marifio conjecture for C* holds.

Furthermore, we use the result of theorem 1.1 to obtain some Hodge integral identities. Indeed,
Wy, (t,7) can be written as

b Lk
_ k
CEEDY 7—+1)b+1\II b(t)
k=0

and WF(t), 0 < k < b could be computed from the recursion relation they defined on.
At first, we consider the expansion of 7 at co. Taking the highest level of formula (1), we get

Corollary 1.2.

l
S (A (1) <<2gz+z>w25<tL>+Z<t% ) g Uh m”“”u\{i}))

, i br iy
br,>0 =1

1y g G~ DEYE ) — (6 - DEVL (L)
Z Z TaTbr i, g( )>g N

t; — tj
1<i<j<l  a>0
br{i,5320
1 l stable
+ 9 Z Z <Ta1TaszL\{i}A;/—l(l»g—l + Z <Ta1TbIA;}/1(1)>Q1 <Ta2TbjA;/2(1)>92
i=1 a12>0 g1+g2=g
az>0 TUT=L\{i}
bry (i3 20
1 1 br\gi
x WO ()W (¢t )‘I’bi::(%\{i})

We show in section 5 that W(¢) is equal to &(t) which is defined by & (t) = ((t3— tz) L)b(t—1)
in formula (1.2) in [9]. Hence, the main theorem 1.1 in [9] is a special case of formula ( ) in this
paper. Taking the sub-highest level of theorem 1.1, we also get another Hodge integral identity
corollary 5.2 in section 5. Unfortunately, this identity does not contain any new information.

Next, we consider the expansion of 7 at 7 = 0. In this case, the lowest level of formula (1) is
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Corollary 1.3.

1 0
Z (T Ag)g \I/bL tr) 11 Z Z TaThpy (i3 >g\IlbL\{i,j} (tL\fi5y)

br,>0 1<i<j<l a>0
br\ (3,320

(= DEG () — (6 — DG, (1)
ti—t;

We can rederive the Ag-integral [13] from Corollary 1.3.
We also pick up the sub-lowest level of formula (1) and have

Corollary 1.4.

> (T Al | —(IbLl + 1)WY, (tr) +Z‘1’b Db, (o)

b >0
l 9 39—3
+ Y (T Agdg D (EF _ti)%qjl?i(ti)‘llgm{i}(tL\{i}) + Y (Y PaN)gl ¥y, (1)
b1, >0 i=1 v b1, >0 d=g—1
0 (tj — )ts (Wa g (i) + (L — |brygipl —a—3)¥h, (t))
Z Z TaTbr (i,51 >g\I]bL\{i,j} (tL\{i,j})[ t:— ¢
1<i<j<l a>0 vt
brA{i,j} 20
(= Dt (Paa () + (& — bpypl —a - 3)‘1’2+1(tj))]
t;—t;

(t; — D00, () — (b — D)t 00 4 (85)

J
+ Z Z TaTbpy (i3 N9 Z\Ibe tr)¥ bL\{ y (Egig) t; — 1,

1<i<j<l  a>0 r#i,j
br(i,i320
39—3 0 0
0 (tj — DtiWayq(ts) — (i — 1)t Ve (E5)
+ D D ey Dl Pa(A)gWhp, 1.y (Prriigy) Pa—
1<i<j<l  a>0 d=g—1 j
br{i,5320
stable
0 0
+5 Z Z Z (TarTor Agi ) g1 (Taz o7 Aga) gs Va1 (¢ )\I’a2+1(tl)quL\{i}(tL\{z‘})
i=1 a1>0 g1+g92=g
a220 |Z|U|T|=L\{:}
br\{i3 >0

where 350 % 1 Pa(A) = AY ()ar(N) and a1(X) = Y9, mAg-mAg — (=1)9AY (=1)Ag_1.

The above identity contains Hodge integral of type (7, Ei’lg:_g?il Py(X))g. By some direct
calculations,
Py 1(X) = Ag—1, Py(N) = gAg, Pgs1(A) = =AgA1, -+, P3g—3(\) = (—1)5’“)\9)\9_1)\9_2
As an application of corollary 1.4, we get the following Hodge integral recursion.

Theorem 1.5. If 22:1 bi = 29 — 4 + 1, there exists a constant C(g,l,b1,..,b;) related to
g,1,b1,..,b;, such that

1 (bz + b)'
(Tb, AgA1)g = 7 Z <Tbi+bjflTbL\{i,j})\g)\1>gTbj‘!7 +C(g,1,b1,..,by)

1<i<j<l

where C(g,1,by,..,b;) is a very verbose combinatoric constant which is given at Appendiz B.
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The initial value (T29-3AgA1)g = 15[9(29 — 3)bg + biby—_1] has been computed by Y. Li [15].
Thus, by the recursion formula in theorem 1.5, we can compute out all the Hodge integral of
type <TbL AgA1)g. In fact, the Hodge integrals (7, Py()))g appeared in Corollary 1.4 could also
be calculated via the same method. But the computation will be more complicated.

Acknowledgements. The author would like to thank his advisor Kefeng Liu’s encourage-
ment, valuable discussions, and bringing the paper [9] to his attention.

2. THE LAPLACE TRANSFORM OF MARINO-VAFA FORMULA
At first, we introduce some notations followed by [17]. Let
AJ(#) =19 = Mt9 - (—1)9),
be the Chern polynomial of EV, the dual of the Hodge bundle. For a partition p given by
p1 > 2 > 2> g >0,

let ] = "1 s and Ty(7) = AV(1)AV(—T—1)AV(T) define

\/7|M|+l . 1 ,Uﬂ""a) Fg(T)
C,,(T) = a
0 = =y T H /Mg,zm 91— )

The Deligne-Mumford stack MQJ is defined as the moduli space of stable curves satisfying
the stability condition 2g — 2 + [ > 0. For the unstable cases (g,!) = (0,1) and (0, 2), we define

/ 11
Mo, L= 2

1 1
/Mo,z (1= papn) (1 — patha) g + pao

Thus

a1 11N (dr +a _
CO,d(T) — _ﬁ + THa—O(d' )d 2

VA +1HH ,un—i—a) 1

C pu—
07(N17“2) (7—> ’AUt(Ml? :u2 & " "

The Marino-Vafa formula proved in [17] gives a dlrect combinatorial formula associated to
representation of symmetric groups for the generation function of C4,(7). But we don’t go
further to this formula here.

Through a direct calculation, we have

\er 171
(3)  Cypulr)=—- V-1 ‘ [(T+1)] (m)—1 Z HTbF gl—IlH“ /LZT+a)M?i

Aut(w] b0 il
zzl,..,l(u)
Let Cy(p;7) = |Aut(p)|Cq,u(T), the Laplace transform of Cg ,,(7) is defined by,

1
Cou(wr, ., wr) = Z 7509(/%T)e’(“1w1+'"+mwz)
Ve e

where we have let [ = ().
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In order to simplify the above expression of laplace transform, we introduce some new vari-
ables. Consider the framed Lambert curve z = y(1 — y)7, and the coordinate change x = e~ ".
By Lagrange inversion theorem, L. Chen [4] got,

Now we introduce the variable ¢ by,

t_1+1+TZH (k7+a) b

k>1

and

Z H kT + a) nefk’w
k>1

which is a polynomial with top degree 2n + 1 in variable ¢ via the recursion relation

| tr+1d -
n+1(77') ( )T+1dt n(,T)
for n > 0 and \i/()(t;T) = i;+11
Now, the laplace transform of Cy ,,(7) can be written in ¢ variable,
3 1
(4) Cg7l(t1’ "’tl) = Z Tlulcg(,u;T)e_(“1w1+"'+ulwl)

MENZ\/jl
( 7'+1 Z HTbP gH\I/b tZ,T
b;>0 =1

=11
3. THE LAPLACE TRANSFORM OF THE CUT-AND-JOIN EQUATION OF MARINO-VAFA
ForMuLA
Let us introduce formal variables p = (p1, .., pn, ..), and define

Pp = Pur " Pi(p)

for a partition p. Define generating functions

Cq(ps; _
Coa(hpiT) = Y | oiT) | \20-2

Aut #
ol | Aut(p)]
)\ YD T chl A YD T
g>0
I>1

In 2003, C. Liu, K. Liu and J. Zhou [17] proved that C(\,p;7) satisfies the cut-and-join
equation

aC - oC 0’C . oC oC
5 = 7/\ PG Pibig, by, 5 +wpz+gafpi@)

1,7>1

For every choice of g > 1 and a partition u, the coefficient of pu)\29_2+l(“) is
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()

0 (Cylpi) Cylpi7)
<|Aut< >|> Ve ) e

~

! | |
S Y] [ UICR W S MUTCal MUy

A U Aol A, TAut(n]) [Aut()
v [Tva=p(ai)

Let us first calculate the Laplace transform of the cut-and-join equation for the [ = 1 case
which includes Proposition 3.3 in [9] as its special case.

Proposition 3.1. For g > 1, the Laplace transform of the cut-and-join equation for the l =1

case 18:
=S Ryl ) — Sy (7)) (Bt 7) e (57)
= b>0 NI\ dr ’ tr+1 ’

1 - R
= 9 Z (r(m+ 1))<Ta17—a2rg—1(7—)>9—1 - Z <Ta1rg1 (T)>91 <Ta2rgz (T)>g2 oy +1(t7)Wapta (8 7)
a1,a220 g1+92=g
g1>0
g2>0

Proof. The cut-and-join equation for [ = 1 case is

o - Ll VL ﬁ<m+ > Cgl<an>cgz<ﬂ;f>)

or atf=p g1+g2=g
Then, the Laplace transform of the LHS of (6) is
0 ; ot 0 , 0 ;
(7) 57 —Cyi(t;7) = 9 ath,l(t T) + a—TCgJ(t;T)

The Laplace transform of the stable part of RHS of (6) is

ST D) S maalot (Mg 1B 1 (5 7) ¥y (57)

a1,a220
1 - .
- 2 Z <Ta1F91 (T)>91 <Ta2 FQQ (T)>g2 \Ija1+1(t; T)\I’a2+1 (t; T)
g1tg92=9
g1>0
g2>0

The unstable term is Co(c; 7)Cy(B; 7) + Cy(cv; T)Co(5; 7). Because

d—1
d+11 ][, —o(dr +a) 1
Coa(T) = —vV—1 Tl_la_o(d!)dg
It’s Laplace transform Co(w;T) = dods1— ﬁCO a(T)e™" satisfies:
d , _t=1 Yy
T4+l 1—(r+1)y
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(1 Y)Y

It is easy to calculate % = Ty dy’ hence, Co(w; ) = —In(1 —y). Moreover, remember that
the framed Lambert curve is y(l y)" = x, where y depends on 7. Taking derivation of 7, we
have the identity,
oy 1 — 1
(1 -y = 1=+ Dy
or y(l—-y)

Therefore, the unstable part of RHS of (6) is

oyl —(t+ Dy 2 —t)tr+1) 9 4 8y 0 4
- = t; 1)=C, 1 (t;
where we have used t = m we also have
ot 2 ay 2 t2 —t &y
9 — =1 t 1 = 1
®) A S AUME s A S
Hence, move the unstable part to left hand side, by (7),(8) and (9), we get
0 -t 9\ -
— 4+ ————=— ) Cy1(t;7) = stabl t
<8T+ (1+1) 875) g1(li7) = stable - par
which is just the Proposition 3.1. U

For the general case of [, we need to introduce two lemmas first.

Lemma 3.2. When (g,1) = (0,2), we have the following Laplace transformation formula:

5 T+1 1 [[°ZHar+a) [[°23(BT+a) 5
Co2(wr, w2;7) = — Z = e e
oi1 T a+p a! o!
=—In <y1 y2> — 7 (In(1 = y1) + In(1 — 1))

r1 — T2

Proof. By definition,

N 1
Co2 (w1, wo; T) = Z T2tk | Aut (c, 5)|Co (o,3)
a,pB>1V— JoTEers
_ Z T+1 1 Ha O(aT+G)H /6T+a) —awle—,@wg
SEL T« + 0 a! B!
Thus
d d A . R
Tu + — | Co2(wi,we; 7) = —7(7 + 1)Wo(t1; 7)Wo(t2; 7)
w1 dw2
Y1y2
=—-7(7+1
T (= 5 D)
Because,

d d  (I1-yy d

dw  dr  1- (t+ 1)y dy
Then, it is easy to get

éo}z(wl,ZUQ;T) = —In (yl — y2> —7(In(1l —y1) +In(1 —y2))
Tr1 — T2
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Lemma 3.3.

(a + ﬁ)aJrlefawief,Bwj

LI (e + B)r +a)
D

T, -
= : \I’a—l—l(ti;T) -

xi—xj a:i—xj

\i/a+1(tj; 7') — \i/a+1(ti§ 7') - \ija-&-l(tj; T)

Proof. This calculation is the same as formula (3.15) showed in paper [9)].
Let u = a+ (8 and v = (3, then

1 (e + B)7 +a)
T (a+B)!

(Oé + ﬁ)a+1€_awi€_ﬁwj

-yl I (e + B)r +a)

(Oé + 6)a+1efawiefﬁwj
|
T (a+p)!

o Z 1 Ha 0 OéT + a) aa—i—le—awi _ Z EH (67' + a) ﬁa—l—l —Bw;
T

|

a>1 £5>1
1 . S “
_ Z Z Ha 0 MT + CL) ’ua—&-le—(,u—l/)wle—uw] N \Ija—l-l(ti; 7_) - \I/a—i-l(tj; 7_)
pn>0v= 0
+1 p+1
1 T+a af " — - o
= Z H ,U ),“ 1l I - Vo1 (ts;T) — \IjaJrl(tj;T)
€Ty —a:j
u>0
=T Yt B Wy (3 7) = Wagr (b 7) — Para (5
~ - a+1(tia7-)_xi_xj at1(tj37) = War1(t;7) — Yoy (ty57)

Now we give our main result in this paper.

Theorem 3.4. For g > 1 and l > 1, we have the following equation:

(10) = (%2 3 (= 1)+ DTy + (2 7, Tl ) B (7

br,>0

l
1 R N
2 -1 ; )
— (47" (T gZ( U (b5 7) + tir +1\I]b"+1<ti’T)) Yoo (o) 7)
=1

br,>0

T—l—TZ2

- r1 > 2 Tty Do Wop o (b gy 7)

1<i<j<l a>0

bLA (i} 20
(t; — DT +t)Wap(tis7) — (ti — D27 + ;) Wasa (3 7)
ti—t;
1
T + 7' -1

Z Z (T +T)<Ta17aszL\{i}Fg—1(T)>9—1

i=1 a1>0

a2>0

bry{i32>0
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stable 2
- Z (Tay Tor gy (T)>g1 (Tas Togy Ly, (T)>g2 H W, +1(ti; T)\Iij\{i} (tL\{i}; 7)
g1+92=9g n=1
I IT=L\{i}
Proof. The Laplace transform of LHS of equation (5) is
1 0
(1) D e gy Colu e )
)+ lul
et ulor 9

1 —(prwr+-- w,
— E Z Cg(,u;T)e (p1wi+-+pw;)
N

ot; 0 ; J 4
=Y o o Cotlt - ti;7) + 5-Coa(t, 15 7)
i—1 (]

The Laplace transform of stable geometry in the cut-term of RHS of (5)

\/7
(12) Z l(u+|ulz Z aB(Cy—1( Oéz) )
=1 atPB=p;
i Z Cor (V15 7)Coo (¥; 7')>67(“1w1+“‘+mwz)
g1+g2=g

v1 [T va=p(ei)
291 —2+|v1[>0
2g2—2+|v2|>0

T +7’l 1
- Z Z (7 +7_)<Ta17—a27—bL\{k}Fg*1(7)>971

=1 a1>0
a2>0
br\{k}=0
2
- Z <Ta17—bzr ( ))91<TaszJ 92 H an+1 tZaT lIlbL\{z}(tL\{ T )
g1+g2=4g n=1
T T={1,.3,.0}
291 —1+|Z|>0
292—1+|TJ|>0

The unstable geometry in the cut-term of RHS has two terms for [ > 2

! 2 T 2, QT
=YY Y ap(culerm) ) L BURST g 5,

L0
i=1 atf=p; [ Aut(p)| [Aut(p;, )
l
1 (CO Mgy O T Cg(/%jaﬁﬂ') C (/‘Lij’ : )
ERIPILDY Gl T +Co(B57)
2 i=1 a+B=u; i ]Aut Mg, & ‘ ]Aut(um)] ’A’U,t 7,]7 )‘

As we have calculated in the proof of proposition 3.1, the Laplace transform of U; is

0 6 A
(13) Z 2 i Coultn, - t57)
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Moving the formula (13) to left hand side, it will cancel the first term of formula (11), i.e

(14) (11) — (13 ( +ZT+1(%> Coalty, .., t;7)

(1) X (= D@r+ DTy + (724 1) o)) ) B (1157)

br,>0

!
0 - 1 . .
- . . .
— (7% 4 1)t E (16, Tg(7))g ‘§1 (87\1151-(751',7) + rypary 1\Ifbi+1(ti,7')> o By )

br,>0

The Laplace transform of Us equals to

Z 1 UZE—(M1W1+-~~+Mwl)

—aw;

==2.2. >

1
- . . —Hj W5
Naoois aCo(pj, 05 7)e e
i=1 j#i p=1 Vo

a>1
6 ( ﬂ ) *ﬂwz‘e_ Zk;&i,j HEWE
l+ 1 U’ ’
g0 V-1 Iul “
Hi >0
k#i,j
! 9
=> %60,2<wi7wj37')(7'2+7)172 > (m [] WD Uor1(tis7) [ Teo (tas7)
i=1 j#i ! a>0 ki, ki,

bp20,k#i,j

Yi (1+ TY; )+ x )

yi—y; 1=+ Dy" zi—

Il
i/Fi

i=1 j#i
. (7-2 +T)l72 Z Ta H Tbk a+1 t’LvT H \Ijbk tk’ )
a>0 k#i,j k#i,j
b >0,k#4,5
=(r*+71)2 Z Z (Ta H T, I’ H Uy, (b 7) (— A‘i’ +1(tis )
1<i<j<l  a>0 k#i,j k#i,j "
b >0,k#4,5

i g Yi TYj i Yj TYi :
- Uy (ty;7) — 1+ Bo1(tir) + 1+ — Y Vo

where we have used the lemma 3.3.

At last, we need to calculate the Laplace transform of join term in RHS. It’s Laplace transform
is

(16)

V1) Z i (B + 1)Cq (pa(i, J); m)eHimre s e Dkt H

neNt Z<]
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= LTI (e +9) b 5
T +7) Z Z Z TbL\{”} a(T))g H pu '€ #i,j

|
peNt i<j  a>0 ki g Hik!
brA (3,53 20
pritpj—1
l a=0 ((:ul + :uj)T + CL) ) Nat+1,—pw; ,—piw;
' , (pi +pg) e e Mt
T (i + pj)!
l 2 A €Ti ~
(P+0)7 >0 D (TaTh oy (Mg Wy gy (Bragigyi7) (ac._lx.%ﬂ(tiﬁ)
1<i<j<l  a>0 i~ Xj
b\ {04} >0
Ti o= N .
(i) — o 7) ~ B 1) )
Ty — l‘j

Combining (15) and (16), we get

72 4 7)i2 .
(17) (10) + (11) = — ( u Z Z TaToo gy Lo (T) g Worn iy (B (i )5 T)

T+l 1<i<j<I a>0
br(i.i3 20
(tj = V(77 + 1) Wara (tis7) = (8 = V(37 + 1) Wara (t57)
ti—t
Collecting the remainder equations (12),(14) and (17), we obtain the equation (10) of theorem
3.4. O

4. APPLICATION I: PROOF OF THE BOUCHARD-MARINO CONJECTURE FOR C3

Motivated by Eynard and his collaborators’ series works on Matrix model [12, 10, 8, 11] ,
Bourchard, Klemm, Marifio and Pasquetti propose a new approach to compute the topological
string amplitudes for local Calabi-Yau manifolds [2]. Based on such proposal, Bouchard and
Marifio calculated the string amplitude for toric three fold C3 [3]. In this section, we will follow
the work of [9] and [5] to illustrate that Bouchard-Marno’s approach is implied by theorem 1.1.

Following the work of [9], in subsection 4.1, we illustrate Bourchard-Marino’s proposal of
calculation the string amplitude of C3( which is also called Bouchard-Marifio conjecture for C3
). By some residue computations, we obtain a equivalent description of Bourchard-Marno’s
approach in subsection 4.2. The calculation in subsections 4.3 and 4.4 to prove the Bouchard-
Marifio conjecture for C? is firstly done by L. Chen [5]

4.1. Bouchard-Marino conjecture for C3. Here we consider the spectral curve
(18) Ciy(l—y) ==

and the variable ¢t = m

It is easy to see that, variables x,y,t have the relations that
d (1-y)y d t—1{r+1)\ d
Ydr T 1-(r+ Lydy ( T+1 >dt
We defined in section 2 that,

. tt—1)r+1)\ d\"t—-1
\Ijn ; = '
(t7) << T+1 ait) 7+1
for n > 0.

In the following state, we need to introduce the differential,
U, (t;7) = d\i/(t; T)




THE LAPALACE TRANSFORM OF THE CUT-AND-JOIN EQUATION OF MARINO-VAFA FORMULA 13

which can be formulated in variables x,y as

1=y y(l-y) " 1
(19) Valyim) = dy— 37— (1_ (r + 1)y dy> (r+ 11— (r+1)y)
(20) - Ly et oy,
k:>1
respectively.

In [3], in order to formulate their conjecture, Bourchard and Marifio introduce

(21) Wy(x1,..,x;57) = Z 2, Wy \Aut ZH m_1

wl(p)=l O'ESl’L 1
where Wy (1) = _ﬁcg,#(ﬂ-
By (3),(19), (20) and (21), we have
Wo(@1, .o s 7)day -+ doyp = (=17 (72 + 7)1 (1, Tg (7)) g Wy, (y:7)
br,>0
Definition 4.1. Let us call the symmetric polynomial differential form
A% C(tr, oty T) = —(r(r + 1)1 Y7 (1, Ty(r))g U, (15 7)
br,>0

on C! the Marifio-Vafa differential of type (g,1).

Thus
Wy(x1,..,x;;7)dxy - - - day = (— 1)9'H 1d®ngl(t1,. S T)
t= 1_(T+ 7 , it then follows that y = (tll)t. Substituting to the spectral curve (18), we have
L1 (T W = z. Let s(t) be the solution of function equation
o ey sy

From (22), we have

() () < () ()

It is clear that the spectral curve C : y(1 — y)” = x has only one ramification point of the
z-projection, which we denote by v. It is given by y(v) = - +1 Then, we can find two points ¢
and g on the curve such that z(q) = z(g) near the ramification point v. Let us write

1 1

-z Y@= ?—P( z)

with
P(z) = —2 4 O(z%)
From functional equation y(q)(1 —y(q))” = y(q)(1 —y(g))", we can solve exact P(z) as a power
series in z,
2(-1+ T2)z2 B 4(-1+ 72)223 B 2(1 +7)3(—=22 4 571 — 5772 + 227’3)Z4 N
37 972 13573
Note that P(z) is an involution P(P(z)) = z.

P(z)=—z—
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In terms of the t-coordinate, the involution P(z) corresponds to s(t) in (22). We have,

1 11
Ha) = 1— (4 1)y(q) - T+1;:
_ 1 11
=1y " rripe W

t

(24)

It follows that
(1 +1)dt (r+1)ds(t) dr

B-t)tr+1) s)?st)—1) =
Using the coordinate t of spectral curve C, the Bergman kernel is defined by
dtydty
B(t1,t2) = ———
(t1,t2) (1 — o)

Define a 1-form on C' by,

dE( -7:)—1/(119(7:)—1 ! L)

where the integral is taken with respect to the first variable of B(t¢1,t2) along any path from ¢
to g. The natural holomorphic symplectic form on C x C is given by Q = din(1 — y) A ln(x).
Again, let us introduce another 1-form on the curve C' by,

wla.0) = [ 0.0) = (01 - y(@) - (1 - 0)

= %(lny(q) - lny(@))d;x

(1) () e

The kernel operator is defined as the quotient

Kt ty) = E0T0) T (5(t) — t)(t2 — 1) (b7 + 1) 1
1,02 W(qu) 2(T + ].) (tl — tQ)(S(tl) — t2>(ln(1 _ %) o ln(l . ﬁ)) dtl

It is clear that K (s(t1),t2) = K(t1,t2).

dto

Definition 4.2. The topological recursion formula is an inductive mechanism of defining a
symmetric I-form Wy, (t1,..,t;;7) on C! for (g,1) subject to 29 — 2+ 1> 0 by

1
Wg7l+1(7f0, tL; 7') = 2771’2 f [K(t, to; 7’) (Wg—l,l—f—Q(t, S(t), tL; T)—|—
Y
l
Z (WgJ(t, tL\{i})B(S(t), ti) + W ,Z(S(t), tL\{i}§ T)B(t, ti))
=1
stable
+ Z W z1+1 (@t T)We, 1 7141(s(8), t75 7)
g1+92=9,ZUJ=L

where t; = (t;);cr for a subset I C L, and the last sum is taken over all partitions of g and
disjoint decompositions I [[J = L subject to the stability condition 2g; — 1 + |I| > 0 and
2g2 — 1+ |J| > 0. The integration is taken with respect to dt on the contour 7., which is a
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positively oriented loop in the complex ¢-plane of large radius such that |t| > max(|to|, s(to)) for
t € Yoo-

Remark 4.3. The original topological recursion formula for W, ;(t1,..,¢;; 7) was formulated by
taken the rebidue at z = 0 [3]. But here, for simplicity, we have changed the coordinate from z
tot by t= m Hence, we get the contour integral in definition 4.2.

Now, we can formulate the Bouchard-Marifio conjecture for C3.
Conjecture 4.4. For every g and l subject to the stability condition 2g—2+1 > 0, the topological
recursion formula with the initial condition

Wos(t1,ta, ts;7) = d3Co 3(t1, ta, t3;7) = — ————dt1dt2dts

4 1
Wia(ty;7) = —dCyi(t1;7) = ﬂ((l + 7+ )W(t1;7) — 7(7 + 1)Uy (t1;7))
gives the Marino-Vafa differential with a signature.
(26) Woilti, .., t;;1) = (= 1)g+l 1Cgl(t1,. )

4.2. Residue calculation. In this subsection, we calculate the residues(contour integrals) ap-
pearing deﬁnition 4.2. In fact, we have to calculate the following two types of residues:
1) Rap(t;7) 2m f%o Kt t; 1)U, (¢ 7)Wy(s(t); 7)
)R (t, 1 7) = g7 §, Kt 67) (L' 7)B(s(t'), t) + n(s(t); 7)B(E, i)
We need one lemma first,

Lemma 4.5. In the z-coordinate, the kernel K(t'(z),t;7) has the expansion,

K 72 1 (r—1) 3722 +27(1 — )t — 47
= —_—Z —_
2(t+1)3 2(1+1)2 6(r+1)
2 2
T—T%,, T°—2741 (t+1) 2,
t t dt—

* ( 6 T 9 T )7 dz
In particular, the coefficients of z in above expansion are polynomials of t.
Proof. Substituting ¢ = (T+11)z and s(t') = m to K(t',t;7) and calculate directly, we
obtain lemma 4.5. O

Definition 4.6. For a laurent series ), a,t", we denote
Tor] Lo
Now, we have two theorems for the calculation of R, ;(t;7) and Ry, (t,t:;7).

Theorem 4.7.

1
Raplt57) = 5= K57 Wa(tsm)Wa(s(0): 7
Yoo
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Proof. We note that, in term of the original z-coordinate of [3], the residue R,(t;7) is the
coefficient of 271 in K (t/,t;7)W,(t'; T)Wy(s(t'); 7), after expanding it in the Laurent series in z.
U, (t';7) is a polynomial in ¢’ = ﬁ, thus the contribution to the z~! term in the expression
is a polynomial in ¢ by lemma 4.5. Hence R, (t; ) is a polynomial in .

Let us write W, (¢';7) = fn(t'; 7)dt’. Let 7. be a positively oriented loop, such that function

=D TL ) s ) fols()i7)
ln( t,) ln( m)

has no singularity on and outside loop .. On the compact set 7. we have a bound M,

(% —t)(t'r) +1 N (4 :
| s'(t") fa(t'sT) fo(s(); 7) |< Me
(1= %) —in (1= )

Choose |t| >> 1. Then,

27”}{}(75’” ;) (s(t);7) |

RN O O S (2= )ETHY) e e n
_‘ 27 %{E 2(7_+1) (t’t S(t')t) In (1 1) ln( 1 ) (t )fa(tv )fb( (t)7 )dt |dt

(27)

v 1 - s(t)
M,
dtdt ~ — 6 gt
47r T—I— 7{ v ’) t | A (T + 1)[t]
Thus, we have

1 1
—p K ;1)U (57U (s();7) = f Kt t;7)0a(t's 1)y (s(t); 7) + O )
27 Jy 270 e

1

[ f KR
27TZ Yoo —Ve +
1

7{ K )W) U5 7)

21

T 1 _ 1 (t/2 _t/)(t/7+ 1) §(t 't s(t): 7)dt!
N 4(7‘—|—1)7TZ' %ym—ye (t,_t S(t/) —t) In (1 . tl/) _In (1 B T%) (t )fa(tv )fb( (t)v )dt dt

) Sl(t/)fa(t; T)fb(s(t); T)dt
s(t)

T (t* —t)(tr +1)

A D (1) —in (1) Fa(s(8):7) fo(ts 7t
T (2 —t)(tr + 1) , ' _ . _
2(T+1) In (1 l) n (1_ S(lt))s (t) (fa(taT)fb(S(t)aT> +fa(3(t)a7')fb(t, 7’)) dt

] (Walts 7By (581 7) + W (s(); )by (7))

Similarly, with the same proof as showed above, we have
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Theorem 4.8.

Rt tis ) = zi 7{ K(,t:7) (U (s 1) B(s(£), 1) + Un(s(£): 7 B(E's 1))
Yoo

™

=T . (1 - %) . (1 - ﬁ) <‘i’n+1(t; T)B(s(t),t;) + \ijnJrl (s(t); T)B(t,ti)>

Let us define polynomials P, ;(t;7) and P,(t,t;;7) by

T(T+1) 1

(28) P, y(t;7)dt =
’ 2 ln(l—l)—ln(l—ﬁ

) (\ila+1 (t;7)Wpr1(s(t); 7)

+¢1a+1(5(7f);7)‘i’b+1(t;7)) M&TJFUL

(29)

1 U, (£ 7)ds(t) U, t); 7)dt
Po(t, ts: 7 )dtdts = 7y, >< a(tr)ds(t) | o (s(0):7) )

ln(lf%)fln<lfﬁ s(t) —ti t—1

With the above notations, the Bourchard-Marifio conjecture for C? is equivalent to
(30)

+

l
= —(r2 4+ 7)72 Z Z <TaTbL\{l’i}Fg(T)>gPa(t1, t;; T)dtldtid\llbL\{l’i} (toaq1,i;7)
=2 ava\{l,i}

+ 3 @) (P ) T ey Tt (D)g 1

a1,a2>0
br\{1y

stable

- Z (Tax 7, L'gy (T)>917|I|+1 <T112TbJF92 (T)>927\JH—1 Pyyas (t1 T>dt1d@bL\{1}(tL\{1}3 7)
g1+g92=9g
II=L\{d}
4.3. Calculation in new variable v. Now, let us introduce a new variable v by x = e™ =

e"3, As y(l—y)" =z and t = , we have

1
1-(7+1)y
t—1 t—1 \" 1,
—_— l———+) =€ 2
() (o 5m)

v? = -2 (ln (1 - 1) +7ln (1 + Tlt> + 7ln(t) — (T + D)in(T + 1))

Thus

=2 Z% ((—1)”+ 1_1) tin+(7+1)ln(7+1) — 7in(7)

n
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Solving the above functional equation,

(31) v = % ( /le +Zak(7)tlk)

k>1
and
1 T+1 1
(32) =15 (\/ —+ %ak(ﬁs(t)k)

Taking the inverse of (31), we have

(33) % =0 ( 7’:—1 + Zbk(T)vk)

k>1
and
1 T
(34) ol (—v) ( it k;bk(f)(v)’“)

Lemma 4.9. Let

n-1(v;7) = % <\T/_1(t;r) — @_1(s(t);7)> _ _% (ln (tr;— 1) o (W))

and define Nn41(v;7) = =1Ly (v;7) when n > —1, then

mn(v57) = 3 (n(t57) — Fas(t); 7))

Moreover, there exists formal series F,(w;T) such that n,(v;T) = W, (¢;7) + Fp(w; 7).

Proof. Let W_y(t;7) = —In (Zt1) be the solution of differential equation

tT

(tr+1)(t2—1t) d - s t—1
—W_(t;7) = Wo(t;7) =
T+1 dt 1(7) o(;7) T+1

(35) xi _d _1d _(tr+ D> —t) d _ (@) + 1)(s(t)? —s(t)) d
dz dw vdv T+1 dt T+1 ds(t)

Therefore

(i) = 5 (alts7) — (s(0);7))
Moreover,
(36) no1(v;7) = Wy (t;7)

_ —% (o1 (t7) + 0 (s(0):7)

1
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S ()

n>1

By (33) and (34), we note that right hand side of (36) is a series of variable w = 1v?, we write
it as F_i(w; 7). (36) is equivalent to

n-1(v;7) = \if,l(t;T) + F_q(w;T)
Let us define
(37) Fo(w;T) = (—) Fy(w;T)
then, we have

N (v;7) = U (6 7) 4+ Fp(w; 7)

Corollary 4.10.

P, y(t;7)dt =

<77a+1 (v; T)U{m (v;7) vdv!v:v(t>>
n—1(v;T) "

l\.')\r—t

Proof. By (23) and (28), we have

1 1 X A ) A
2 (14 4) o (14 k) (s ()P0 (50015 7) + P (5037 B 157))

B 1 (14 1)dt ((\ifa+1(t;r) — W1 (s(t); 7)) (Tpp1 (6 7) — Tpr (s(£); 7))
2n_1(v;7) (82 —t)(t7 + 1) 4

C(Wara(657) + Parr (s(8); 7)) (Por (5 7) + P (s(0); T)))
4

(t+1)dt
(2 —t)(tr + 1)

vdv

= o) (Na1(V; )Moy (V3 T) — Fai1 (w; 7) Fyp1 (w5 7))

Noticing that

n-1(v;7)

we complete the proof. O

<Fa+1(w;7)Fb+1(w;7)vdv‘ ) 0
v=o(t) =
+

4.4. Proof of the Bouchard-Marinio conjecture for C3. In the proof of the theorem 3.4,
we know that LHS of (10) is equal to

d

O -
% 8*6 (tl,tQ,..,tl,T)

Cg,l(t17t27 "7tl7

—~

!
o , ov; 0 5
= Ecg,l(tlat%-wtl;'r)"i_ E E%Cg,z(vl,w,--vl,

i= =1

aaé (b1, to, 1 T)

Recall the following relationship of x,y,t, v.

1,2
z=e2" yl—y) =zt = ——
y(1 =) 1—(r+1)y
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Thus
oy 0y y(l—y)in(l—y) (2 —t)(tr+1) d 1d

or  or ylr+1) -1 7 T+1 dt vdv

After some simple calculation,

A~ ~

l

d 1d

LHS of (10) = o—Cyu(t1, ta, - t1;7) + > in(1—y,) (_Mw> Cou(ti, ta, .ty 7)
i=1 v

The direct image of a function f(v) on C via the projection 7 : C' — C is:

mf = f(v) + f(=v)
Thus,

TeCaltystay st 7)) = = (72 4+ 1) 37 (0, Ty (B (013 7) + B (50005 7)) Wiy g 7)
br, >0

By the definition of Fy(w;7),
0 - o .
s <a7_cg,l(t17t2a -'7151;7)) =5 (W*Cg,l(t1,t2, .-,tl;7)>

= aaT ((72 + )Y (7, Tg(7)) gy (wl;T)\i/bL\{l}(tL\{l}))

br,>0

is regular in w;. We will use O(w1) to denote some function regular in wy.
Consider the direct sum

l
1 d 4
Ty (Z In(l —1y;) (_Uld’vl> g,l(t17t27 ~-atl;7)>

=1

when ¢ =1,

T <ln(1 — 1) (-id‘i) Cya(tr,t2, ..,tm))
=) Y Tyl i (255 ) (o ) O o0i7) = (w3 7)

2 06 ) o dn

i (LY (= L) o i) = oo ) 0y )

7+ Ds(t)) \ o1 doy

+ (ln <m> —In (%)) Fy, (wl;T)] Ty (1 (b 1))

= (24 7)l7t Z (7o, T (7)) 9201 (01; )y 1 (01; )Wy g1y (135 7) + O(wn)
bL>0

and it is easy to see that

l
T (Z In(l —y;) <_vlld(j)1> Ag,l(tltha ~-,tl§7)> = O(w)

=2
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Thus

m(LHS of (10)) = (72 + 7)™ > (75, Tg(7)) o201 (01; ), 11 (013 7) U 1 (g 7) + Olwn)

b, >0

(7—2 +T)l71 Z <TbL ( )> d\I/bL(tln 7)

br,>0

= (4 7)Y L e o (0, (0157 ) 1y oy )

br,>0

— (—ordvn)dy - dy (w )Y (m, Ty (7)), (1 d ) (s (013 7) — Fm(ﬂ)ﬁﬂ)) 1y (b2 1)

vy dvy
b >0 1

—v1dv _ N

= o2 | DT D210 ) (O (013 7) = By (wis ) | gy i)
Y br,>0
—v1dvy

dy---dy | mo(LHS) = 201 (013 7) By, (w13 7) (72 + 7)1 Y7 {1, Dg(1)) g W, 1y (t2 (1)

2n_1(v1;7) =

—O(uw1))
It is important to note that

_vldvl(’)(wl)| —0
2o M)

and
(—Uld’UlFlerl (wr; T)’v1:v1(t1))+ =0
Thus,
2 -1 iy v1duy
(38) ()Y, Tg(1)gdWs, (tr;7) = ( —s———da -+ - dy (m.(LHS of (10)))
2n_1(vy;7)
b, >0
d
Then we need to calculate (277”17(;1’17)(12 clnr*(Tl))Jr
Let us write T = T11 + T12, where
Tn = (r + 1 Z Z TaTou 1,5y Lo () g Worn 1.5y (Ern 1y 7)
2<j<l a>0
br\{1,5320
(t; — V(7 + ) Wapr(tr37) — (b1 — D37 + t5) Vo (£5:7)
ty—t;

7' —I—T I
Tis = T(r+1) Z > Faton oy oMo W oy iy )
2<i<y<l  a>0
br\ (i3 20

(tj = DT + 1) Wara (ti37) = (ti = DT + ) Wara (85 7)
ti—t;
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By the definition,

(39) <_v1dv177*T12> -0
2n-1(v1;7) +
we have that
(40) —vdvr (- D37+ t1) Wi (tr;7)
27771(’[)1;7') J tl —tj

_ 1 i < (r+1)dt;  (t;— )37+ t1)
2n_1(vi;7) 7\ (#F — t1)(t17 + 1) t —t;

T+ \ija+1(t1; T)dt1dt;

2 (o) (B —ty)?

‘ila—l-l(tl; T))

T+1 A
= Wi (ti;T) Bt
277—1(”1;7—) +1( 1 T) (1 J T)
Similarly,
(41) —vidvr (8 = 1)(s(0)*T + 5(t)) Vara (s(t1); 7)
2n_1(vi;7) 7 s(t) —t;
T+1 A
=—7Y, t1);7)B(s(t1),t;
s (or7) e ({07 Bs(1). £5:7)
Moreover, by the expansion,
h-1, st > (4 it o, 4
t —t A t’““ s(t)F  s(ty)k
we have
—Uld’Ul tl -1 S(tl) -1 > >
42 + 01— =0
42) (2771(01;7) <751tj s(t1) — t; o=t +
Therefore
—Uld’l)l
43 ——————do - - - dym, T by (39
“3) <277—1(01;T) 2 1>+ y (39)
—v1dvy
=(— 1 dy - dym, T by (40), (41), (42
(277_1(1)1; ) 2 l 11>+ y (40), (41), (42)
=—(r"+7)"7 Z Z TaThu 1,53 Lo (T))g d‘Iij\{u}(tL\{lﬂ}’ 7)
2<5<l  a>0
br\(1.4}
Wat1(t1;7)B(t1, 55 7) + Vata(s(t1); 7)B(s(t1), 53 7) by (28)
2n_1(v1;7) .
—(r2 4 7)1 Z Z (TaTbL\{w}Fg(T)>gPa+1(t1,tj;T)dtldtjd\i/bL\{Lj}(tL\{Lj};7')
2<5<l  a>0
bryq1,5}
Finally, we need to calculate (%dz e dyme (T + Tg))
-1 +
Because
—vy1dvy <A R )
= 7 N x \I}a t 5 \Ija t ;
<2771(U1;T)7T vy (b57) >+
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—vldvl ~ A ~ ~
= <277—1(0177) (‘I’a1+1(t1% T)Wayt1(t157) + Wy 11(5(1); T)Wanr1(s(t1); T))>+

—v1dv
= (11 (200141 (V15 T)Nag+1(v15 T) + 2Fa, 11 (w1 T) Faygr (i T))>
27}—1(1)1,7)

= —2Pa1 as (tl; T)dtl

Jr

In the last ”=", we have used Corollary 4.10 and ( Fay 41 (w1im) Fop 41 (wriT)urdes |v1=v1(t1)> =0.
+

n—1(v1;7)
We have
(44)

—v1dv _
<11d2 cedyme (T + T3)> G Z ((72 + 7){Tay Tas T 1y Lg—1(7))g—1

2n-1(v1;7) + a1>0
as>0
bry\{i3 =0
stable A
- Z <TalTbIF91 (T)>91 <TaszJF92 (T)>gz Pai,az (t1; T)dtld\I’bL\{l} (tL\{l}; T)
g1+92=9g
TUIT=L\{i}

Hence, by equations (38), (43), (44) and (10), we have proved the identity (30), i.e the
Bouchard-Marino conjecture for C? case.

Remark 4.11. At the same time as L.Chen published his proof [5], J. Zhou also proved the
Bouchard-Marifio conjecture for C3 [22]. He formulated this new recursion relation of conjecture
and equation (1) of theorem 1.1 in the coordinate v. Then, he regarded equation (1) as mero-
morphic functions in v1, took the principal parts and took only the even powers in v; would get
the recursion relation for this conjecture. J. Zhou has also applied his method to formulate and
prove this new recursion relation for topological vertex [23] based on the work [16].

5. APPLICATION II: DERIVATION OF SOME HODGE INTEGRAL IDENTITIES
In this section, we will use the main theorem 1.1 to obtain some Hodge integral identities.

5.1. Preliminary calculations. For convenience, let us recall the formula (1) in theorem 1.1
at first: for ¢ > 1 and [ > 1, Then,

(45)

LHS = —(* +7) 2 Y ((z = D@4 DTy + (0 4 ), ST ) o 057)
br,>0

!
_ 1 A N
— (247t Z o, Lg(7))g Z ( bi (i3 7) + P I\Pbi-l-l(ti?T)) Yoy oy 7)

br,>0 =1
=T +Th+1T3
where

7' +7) =2 2
Ti=—rr > D Ty Do Wy (togigyi 7)

1<i<j<l a>0
brA (3,5} 20

(tj = DT+ t) Vo (i3 7) = (b = DT + ) Wara (55 7)
ti—t;
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l 2

7' —|—7‘
Iy =y Z Z (TarTas oy 1y Lg—1(7)) g~ 1quan+1 t“T)‘I'bL\{}(tL\{}’ 7)
=1 a1>0 n=1
az2>0
b\ (i} =0
7' +7'
T3 := — Z Z Z <7—a1TbIP ( )>91<Ta2TbJF92 92 H\I/an—i—l tz;T)lIlbL\{}(tL\{l}v )

i=1 a1>0 gi1tg2=
a2>0 IHJ:L\{i}
br\{i} 2g1—1+|Z|>0
292—1+|J|>0

(1) = <(t2—t)(t7+1)d)"(t—l)’nzo

T+1 dt T+1

and
) = Ag(DAS (=7 = 1)A (1)

Ly(r
Let us denote the 7 expansion of W, (¢;7) and Ty(7) as follow,

b ke
A . - T k
(46) Wy(t;7) = W\Pb(t)
k=0
and
2g
(47) Ly(r) = Y Ay (Dam(N)7
m=0
By the definition of Ay(t) = Y29_(=1)97Ay_jt/ and Mumford’s relation Ay (t)Ay(—t) =
(—1)9t%9, we can compute out the coefficients a,,(\) in (47). For example,
(48) agg(A) = (=1)7, a2g-1(A) = (=1)%g, - --
g

=D mAgmAg — (—1)IAg 1A (—1)

ag(A) = (=1)7AgAg (-1)

We also need to show the expansion form of (46) and how to calculate the coefficients WF(t).
By definition Wy (¢, 7) = (12 — t)(yTH)d%\I/b(y, 7), Wo(t,7) = £=L, we have the expansion form

T+1 T+1’

(46). Moreover, we have
d d
(49) Wt (1) = (F — ) S0 (0 + (7 — 1) S0,k =0, b+ 1

Therefore, through the recursion formula (49), all the U (¢) can be calculated.
As an illustration, we calculate some cases which will be used in the following discussion.

(50) W) = (0 — ) T
(1) Wi (1) = (85— ) S0 + (2 — 1) S wh)
(52) () = (5~ 2) S0+ (7 — 1) S wh(r)
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(53) W1 (1) = (2 — 1) 1)

It is clear that, the recursion relation for W)(¢) in (50) is just same for the definition of &(1)
in [9], and they share the same initial. thus

(54) Wi (t) = &(t)
By (50), we write W(t) as
2b+1

(55) Vht) = > fo i)t

i=b+1

then all the f°(b,4) could be calculated from the recursion (50). But we can explicitly write
down f°(b,2b+1) = (26— 1)V, f2(b,b+ 1) = (—1)®b! which are the coefficients used in the proof
of DV'V equation and ), integral respectively[20, 6, 14].

We can also let

2b
(56) W) =Y S

then by (51) we have
(57)
P4+ 1,k) = (k—2)f> Y bk —2) — (k— 1) f> 1 (b, k — 1) + (k — 1) f2(b,k — 1) — kf°(b, k)
Thus, all f°(b+ 1, k) can be calculated from (57). For example,
FPb+1,264+2) = 20°"1(b,2b) + (20 + 1) f0(b,2b + 1) = 2bf°~ (b, 2b) + (2b 4 1)!!

Hence

b—1
(2b — 2)11(2k + 1)!!
b—1
(58) 1777 (b, 20) k)1
k=0
Similarly,
P+ 1,b41) = =bf** 1 (b,b) — (b+1)f°(b,b+ 1) = —bf°(b,b) + (=1)"T (b +1)!
Thus
b+ 1)!
(59) 7o) = (1Y
On the other side, from (53), we can let

b+1

i=1
Then

Fopa 0+ 1,8) = (i = D) fy (b0 = 1) = if5 (b, )
Thus,
(60) F(b,b+1) =0
Then, from (52), we can let

b+2 '

(61) Wy(t) =Y (b)Y
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and

fro+1,k) = (k=2)f'k—2)— (k=1 f0b,k— 1)+ (k= 1) f (b, k — 1) — kf*(b, k)
Thus

(62) Fro4+1,043) =0+ 1) b+ 1)+ (b+2)f (b, b+ 2)
by initial value, f1(1,3) =1 and f°(b,b+ 1) = b!, we get

b+1 1
(63) b b+2) = (b+1)!ZE

k=2

Now, let us substitute (46) and (47) to (45), we have

2g
64)  LHS=-3 3 S (m,AY(Dam(N\)gPs(tr)

b, >0 0<ky, <b;, m=0
y (1 =2+ m+ |kp| — |bp|)rlFelHtm=1 4 (1 =1 4 m + |k |)rlkelHitm=2

(7 + 1)lbrl+2
29 l b -2
0 k. bss Florl+m+
— o, A (X 7 — )V ()0, N (b ) s
2oy, 2 e 2 ) gy 0%, ) s
29 .
(65) Ti=— > > > X (el Ay Wan(N))e W () (b )
1<i<j<l a>0 m=0  0<k<a+l ’
br (i3 20 0<kr\{i,5} <br\{i,5}
(1 — DEE, (1) — (8 — D2 (1) o [hatim
ti —t; (1 + 1)lbr\gigy +at3
29 b
Do D D> iy A Mam)e Yy ) (i)
1<i<j<l  a>0 m=0 0<k<a+1
brA (i3 20 0<kr\{i,5} <bL\{i.5)
(t = DETE (1) — (b= DEEE (t) T Hrstm=2
X
ti —t; (7 + 1)lbr\gigy+at3

l 2(g—1)
Z Z Z Z <TalTa2TbL\{i,j}A\g/—l(l)am(/\»g—l

(66) -
i=1 a1>0 m=0 0<n1<a;+1
a22>0 0<nz<agz+1
bry{i3 =0 0<kr\ {43 <br\{i}

leL\{i} |[+n1+ne+l+m

ni
\Ijal +1

no i}
(t:)¥az 4 (¢ )\Iij\{ }( ne) (T + 1)a1+az+\kL\{i}|+3

l
6 T=—> > X Y Y GamAOen 0,

i=1 a12>0 g1+92=9 0<m1<2g1 0<ni<ai;+1
a2>0 IUj:L\{i} 0<m2<2g2 0<ng<asz+1
br\{i}202g; —14+|Z|>0 0<kr (s} <br\{i}
292—1+|J|>0
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T\kL\{i} |[+n1+no+l+mi+mo—1

X <Ta27bjA;;/2(1)am2(A)> \1117111—&-1( )\I/Zg—f—l( )\IjkL\{/.i}(tL\{i})

br{iy (T + 1)a1+a2+|kL\{i}\+4

Where we have used the notation |bz| = 22:1 b; in above formulas. We note that (64), (65),
(66) and (67) are all the functions of 7. If we expand them as the series of 7 at different points,

we will get some identities of Hodge integrals after recollecting the coefficients of 7 at both sides
of (64) = (65) + (66) + (67).

5.2. Expansion of 7 at co. For b > 0, expanding at 7 = oo,

7 fnb =2 (hb> e

h>0

for example, the term containing 7 in (35),

Flkr]+i+m—1

_ 0Ll = 2\ 1pm—3t kg —lbs]—h
(r + Dbel+2 h;) < o))" o

After this expansion, it is easy to see that the largest degree of 7 is 2¢g + [ — 3 in the formulas
(64), (65), (66), (67). If F(t,7) € Q[t][[r]], we will use the notation [r*]F(t,7) to mean the
coefficient of 7% in F(t,7). By agy = (—1)9 in (48) , after some calculations,

(68)
l
_ 0 b
[PIHBLHS = (=197 Y (m, AY (1)) ((2g—2+l)\If§j§(tL) +) (- ti) 5 Wy (t;) W bx i( L\{i}))
br,>0 i=1
_ TANER
(69) [T = (0t S ST (mamy o, AV ()
1<i<i<l  a>0
b (i3 20
(t; — VERwatl(t) — (6 — V()
ti—t;
(70)
l
_ ]- a a b [3
[PHTy = (DS ST Taa g Ao (g WL ) W E ) 9 (1 )
=
bry(iy20
(71)
l 2
_ 1 a b i
[T = (DS S ST (e A (D) g A, (D) ] W ) (b1 )
i=1 a1>0 g1t+g2= n=1
as>0 ZUuJ= L\{z}
br\ iy 20

~

As showed in formula (54), Wh(t) = &(t), we have got the following corollary from (68) =
(69) + (70) + (71),
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Corollary 5.1.
(72)

I
> Ay (1) ((29 —24 D&, (tL) + > (1 — ti)%ébi (ti)ébL\{i}(tL\{i})>

=1

LT Y (g AW, BT D (0 = (- D ()
L\{4,5} g 9SOLN{i,5}

t; — 1

1<i<j<l a>0

br\ (i3 20
1 l stable

+ 9 Z Z (Tay TasTor 4y A;/—l(l»gfl + Z <Ta1TbIAgl (1»5]1 <Ta27—bjA;/2(1)>92
i=1 a1>0 91+92=9
a2>0 TUT=L\{i}
bry(ip 20

X Ear 41 (ti)an 11 (t:) by 1y (tL(iy)

which is just the main theorem 1.1 showed in paper [9]. Formula (72) has been applied by
many people to derive DVV equation [6, 20], As-conjecture [14, 20] and A\,—1 Hodge integral
recursion [24].

Obviously, in this procedure, we can obtain a series of such corollaries. For example, calcu-
lating out the coefficients of 7297=% by a9y = (—1)9, agy—1(A) = (=1)9g in (48) we have

(73)

[r29H-4YLHS

l
= (070 =340 3 (g )lla =1 = DV ) + 3 W () (e )

FEDT Y (A ORI — )5 (9 ] = 205 0) + 27 (1)) (B ()

br\{sy
by >0 i=1

BRI LAV
+ Z‘I’ (t;) bi\{f}( L\{ij})]

J#
(74) it VA CO VAR N NN C % S 5(1)>g\1/bL§”}( L\{ig})
1<i<j<l a>0
br\{i,3320
((t DE[we,  (t) + (9 —a— |bpygpnl — )‘I’ZH( i)
ti —t,
(- DEWG () + (9= a—[brygl =3+ £) Vel )])
b —t
(75)
!
_ 1
[7_29+l 4]T2 = (—1)g+1§ Z E (TalTQQTbL\{i}A;/_l(l»g_l[(g —a] —ag — |bL\{i7j}| — 4)
=1 a12>0
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a a a a a a br\ (i
T () WERT () + o (1) ez T (6) + oy T (1) Ue2 g (8]0, 1t giy)

br(iy
Y T A (-1 2 e D L) )
TalTGQTbL\{z} g—1 g—1 a2+1 bL\{zg} L\{i,5}
i=1 a1>0 j#i
az2>0
br\ (i} 20

(76)

[7_29+l—4]T3
stable

!
1
IS Y uma A ey AL (D)l — a1 — a2 — oo ] — )
i=1 a1>0 g1+g2=
20 107 o)

1 1 1 1 br\{i
vt wz;il( D U )+ U U D ()
1 stable
gz > Y GumAL ),
i=1 a1>0 gi1+g2=
a2>0 TUJ= L\{}
b3 20
1 bj—1 b i
(TaaToy Mg, (1) g Var T (E) Ve 1 (6) D0y ()W 07 (i)

JFi

Thus, by (73) = (74) + (75) + (76), we get a Hodge integral identity. However, unfortunately,
the only Hodge integral contained in this identity is (7,, Ay (1)), because only the terms agy(\) =
(—1)9 and agg—1(A) = (—1)%g was involved in the above calculation which contains no more new
information.

In order to get the Hodge integral identity with more than one A-class, we need to compare
the coefficients of 72971=% with the same procedure, we will arrive at a Hodge integral identity
which involves (7, AY (1)), and (ry, AY (1)A1), because asy a(A) = (—1)9 (@ - )\1)

From such Hodge integral identity, we can calculate all the Hodge integral of type (7, AxA1)g,
k =1,..,g. However, more terms will appear in the calculation of coefficients of 72971=% which
make the computation very complicated. so far, we have not written down the explicit formula

to calculate the Hodge integral of type (7, Ay A1)y. But when k = g, in the following subsection
5.4, we will give an explicit formula for (7,, AgA1)g-

5.3. Expansion of 7 at 0. Now, let us consider the expansion of -

g ()

i>0

+1)b at 7 = 0, we have

After this expansion, it is easy to show that the lowest degree of 7 in (64) is | — 2. In fact, by
ap(A) = (=1)9AgAy (1) show in (48) and Ay (1)A;(—=1) = (—=1)9, we have

(77) M PILHS = —(1=1) Y (m, Ag)g WP, (t1)

br,>0
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(78>
(t; — D20V (4) — (t — D20V ()
[ Z Z TbL\{z]} >g‘l’lO7L\{i,j} (tL\{i,j}) J i *a+l ; - t,l j*at1\lj
1<i<5<l a>0 2 J
brA (3,53 >0

(79) Py = [P T3 =0
Thus, we get
Corollary 5.2.
(80) Z (To, Ag)gWh, (tr) = lf Z Z (TarbL\{iﬁj})\g>g\118L\{i,j}(tL\{i,j})

br.>0 <i<j<l  a>0

brA i3 20
) (tj - 1)t12\1j2+1(t ) — (ti — 1)t \Ija+1( )

ti—t;

Here, we introduce two notations. Let g(21,..,21) = 3; 50 @iyip-iy 21" - - 2" € Q[ .., 7],

Fy(g(@, - @) = Z ai1i2“'i1x?‘ll x;l
S ik=d
and

Ji .

[z1 7

cal'lg(@r, - @) = gy,

Now, let us use these two operator to corollary 5.2. By (60), we have

Fagsa(LHS of (80) = (I = 1) Y {m, \)gbrlyy* ™

br,>0
by a1ttt — et
L\{i,5} 2 J
Foggpan(RHS of (80) = > 3 {7y Adola+ Dbt 5 — 17—
1<i<j<l a>0 v
b >0

Then,

[t Py 5 o (LHS of (80)) = (I — 1) {7y, \)gbr!

(Lot Fyy 51 01(RHS of (80)) = Z (Thitby—17by1 (1.3 Aadg (Bi + 1)1 iy

1<i<j<l
Hence, we have

(b + bj)!
<i<j

Induction on [, we get the A\, integral,

29 —3+1
(To, A)g = ( b >cg
L
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Now, let us calculate the next degree of 7. By ag(A) = (=1)9AgAy (1) showed in (48) and
Ay (1A (=1) = (—1)9, we have

(81)

FLHS = = Y (my Ag)gl | —(bol + )W, (tr) + > Wh ()99, (b gy)
br >0 j=1

!
=D (i Ag)g ) (8 —t) f\w(i)w&\{i}(u\{i}) = > (m Ay (Dar(A\) 19y, (i)
=1

br, >0 br, >0

(82)
[Tl_l]Tl
0 (tj — Dts (Wa () + (t — bryip] —a—3)T0,  (8))
Z Z TaTop i 2909 Whpy oy (B (i) ti —t;
1<i<y<l a>0 t J
brn{i,53 20
(= Dt (Pan () + (8 — by —a = 3)¥a 4 (1))

]

ti —t,

(t; — 1)t 00 (£:) — (8 — 1)t 90 (¢)
Z Z TaTbr (i, J} Z \Ilb bL\{z‘,j} (tL\{iJ}) ti —t;

1<i<j<I a>0 r#i,j

br\{i,320
0 (t - 1)tz\p +1(t ) (ti - 1)tj\1j0+1(tj)
Z Z TaTbr, (i.5) g(Ual()‘»g\ybm{i,j}(tL\{"’j}) ) ti —t; :
1<i<i<l  a>0 ’ !
brA {0,320
(83) [P 1T =0
(84)
1 l stable
[ 52 Z Z <7'a17'bz)‘g1>g1<7'a27'b;7>‘92>92‘1’21+1( )\I'a2+1( ')\Ing\{i}(tL\{i})
i=1 a1>0 g1+g92=g
a2>0 |Z|U|J|=L\{i}
by (i} 20

Recall formula (48), a1(A) = Y7 i mAg—mAy — (=1)9A7(=1)A;—1 and Mumford’s relation
Ay (1A (=1) = (=1)9. We can write

39—3

(85) A Dar(V) = Y Pa(N)

d=g—1
where P;()) is some combinatoric of A-class with degree d. For example
(86)  Py—1(A) = Ag—1, Py(A) = gAg, Pyy1(A) = =AgA1, -+, Pyg_3(A) = (_1)g+1)‘g)‘9—1)‘g—2

By the above calculation, substituting (85) to the identity (81) = (82) + (84), we have
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Corollary 5.3.
(87)

D (T Ag)gl | — (bl + 1)), (t1) + Z Uy (¢ \IlbL\{J}(tL\{j})

br>0
l 9 39—3
+ Z (To, Ag)g Z(tf - ti)%qjl?i(ti)\pgm{i}(tL\{i}) + Z (o, Z Pa(N\)gl Wy (tr)
b1, >0 i=1 v by, >0 d=g—1
0 (tj — D)ts (Wa g (i) + (ti — |brygiyl —a—3)¥0,  (t))
Z Z TaTbry (3,53 >g\I]bL\{i,j} (tL\{i,j})[ t:— ¢
1<i<j<l  a>0 vt
bLA (i} 20
(= Dt (Waga () + (5 — lbrygigyl — a = 3)0,4 ()

]

ti—t;

(t; = D00 (t) — (6 — D00 44 (8)
+ Z Z 7—bL\{u} Z \Iij tr) W bL\{ (tL\{ivj}) t; —t,

1<i<j<l  a>0 r#i,j

br\{i,j320
39—3 0 0
0 (t; — DtiWo g (t) — (6 — DV, (E))
+ Z Z <TaTbL\{i,j} Z Pd()\»gqu/:\{i,j} (tL\{i,j}) : t: —t. .
1<i<j<l  a>0 d=g—1 v
br\ (i3 20
stable

+5 Z Z Z <7'a17'bz>\g1>g1<Ta27bg)‘gz>gz\1]21+1( )\I/a2+1(tl)‘lng\{i}(tL\{z‘})

i=1 a1>0 g1+g92=g
0250 |TIUTI=L\{i}

bry\{i3 >0
Since (1, A\g)g = (25723”) cg, thus all the Hodge integral of type
39—3
(88) (7, > Pa(\)g
d=g—1

can be calculated from formula (87) in corollary 4.3.

5.4. Explicit expression for Hodge integral (7,, A\jA1)4. Although corollary 4.3 says that
all the Hodge integral (88) can be computed, it is not easy to write down their explicit formula.
In this subsection, we will show how to obtain an explicit formula for (7,, A\gA1)g.

Both sides of (87) belong to Q[t1,..,t;]. We have known that (7, A\g)g = (zggfﬂ)cg, and
(Tb, Ag—1)g can also be calculated easily from a recursion formula showed in [24]. Thus, we have

Theorem 5.4. If 22:1 bi = 29 — 4 + 1, there exists a constant C(g,l,b1,..,b;) related to
g,1,b1,..,b;, such that

1 b; +b;)!
(89) (Mg =7 D <rb,.+bﬂrbL\{i,”Agmgi( b‘,b}f) +C(g,1,by, .by)
b

1<i<j<l

C(g,l,b1,..,by) is a very complicated combinatoric constant which is given at Appendix B.
Proof. Taking all the terms with degree 2g + 2] — 4 in formula (87). we have

(90) Fagyo—a(LHS of (87)) = —1 Y (1, Agh1)gbr!t) ! + Gi(ta, ... 1)
br,>0
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(91) Fogy0— 1+(RHS of (87)) Z Z TbL\{i,j})‘g>‘1>g
1<i<j<l a>0
bra{i,53 20
a+1

bo i+l
bL\{z ]} a+1 Z tLL\\{{Z JJ}% ta+2 mtm+1 + Gg(tl, . tl)

where G;(t1,..,t) = Z|dL|:2g+21_4 Ci(g,1,dy, .., dl) € Q[t1, -], Ci(g,1,d1,..,d;) is a combina-
toric constant related to g,1,d1, .., d;. Thus, we have

1
(92) DALl =1 DT D (Tt oy A Mg

br.20 1<i<j<l  a>0
b\ {5,320
a+1 b i
1, 2— 1
. bL\{i’j}!(a + 1)‘ Z tLL\\{{z jﬂ}} ta-‘r mtm-i- + G(tl, ”’tl)
m=0

where G(t1,..,t1) = Y4, j=ag 1214 C(9 1, b1, - bETE = F(Ga(tr, 1) — Galta, ., 1))
After taking the coefficients of (92),

1 (bi + b))  C(g,1,by+1,...b;+1)

(93) <TbL)‘9)‘1>g = N Z <Tbi+bj—1TbL\{i,j})\g)\1>g b'b'] + br!
1<i<j<l v
Let C(g,l,b1,..,b;) = w, thus, the theorem is proved. O

We know that the initial value (7o5-3AgA1)g = 75[9(29 — 3)by + biby—1] has been computed
by Y. Li [15]. Therefore, from the recursion formula (62), we can compute out all the Hodge
integral of type (75, AgA1)g-

6. CONCLUSION

The original cut-and-join equation of Marifio-Vafa formula is a complicated formula about the
partition which can be changed to a polynomial identity with the help of the Laplace transform in
this paper or the symmetrization method in [4]. This polynomial identity has some applications
because it is manageable. We derived some corollaries about the Hodge integral identities. In
fact, we have found an algorithm to calculate the Hodge integral appearing in Marino-Vafa
formula.

Stepl, expanding the 7 at some special point, and collect the corresponding level of 7 in
theorem 1.1.

Step2, taking certain degrees of tr, we will get the corresponding Hodge integral appearing
in Marino-Vafa formula.

In this paper, we only calculate four cases using stepl and calculate out a new Hodge integral
using Step2 from the result of last case after doing stepl. We don’t consider other cases here,
because the computation will be more complicated. We hope that this algorithm can be made
to a computer program.

We note that, the recursion formulas to calculate (75, Ag—1)4 [24] and (7,, A\gA1)4 in theorem
1.5 have the similar recursion structure. For a given g, Hodge integral with [-point will reduce
to 1-point after only [ times recursions. Thus, it is a very effective recursion relation. In fact,
many Hodge integral recursions will have this type structure if they are calculated out by above
algorithm. Thus it is interesting to consider the following combinatoric problem.

Let Q;(br) = Q;(b1, ba, .., b) be a symmetric function on (by, by, .., b;) € (Z1)! which is defined
by the following recursion relation.
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For given g, k,
(94)

constant, b=3g9g—2—k,
b) =
@i0) { 0, others.
(95) Z Qlfl(bz’ + bj —1, bL\{i,j}>Al(bL> + Bl(bL) Zé:l b;=3¢g—-3+1—k,
Qu(br) = { 1<i<y<i
0, others.

Where A;(br) = Ai(b1,..,b;) and Bj(br) = By(b1,..,b;) are some fixed functions defined on
(b1, ba, ... by) € (ZH)L.

It is interesting to study the properties of @Q;(br) defined above. We hope that this combina-
toric structure of Hodge integral will be studied further in future.

7. APPENDIX

7.1. Appendix A. In this appendix, we will show how to derive our main result in theorem
3.4 from the symmetrized cut-and-join equation of the Marino-Vafa formula [4].
when b > 0, Let

T+1. d -1 b Tk
yT+1)@)b(g+1) Z(T—f—l)b""lwb()

k=

y(y; ) = (v = )(

Then the symmetrized partition function of Marino-Vafa formula can be written as

(96) ng(yl?”?yn;T): ( (T+1 Z HTbF H\I’b yu

b;>0 =1

7 n

The main result of [4], i.e Theorem 3 in that paper, says

Theorem 7.1. The symmetrized generating series Wy n(y1, .., yn; T) is a polynomial in the y;
variables of total degree 69 — 6 + 3n and satisfies the symmetrized cut—and-join equation.

0 ~yr -y O
a a n
(87_4—[:1 ——1 8yl)”g,

(yl7 3 yn7T) = Tl + T2 + T3

where

g yi(y2 —1) y17+1)

T, = sym W Y T
v=symin = = gn—1(Y1, Y3, - Yni T)

T T 3
ZD Dy +1 Wy- 1n+1(l/1:-,ymyn+1,7)\yn+1:yl

1
T5 = 92 Z Symgf,n1—1D;1ng,n1 (ylv"’ynl;T)D;Wng”?(yl’yn1+1’"’yn;T)

g1+92=9g
ni+ng=n+1
291 —2+n1>0
2g2—2+n2>0

We need to explain the notations appear in above theorem. Where D, = (y* — y)(y::f) 0 For

i,7 20,1+ 7 <n, let sym7; be the mapping, applied to a series in 1, .., Tn, given by

Symijf($1, "7xn) = Z f(XR7XS>XT)

RS, T
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where the sum is over all ordered partitions (R,S,7T) of {1,2,..,n}, R = {zr,,..,2r,}, S =
{25y, 25}, T = {:ctl,.. tn_i_;} and (XR,Xs,X']') = (Tpys oy Ty Tsys ooy Ty Tty oy Ttyp_y_;)s
where ry < - <1y, 51 < oe- <8, and by < - <ty

Then, by equation (96), we have

LHS = —(1? + )" 2 Z ((n—l)(2r+1 HTbF (T))g + (T2 +7) Hszd )>9>H‘I’bi(yi;7'
i=1

b;>0 i=1
i=1,..,n
2 n—1
— (" +7) Z (HTb Ly ( gz 8T‘I’bl Y T) + pp— ‘I/bl+1 ui T H‘Pbk Yk T
b;>0 i=1 =1
i=12,.m k;él
2 n—2 n
T+ T
Tl = 7¥ Z Ta H Tbk )>g H \Ilbk(yva
T+1
1<i<j<n a>0 =
bi>0 kséw k#i.j
k4,5
W = DT+ ) Yo (yis 7) — (i = DGFT +5) Yarn (g5 7)
Yi — Yj
n n
1y = T +7 nz Z (Ta1Tas HTbkFg (7 )>g 1Wa,+1(Yis T)Wag+1(yis 7 H\Ijbk Yk T
i=1 a1>0 k=1
a2>0 ki k;éi
kaO,k;éz
(7’ +T -
Is = Z Z Z (Tay H To Lgy (T)>g1
i=1 alig g1+g2=9g keT
a2 I]_[J {17 717 n}
b0k 214 7]
2g2—1+|TJ[>0
Tag H Tbk 92 a1 (yw az yu H \Ilb yz;
keJ L
k:;éz

Then, by theorem 5.1, we arrive our main results in section 3, i.e. theorem 3.4.

7.2. Appendix B. In this appendix, we will calculate the constant C(g,l, by, ..,b;) which ap-
pears in theorem 1.5. The computation is verbose and boring.
Let us write the formula (77) of Corollary 5.3 as

(97)
Liy+Ly+ L3+ Ly+ Ls+ Le + Ly
=R+ R+ R3+ Ry+ Rs+ Re + Ry + Rg + Ry + Rio + Ri1 + Ri2 + Ri3 + Ria + Ris + Rie

where

Li= ) (o, Ag)gl(g — |br] — )W, (tr)

br.>0

Lo = Z TbL l Z ‘Ilb lI’bL\{J} (tL\{J})

br,>0
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Ls= Z To A th (975 7 \I’bL\{ }( L\{j})

br,>0
l

Li== () th o, Uy ()%, (o)

b, >0 j=1
Ls=— ) (To, Ag1)gl®P, (1)
bz, >0
L¢ = — Z (TbL)‘g)‘1>gl\I’I?L (tr)
bz, >0
39—3

L= (m, 3 Pa)l W, (t2)

br.>0 d=g+2

titi Ul () — tit; UL (¢)
_ 0 JYi ¥ a+1\M iby*Fat1\ly
Rl - Z Z 7-bL\{Z Jt >gquL\{i,j} (tL\{i,j}) t: —ts
1<i<5<l a>0 ? J
br{i,j320
—t; WL () + 0L ()
_ 0 a+1\"? J *a+1\"]
Ry = Z Z TaTbry (3,53 >g\Iij\{i,j} (tL\{i:j}) L — s
1<i<j<l a>0 ? J
bri,j320
200, () — 200, ()
_ 0 7% T a+1\" vy Fa+1\")
Ry = Z Z T“TbL\{Z it >g\IlbL\{i,j} (tL\{i,j}) t:—t.
1<i<yj<l  a>0 7 j
br (i3 20
— 200, (t) + 500, (t5)
_ 0 i~ a+l a+1
Ry = Z Z TaTbr(i,5) >g\IJbL\{i,j} (tL\{i:j}) tt.
1<i<j<l  a>0 4 J
bri,j320

2. 2 !

1<i<j<l a>0
brn{i,3 20

2. 2 !

1<i<j<l  a>0
brgi,5320

2. >

1<i<j<I a>0
br\{s,3320

2 2

1<i<j<l a>0
brn{s,320

0
TaTbr\ (i gy >g\IlbL\{i,j} (tL\{i»j})(’bL\{iJ}| +a+3)

0
TaTb gy 2009 W oy (E (1) (PLy iy | +a + 3)—

TaTbry (i) Ag)g Z \Pllir (tr)\PgL\{i,j,r} (tL\{i»jﬂ"})
reL\{i,j}

1 0
7-‘-[’L\{w} > Z by, (tr)\I/bL\{i,j,r} (tL\{i»J'ﬂ"})
reL\{ij}

0
_tjti\llaJrl

(ti) + tit; Uy, (t5)

tiWaa (ti) —

ti—t

t \I]a—i—l( )

ti

titWo 1 (t) — tit; Vo 4 (t))

_t_]

_tl\Ija—l—l(

ti —t

DRRZARIC)

t;
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tjtiqlgﬂ(ti) - titj‘I’2+1(tj)
Z Z (TaTop 15y 9109 \I’bL\{”}(tL\{w}) 1
1<i<ji<l  a>0 ¢ J
brA (4,51 20
—t W0 (t) + 5,90 (85)
Rio = Z Z T“TbL\{u} 9— 1> \IlbL\{z ]}( L\{%J}) ti—
1<i<j<l  a>0 v J
brA (4,5} 20

titi W0 (t) — tit; 0 (¢)
0 g7 +1\" 7] +1\%J
Ri = Z Z TaTbp (i3 >gg‘llbL\{i,j} (tL\{i:j}) 2 .

1<i<j<i  a>0
b (i3 20
_t.\IJU (t) +t'\I/0 (t)
B 0 1 g1\l J Fa+1\")
Rz = Z Z TaTbry (i3} >9gqlbL\{i,j} (tL\{i,j}) ti—t;
1<i<j<l a>0 J
brA (4,1 20
Gt 00 (t) — it 90 (t5)
R = — Z Z TaTbp\ (i) A >\1> \Ibe\{ J}( L\{Z:J}) t: —t.
1<i<j<l  a>0 il
b (i3 20
_ti‘P2+1(ti> + tjq/g-i-l(tj)
R14 = - Z Z TbL\{ A A]-> ‘IlbL\{ ]}( L\{Z,]}) t— ¢
1<i<j<l  a>0 iU
b (i) 20
“ 0 (t; = DB (8) — (8 — D00, (1)
Ris = Z Z <T“TbL\{i,j} Z Pd()\)>g\IIbL\{i,j}(tL\{ivj}) t— s
1<i<j<l  a>0 d=g+2 v
bra{i,3 20

stable

Rig = Z Z Z <Ta1TbI)‘91>91<Ta2Tbj)‘g2>92\Ila1+1( )\I/angl(j)\IlgL\{j}(tL\{j})

j=1 a12>0 g1+g2=
a2>0 ZUJ= L\{]}

br\ (5320
Then,
(98)
l
b3 +1
Fograta(l) = D (muAg)l(2 - Z (b5t £ (bua gy bragsy + DL
|br|=2g—3+1 j=1

l

(99)  Fograa(Lo) = > (mgdggl | D0 £ 050 + 1P ST Ok, bt

|br,|=29—3+1 Jj=1 keL\{j}

l

by +1 b, boy 1

PoOugay bigsy + DG + 2 P b7 £ (br gy by + DA
J:
l
b _ b i1
+> b0+ 2)75/” > Ok b — DEE O (br iy iy + Dt
j=1 keI (}
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l
b b
F3 b 217N Pl b)Y £ (kg i)
j=1 k1eL\{j} ko€ L\{j,k1}

0 bL\ {5k kg y L
FoOL\ Gk} OLA G oy T 1)tL\{jJ,k11,k22} )

(100)
Fogror—a(Ls) = > (T, A Zb i £0(bj, bj)t ]H > bk br)ty
|br|=2g—3+1 keL\{j}
b +1 b b A +1
FOorygmy bovggey + Dt +Z D F0(bj, by = 1t fO by, bragy + DA

!

b _ brngipr+1

+> (b + 1) £°(bj,b; + 1)tjj+2 > bk b — D O (b gy b + Dt
j=1 keL\{j}

—{-Z b +1 b],b —|—1 b+2 Z f bk17bk‘1) bkl Z / (bk2vbk2)tbk2
ki€L\{j} ka€L\{j.k1}

br\{j,ky,ko} 1

b (3 +1
(101) Fopoa(La)=— > (m,Ag (Zb P30 1 bu by + DI
lbr|=29—3+1 j=1

l
b brygjrr+1
b+ DO b+ DTS FO bk bt P by by + D )
=1 KLV}

(102)

-1 b 41
Fogroa(Ls) == > (m,A (Zfo jrby = D FO by by + DS
|bp|=2g—2+1

b i+l
+Zf° (i b7 D FO bk b (g b iy + D )

k‘EL\{J}
(103) Fogror—a(Le) =— > {(mo  Agh)glfO(br, by + 1)t
|br|=2g—4+1
(104) Fygi01-4(L7) =0
(105)
Fog o1 4(R1) = Z Z (TaTor iy Aadg (fO(bL\{i,j}’ bi\{igy + 1)t;L\}2;f+1

1<i<j<l a+|bL\{z‘,j} ‘:29+l—4
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a

ol bra i+
fl(a —+ 1, a+ 1) Z thrlthrl k + Z fo(bra br)tgrfo(bL\{i,j,T}a bL\{iJ,T} + 1)tLL\\{{i7j],r}%

k>0 reL\{ij}
a+1 b +1
flla+1a+2) Y e e 3" PO b = DI O (br iy brgigey T i in
k>0 reL\{i,j}
a+2 b b
fl (a + 1, a + 3) Z t?—'—lt?-’_g_k + Z fo(brl R b7"1 )trgl Z fo (bT’27 br2)tT22
k>0 rieLel\{i,j} ro€L\{4,5,r1}
b +1 =
L\ {iygr1 e} T el k+1,a+3—k
fo(bL\{i7j7T17T2}7 bL\{i7j7T17T2} + 1)tL\{l‘,j?,7’11,7’§} f (a + 17 a + 3) Z tZ i tj—‘r
k>0
(106)
F Ry — — A 0 b b o 1 tbL\{i»j}+1
bgroi-a(R2) = — Y > (TaTop s Aada (7 (brgigy: brgigy + Dy
1<i<j<l a+|bL\{i,j}‘:29+l_4
a+2 b +1
fllatla+2) ) 52754 0 b)t fObrgi gy bi iy + VP
k>0 reL\{i,j}
a+3
fllat+1a+3)) tretsh
k>0
(107)
b (i) +1
Fogro-a(R3) = Y > (TaTbp 11y Aa)g (fo(bL\{i,j}’ bingigy + Do)

1<i<j<l a+|bL\{i,j} ‘:294’174

a

a — b 1,7,T +1
fPla+1,a) th+1tj+l bt Z FO(br be) 0 FO(bra iy LA [y + l)tLL\}{i,j,r;

k>0 reL\{i,j}
a+1
a+2— r— br\figryF1
Flat+la+ 1)) thther2 ke N 00 b — D O (igrys bragigory + 1)tLL\\{{i,;,r]]:
k>0 reL\{i,j}
a+2
at3— by by
fo(a +1,a+ 2) Z t?+1tj+3 k + Z fo(brl , brl)trll Z fo(bma br2)tr22
k>0 rieLel\{i,j} ro€L\{4,5,r1}

a+2
b \{%,7,m1,7" +1 k 3—k
FOOLGigirs 2y DL G} T DI ogn 2 fOa+ La+2) )t et

k>0

(108)

Fogio-a(Re) = — Z Z (TaTbp 1y Aa)g (f O(bL\{z}j}’ bi\{ig) + 1)tLL\\{{ij}}
1<i<j<l a+|bL\{i,j}‘:29+l_4
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a+2

at2— ‘ brygigr+l
Folatla+1) Y tfr 2 3 P bty O (br gy b gigiey + DEL G
k>0 reL\{i,j}
a+3
fPa+1,a+2) tht;“’_k
k>0
(109)
b i, Jrl
Fgg+21_4(R5) = — Z Z <TaTbL\{i,j})\g>g <(29 +1— 1)f0(bL\{ivj}7 bL\{i:j} + 1)tLL\\{{i=J?}}

1<i<y<l a+|bL\{i,j} ‘:29+l—4

a

a — - b 1,9,7 +1
Flatla+ 1)) 67 w2 41-1) Y b, bt FO(brfigirys brgigry + DESET

k>0 reL\{i,j}
a+1
fO(a + 1’(1 + 2) Ztiﬁ»lt;fr?fk
k>0
(110)
brgigy+l
Fogio-a(Re) = Y > (TaTop 1y Aa)g <(29 + 1= DS (brigy brgigy + Dt en
1<i<5<l a+|bL\{i’j}‘=2_(]+l*4
a+2
Flatla+2)) etk
k>0
(111)
Fgg+2174(R7) = Z Z <TaTbL\{i7j})‘g>g Z fl (b'r’ br + 2)t,IZT+2
1<i<j<l a+|bpy 11 11 =2g+—4 reL\{i,j}
a—1
b 1,9, +1 — -
FOrfigy bragigiry + 1)tLL\}2,j,r}} fla+1,a) Z tfﬂt? - Z FH(br, by + 2)tlr 2
k>0 reL\{i,j}
b 41 a+1
> FObe e — Dt fO(brafi sy VI i) T Dt flatla+2) > pthigrek
s€L\{i,j,r} k=0
bs bs
+ D b2t YT b bt D by by )t
reL\{i,j} s1€L\{i,j,r} s2€L\{4,j,r1,51}
a+1
b 1,J,7,81,8 +1 — "
fo(bL\{i,j,r,s1,52}a bL\{i,j,T,Sl,sg} + 1)tLL\\{{i,j?,r,si,s§i fo(a +1la+ 2) Z t§+1t?+2 k + Z fl(bra br)tg
k>0 rel\{i,j}
) +1 a+1 " 1
0,3, - (s +
FOrgi gy bigigey + DELGTT T fPlat La+2) Y 62 4 Y7 fHbyy by + DB
k>0 r1€L\{i,j}

by b 1,7,71,T +1
2 : fo (bry, bry ) tr? fo(bL\{iyjm T2} bL\{ivjv""lﬂ"Q} + 1)tLL\\{{i7j],r11,T22; fo(a +1la+2)
ro€L\{i,j5,r1}
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a+1
_ b {i,j,r}+1
Z tf+1t?+2 k + Z fl (bra b, + 1)t£r+1f0(bL\{i,j,7‘}7 bL\{i,j,r} + 1)tLL\\{{i7;7r; fo(a + 1, a—+ 1)
k>0 ref{i,g}
a

_ br, +2 by
§ : t§+lt?+1 k + E fl (bm ’ bm =+ 2)tT11 E fo(b’l’Q’ bTQ)tTQQ
k>0 rieL\{i,j} ro€L\{i,j,r1}

a

b 47,717 +1 k —k
fo(bL\{i7j7rl7T2}7 bL\{i,j,?‘l,?‘g} + 1)tLL\\{{EL7_]J7T117T’;§ fo(a + 1, a + 1) Z tZ Jrlt?Jrl

k>0
(112)
F29+2l—4(R8) = - Z Z <7-a7-bL\{i,j} )\g>g Z fl(bra br + 2)t?r+2
1<i<j<l a+|bL\{i,j}|:29+l74 TEL\{i,j}
a+1
b 1,7, +1 a — r
FOOLfijirys DL\ i giry + 1)75LL\\{{2-7;7T§ Platla+ D)) et 4 3" 1 by, by + 1ty
k>0 reL\{i,j}
b +1 a+2
SO gi iy iy + 1)75LL\\{{”]T}} Flat+la+2)) e 4 " by, by + 2t
k>0 reL\{ij}
b 41 a+2
0 bs £0 \{i,j,ms} 0 kia+2—k
Z f (b87 bs)ts f (bL\{z’,j,r,s}’ bL\{i,j,r,s} + 1)tLL\{i7j]7r75} f (a +1la+ 2) Z t; thr
seL\{i,j,r} k>0
(113)
brygigy+1
Fhgrai-a(Ry) = — Z Z <TaTbL\{i,j})‘g—1>9 (fO(bL\{iJ}v br\igy + 1)tLL\\{{i,J?f
1<i<y<l a+|bL\{i,j}‘:29+l73
a—1
0 k+1,a—k 0 by £0 brgigry+1
fFlat1a)d a7 N SOl bt O (brgigeys bongigry + DT
k>0 reL\{i,j}

- a — —_ b 7,7, +1
fla+1a+1) St R ST O b — DT (b gy bi iy + DS

k=0 reL\{i.j}
a+1 . b
R NEID DA A D DN A U D DN A USRS
k>0 r€LEL\{ij} raeIN(r g}
b L +1 a+1
POOL (g ray Vi figiraray + DEA G2 folat La+2) ) a7ttt
k>0
(114)
br\gijy+1
Foraalfto) = 2, Y G tets (Plnbngs + DO

1§’i<j§l a'HbL\{i,j} |:29+l—3
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a+1

ol brn i+
fo(a + 1, a -+ 1) Z t?thrl k + Z fo(bra br)tf‘rfo(bL\{i,j,T}a bL\{i,jﬂ"} + 1)tLL\\{{l,J]7T]%
k>0 reL\{s,j}
a+2
fPla+1,a+2) Ztkta+2 k
k>0
(115)
F Ru) = A O(bp iy brgigy + DL
29+2l—4( 11) Z Z <7-a7_bL\{i,j} g>gg I I\{i,j}>OL\{ij} T+ I\{i,j}

- a — b 1,7, +1
flatla+ 1)y 7 ey T b b)) fObrgi gy Ui iy + DA

k>0 reL\{i,j}
a+1
Plat1a+2)) et *
£>0
(116)
Fogroa(Rig) = — ) > (TaTbp\ (i) Aa) 99 (f (br\gigy brvgigy + Dt h
1<i<j<l a+|bL\{i,j}‘:29+l_4
a+2
fPla+1,a+2) Ztkt“+2 k
k>0
(117)
Fogro—a(Rag) = — Z Z {TaTbp i,y AgA1)g (fO(bL\{iu’}’ br\gigy + 1)tLL\\{{i,;}}
1<i<j<l a+‘bL\{i,j}|:29+l_5
a+1
fPla+1,a+2) Z tf“t;“‘k
k>0
(118) Fogio1 4(R14) = Fogroi—a(R15) =0
1 l stable
(119) F29+21 4 R16 5 Z Z Z <Ta17_b1)‘91>91 <7_a27_b.7)‘92>g2
j=1 gi+g2= a1+|bz|=2g91—2+|Z|
ug= L\{J} as+by|=2g2—2+|T|
bryint1
fOlar+ a1 +2)f%(az + 1 az + 20t O bp 1y, by + DL
(120)

l
(17 Fagra-a(L0) = D (1,17, Aol (2 = 9 = DF0 (b + 1,05 + 1) f(bry gy, bra gy + 1)
7=1
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(121)
l

[t Pagror—a(L2) = D> > {7y Toe17by, oy Aadglf (b by + 1) (b + 1,b + 1)
J=1l ke L\{j}
I

SOy by + 1) + Z (o170, 1y Agdgl (b = 1,05+ 1) fO(bry gy b gy + 1)
j=1

+Z Z Tb-—lTbk+27-bL\{] kY > lf ( — 1,05 + )fo(bk+2,bk+1)f0(bL\{j,k},bL\{j,k} +1)
J=1 keL\{j}

l
+Z Z Z Y ~1Tbgey +1Tbjey +1TbLA 11y en) Ag)g 1f1 (bj —1,b; +1)

J=1k1€L\{j} ka€L\{j.k1}
POk, + 1, bk, + 1) F(bry + 1, bry + 1) FO(OL {ikr o} 0L\ [k o} + 1)
(122)

I
[t Fagyoi—a(Ls) = Z Z T, o4 17bp1 5 M) g 03 0 (0 ) £ (br + 1,0 + 1)
J=1keL\{j}

!
FOOrGay bingiky 1) + D170, 5, A dgbi FO(05 + 1,05) fO (b gy by + 1)
j=1

+ Z D (T 1Toer 2T g A dabi FO (s = 1,05) £ (bk + 2, bk + 1) 2 (bry Gy i Gy + 1)
=1 keL\{j}

l
+ Z Z Z <Tb 71Tbk1+1Tbk2+1TbL\{J ky,ka} > b fo( J)

J=Lk1€L\{j} k2€L\{j.k1}
fo(bk1 + 1,0, + 1)f0(bk2 + 1,0k, + 1)f0(bL\{j’k1:k2}’ bL\{J}kl:kQ} +1)
(123)
l
[ bL+ ]F29+2l 4 L4 Z Tbj-‘rlTbL\{ s > (b] + ]‘)fo(bj + 17 b] + ]‘)fo(bL\{J}’ bL\{J} + 1)
j=1

l

=Y > T Tog g A (b + D (s, by + D)ok + 1 bg + 1) fO (b gy iy + 1)
J=1keL\{j}

(124)

[t%L+1]F29+2l74(L5) = - <Tbj+27bL\{j})‘9—1>glf0<bj +2,0; + 1)f0(bL\{j}’ bL\{j} +1)

M-

1

J
l

=D T 1T 41 Top oy Aa gl (s 1, by 1) O bk + 1 be + 1) O (bp Gy by + 1)
J=1 keL\{j}
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(125) [tZL+1]Fgg+21,4(L6) = —<TbL)\g)\1>glf0(bL, br, + 1)
on the right hand side,

(126)
[t%L+1]F29+21—4(R1) = Z <Tb —+b; TbL\{Z i} >gf (bL\{z,]}a bL\{z,J} + ]-)fl(bz + bj + 1, bl + b] + ].)

1<i<j<l

+ Z Z (Tbstb;—1Tb,+1Tbpr (150 Ag)gf(bi + bj, bi + b + 1) fO(bra iyt b gijry + 1)
1<i<j<lreL\{ij}

FPOr+Lb+1D)+ Y > (Ton—2Thr2Top gy Agdaf (B0 + b5 = 1,0+ b + 1) fO(by + 2, by + 1)
1<i<y<lreL\{i,j}

FOrfigay iy + 1) + Z Z Z (Tbib;—2Tbr, +1Tbry +1Tb 1A (55 1y g} N9V
1<i<j<l T1€L\{i,j} TQEL\{i,j,Tl}
FO(bry 4+ 1,00y + 1) f0(bry 4+ 1,bry + 1) FO(br figir1 0} DL\ [ o} + D (05 + b5 — 1,b + b + 1)

(127)
[ Fagrar-a(Ra) = = > (Mo Top oy Aada " Ongigy brgigy + D (0i+ by + 1,bs + b +2)
1<i<y<l
Do D T 1Tt 1o gy Aa) oS (O + L+ 1) (b gi iy b iy + 1)
1<i<j<lreL\{i,j}
fl(bi + bj +1,b; + bj +3)

(128)

[t7 Fagri-a(Rs) = Z (Toitb; Top 1oy M) (LA (i gy b (i} + 1) fO(b; +bj + 1,b; + by)
1<i<j<l

+ Z Z <Tb¢+bj*1TbT+1TbL\{i,j,r} )\g>gf0(bz‘ +0j,b; + bj)fo(bL\{i,j,r}v bi\igry +1)
1<i<j<lreL\{i,j}

POr+1b+1)+ Y > (T —2Tb 12Ty gy Ada S (b + by = 1,0+ ) fO(by + 2, by + 1)
1<i<j<lreL\{:,j}

0 (Or\ i gy b\ Li gy 1) Z Z Z (Toi+b;-2Tb,, +1Tbr2+1TbL\{imwz})‘9>9
1<i<j<lreL\{s,5} ro€L\{i,5,r1}
FObry 4 1,6y + 1) (bry 4 1 by + 1) (0L i g ra}s L\ (i ray + D (b + bj — 1,bi + b))

(129)

[t (Fagrar—a(Ra) + Fagyoa(Rs)) = — > (7o, Ty o5 Ag)g (20 + 1)
1<i<j<l

fo(bL\{i,j}, bL\{i,j} + 1)f0(bz‘ + bj +1,b; + bj + 1) — Z Z <Tbi+bj*1Tbr+1TbL\{7;7]',r} /\g>g
1<i<j<lreL\{ij}
(29 + D) fO(br + 1,0r + 1) fO(bra (it O iy + 1) F° (i + by, b + b + 1)
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(130) [t Pagraa(Re) = Y (ot o oy Ada (20 1= Db gy bragigy + 1)

1<i<j<l

fo(bz‘ +bj +1,b; +bj —|—2)

(131)
[t  Fagaa(Br) = > Y (T, 4175 1Tb 0 oy Aadgd (O = Loby + 1) fO(br (i gy brvgigioy + 1)
1<i<j<lreL\{i,j}
1<i<j<lreL\{i,j} s€L\{i,j,r}
fl(br —1,b, + 1)f0(bs +2,bs + 1)f0(bL\{i,j,r,s}a bL\{i,j,r,s} + 1)f0(bz + bja b; + bj + 1)
+ YD) > > Tty AThe A Tby 11Tbay 1 1Tbp ooy M) (Br — 10 1)
1<i<g<lreL\{i,j} s1€L\{i,j,r} sa€L\{i,j,r,s1}
fo(bsl + 17 bSl + 1)f0(bsz + 17 bsz + 1)f0(bL\{i7j,r,sl,sz}7 bL\{i,j,r,sl,sg} =+ 1)f0(bi + bja bi + bj + 1)

+ D D DT 1T oy Aada (Or + 10+ 1) (b gi gy i i) + 1)
1<i<j<lreL\{ij}

PoOi4bbi+b+ 1)+ Y > D (1T, Tt 1Ty ey AdaS (0,0 1)
1<i<j<lreL\{i,j} s€L\{4,j,r}

FO(bs 4+ 1,bs + 1) fO(br i girsys brgigrsy + 1) F(bi + by, bi +bj + 1) + Z Z (Tbi+b; Tor Topn (5503 Mgl g
1<i<j<lreL\{ij}
FHOr b+ 1) O (b iy Drgigoy + DO (bi + by + 1,65 + by + 1)
+ Z Z Z <7-b +b; b, —1Tby +1TbL\{”r5} >gf ( - 1,0+ l)fo(bs+ 17b8+1)
1<i<j<lreL\{i,j} s€L\{i.jr}

fo(bL\{i,j,r,s}v br{ijirs) T 1) f(bi + b+ 1,b + b + 1)

(132)
[t  Pagror—a(Rs) = — D > (Togby 17170, sy Agdaf (b — L b + 1)
1<i<y<lreL\{i,j}
SO gi iy b figiry + 1) 00 + b5 4+ 2,b; + b +2) — Z Z (Tbs+b; Tor Topn 5,503 Aa)g
1<i<j<lreL\{i,j}
S b 4 1) (0L fi gy o figy + DS (bi 4 by + 1,b; + by + 2)
Z Z Z <Tbi+bjTbr—lTbS—‘rlTbL\{i’j’T’S} Ag)gfl(br - ]-7 bT’ + 1)f0(b8 + ]-7 bS + 1)
1<i<j<lreL\{i,j} s€L\{i,jsr}
SO fijirst b gijirsy + Db + b+ 1,b; + bj + 2)

(133)
[t Pagyo—a(Ro) = — Y (7o, 417, oy A1) (brgigys iy + DO (0i + by + 2,b; + b + 1)

1<i<j<l
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(Tos; Tor 41701 5 5 1 Ag—10g S (b + 1,00 + 1) fO(br 5.y O igiry + 1)
\(igr)

1<i<j<lreL\{ij}
fO(bi +b;+1,b;+b;+1)— Z Z Z (Tbi+b]-—1Tbr+1Tbs+lTbL\{i,j,ns})‘9_1>9
1<i<j<lreL\{ij} seL\{i,jr}
PO+ 1,br + D) fbs + 1,bs + D) (bryigins)s DL (iirsy + DS (b + 5y s + b +1)
Z Z <Tb¢+bjflTbT+2TbL\{i’jm})\g_1>gf0(br +2,by + 1) fO(br (i girys b Gigiry + 1)
1<i<j<lreL\{ij}
FO(b; +bj,b; + b + 1)

(134)
[t Fagrar—a(Rio) = Y (ot 170y oy Ag—1)af (Or (igy bi iy + D F(bi + by + 2,bi + bj + 2)
1<i<j<I
+ Z Z (Tby b5 To,+1Tb 1 g1y Ag—1)g SO (0 + 1,60 + 1) fO(0r (i jiry b iy + 1)
1<i<j<lreL\{ij}
FO>bi +bj + 1,b; +bj +2)

(135)
[t Fogyor—a(Rn) = Z (Thitb; Top oy A 0)99S° (buigys brgsgy + DI (b b+ 1,0+ b+ 1)
1<i<j<l
EY ST eyt Aad B 4 Lb 1) br g b iy + 1)
1<i<j<lreI\{s,j}
FO(bi + by, b +bj +1)

(136)

[t Fogor—a(Ri2) = — Z (T, o oy M) 99 (O 7y gy + D (bi 4 bj + 1, bi + bj +2)
1<i<j<l

(137)

[ Fog o1 a(Riz) = — Z (o5, 170 oy Mo F (O gig} b gigy + DO (bi + by, bi + b + 1)
1<i<y<l

stable

(138) [tbL ]F29+2l 1(Ri6) = Z Z Z (Tay Tor Agy >91 <Ta2TbJ )‘g2>92
] 1ai4az=b;—3 g1+g2=
Tug= L\{J}

fPlar+ 1,01 4+ 2) (a2 + 1,a2 4+ 2) f2 (b gy, by + 1)
Therefore, from the equation (97), we get the identity
(139) (120) + (121) + (122) + (123) + (124) + (125) = (126) + (127)
+(128) + (129) + (130) + (131) + (132) + (133) + (134) + (135) + 136) -+ (137) + (138)

We note that, three types of the Hodge integrals appear in identity (139), (75, Ag) g, (b, Ag—1)g
and (7, AgA1)g.
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By now, we have known the closed formula for Ag-integral [13] and a recursion formula for
Ag—1-integral [24].

dy d _
(140) [ zpl lpl )\g—< br. . by

29 — 3+ l)
Cgs
Mg

where 22:1 bi =29 —3+1,b1,..,00 > 0 and ¢, is a constant that depends only on g.

1 (bi + b')!
(141) (o - Ty Ag-1)g = 7 > s 1 Tbk)‘g‘1>9Tbj!J + Cy(br, -, br)

1<i<j<l k#i,j
where Cy (b1, ..,b;) is a constant related to b1, ..,b; and g, [.

On the other hand, the constants f°(b, k) and f!(b, k) are available by their definition and the
recursions (52), (53). For example, fO(b,b+1) = b!, f1(b,b+2) = (b+1)! 22212 1. Thus, solving
the equation (139), we will get a formula for the computation of Hodge integral (7,, AgA1)g.

We observe that only the terms (125) and (137) contain the Hodge integral of type (7, AgA1)g-
Moving and combining the corresponding terms, we have

1 (bz + b)'
(142) (T, AgM)g = 7 > <Tbi+bj,17bw,ﬂA9A1>9Tbj +C(g,1,by1, .., by)
1<i<j<l Lt
Where
1
(143)  C(g,1,b1,...b) = TvART ((126) + (127) + (128) + (129) + (130) + (131) + (132)
i=1 Y-

+(133) + (134) + (135) + (136) + (138) — (120) — (121) — (122) — (123) — (124))

Formula (143) contains many terms, we hope to make a computer program to calculate
C(g,1,b1,..,0p).

REFERENCES

[1] G. Borot, B. Eynard, M. Mulase and B. Safnuk, A Matriz model for simple Hurwitz numbers, and topologicla
recursion, math.AG/0906.1206.
[2] V. Bouchard, A. Klemm, M. Marino, and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys.
287(2009), 117-178.
[3] V. Bouchard and M. Marifio, Hurwitz numbers, matriz models and enumerative geometry,
math.AG/0709.1458.
[4] L. Chen, Symmetrized cut-join equation of the Marinio-Vafa formula, Pacific Journal of Math., vol. 235,
no.2, 2008, 201-212.
[5] L. Chen, Bouchard-Klemm-Marino-Pasquetti Conjecture for C?, arXiv:0910.3739v1.
[6] L. Chen, Y. Li and K.F. Liu, Localization, Hurwitz numbers and the Witten conjecture, math.AG/0609263.
[7] T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of
curves, Invent. Math. 146 (2001), no. 2, 297-327.
[8] B. Eynard, M. Marifio and N. Orantin Holomorphic anomaly and matriz models, arXiv:hep-th/0702110.
[9] B. Eynard, M. Mulase and B. Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard-
Maritio conjecture on Hurwitz numbers, math.AG/0907.5224v1
[10] B. Eynard and N. Orantin Invariants of algebraic curves and topological expansion, arXiv:math-th/0702045.
[11] B. Eynard and N. Orantin Algebraic methods in random matrices and enumerative geometry,
arXiv:0811.3531.
[12] B. Eynard Topological expansion for 1-hermitian matriz model correlation functions, arXiv:hep-th/0407261.
[13] C. Faber, and R. Pandharipande Hodge integrals, partition matrices, and the Ay conjecture, Ann.Math.(2)
157(2003),n0.1,97-124.



48 SHENGMAO ZHU

[14] L.P. Goulden, D.M. Jackson and R. Vakil A short prooof of the Ay-Conjecture without Gromov- Witten theory:
Hurwitz theory and the moduli of curves, math.AG/0604297.

[15] Y. Li Some results of the Maririo- Vafa Formula, Math.Res.Lett.13(2006),10.00,10001-10018.

[16] J. Li, C.-C. Liu, K.F. Liu and J. Zhou, A mathematical theory of the topological vertexr, math.AG/0408426.

[17] C.-C. Liu, K.F. Liu, J. Zhou, A proof of a conjecture of Marinio-Vafa on Hodge integrals, J. Differential
Geom. 65(2003).

M. Mulase, N. Zhang Polynomial recursion formula for linear Hodge integrals , arXiv:0908.2267
J. Zhou Hodge integrals, Hurwitz numbers, and symmetric groups, math.AG/0308024.

J. Zhou Local Mirror Symmetry for One-Legged Topological Vertex, arXiv:0910.4320.

J. Zhou Local Mirror Symmetry for the Topological Verter , arXiv:0911.2343.

S.M. Zhu, Hodge integral with one A-class.

CENTER OF MATHEMATICAL SCIENCES, ZHEJIANG UNIVERSITY, HANGZHOU, ZHEJIANG 310027, CHINA
E-mail address: zhushengmao@cms.zju.edu.cn



