
THE LAPALACE TRANSFORM OF THE CUT-AND-JOIN EQUATION OF
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Abstract. By the same method introduced in [9], we calculate the Laplace transform of the
celebrated cut-and-join equation of Mariño-Vafa formula discovered by C. Liu, K. Liu and J.
Zhou [17]. Then, we study the applications of the polynomial identity (1) obtained in theorem
1.1 of this paper. We show the proof Bouchard-Mariño conjecture for C3 which was given by
L. Chen [5] firstly. Subsequently, we will present how to obtain series Hodge integral identities
from this polynomial identity (1). In particular, the main result in [9] is one of special case in
such series of Hodge integral identities. At last, we give a explicit formula for the computation
of Hodge integral 〈τbLλgλ1〉g where bL = (b1, ..., bl).
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1. Introduction

In a recent paper [9], Eynard, Mulase and Safnuk stated the Laplace transform of the cut-and-
join equation satisfied by the partition function of Hurwitz numbers. They obtained a polynomial
identity of linear Hodge integrals. As an application, they proved the Bouchard-Mariño conjec-
ture on Hurwitz numbers. Then, Mulase and Zhang [20] stated that this polynomial identity
can also be used to derive the DV V equation and λg-integral with the same method introduced
by [14].
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In 2003, C. Liu, K. Liu and J. Zhou [17] proved the celebrated Mariño-Vafa conjecture [19].
The main step in their proof is to show the generating function of Hodge integral with triple λ-
classes C(λ, p; τ) satisfies the cut-and-join equation. Combining the cut-and-join restriction from
combinatorial side formula [21], they finished the proof of Mariño-Vafa formula. Moreover, the
famous ELSV [7] formula for Hurwitz numbers is a large framing limit of Mariño-Vafa formula
[18].

With the above motivations, we calculate the Laplace transform of the cut-and-join equation
for Mariño-Vafa’s case in the first part of this paper. The main result is

Theorem 1.1. For g ≥ 1 and l ≥ 1, we have the following equation:

− (τ2 + τ)l−2
∑

bL≥0

(
(l − 1)(2τ + 1)〈τbL

Γg(τ)〉g + (τ2 + τ)〈τbL

d

dτ
Γg(τ)〉g

)
Ψ̂bL

(tL; τ)(1)

− (τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g

l∑

i=1

(
∂

∂τ
Ψ̂bi

(ti; τ) +
1

tiτ + 1
Ψ̂bi+1(ti; τ)

)
Ψ̂bL\{i}(tL\{i}; τ)

= −(τ2 + τ)l−2

τ + 1

∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Γg(τ)〉gΨ̂bL\{i,j}(tL\{i,j}; τ)

· (tj − 1)(t2i τ + ti)Ψ̂a+1(ti; τ)− (ti − 1)(t2jτ + tj)Ψ̂a+1(tj ; τ)
ti − tj

+
(τ2 + τ)l−1

2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

(
(τ2 + τ)〈τa1τa2τbL\{i}Γg−1(τ)〉g−1

−
stable∑

g1+g2=g
I‘J=L\{i}

〈τa1τbIΓg1(τ)〉g1〈τa2τbJ Γg2(τ)〉g2




2∏

n=1

Ψ̂an+1(ti; τ)Ψ̂bL\{i}(tL\{i}; τ)

Where L = {1, 2, .., l} is an index set, and for any subset I ⊂ L, we denote

tI = (ti)i∈I , bI = {bi|i ∈ I}, τbI
=

∏

i∈I

τbi
, Ψ̂bI

(tI , τ) =
∏

i∈I

Ψ̂bi
(ti, τ)

and Γg(τ) = Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ), Ψ̂n(t; τ) =
(

(t2−t)(tτ+1)
τ+1

d
dt

)n (
t−1
τ+1

)
for n ≥ 0. The last

summation in the formula is taken over all partitions of g and disjoint subsets I∐J = L subject
to the stability condition 2g1 − 1 + |I| > 0 and 2g2 − 1 + |J | > 0.

We remark that theorem 1.1 is equivalent to the symmetrized cut-and-joint equation of
Mariño-Vafa formula obtained by L. Chen [4]. We will present this equivalence in appendix
B.

In [3], V. Bouchard and M. Mariño proposed a conjecture for the calculation of topological
string amplitudes of the toric three fold C3 based on the recent work [2].(We will call this
conjecture as Bouchard-Mariño conjecture for C3. The Bourchard-Mariño conjecture for Hurwitz
number proved in [9] is the large framing limit of it). We calculate in section 4 that, the
topological relation in Bouchard-Mariño conjecture for C3 is equivalent to the following identity
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of Hodge integral

(τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉gdΨ̂bL

(tL; τ)(2)

= −(τ2 + τ)l−2
l∑

i=2

∑

a,bL\{1,i}

〈τaτbL\{1,i}Γg(τ)〉gPa(t1, ti; τ)dt1dtidΨ̂bL\{1,i}(tL\{1,i}; τ)

+
∑

a1,a2≥0
bL\{1}

(τ2 + τ)l−1
(
(τ2 + τ)〈τa1τa2τbL\{1}Γg−1(τ)〉g−1

−
stable∑

g1+g2=g
IFJ=L\{i}

〈τa1τbI
Γg1(τ)〉g1,|I|+1〈τa2τbJ

Γg2(τ)〉g2,|J |+1


 Pa1,a2(t1; τ)dt1dΨ̂bL\{1}(tL\{1}; τ)

On the other hand, thanks to the Mariño-Vafa formula, the topological amplitudes of C3 is
completely determined by the relation (1) in theorem 1.1. In section 4, we will illustrate that
the identity (2) is implied in (1). Therefore, the Bouchard-Mariño conjecture for C3 holds.

Furthermore, we use the result of theorem 1.1 to obtain some Hodge integral identities. Indeed,
Ψ̂b(t, τ) can be written as

Ψ̂b(t; τ) =
b∑

k=0

τk

(τ + 1)b+1
Ψk

b (t)

and Ψk
b (t), 0 ≤ k ≤ b could be computed from the recursion relation they defined on.

At first, we consider the expansion of τ at ∞. Taking the highest level of formula (1), we get

Corollary 1.2.

∑

bL≥0

〈τbL
Λ∨g (1)〉

(
(2g − 2 + l)ΨbL

bL
(tL) +

l∑

i=1

(t2i − ti)
∂

∂ti
Ψbi

bi
(ti)Ψ

bL\{i}
bL\{i}

(tL\{i})

)

=
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Λ
∨
g (1)〉gΨbL\{i,j}

bL\{i,j}

(tj − 1)t2i Ψ
a+1
a+1(ti)− (ti − 1)t2jΨ

a+1
a+1(tj)

ti − tj

+
1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0


〈τa1τa2τbL\{i}Λ

∨
g−1(1)〉g−1 +

stable∑
g1+g2=g

I∪J=L\{i}

〈τa1τbIΛ
∨
g1

(1)〉g1〈τa2τbJΛ∨g2
(1)〉g2




×Ψa1+1
a1+1(ti)Ψ

a2+1
a2+1(ti)Ψ

bL\{i}
bL\{i}

(tL\{i})

We show in section 5 that Ψb
b(t) is equal to ξ̂b(t) which is defined by ξ̂b(t) = ((t3−t2) d

dt)
b(t−1)

in formula (1.2) in [9]. Hence, the main theorem 1.1 in [9] is a special case of formula (1) in this
paper. Taking the sub-highest level of theorem 1.1, we also get another Hodge integral identity
corollary 5.2 in section 5. Unfortunately, this identity does not contain any new information.

Next, we consider the expansion of τ at τ = 0. In this case, the lowest level of formula (1) is
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Corollary 1.3.
∑

bL≥0

〈τbL
λg〉gΨ0

bL
(tL) =

1
l − 1

∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})

· (tj − 1)t2i Ψ
0
a+1(ti)− (ti − 1)t2jΨ

0
a+1(tj)

ti − tj

We can rederive the λg-integral [13] from Corollary 1.3.
We also pick up the sub-lowest level of formula (1) and have

Corollary 1.4.

∑

bL≥0

〈τbL
λg〉gl


−(|bL|+ 1)Ψ0

bL
(tL) +

∑

j=1

Ψ1
bj

(tj)Ψ0
bL\{j}(tL\{j})




+
∑

bL≥0

〈τbL
λg〉g

l∑

i=1

(t2i − ti)
∂

∂ti
Ψ0

bi
(ti)Ψ0

bL\{i}(tL\{i}) +
∑

bL≥0

〈τbL

3g−3∑

d=g−1

Pd(λ)〉glΨ0
bL

(tL)

=
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})[

(tj − 1)ti
(
Ψ1

a+1(ti) + (ti − |bL\{i,j}| − a− 3)Ψ0
a+1(ti)

)

ti − tj

− (ti − 1)tj
(
Ψ1

a+1(tj) + (tj − |bL\{i,j}| − a− 3)Ψ0
a+1(tj)

)

ti − tj
]

+
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉g
∑

r 6=i,j

Ψ1
br

(tr)Ψ0
bL\{i,j}(tL\{i,j})

(tj − 1)tiΨ0
a+1(ti)− (ti − 1)tjΨ0

a+1(tj)
ti − tj

+
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}

3g−3∑

d=g−1

Pd(λ)〉gΨ0
bL\{i,j}(tL\{i,j})

(tj − 1)tiΨ0
a+1(ti)− (ti − 1)tjΨ0

a+1(tj)
ti − tj

+
1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

stable∑
g1+g2=g

|I|∪|J |=L\{i}

〈τa1τbIλg1〉g1〈τa2τbJ λg2〉g2Ψ
0
a1+1(ti)Ψ

0
a2+1(ti)Ψ

0
bL\{i}(tL\{i})

where
∑3g−3

d=g−1 Pd(λ) = Λ∨g (1)a1(λ) and a1(λ) =
∑g

m=1 mλg−mλg − (−1)gΛ∨g (−1)λg−1.

The above identity contains Hodge integral of type 〈τbL

∑3g−3
d=g−1 Pd(λ)〉g. By some direct

calculations,

Pg−1(λ) = λg−1, Pg(λ) = gλg, Pg+1(λ) = −λgλ1, · · · , P3g−3(λ) = (−1)g+1λgλg−1λg−2

As an application of corollary 1.4, we get the following Hodge integral recursion.

Theorem 1.5. If
∑l

i=1 bi = 2g − 4 + l, there exists a constant C(g, l, b1, .., bl) related to
g, l, b1, .., bl, such that

〈τbL
λgλ1〉g =

1
l

∑

1≤i<j≤l

〈τbi+bj−1τbL\{i,j}λgλ1〉g (bi + bj)!
bi!bj !

+ C(g, l, b1, .., bl)

where C(g, l, b1, .., bl) is a very verbose combinatoric constant which is given at Appendix B.
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The initial value 〈τ2g−3λgλ1〉g = 1
12 [g(2g − 3)bg + b1bg−1] has been computed by Y. Li [15].

Thus, by the recursion formula in theorem 1.5, we can compute out all the Hodge integral of
type 〈τbL

λgλ1〉g. In fact, the Hodge integrals 〈τbL
Pd(λ)〉g appeared in Corollary 1.4 could also

be calculated via the same method. But the computation will be more complicated.

Acknowledgements. The author would like to thank his advisor Kefeng Liu’s encourage-
ment, valuable discussions, and bringing the paper [9] to his attention.

2. The Laplace Transform of Mariño-Vafa Formula

At first, we introduce some notations followed by [17]. Let

Λ∨g (t) = tg − λ1t
g−1 + · · ·+ (−1)gλg

be the Chern polynomial of E∨, the dual of the Hodge bundle. For a partition µ given by

µ1 ≥ µ2 ≥ · · · ≥ µl(µ) > 0,

let |µ| = ∑l(µ)
i=1 µi and Γg(τ) = Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ), define

Cg,µ(τ) = −
√−1|µ|+l(µ)

|Aut(µ)| [τ(τ + 1)]l(µ)−1

l(µ)∏

i=1

∏µi−1
a=1 (µiτ + a)
(µi − 1)!

∫

Mg,l(µ)

Γg(τ)
∏l(µ)

i=1(1− µiψi)

The Deligne-Mumford stack Mg,l is defined as the moduli space of stable curves satisfying
the stability condition 2g − 2 + l > 0. For the unstable cases (g, l) = (0, 1) and (0, 2), we define∫

M0,1

1
1− µψ

=
1
µ2

∫

M0,2

1
(1− µ1ψ1)(1− µ2ψ2)

=
1

µ1 + µ2

Thus

C0,d(τ) = −√−1
d+1 1

τ

∏d−1
a=0(dτ + a)

d!
d−2

C0,(µ1,µ2)(τ) =
√−1µ1+µ2

|Aut(µ1, µ2)|
τ + 1

τ

2∏

i=1

∏µi−1
a=0 (µiτ + a)

µi!
1

µ1 + µ2

The Mariño-Vafa formula proved in [17] gives a direct combinatorial formula associated to
representation of symmetric groups for the generation function of Cg,µ(τ). But we don’t go
further to this formula here.

Through a direct calculation, we have

Cg,µ(τ) = −
√−1|µ|+l(µ)

|Aut(µ)| [τ(τ + 1)]l(µ)−1
∑

bi≥0
i=1,..,l(µ)

〈
l(µ)∏

i=1

τbi
Γg(τ)〉g

l(µ)∏

i=1

1
τ

∏µi−1
a=0 (µiτ + a)

µi!
µbi

i(3)

Let Cg(µ; τ) = |Aut(µ)|Cg,µ(τ), the Laplace transform of Cg,µ(τ) is defined by,

Cg,l(w1, .., wl) =
∑

µ∈Nl

1
√−1l+|µ|Cg(µ; τ)e−(µ1w1+···+µlwl)

where we have let l = l(µ).
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In order to simplify the above expression of laplace transform, we introduce some new vari-
ables. Consider the framed Lambert curve x = y(1 − y)τ , and the coordinate change x = e−w.
By Lagrange inversion theorem, L. Chen [4] got,

y =
∑

k≥1

∏k−2
a=0(kτ + a)

k!
xk

Now we introduce the variable t by,

t = 1 +
1 + τ

τ

∑

k≥1

∏k−1
a=0(kτ + a)

k!
e−kw

and

Ψ̂n(t; τ) =
1
τ

∑

k≥1

∏k−1
a=0(kτ + a)

k!
kne−kw

which is a polynomial with top degree 2n + 1 in variable t via the recursion relation

Ψ̂n+1(t; τ) = (t2 − t)
tτ + 1
τ + 1

d

dt
Ψ̂n(t; τ)

for n ≥ 0 and Ψ̂0(t; τ) = t−1
τ+1 .

Now, the laplace transform of Cg,µ(τ) can be written in t variable,

Ĉg,l(t1, .., tl) =
∑

µ∈Nl

1
√−1l+|µ|Cg(µ; τ)e−(µ1w1+···+µlwl)(4)

= −(τ(τ + 1))l−1
∑

bi≥0
i=1,..,l

〈
l∏

i=1

τbi
Γg(τ)〉g

l∏

i=1

Ψ̂bi
(ti; τ)

3. The Laplace Transform of The Cut-and-join Equation of Mariño-Vafa
Formula

Let us introduce formal variables p = (p1, .., pn, ..), and define

pµ = pµ1 · · · pl(µ)

for a partition µ. Define generating functions

Cg,l(λ, p; τ) =
∑

µ,l(µ)=l

Cg(µ; τ)
|Aut(µ)|pµλ2g−2+l

C(λ, p; τ) =
∑

g≥0
l≥1

Cg,l(λ, p; τ)

In 2003, C. Liu, K. Liu and J. Zhou [17] proved that C(λ, p; τ) satisfies the cut-and-join
equation

∂C
∂τ

=
√−1

2
λ

∑

i,j≥1

((i + j)pipj
∂C

∂pi+j
+ ijpi+j

∂2C
∂pi∂pj

+ ijpi+j
∂C
∂pi

∂C
∂pj

)

For every choice of g ≥ 1 and a partition µ, the coefficient of pµλ2g−2+l(µ) is
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∂

∂τ

( Cg(µ; τ)
|Aut(µ)|

)
=
√−1

∑

i<j

(µi + µj)
Cg(µ; τ)

|Aut(µ(̂i, ĵ))|

(5)

+
√−1

2

l∑

i=1

∑

α+β=µi

αβ



Cg−1(µ(α, î; τ))
|Aut(µ(α, î))| +

∑
g1+g2=g

ν1
‘

ν2=µ(α,̂i)

Cg1(ν1; τ)
|Aut(ν1|)

Cg2(ν2; τ)
|Aut(ν2)|




Let us first calculate the Laplace transform of the cut-and-join equation for the l = 1 case
which includes Proposition 3.3 in [9] as its special case.

Proposition 3.1. For g ≥ 1, the Laplace transform of the cut-and-join equation for the l = 1
case is:

−
∑

b≥0

〈τb
d

dτ
Γg(τ)〉gΨ̂b(t; τ)−

∑

b≥0

〈τbΓg(τ)〉g
(

d

dτ
Ψ̂b(t; τ) +

1
tτ + 1

Ψ̂b+1(t; τ)
)

=
1
2

∑

a1,a2≥0




(τ(τ + 1))〈τa1τa2Γg−1(τ)〉g−1 −
∑

g1+g2=g
g1>0
g2>0

〈τa1Γg1(τ)〉g1〈τa2Γg2(τ)〉g2




Ψ̂a1+1(t; τ)Ψ̂a2+1(t; τ)

Proof. The cut-and-join equation for l = 1 case is

∂Cg(µ; τ)
∂τ

=
√−1

2

∑

α+β=µ

αβ

(
Cg−1((α, β); τ)
|Aut((α, β))| +

∑
g1+g2=g

Cg1(α; τ)Cg2(β; τ)

)
(6)

Then, the Laplace transform of the LHS of (6) is

∂

∂τ
Ĉg,1(t; τ) =

∂t

∂τ

∂

∂t
Ĉg,1(t; τ) +

∂

∂τ
Ĉg,1(t; τ)(7)

The Laplace transform of the stable part of RHS of (6) is

1
2
(τ(τ + 1))

∑

a1,a2≥0

〈τa1τa2Γg−1(τ)〉g−1Ψ̂a1+1(t; τ)Ψ̂a2+1(t; τ)

− 1
2

∑
g1+g2=g

g1>0
g2>0

〈τa1Γg1(τ)〉g1〈τa2Γg2(τ)〉g2Ψ̂a1+1(t; τ)Ψ̂a2+1(t; τ)

The unstable term is C0(α; τ)Cg(β; τ) + Cg(α; τ)C0(β; τ). Because

C0,d(τ) = −√−1
d+1 1

τ

∏d−1
a=0(dτ + a)

d!
1
d2

It’s Laplace transform Ĉ0(w; τ) =
∑

d≥1− 1√−1
d+1C0,d(τ)e−w satisfies:

d

dw
Ĉ0(w; τ) =

t− 1
τ + 1

=
y

1− (τ + 1)y
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It is easy to calculate d
dw = (1−y)y

1−(1+τ)y
d
dy , hence, Ĉ0(w; τ) = −ln(1− y). Moreover, remember that

the framed Lambert curve is y(1 − y)τ = x, where y depends on τ . Taking derivation of τ , we
have the identity,

−ln(1− y) =
∂y

∂τ

1− (τ + 1)y
y(1− y)

Therefore, the unstable part of RHS of (6) is

∂y

∂τ

1− (τ + 1)y
y(1− y)

(t2 − t)(tτ + 1)
τ + 1

∂

∂t
Ĉg,1(t; τ) =

∂y

∂τ
t2(τ + 1)

∂

∂t
Ĉg,1(t; τ)(8)

where we have used t = 1
1−(τ+1)y . we also have

∂t

∂τ
= t2y +

∂y

∂τ
t2(τ + 1) =

t2 − t

τ + 1
+

∂y

∂τ
t2(τ + 1)(9)

Hence, move the unstable part to left hand side, by (7),(8) and (9), we get
(

∂

∂τ
+

t2 − t

(τ + 1)
∂

∂t

)
Ĉg,1(t; τ) = stable part

which is just the Proposition 3.1. ¤

For the general case of l, we need to introduce two lemmas first.

Lemma 3.2. When (g, l) = (0, 2), we have the following Laplace transformation formula:

Ĉ0,2(w1, w2; τ) = −
∑

α,β≥1

τ + 1
τ

1
α + β

∏α−1
a=0 (ατ + a)

α!

∏β−1
a=0(βτ + a)

β!
e−αw1e−βw2

= −ln

(
y1 − y2

x1 − x2

)
− τ (ln(1− y1) + ln(1− y2))

Proof. By definition,

Ĉ0,2(w1, w2; τ) =
∑

α,β≥1

1
√−12+α+β

|Aut(α, β)|Ĉ0,(α,β)

= −
∑

α,β≥1

τ + 1
τ

1
α + β

∏α−1
a=0 (ατ + a)

α!

∏β−1
a=0(βτ + a)

β!
e−αw1e−βw2

Thus (
d

dw1
+

d

dw2

)
Ĉ0,2(w1, w2; τ) = −τ(τ + 1)Ψ̂0(t1; τ)Ψ̂0(t2; τ)

= −τ(τ + 1)
y1y2

(1− (τ + 1)y1)(1− (τ + 1)y2)

Because,

d

dw
= x

d

dx
=

(1− y)y
1− (τ + 1)y

d

dy

Then, it is easy to get

Ĉ0,2(w1, w2; τ) = −ln

(
y1 − y2

x1 − x2

)
− τ (ln(1− y1) + ln(1− y2))

¤
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Lemma 3.3.

∑

α,β≥1

1
τ

∏(α+β)−1
a=0 ((α + β)τ + a)

(α + β)!
(α + β)a+1e−αwie−βwj

=
xi

xi − xj
Ψ̂a+1(ti; τ)− xj

xi − xj
Ψ̂a+1(tj ; τ)− Ψ̂a+1(ti; τ)− Ψ̂a+1(tj ; τ)

Proof. This calculation is the same as formula (3.15) showed in paper [9].
Let µ = α + β and ν = β, then

∑

α,β≥1

1
τ

∏(α+β)−1
a=0 ((α + β)τ + a)

(α + β)!
(α + β)a+1e−αwie−βwj

=
∑

α,β≥0

1
τ

∏(α+β)−1
a=0 ((α + β)τ + a)

(α + β)!
(α + β)a+1e−αwie−βwj

−
∑

α≥1

1
τ

∏α−1
a=0 (ατ + a)

α!
αa+1e−αwi −

∑

β≥1

1
τ

∏β−1
a=0(βτ + a)

β!
βa+1e−βwj

=
∑

µ≥0

µ∑

ν=0

1
τ

∏µ−1
a=0(µτ + a)

µ!
µa+1e−(µ−ν)wie−νwj − Ψ̂a+1(ti; τ)− Ψ̂a+1(tj ; τ)

=
∑

µ≥0

1
τ

∏µ−1
a=0(µτ + a)

µ!
µa+1

xµ+1
i − xµ+1

j

xi − xj
− Ψ̂a+1(ti; τ)− Ψ̂a+1(tj ; τ)

=
xi

xi − xj
Ψ̂a+1(ti; τ)− xj

xi − xj
Ψ̂a+1(tj ; τ)− Ψ̂a+1(ti; τ)− Ψ̂a+1(tj ; τ)

¤

Now we give our main result in this paper.

Theorem 3.4. For g ≥ 1 and l ≥ 1, we have the following equation:

− (τ2 + τ)l−2
∑

bL≥0

(
(l − 1)(2τ + 1)〈τbL

Γg(τ)〉g + (τ2 + τ)〈τbL

d

dτ
Γg(τ)〉g

)
Ψ̂bL

(tL; τ)(10)

− (τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g

l∑

i=1

(
∂

∂τ
Ψ̂bi

(ti; τ) +
1

tiτ + 1
Ψ̂bi+1(ti; τ)

)
Ψ̂bL\{i}(tL\{i}; τ)

= −(τ2 + τ)l−2

τ + 1

∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Γg(τ)〉gΨ̂bL\{i,j}(tL\{i,j}; τ)

· (tj − 1)(t2i τ + ti)Ψ̂a+1(ti; τ)− (ti − 1)(t2jτ + tj)Ψ̂a+1(tj ; τ)
ti − tj

+
(τ2 + τ)l−1

2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

(
(τ2 + τ)〈τa1τa2τbL\{i}Γg−1(τ)〉g−1
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−
stable∑

g1+g2=g
I‘J=L\{i}

〈τa1τbIΓg1(τ)〉g1〈τa2τbJ Γg2(τ)〉g2




2∏

n=1

Ψ̂an+1(ti; τ)Ψ̂bL\{i}(tL\{i}; τ)

Proof. The Laplace transform of LHS of equation (5) is
∑

µ∈Nl

1
√−1l(µ)+|µ|

∂

∂τ
Cg(µ; τ)e−(µ1w1+···+µlwl)(11)

=
∂

∂τ


∑

µ∈N

1
√−1l(µ)+|µ|Cg(µ; τ)e−(µ1w1+···+µlwl)




=
∂

∂τ
Ĉg,l(t1, .., tl; τ)

=
l∑

i=1

∂ti
∂τ

∂

∂ti
Ĉg,l(t1, .., tl; τ) +

∂

∂τ
Ĉg,l(t1, .., tl; τ)

The Laplace transform of stable geometry in the cut-term of RHS of (5) is
√−1

2

∑

µ∈Nl

1
√−1l(µ)+|µ|

l∑

i=1

∑

α+β=µi

αβ(Cg−1(µ(α, î); τ)(12)

+
∑

g1+g2=g

ν1
‘

ν2=µ(α,̂i)
2g1−2+|ν1|>0
2g2−2+|ν2|>0

Cg1(ν1; τ)Cg2(ν; τ))e−(µ1w1+···+µlwl)

=
(τ2 + τ)l−1

2

l∑

i=1

∑

a1≥0
a2≥0

bL\{k}≥0

((τ2 + τ)〈τa1τa2τbL\{k}Γg−1(τ)〉g−1

−
∑

g1+g2=g

I‘J={1,.,̂i,.l}
2g1−1+|I|>0
2g2−1+|J |>0

〈τa1τbIΓg1(τ)〉g1〈τa2τbJ Γg2(τ)〉g2)
2∏

n=1

Ψ̂an+1(ti; τ)Ψ̂bL\{i}(tL\{i}; τ)

The unstable geometry in the cut-term of RHS has two terms for l ≥ 2.

U1 =
√−1

2

l∑

i=1

∑

α+β=µi

αβ

(
C0(α; τ) · Cg(µî, β; τ)

|Aut(µî)|
+
Cg(µî, α; τ)
|Aut(µî, α)| · C0(β; τ)

)

U2 =
√−1

2

l∑

i=1

∑

α+β=µi

αβ
∑

j 6=i

(
C0(µj , α; τ)
|Aut(µj , α)| ·

Cg(µî,ĵ , β; τ)

|Aut(µî,ĵ)|
+
Cg(µî,ĵ , α; τ)

|Aut(µî,ĵ , α)| · C0(β; τ)

)

As we have calculated in the proof of proposition 3.1, the Laplace transform of U1 is
l∑

i=1

∂yl

∂τ
t2i (τ + 1)

∂

∂ti
Ĉg,l(t1, .., tl; τ)(13)
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Moving the formula (13) to left hand side, it will cancel the first term of formula (11), i.e.

(11)− (13) =

(
∂

∂τ
+

l∑

i=1

t2i − ti
τ + 1

∂

∂ti

)
Ĉg,l(t1, .., tl; τ)(14)

= −(τ2 + τ)l−2
∑

bL≥0

(
(l − 1)(2τ + 1)〈τbL

Γg(τ)〉g + (τ2 + τ)〈τbL

d

dτ
Γg(τ)〉g

)
Ψ̂bL

(tL; τ)

− (τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g

l∑

i=1

(
∂

∂τ
Ψ̂bi

(ti; τ) +
1

tiτ + 1
Ψ̂bi+1(ti; τ)

)
Ψ̂bL\{i}(tL\{i}; τ)

The Laplace transform of U2 equals to

∑

µ∈Pl

1
√−1l+|µ|U2e

−(µ1w1+···+µlwl)

(15)

= −
l∑

i=1

∑

j 6=i

∑

µj≥1
α≥1

1√−12+µj+α αC0(µj , α; τ)e−µjwje−αwi

×
∑

β≥0
µk≥0
k 6=i,j

1
√−1l+|µ|−α−1

βCg(µî,ĵ , β; τ)e−βwie−
P

k 6=i,j µkwk

=
l∑

i=1

∑

j 6=i




∂

∂wi
Ĉ0,2(wi, wj ; τ)(τ2 + τ)l−2

∑

a≥0
bk≥0,k 6=i,j

〈τa

∏

k 6=i,j

τbk
Γg(τ)〉gΨ̂a+1(ti; τ)

∏

k 6=i,j

Ψ̂bk
(tk; τ)




=
l∑

i=1

∑

j 6=i

(
− yi

yi − yj
(1 +

τyj

1− (τ + 1)yi
) +

xi

xi − xj

)

· (τ2 + τ)l−2
∑

a≥0
bk≥0,k 6=i,j

〈τa

∏

k 6=i,j

τbk
Γg(τ)〉gΨ̂a+1(ti; τ)

∏

k 6=i,j

Ψ̂bk
(tk; τ)

= (τ2 + τ)l−2
∑

1≤i<j≤l

∑

a≥0
bk≥0,k 6=i,j

〈τa

∏

k 6=i,j

τbk
Γg(τ)〉g

∏

k 6=i,j

Ψ̂bk
(tk; τ)(

xi

xi − xj
Ψ̂a+1(ti; τ)

− xj

xi − xj
Ψ̂a+1(tj ; τ)− yi

yi − yj
(1 +

τyj

1− (τ + 1)yi
)Ψ̂a+1(ti; τ) +

yj

yi − yj
(1 +

τyi

1− (τ + 1)yj
)Ψ̂a+1(tj ; τ))

where we have used the lemma 3.3.
At last, we need to calculate the Laplace transform of join term in RHS. It’s Laplace transform

is

√−1
∑

µ∈Nl

∑

i<j

1
√−1l(µ)+|µ| (µi + µj)Cg(µ(̂i, ĵ); τ)e−µiwie−µjwje−

P
k 6=i,j µkwk

(16)
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= −(τ2 + τ)l−2
∑

µ∈Nl

∑

i<j

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Γg(τ)〉g
∏

k 6=i,j

1
τ

∏µk−1
a=0 (µkτ + a)

µk!
µbk

k e−
P

k 6=i,j µkwk

· 1
τ

∏µi+µj−1
a=0 ((µi + µj)τ + a)

(µi + µj)!
(µi + µj)a+1e−µiwie−µjwj

= −(τ2 + τ)l−2
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Γg(τ)〉gΨ̂bL\{i,j}(tL\{i,j}; τ)
(

xi

xi − xj
Ψ̂a+1(ti; τ)

− xj

xi − xj
Ψ̂a+1(tj ; τ)− Ψ̂a+1(ti; τ)− Ψ̂a+1(tj ; τ)

)

Combining (15) and (16), we get

(10) + (11) = −(τ2 + τ)l−2

τ + 1

∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Γg(τ)〉gΨ̂bL\{i,j}(tL\{i,j}; τ)(17)

· (tj − 1)(t2i τ + ti)Ψ̂a+1(ti; τ)− (ti − 1)(t2jτ + tj)Ψ̂a+1(tj ; τ)
ti − tj

Collecting the remainder equations (12),(14) and (17), we obtain the equation (10) of theorem
3.4. ¤

4. Application I: Proof of the Bouchard-Mariño conjecture for C3

Motivated by Eynard and his collaborators’ series works on Matrix model [12, 10, 8, 11] ,
Bourchard, Klemm, Mariño and Pasquetti propose a new approach to compute the topological
string amplitudes for local Calabi-Yau manifolds [2]. Based on such proposal, Bouchard and
Mariño calculated the string amplitude for toric three fold C3 [3]. In this section, we will follow
the work of [9] and [5] to illustrate that Bouchard-Marño’s approach is implied by theorem 1.1.

Following the work of [9], in subsection 4.1, we illustrate Bourchard-Mariño’s proposal of
calculation the string amplitude of C3( which is also called Bouchard-Mariño conjecture for C3

). By some residue computations, we obtain a equivalent description of Bourchard-Marño’s
approach in subsection 4.2. The calculation in subsections 4.3 and 4.4 to prove the Bouchard-
Mariño conjecture for C3 is firstly done by L. Chen [5]

4.1. Bouchard-Mariño conjecture for C3. Here we consider the spectral curve

C : y(1− y)τ = x(18)

and the variable t = 1
1−(τ+1)y .

It is easy to see that, variables x, y, t have the relations that

x
d

dx
=

(1− y)y
1− (τ + 1)y

d

dy
=

(
t(t− 1)(tτ + 1)

τ + 1

)
d

dt

We defined in section 2 that,

Ψ̂n(t; τ) =
((

t(t− 1)(tτ + 1)
τ + 1

)
d

dt

)n t− 1
τ + 1

for n ≥ 0.
In the following state, we need to introduce the differential,

Ψn(t; τ) = dΨ̂(t; τ)
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which can be formulated in variables x, y as

Ψn(y; τ) = dy
1− (τ + 1)y

y(1− y)

(
y(1− y)

1− (τ + 1)y
d

dy

)n+1 1
(τ + 1)(1− (τ + 1)y)

(19)

Ψn(x; τ) =
1
τ

∑

k≥1

∏k−1
a=0(kτ + a)

k!
kn+1xk−1dx(20)

respectively.
In [3], in order to formulate their conjecture, Bourchard and Mariño introduce

Wg(x1, .., xl; τ) =
∑

µ,l(µ)=l

zµWg,µ(τ)
1

|Aut(µ)|
∑

σ∈Sl

l∏

i=1

xµi−1
σ(i)(21)

where Wg,µ(τ) = − 1√−1
g+lCg,µ(τ).

By (3),(19), (20) and (21), we have

Wg(x1, .., xl; τ)dx1 · · · dxl = (−1)g+l(τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉gΨbL

(yL; τ)

Definition 4.1. Let us call the symmetric polynomial differential form

d⊗lĈg,l(t1, .., tl; τ) = −(τ(τ + 1))l−1
∑

bL≥0

〈τbL
Γg(τ)〉gΨbL

(tL; τ)

on C l the Mariño-Vafa differential of type (g, l).

Thus

Wg(x1, .., xl; τ)dx1 · · · dxl = (−1)g+l−1d⊗lĈg,l(t1, .., tl; τ)

t = 1
1−(τ+1)y , it then follows that y = t−1

(τ+1)t . Substituting to the spectral curve (18), we have
t−1

t

(
tτ+1

t

)τ 1
(τ+1)τ+1 = x. Let s(t) be the solution of function equation

t− 1
t

(
tτ + 1

t

)τ

=
s(t)− 1

s(t)

(
s(t)τ + 1

s(t)

)τ

(22)

From (22), we have

ln

(
tτ + 1

t

)
− ln

(
s(t)τ + 1

s(t)

)
=

1
τ

(
ln

(
s(t)− 1

s(t)

)
− ln

(
t− 1

t

))
(23)

It is clear that the spectral curve C : y(1 − y)τ = x has only one ramification point of the
x-projection, which we denote by ν. It is given by y(ν) = 1

τ+1 . Then, we can find two points q

and q on the curve such that x(q) = x(q) near the ramification point ν. Let us write

y(q) =
1

τ + 1
− z, y(q) =

1
τ + 1

− P (z)

with

P (z) = −z +O(z2)

From functional equation y(q)(1− y(q))τ = y(q)(1− y(q))τ , we can solve exact P (z) as a power
series in z,

P (z) = −z − 2(−1 + τ2)
3τ

z2 − 4(−1 + τ2)2

9τ2
z3 − 2(1 + τ)3(−22 + 57τ − 57τ2 + 22τ3)

135τ3
z4 + · · ·

Note that P (z) is an involution P (P (z)) = z.
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In terms of the t-coordinate, the involution P (z) corresponds to s(t) in (22). We have,

(24)





t(q) =
1

1− (τ + 1)y(q)
=

1
τ + 1

1
z

= t

t(q) =
1

1− (τ + 1)y(q)
=

1
τ + 1

1
P (z)

= s(t)

It follows that
(τ + 1)dt

(t2 − t)(tτ + 1)
=

(τ + 1)ds(t)
s(t)2(s(t)− 1)

=
dx

x

Using the coordinate t of spectral curve C, the Bergman kernel is defined by

B(t1, t2) =
dt1dt2

(t1 − t2)

Define a 1-form on C by,

dE(q, q; t2) =
1
2

∫ q

q
B(·, t2) =

1
2

(
1

t1 − t2
− 1

s(t1)− t2

)
dt2

where the integral is taken with respect to the first variable of B(t1, t2) along any path from q
to q. The natural holomorphic symplectic form on C× C is given by Ω = dln(1− y) ∧ ln(x).

Again, let us introduce another 1-form on the curve C by,

ω(q, q) =
∫ q

q
Ω(·, x) = (ln(1− y(q))− ln(1− y(q)))

dx

x

=
1
τ
(lny(q)− lny(q))

dx

x

=
1
τ

(
ln

(
1− 1

t

)
− ln

(
1− 1

s(t)

))
(τ + 1)
t2 − t

dt

(tτ + 1)

The kernel operator is defined as the quotient

K(t1, t2) =
dE(q, q, t2)

ω(q, q)
=

τ

2(τ + 1)
(s(t1)− t1)(t21 − t1)(t1τ + 1)

(t1 − t2)(s(t1)− t2)(ln(1− 1
t1

)− ln(1− 1
s(t1)))

1
dt1

dt2

It is clear that K(s(t1), t2) = K(t1, t2).

Definition 4.2. The topological recursion formula is an inductive mechanism of defining a
symmetric l-form Wg,l(t1, .., tl; τ) on C l for (g, l) subject to 2g − 2 + l > 0 by

Wg,l+1(t0, tL; τ) =
1

2πi

∮

γ∞
[K(t, t0; τ) (Wg−1,l+2(t, s(t), tL; τ)+

l∑

i=1

(
Wg,l(t, tL\{i})B(s(t), ti) + Wg,l(s(t), tL\{i}; τ)B(t, ti)

)

+
stable∑

g1+g2=g,I∪J=L

Wg1,|I|+1(t, tI ; τ)Wg2,|J |+1(s(t), tJ ; τ)







where tI = (ti)i∈I for a subset I ⊂ L, and the last sum is taken over all partitions of g and
disjoint decompositions I

∐
J = L subject to the stability condition 2gi − 1 + |I| > 0 and

2g2 − 1 + |J | > 0. The integration is taken with respect to dt on the contour γ∞, which is a



THE LAPALACE TRANSFORM OF THE CUT-AND-JOIN EQUATION OF MARIÑO-VAFA FORMULA 15

positively oriented loop in the complex t-plane of large radius such that |t| > max(|t0|, s(t0)) for
t ∈ γ∞.

Remark 4.3. The original topological recursion formula for Wg,l(t1, .., tl; τ) was formulated by
taken the residue at z = 0 [3]. But here, for simplicity, we have changed the coordinate from z
to t by t = 1

(τ+1)z . Hence, we get the contour integral in definition 4.2.

Now, we can formulate the Bouchard-Mariño conjecture for C3.

Conjecture 4.4. For every g and l subject to the stability condition 2g−2+l > 0, the topological
recursion formula with the initial condition

(25)





W0,3(t1, t2, t3; τ) = d⊗3Ĉ0,3(t1, t2, t3; τ) = − τ2

(τ + 1)
dt1dt2dt3

W1,1(t1; τ) = −dĈ1,1(t1; τ) =
1
24

((1 + τ + τ2)Ψ0(t1; τ)− τ(τ + 1)Ψ1(t1; τ))

gives the Mariño-Vafa differential with a signature.

Wg,l(t1, .., tl; τ) = (−1)g+l−1Ĉg,l(t1, .., tl; τ)(26)

4.2. Residue calculation. In this subsection, we calculate the residues(contour integrals) ap-
pearing definition 4.2. In fact, we have to calculate the following two types of residues:

i)Ra,b(t; τ) = 1
2πi

∮
γ∞ K(t′, t; τ)Ψa(t′; τ)Ψb(s(t′); τ)

ii)Rn(t, ti; τ) = 1
2πi

∮
γ∞ K(t′, t; τ) (Ψn(t′; τ)B(s(t′), ti) + Ψn(s(t′); τ)B(t′, ti))

We need one lemma first,

Lemma 4.5. In the z-coordinate, the kernel K(t′(z), t; τ) has the expansion,

K =
(

τ2

2(τ + 1)3
z−1 − (τ − 1)

2(τ + 1)2
+

3τ2t2 + 2τ(1− τ)t− 4τ

6(τ + 1)
z

+
(

τ − τ2

6
t2 +

τ2 − 2τ + 1
9

t +
(τ + 1)

18

)
z2 + · · ·

)
dt

1
dz

In particular, the coefficients of z in above expansion are polynomials of t.

Proof. Substituting t′ = 1
(τ+1)z and s(t′) = 1

(τ+1)s(z) to K(t′, t; τ) and calculate directly, we
obtain lemma 4.5. ¤

Definition 4.6. For a laurent series
∑

n∈Z antn, we denote
[∑

n∈Z
antn

]

+

=
∑

n>0

antn

Now, we have two theorems for the calculation of Ra,b(t; τ) and Rn(t, ti; τ).

Theorem 4.7.

Ra,b(t; τ) =
1

2πi

∮

γ∞
K(t′, t; τ)Ψa(t′; τ)Ψb(s(t′); τ)

=
τ

2


 1

ln
(
1− 1

t

)− ln
(
1− 1

s(t)

)
(
Ψa(t; τ)Ψ̂b+1(s(t); τ) + Ψ̂a+1(s(t); τ)Ψb(t; τ)

)



+
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Proof. We note that, in term of the original z-coordinate of [3], the residue Ra,b(t; τ) is the
coefficient of z−1 in K(t′, t; τ)Ψa(t′; τ)Ψb(s(t′); τ), after expanding it in the Laurent series in z.
Ψn(t′; τ) is a polynomial in t′ = 1

(τ+1)z , thus the contribution to the z−1 term in the expression
is a polynomial in t by lemma 4.5. Hence Ra,b(t; τ) is a polynomial in t.

Let us write Ψn(t′; τ) = fn(t′; τ)dt′. Let γε be a positively oriented loop, such that function

(t′2 − t′)(t′τ) + 1

ln
(
1− 1

t′
)− ln

(
1− 1

s(t′)

)s′(t′)fa(t′; τ)fb(s(t′); τ)(27)

has no singularity on and outside loop γε. On the compact set γε we have a bound Mε,

| (t′2 − t′)(t′τ) + 1

ln
(
1− 1

t′
)− ln

(
1− 1

s(t′)

)s′(t′)fa(t′; τ)fb(s(t′); τ) |< Mε

Choose |t| >> 1. Then,

| 1
2πi

∮

γε

K(t′, t; τ)Ψ(t′; τ)Ψ(s(t′); τ) |

=| 1
2πi

∮

γε

τ

2(τ + 1)

(
1

t′ − t
− 1

s(t′)− t

)
(t′2 − t′)(t′τ + 1)

ln
(
1− 1

t′
)− ln

(
1− 1

s(t′)

)s′(t′)fa(t′; τ)fb(s(t′); τ)dt′ | dt

<
τMε

4π(τ + 1)

∮

γε

| 1
t′ − t

− 1
s(t′)− t

| dt′dt ∼ τMε

4π(τ + 1)|t|dt

Thus, we have
1

2πi

∮

γ∞
K(t′, t; τ)Ψa(t′; τ)Ψb(s(t′); τ) =

1
2πi

∮

γ∞−γε

K(t′, t; τ)Ψa(t′; τ)Ψb(s(t′); τ) + O(t−1)

=
[

1
2πi

∮

γ∞−γε

K(t′, t; τ)Ψa(t′; τ)Ψb(s(t′); τ)
]

+

1
2πi

∮

γ∞−γε

K(t′, t; τ)Ψa(t′; τ)Ψb(s(t′); τ)

=
τ

4(τ + 1)πi

∮

γ∞−γε

(
1

t′ − t
− 1

s(t′)− t

)
(t′2 − t′)(t′τ + 1)

ln
(
1− 1

t′
)− ln

(
1− 1

s(t′)

)s′(t′)fa(t′; τ)fb(s(t′); τ)dt′dt

=
τ

2(τ + 1)
(t2 − t)(tτ + 1)

ln
(
1− 1

t

)− ln
(
1− 1

s(t′)

)s′(t′)fa(t; τ)fb(s(t); τ)dt

+
τ

2(τ + 1)
(s(t)2 − s(t))(s(t)τ + 1)

ln
(
1− 1

t

)− ln
(
1− 1

s(t)

)fa(s(t); τ)fb(t; τ)dt

=
τ

2(τ + 1)
(t2 − t)(tτ + 1)

ln
(
1− 1

t

)− ln
(
1− 1

s(t)

)s′(t) (fa(t; τ)fb(s(t); τ) + fa(s(t); τ)fb(t; τ)) dt

=
τ

2
1

ln
(
1− 1

t

)− ln
(
1− 1

s(t)

)
(
Ψa(t; τ)Ψ̂b+1(s(t); τ) + Ψa+1(s(t); τ)Ψ̂b(t; τ)

)

¤

Similarly, with the same proof as showed above, we have
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Theorem 4.8.

Rn(t, ti; τ) =
1

2πi

∮

γ∞
K(t′, t; τ)

(
Ψn(t′; τ)B(s(t′), ti) + Ψn(s(t′); τ)B(t′; ti)

)

= τ


 1

ln
(
1− 1

t

)− ln
(
1− 1

s(t)

)
(
Ψ̂n+1(t; τ)B(s(t), ti) + Ψ̂n+1(s(t); τ)B(t, ti)

)



+

Let us define polynomials Pa,b(t; τ) and Pn(t, ti; τ) by

Pa,b(t; τ)dt =
τ(τ + 1)

2


 1

ln
(
1− 1

t

)− ln
(
1− 1

s(t)

)
(
Ψ̂a+1(t; τ)Ψ̂b+1(s(t); τ)(28)

+Ψ̂a+1(s(t); τ)Ψ̂b+1(t; τ)
) dt

(t2 − t)(tτ + 1)

]

+

Pn(t, ti; τ)dtdti = τdti


 1

ln
(
1− 1

t

)− ln
(
1− 1

s(t)

)
(

Ψ̂n+1(t; τ)ds(t)
s(t)− ti

+
Ψ̂n+1(s(t); τ)dt

t− ti

)


+

(29)

With the above notations, the Bourchard-Mariño conjecture for C3 is equivalent to

(τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉gdΨ̂bL

(tL; τ)

(30)

= −(τ2 + τ)l−2
l∑

i=2

∑

a,bL\{1,i}

〈τaτbL\{1,i}Γg(τ)〉gPa(t1, ti; τ)dt1dtidΨ̂bL\{1,i}(tL\{1,i}; τ)

+
∑

a1,a2≥0
bL\{1}

(τ2 + τ)l−1
(
(τ2 + τ)〈τa1τa2τbL\{1}Γg−1(τ)〉g−1

−
stable∑

g1+g2=g
IFJ=L\{i}

〈τa1τbI
Γg1(τ)〉g1,|I|+1〈τa2τbJ

Γg2(τ)〉g2,|J |+1


 Pa1,a2(t1; τ)dt1dΨ̂bL\{1}(tL\{1}; τ)

4.3. Calculation in new variable v. Now, let us introduce a new variable v by x = e−w =
e−

1
2
v2

. As y(1− y)τ = x and t = 1
1−(τ+1)y , we have

(
t− 1

(τ + 1)t

)(
1− t− 1

(τ + 1)t

)τ

= e−
1
2
v2

Thus

v2 = −2
(

ln

(
1− 1

t

)
+ τ ln

(
1 +

1
τt

)
+ τ ln(τ)− (τ + 1)ln(τ + 1)

)

= 2


∑

n≥2

1
n

(
(−1)n +

1
τn−1

)
1
tn

+ (τ + 1)ln(τ + 1)− τ ln(τ)



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Solving the above functional equation,

v =
1
t




√
τ + 1

τ
+

∑

k≥1

ak(τ)
1
tk


(31)

and

−v =
1

s(t)




√
τ + 1

τ
+

∑

k≥1

ak(τ)
1

s(t)k


(32)

Taking the inverse of (31), we have

1
t

= v




√
τ

τ + 1
+

∑

k≥1

bk(τ)vk


(33)

and

1
s(t)

= (−v)




√
τ

τ + 1
+

∑

k≥1

bk(τ)(−v)k


(34)

Lemma 4.9. Let

η−1(v; τ) =
1
2

(
Ψ̂−1(t; τ)− Ψ̂−1(s(t); τ)

)
= −1

2

(
ln

(
tτ + 1

tτ

)
− ln

(
s(t)τ + 1

s(t)τ

))

and define ηn+1(v; τ) = − 1
v

d
dvηn(v; τ) when n ≥ −1, then

ηn(v; τ) =
1
2

(
Ψ̂n(t; τ)− Ψ̂n(s(t); τ)

)

Moreover, there exists formal series Fn(w; τ) such that ηn(v; τ) = Ψ̂n(t; τ) + Fn(w; τ).

Proof. Let Ψ̂−1(t; τ) = −ln
(

tτ+1
tτ

)
be the solution of differential equation

(tτ + 1)(t2 − t)
τ + 1

d

dt
Ψ̂−1(t; τ) = Ψ̂0(t; τ) =

t− 1
τ + 1

then

η−1(v; τ) =
1
2

(
Ψ̂−1(t; τ)− Ψ̂−1(s(t); τ)

)
= −1

2

(
ln

(
tτ + 1

tτ

)
− ln

(
s(t)τ + 1

s(t)τ

))

By definition,

x
d

dx
= − d

dw
= −1

v

d

dv
=

(tτ + 1)(t2 − t)
τ + 1

d

dt
=

(s(t)τ + 1)(s(t)2 − s(t))
τ + 1

d

ds(t)
(35)

Therefore

ηn(v; τ) =
1
2

(
Ψ̂n(t; τ)− Ψ̂(s(t); τ)

)

Moreover,

η−1(v; τ)− Ψ̂−1(t; τ)(36)

= −1
2

(
Ψ̂−1(t; τ) + Ψ̂−1(s(t); τ)

)

=
1
2

(
ln

(
1 +

1
tτ

)
+ ln

(
1 +

1
s(t)τ

))
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=
1
2


∑

n≥1

(−1)n−1

n

1
τn

(
1
tn

+
1

s(t)n

)


By (33) and (34), we note that right hand side of (36) is a series of variable w = 1
2v2, we write

it as F−1(w; τ). (36) is equivalent to

η−1(v; τ) = Ψ̂−1(t; τ) + F−1(w; τ)

Let us define

Fn(w; τ) =
(
− d

dw

)n+1

F−1(w; τ)(37)

then, we have

ηn(v; τ) = Ψ̂n(t; τ) + Fn(w; τ)

¤
Corollary 4.10.

Pa,b(t; τ)dt =
1
2

(
ηa+1(v; τ)ηb+1(v; τ)

η−1(v; τ)
vdv|v=v(t)

)

+

Proof. By (23) and (28), we have

− 1
2

1

ln
(
1 + 1

τt

)− ln
(
1 + 1

τs(t)

)
(
Ψ̂a+1(t; τ)Ψ̂b+1(s(t); τ) + Ψ̂a+1(s(t); τ)Ψ̂b+1(t; τ)

) (τ + 1)dt

(t2 − t)(tτ + 1)

= − 1
2η−1(v; τ)

(τ + 1)dt

(t2 − t)(tτ + 1)

(
(Ψ̂a+1(t; τ)− Ψ̂a+1(s(t); τ))(Ψ̂b+1(t; τ)− Ψ̂b+1(s(t); τ))

4

−(Ψ̂a+1(t; τ) + Ψ̂a+1(s(t); τ))(Ψ̂b+1(t; τ) + Ψ̂b+1(s(t); τ))
4

)

=
vdv

2η−1(v; τ)
(ηa+1(v; τ)ηb+1(v; τ)− Fa+1(w; τ)Fb+1(w; τ))

Noticing that (
Fa+1(w; τ)Fb+1(w; τ)vdv

η−1(v; τ)
|v=v(t)

)

+

= 0

we complete the proof. ¤

4.4. Proof of the Bouchard-Mariño conjecture for C3. In the proof of the theorem 3.4,
we know that LHS of (10) is equal to

d

dτ
Ĉg,l(t1, t2, .., tl; τ)−

l∑

i=1

∂yi

∂τ
t2i (τ + 1)

∂

∂ti
Ĉg,l(t1, t2, .., tl; τ)

=
∂

∂τ
Ĉg,l(t1, t2, .., tl; τ) +

l∑

i=1

∂vi

∂τ

∂

∂vi
Ĉg,l(v1, v2, ..vl; τ)−

l∑

i=1

∂yi

∂τ
t2i (τ + 1)

∂

∂ti
Ĉg,l(t1, t2, ..tl; τ)

Recall the following relationship of x, y, t, v.

x = e−
1
2
v2

, y(1− y)τ = x, t =
1

1− (τ + 1)y
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Thus

∂v1

∂τ
= 0,

∂y

∂τ
=

y(1− y)ln(1− y)
y(τ + 1)− 1

,
(t2 − t)(tτ + 1)

τ + 1
d

dt
= −1

v

d

dv

After some simple calculation,

LHS of (10) =
∂

∂τ
Ĉg,l(t1, t2, .., tl; τ) +

l∑

i=1

ln(1− yi)
(
− 1

vi

d

dvi

)
Ĉg,l(t1, t2, .., tl; τ)

The direct image of a function f(v) on C via the projection π : C → C is:

π∗f = f(v) + f(−v)

Thus,

π∗(Ĉg,l(t1, t2, .., tl; τ)) = −(τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g

(
Ψ̂b1(t1; τ) + Ψ̂b1(s(t1); τ)

)
Ψ̂b\{1}(tL\{1}; τ)

By the definition of Fb(w; τ),

π∗

(
∂

∂τ
Ĉg,l(t1, t2, .., tl; τ)

)
=

∂

∂τ

(
π∗Ĉg,l(t1, t2, .., tl; τ)

)

=
∂

∂τ


(τ2 + τ)l−1

∑

bL≥0

〈τbL
Γg(τ)〉gFb1(w1; τ)Ψ̂bL\{1}(tL\{1})




is regular in w1. We will use O(w1) to denote some function regular in w1.
Consider the direct sum

π∗

(
l∑

i=1

ln(1− yi)
(
− 1

v1

d

dv1

)
Ĉg,l(t1, t2, .., tl; τ)

)

when i = 1,

π∗

(
ln(1− y1)

(
− 1

v1

d

dv1

)
Ĉg,l(t1, t2, .., tl; τ)

)

= −(τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g

[
ln

(
t1τ + 1

(τ + 1)t1

)(
− 1

v1

d

dv1

)
(ηb1(v1; τ)− Fb1(w1; τ))

+ln

(
s(t1)τ + 1

(τ + 1)s(t1)

)(
− 1

v1

d

dv1

)
(ηb1(v1; τ)− Fb1(w1; τ))

]
Ψ̂b\{1}(tb\{1})

= −(τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g

[(
ln

(
t1τ + 1

(τ + 1)t1

)
− ln

(
s(t1)τ + 1

(τ + 1)s(t1)

))
ηb1(v1; τ)

+
(

ln

(
t1τ + 1

(τ + 1)t1

)
− ln

(
s(t1)τ + 1

(τ + 1)s(t1)

))
Fb1(w1; τ)

]
Ψ̂b\{1}(tb\{1})

= (τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g2η−1(v1; τ)ηb1+1(v1; τ)Ψ̂bL\{1}(tL\{1}; τ) +O(w1)

and it is easy to see that

π∗

(
l∑

i=2

ln(1− yi)
(
− 1

v1

d

dv1

)
Ĉg,l(t1, t2, .., tl; τ)

)
= O(w1)
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Thus

π∗(LHS of (10)) = (τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g2η−1(v1; τ)ηb1+1(v1; τ)Ψ̂bL\{1}(tL\{1}; τ) +O(w1)

(τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉gdΨ̂bL

(tL; τ)

= (τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉gdv1

d

dv1

(
Ψ̂b1(t1; τ)

)
dΨ̂bL\{1}(tL\{1}; τ)

= (−v1dv1)d2 · · · dl


(τ2 + τ)l−1

∑

bL≥0

〈τbL
Γg(τ)〉g

(
− 1

v1

d

dv1

)
(ηb1(v1; τ)− Fb1(w1; τ))


 Ψ̂bL\{1}(tL\{1})

=
−v1dv1

2η−1(v1; τ)
d2 · · · dl


(τ2 + τ)l−1

∑

bL≥0

〈τbL
Γg(τ)〉g2η−1(v1; τ) (ηb1(v1; τ)− Fb1(w1; τ))


 Ψ̂bL\{1}(tL\{1})

=
−v1dv1

2η−1(v1; τ)
d2 · · · dl


π∗(LHS)− 2η−1(v1; τ)Fb1(w1; τ)(τ2 + τ)l−1

∑

bL≥0

〈τbL
Γg(τ)〉gΨ̂bL\{1}(tL\{1})

−O(w1))

It is important to note that
(−v1dv1O(w1)

2η−1(v1; τ)
|v1=v1(t1)

)

+

= 0

and
(−v1dv1Fb1+1(w1; τ)|v1=v1(t1)

)
+

= 0

Thus,

(τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉gdΨ̂bL

(tL; τ) =
(
− v1dv1

2η−1(v1; τ)
d2 · · · dl (π∗(LHS of (10)))

)
(38)

Then we need to calculate
(

−v1dv1
2η−1(v1;τ)d2 · · · dlπ∗(T1)

)
+

Let us write T1 = T11 + T12, where

T11 = −(τ2 + τ)l−2

(τ + 1)

∑

2≤j≤l

∑

a≥0
bL\{1,j}≥0

〈τaτbL\{1,j}Γg(τ)〉gΨ̂bL\{1,j}(tL\{1,j}; τ)

(tj − 1)(t21τ + t1)Ψ̂a+1(t1; τ)− (t1 − 1)(t2jτ + tj)Ψ̂a+1(tj ; τ)
t1 − tj

T12 = −(τ2 + τ)l−2

(τ + 1)

∑

2≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Γg(τ)〉gΨ̂bL\{i,j}(tL\{i,j}; τ)

(tj − 1)(t2i τ + ti)Ψ̂a+1(ti; τ)− (ti − 1)(t2jτ + tj)Ψ̂a+1(tj ; τ)
ti − tj
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By the definition, ( −v1dv1

2η−1(v1; τ)
π∗T12

)

+

= 0(39)

we have that

−v1dv1

2η−1(v1; τ)
dj

(
(tj − 1)(t21τ + t1)Ψ̂a+1(t1; τ)

t1 − tj

)
(40)

=
1

2η−1(v1; τ)
dj

(
(τ + 1)dt1

(t21 − t1)(t1τ + 1)
(tj − 1)(t21τ + t1)

t1 − tj
Ψ̂a+1(t1; τ)

)

=
τ + 1

2η−1(v1; τ)
Ψ̂a+1(t1; τ)dt1dtj

(t1 − tj)2

=
τ + 1

2η−1(v1; τ)
Ψ̂a+1(t1; τ)B(t1, tj ; τ)

Similarly,

−v1dv1

2η−1(v1; τ)
dj

(
(tj − 1)(s(t1)2τ + s(t1))Ψ̂a+1(s(t1); τ)

s(t1)− tj

)
(41)

=
τ + 1

2η−1(v1; τ)
Ψ̂a+1(s(t1); τ)B(s(t1), tj ; τ)

Moreover, by the expansion,

t1 − 1
t1 − tj

+
s(t1)− 1
s(t1)− tj

=
∑

k≥0

(
tkj

tk1
+

tkj

tk+1
1

+
tkj

s(t1)k
+

tkj
s(t1)k+1

)

we have ( −v1dv1

2η−1(v1; τ)

(
t1 − 1
t1 − tj

+
s(t1)− 1
s(t1)− tj

)
|v1=v1(t1)

)

+

= 0(42)

Therefore( −v1dv1

2η−1(v1; τ)
d2 · · · dlπ∗T1

)

+

by (39)(43)

=
( −v1dv1

2η−1(v1; τ)
d2 · · · dlπ∗T11

)

+

by (40), (41), (42)

= −(τ2 + τ)l−2
∑

2≤j≤l

∑

a≥0
bL\{1,j}

〈τaτbL\{1,j}Γg(τ)〉gdΨ̂bL\{1,j}(tL\{1,j}; τ)

(
Ψ̂a+1(t1; τ)B(t1, tj ; τ) + Ψ̂a+1(s(t1); τ)B(s(t1), tj ; τ)

2η−1(v1; τ)

)

+

by (28)

= −(τ2 + τ)l−2
∑

2≤j≤l

∑

a≥0
bL\{1,j}

〈τaτbL\{1,j}Γg(τ)〉gPa+1(t1, tj ; τ)dt1dtjdΨ̂bL\{1,j}(tL\{1,j}; τ)

Finally, we need to calculate
(

−v1dv1
2η−1(v1;τ)d2 · · · dlπ∗(T2 + T3)

)
+

Because( −v1dv1

2η−1(v1; τ)
π∗

(
Ψ̂a1+1(t1; τ)Ψ̂a2+1(t1; τ)

))

+
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=
( −v1dv1

2η−1(v1; τ)

(
Ψ̂a1+1(t1; τ)Ψ̂a2+1(t1; τ) + Ψ̂a1+1(s(t1); τ)Ψ̂a2+1(s(t1); τ)

))

+

=
( −v1dv1

2η−1(v1; τ)
(2ηa1+1(v1; τ)ηa2+1(v1; τ) + 2Fa1+1(w1; τ)Fa2+1(w1; τ))

)

+

= −2Pa1,a2(t1; τ)dt1

In the last ”=”, we have used Corollary 4.10 and
(

Fa1+1(w1;τ)Fa2+1(w1;τ)v1dv1

η−1(v1;τ) |v1=v1(t1)

)
+

= 0.

We have

( −v1dv1

2η−1(v1; τ)
d2 · · · dlπ∗(T2 + T3)

)

+

= (τ2 + τ)l−1
∑

a1≥0
a2≥0

bL\{i}≥0

(
(τ2 + τ)〈τa1τa2τbL\{i}Γg−1(τ)〉g−1

(44)

−
stable∑

g1+g2=g
ISJ=L\{i}

〈τa1τbIΓg1(τ)〉g1〈τa2τbJ Γg2(τ)〉g2


 Pa1,a2(t1; τ)dt1dΨ̂bL\{1}(tL\{1}; τ)

Hence, by equations (38), (43), (44) and (10), we have proved the identity (30), i.e the
Bouchard-Marino conjecture for C3 case.

Remark 4.11. At the same time as L.Chen published his proof [5], J. Zhou also proved the
Bouchard-Mariño conjecture for C3 [22]. He formulated this new recursion relation of conjecture
and equation (1) of theorem 1.1 in the coordinate v. Then, he regarded equation (1) as mero-
morphic functions in v1, took the principal parts and took only the even powers in v1 would get
the recursion relation for this conjecture. J. Zhou has also applied his method to formulate and
prove this new recursion relation for topological vertex [23] based on the work [16].

5. Application II: Derivation of Some Hodge integral identities

In this section, we will use the main theorem 1.1 to obtain some Hodge integral identities.

5.1. Preliminary calculations. For convenience, let us recall the formula (1) in theorem 1.1
at first: for g ≥ 1 and l ≥ 1, Then,

LHS := −(τ2 + τ)l−2
∑

bL≥0

(
(l − 1)(2τ + 1)〈τbL

Γg(τ)〉g + (τ2 + τ)〈τbL

d

dτ
Γg(τ)〉g

)
Ψ̂bL

(tL; τ)

(45)

− (τ2 + τ)l−1
∑

bL≥0

〈τbL
Γg(τ)〉g

l∑

i=1

(
∂

∂τ
Ψ̂bi

(ti; τ) +
1

tiτ + 1
Ψ̂bi+1(ti; τ)

)
Ψ̂bL\{i}(tL\{i}; τ)

= T1 + T2 + T3

where

T1 := −(τ2 + τ)l−2

τ + 1

∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Γg(τ)〉gΨ̂bL\{i,j}(tL\{i,j}; τ)

· (tj − 1)(t2i τ + ti)Ψ̂a+1(ti; τ)− (ti − 1)(t2jτ + tj)Ψ̂a+1(tj ; τ)
ti − tj
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T2 :=
(τ2 + τ)l

2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

〈τa1τa2τbL\{i}Γg−1(τ)〉g−1

2∏

n=1

Ψ̂an+1(ti; τ)Ψ̂bL\{i}(tL\{i}; τ)

T3 := −(τ2 + τ)l−1

2

l∑

i=1

∑

a1≥0
a2≥0
bL\{i}

∑
g1+g2=g

I‘J=L\{i}
2g1−1+|I|>0
2g2−1+|J |>0

〈τa1τbIΓg1(τ)〉g1〈τa2τbJ Γg2(τ)〉g2

2∏

n=1

Ψ̂an+1(ti; τ)Ψ̂bL\{i}(tL\{i}; τ)

Ψ̂n(t; τ) =
(

(t2 − t)(tτ + 1)
τ + 1

d

dt

)n (
t− 1
τ + 1

)
, n ≥ 0

and
Γg(τ) = Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)

Let us denote the τ expansion of Ψ̂n(t; τ) and Γg(τ) as follow,

Ψ̂b(t; τ) =
b∑

k=0

τk

(τ + 1)b+1
Ψk

b (t)(46)

and

Γg(τ) =
2g∑

m=0

Λ∨g (1)am(λ)τm(47)

By the definition of Λ∨g (t) =
∑g

j=0(−1)g−jλg−jt
j and Mumford’s relation Λ∨g (t)Λ∨g (−t) =

(−1)gt2g, we can compute out the coefficients am(λ) in (47). For example,

a2g(λ) = (−1)g, a2g−1(λ) = (−1)gg, · · ·(48)

a1(λ) =
g∑

m=1

mλg−mλg − (−1)gλg−1Λ∨g (−1)

a0(λ) = (−1)gλgΛ∨g (−1)

We also need to show the expansion form of (46) and how to calculate the coefficients Ψk
b (t).

By definition Ψ̂b+1(t, τ) = (t2− t)(yτ+1
τ+1 ) d

dyΨb(y, τ), Ψ̂0(t, τ) = t−1
τ+1 , we have the expansion form

(46). Moreover, we have

Ψk
b+1(t) = (t3 − t2)

d

dt
Ψk−1

b (t) + (t2 − t)
d

dt
Ψk

b (t), k = 0, .., b + 1(49)

Therefore, through the recursion formula (49), all the Ψk
b (t) can be calculated.

As an illustration, we calculate some cases which will be used in the following discussion.

Ψb+1
b+1(t) = (t3 − t2)

d

dt
Ψb

b(t)(50)

Ψb
b+1(t) = (t3 − t2)

d

dt
Ψb−1

b (t) + (t2 − t)
d

dt
Ψb

b(t)(51)

Ψ1
b+1(t) = (t3 − t2)

d

dt
Ψ0

b(t) + (t2 − t)
d

dt
Ψ1

b(t)(52)
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Ψ0
b+1(t) = (t2 − t)

d

dt
Ψ0

b(t)(53)

It is clear that, the recursion relation for Ψb
b(t) in (50) is just same for the definition of ξ̂b(t)

in [9], and they share the same initial. thus

Ψb
b(t) = ξ̂b(t)(54)

By (50), we write Ψb
b(t) as

Ψb
b(t) =

2b+1∑

i=b+1

f b(b, i)ti(55)

then all the f b(b, i) could be calculated from the recursion (50). But we can explicitly write
down f b(b, 2b + 1) = (2b− 1)!!, f b(b, b + 1) = (−1)bb! which are the coefficients used in the proof
of DV V equation and λg integral respectively[20, 6, 14].

We can also let

Ψb−1
b (t) =

2b∑

i=b

f b−1(b, i)ti(56)

then by (51) we have

f b(b + 1, k) = (k − 2)f b−1(b, k − 2)− (k − 1)f b−1(b, k − 1) + (k − 1)f b(b, k − 1)− kf b(b, k)
(57)

Thus, all f b(b + 1, k) can be calculated from (57). For example,

f b(b + 1, 2b + 2) = 2bf b−1(b, 2b) + (2b + 1)f b(b, 2b + 1) = 2bf b−1(b, 2b) + (2b + 1)!!

Hence

f b−1(b, 2b) =
b−1∑

k=0

(2b− 2)!!(2k + 1)!!
(2k)!!

(58)

Similarly,

f b(b + 1, b + 1) = −bf b+1(b, b)− (b + 1)f b(b, b + 1) = −bf b(b, b) + (−1)b+1(b + 1)!

Thus

f b−1(b, b) = (−1)b (b + 1)!
2

(59)

On the other side, from (53), we can let

Ψ0
b(t) =

b+1∑

i=1

f0
b (b, i)yi

Then

f0
b+1(b + 1, i) = (i− 1)f0

b (b, i− 1)− if0
b (b, i)

Thus,

f0
b (b, b + 1) = b!(60)

Then, from (52), we can let

Ψ1
b(t) =

b+2∑

j=2

f1(b, j)tj(61)
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and

f1(b + 1, k) = (k − 2)f0(b, k − 2)− (k − 1)f0(b, k − 1) + (k − 1)f1(b, k − 1)− kf1(b, k)

Thus

f1(b + 1, b + 3) = (b + 1)f0(b, b + 1) + (b + 2)f1(b, b + 2)(62)

by initial value, f1(1, 3) = 1 and f0(b, b + 1) = b!, we get

f1(b, b + 2) = (b + 1)!
b+1∑

k=2

1
k
.(63)

Now, let us substitute (46) and (47) to (45), we have

LHS = −
∑

bL≥0

∑

0≤kL≤bL

2g∑

m=0

〈τbL
Λ∨g (1)am(λ)〉gΨkL

bL
(tL)(64)

× (l − 2 + m + |kL| − |bL|)τ |kL|+l+m−1 + (l − 1 + m + |kL|)τ |kL|+l+m−2

(τ + 1)|bL|+2

−
∑

bL≥0

∑

0≤kL≤bL

2g∑

m=0

〈τbL
Λ∨g am(λ)〉g

l∑

i=1

(t2i − ti)
∂

∂ti
Ψki

bi
(ti)Ψ

bL\{i}
bL\{i}

(tL\{i})
τ |bL|+m+l−2

(τ + 1)|bL|+2

T1 = −
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

2g∑

m=0

∑

0≤k≤a+1
0≤kL\{i,j}≤bL\{i,j}

〈τaτbL\{i,j}Λ
∨
g (1)am(λ)〉gΨbL\{i,j}

bL\{i,j}
(tL\{i,j})(65)

× (tj − 1)t2i Ψ
k
a+1(ti)− (ti − 1)t2jΨ

k
a+1(tj)

ti − tj

τ |kL\{i,j}|+k+l+m−1

(τ + 1)|bL\{i,j}|+a+3

−
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

2g∑

m=0

∑

0≤k≤a+1
0≤kL\{i,j}≤bL\{i,j}

〈τaτbL\{i,j}Λ
∨
g (1)am(λ)〉gΨbL\{i,j}

bL\{i,j}
(tL\{i,j})

× (tj − 1)tiΨk
a+1(ti)− (ti − 1)tjΨk

a+1(tj)
ti − tj

τ |kL\{i,j}|+k+l+m−2

(τ + 1)|bL\{i,j}|+a+3

T2 =
1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

2(g−1)∑

m=0

∑

0≤n1≤a1+1
0≤n2≤a2+1

0≤kL\{i}≤bL\{i}

〈τa1τa2τbL\{i,j}Λ
∨
g−1(1)am(λ)〉g−1(66)

×Ψn1
a1+1(ti)Ψ

n2
a2+1(ti)Ψ

bL\{i}
bL\{i}

(tL\{i})
τ |kL\{i}|+n1+n2+l+m

(τ + 1)a1+a2+|kL\{i}|+3

T3 = −1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

∑
g1+g2=g

I∪J=L\{i}
2g1−1+|I|>0
2g2−1+|J |>0

∑

0≤m1≤2g1
0≤m2≤2g2

∑

0≤n1≤a1+1
0≤n2≤a2+1

0≤kL{i}≤bL\{i}

〈τa1τbIΛ
∨
g1

(1)am1(λ)〉g1(67)
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× 〈τa2τbJΛ∨g2
(1)am2(λ)〉g2Ψ

n1
a1+1(ti)Ψ

n2
a2+1(ti)Ψ

kL\{i}
bL\{i}

(tL\{i})
τ |kL\{i}|+n1+n2+l+m1+m2−1

(τ + 1)a1+a2+|kL\{i}|+4

Where we have used the notation |bL| =
∑l

i=1 bi in above formulas. We note that (64), (65),
(66) and (67) are all the functions of τ . If we expand them as the series of τ at different points,
we will get some identities of Hodge integrals after recollecting the coefficients of τ at both sides
of (64) = (65) + (66) + (67).

5.2. Expansion of τ at ∞. For b ≥ 0, expanding at τ = ∞,

τa

(τ + 1)b
=

∑

h≥0

(−b

h

)
τa−b−i

for example, the term containing τ in (35),

τ |kL|+l+m−1

(τ + 1)|bL|+2
=

∑

h≥0

(−|bL| − 2
h

)
τ l+m−3+|kL|−|bL|−h

After this expansion, it is easy to see that the largest degree of τ is 2g + l − 3 in the formulas
(64), (65), (66), (67). If F (t, τ) ∈ Q[t][[τ ]], we will use the notation [τk]F (t, τ) to mean the
coefficient of τk in F (t, τ). By a2g = (−1)g in (48) , after some calculations,

[τ2g+l−3]LHS = (−1)g+1
∑

bL≥0

〈τbL
Λ∨g (1)〉

(
(2g − 2 + l)ΨbL

bL
(tL) +

l∑

i=1

(t2i − ti)
∂

∂t
Ψbi

bi
(ti)Ψ

bL\{i}
bL\{i}

(tL\{i})

)(68)

[τ2g+l−3]T1 = (−1)g+1
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Λ
∨
g (1)〉gΨbL\{i,j}

bL\{i,j}
(tL\{i,j})(69)

(tj − 1)t2i Ψ
a+1
a+1(ti)− (ti − 1)t2jΨ

a+1
a+1(tj)

ti − tj

[τ2g+l−3]T2 = (−1)g+1 1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

〈τa1τa2τbL\{i}Λ
∨
g−1(1)〉g−1Ψa1+1

a1+1(ti)Ψ
a2+1
a2+1(ti)Ψ

bL\{i}
bL\{i}

(tL\{i})

(70)

[τ2g+l−3]T3 = (−1)g+1 1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

∑
g1+g2=g

I∪J=L\{i}

〈τa1τbIΛ
∨
g1

(1)〉g1〈τa2τbJΛ∨g2
(1)〉g2

2∏

n=1

Ψan+1
an+1(ti)Ψ

bL\{i}
bL\{i}

(tL\{i})

(71)

As showed in formula (54), Ψb
b(t) = ξ̂b(t), we have got the following corollary from (68) =

(69) + (70) + (71),
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Corollary 5.1.

∑

bL≥0

〈τbL
Λ∨g (1)〉

(
(2g − 2 + l)ξ̂bL

(tL) +
l∑

i=1

(t2i − ti)
∂

∂t
ξ̂bi

(ti)ξ̂bL\{i}(tL\{i})

)
(72)

=
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Λ
∨
g (1)〉g ξ̂bL\{i,j}

(tj − 1)t2i ξ̂a+1(ti)− (ti − 1)t2j ξ̂a+1(tj)
ti − tj

+
1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0


〈τa1τa2τbL\{i}Λ

∨
g−1(1)〉g−1 +

stable∑
g1+g2=g

I∪J=L\{i}

〈τa1τbIΛ
∨
g1

(1)〉g1〈τa2τbJΛ∨g2
(1)〉g2




× ξ̂a1+1(ti)ξ̂a2+1(ti)ξ̂bL\{i}(tL\{i})

which is just the main theorem 1.1 showed in paper [9]. Formula (72) has been applied by
many people to derive DVV equation [6, 20], λg-conjecture [14, 20] and λg−1 Hodge integral
recursion [24].

Obviously, in this procedure, we can obtain a series of such corollaries. For example, calcu-
lating out the coefficients of τ2g+l−4 by a2g = (−1)g, a2g−1(λ) = (−1)gg in (48) we have

[τ2g+l−4]LHS

(73)

= (−1)g+1(2g − 3 + l)
∑

bL≥0

〈τbΛ∨g (1)〉g[(g − 1− |bL|)ΨbL
bL

(tL) +
l∑

i=1

Ψbi−1
bi

(ti)Ψ
bL\{i}
bL\{i}

(tL\{i})]

+ (−1)g+1
∑

bL≥0

〈τbL
Λ∨g (1)〉g[

l∑

i=1

(t2i − ti)
∂

∂ti

(
(g − |bL| − 2)Ψbi

bi
(ti) + Ψbi−1

bi
(ti)

)
(Ψ

bL\{i}
bL\{i}

(tL\{i})

+
∑

j 6=i

Ψbj−1
bj

(tj)Ψ
bL\{i,j}
bL\{i,j}

(tL\{i,j})]

[τ2g+l−4]T1 = (−1)g+1
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Λ
∨
g (1)〉gΨbL\{i,j}

bL\{i,j}
(tL\{i,j})(74)

(
(tj − 1)t2i [Ψ

a
a+1(ti) + (g − a− |bL\{i,j}| − 3 + 1

ti
)Ψa+1

a+1(ti)]

ti − tj

−
(ti − 1)t2j [Ψ

a
a+1(tj) + (g − a− |bL\{i,j}| − 3 + 1

tj
)Ψa+1

a+1(tj)]

ti − tj
)

[τ2g+l−4]T2 = (−1)g+1 1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

〈τa1τa2τbL\{i}Λ
∨
g−1(1)〉g−1[(g − a1 − a2 − |bL\{i,j}| − 4)

(75)
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·Ψa1+1
a1+1(ti)Ψ

a2+1
a2+1(ti) + Ψa1+1

a1
(ti)Ψa2+1

a2+1(ti) + Ψa1+1
a1+1(ti)Ψ

a2
a2+1(ti)]Ψ

bL\{i}
bL\{i}

(tL\{i})

+ (−1)g+1 1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

〈τa1τa2τbL\{i}Λ
∨
g−1(1)〉g−1Ψa1+1

a1
(ti)Ψa2+1

a2+1(ti)
∑

j 6=i

Ψbj−1
bj

(tj)Ψ
bL\{i,j}
bL\{i,j}

(tL\{i,j})

[τ2g+l−4]T3

(76)

= (−1)g+1 1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

stable∑
g1+g2=g

I∪J=L\{i}

〈τa1τbIΛ
∨
g1

(1)〉g1〈τa2τbJΛ∨g2
(1)〉g2 [(g − a1 − a2 − |bL\{i,j}| − 4)

·Ψa1+1
a1+1(ti)Ψ

a2+1
a2+1(ti) + Ψa1+1

a1
(ti)Ψa2+1

a2+1(ti) + Ψa1+1
a1+1(ti)Ψ

a2
a2+1(ti)]Ψ

bL\{i}
bL\{i}

(tL\{i})

+ (−1)g+1 1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

stable∑
g1+g2=g

I∪J=L\{i}

〈τa1τbIΛ
∨
g1

(1)〉g1

〈τa2τbJΛ∨g2
(1)〉g2Ψ

a1+1
a1

(ti)Ψa2+1
a2+1(ti)

∑

j 6=i

Ψbj−1
bj

(tj)Ψ
bL\{i,j}
bL\{i,j}

(tL\{i,j})

Thus, by (73) = (74) + (75) + (76), we get a Hodge integral identity. However, unfortunately,
the only Hodge integral contained in this identity is 〈τbL

Λ∨g (1)〉g because only the terms a2g(λ) =
(−1)g and a2g−1(λ) = (−1)gg was involved in the above calculation which contains no more new
information.

In order to get the Hodge integral identity with more than one λ-class, we need to compare
the coefficients of τ2g+l−5 with the same procedure, we will arrive at a Hodge integral identity
which involves 〈τbL

Λ∨g (1)〉g and 〈τbL
Λ∨g (1)λ1〉g, because a2g−2(λ) = (−1)g

(
g(g−1)

2 − λ1

)
.

From such Hodge integral identity, we can calculate all the Hodge integral of type 〈τbL
λkλ1〉g,

k = 1, .., g. However, more terms will appear in the calculation of coefficients of τ2g+l−5 which
make the computation very complicated. so far, we have not written down the explicit formula
to calculate the Hodge integral of type 〈τbL

λkλ1〉g. But when k = g, in the following subsection
5.4, we will give an explicit formula for 〈τbL

λgλ1〉g.

5.3. Expansion of τ at 0. Now, let us consider the expansion of τa

(τ+1)b at τ = 0, we have

τa

(τ + 1)b
=

∑

i≥0

(−b

i

)
τa+i

After this expansion, it is easy to show that the lowest degree of τ in (64) is l− 2. In fact, by
a0(λ) = (−1)gλgΛ∨g (−1) show in (48) and Λ∨g (1)Λ∨g (−1) = (−1)g, we have

[τ l−2]LHS = −(l − 1)
∑

bL≥0

〈τbL
λg〉gΨ0

bL
(tL)(77)
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[τ l−2]T1 = −
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})

(tj − 1)t2i Ψ
0
a+1(ti)− (ti − 1)t2jΨ

0
a+1(tj)

ti − tj

(78)

[τ l−2]T2 = [τ l−2]T3 = 0(79)

Thus, we get

Corollary 5.2.
∑

bL≥0

〈τbL
λg〉gΨ0

bL
(tL) =

1
l − 1

∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})(80)

· (tj − 1)t2i Ψ
0
a+1(ti)− (ti − 1)t2jΨ

0
a+1(tj)

ti − tj

Here, we introduce two notations. Let g(x1, .., xl) =
∑

ik≥0 ai1i2···ilx
i1
1 · · ·xil

l ∈ Q[x1, .., xl],

Fd(g(x1, · · · , xl)) =
∑

Pl
k=1 ik=d

ai1i2···ilx
i1
1 · · ·xil

l

and

[xj1
1 · · ·xjl

l ]g(x1, · · · , xl) = aj1j2···jl
.

Now, let us use these two operator to corollary 5.2. By (60), we have

F2g−3+2l(LHS of (80)) = (l − 1)
∑

bL≥0

〈τbL
λ〉gbL!ybL+1

L

F2g−3+2l(RHS of (80)) =
∑

1≤i<j≤l

∑

a≥0
bL≥0

〈τbL\{i,j}λg〉g(a + 1)!bL\{i,j}!t
bL\{i,j}+1

L\{i,j}
tjt

a+4
i − tit

a+4
j

ti − tj

Then,

[tbL+1
L ]F2g−3+2l(LHS of (80)) = (l − 1)〈τbL

λ〉gbL!

[tbL+1
L ]F2g−3+2l(RHS of (80)) =

∑

1≤i<j≤l

〈τbi+bj−1τbL\{i,j}λg〉g(bi + bj)!bL\{i,j}!

Hence, we have

〈τbL
λ〉g =

1
l − 1

∑

1≤i<j≤l

〈τbi+bj−1τbL\{i,j}λg〉g (bi + bj)!
bi!bj !

Induction on l, we get the λg integral,

〈τbL
λ〉g =

(
2g − 3 + l

bL

)
cg
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Now, let us calculate the next degree of τ . By a0(λ) = (−1)gλgΛ∨g (−1) showed in (48) and
Λ∨g (1)Λ∨g (−1) = (−1)g, we have

[τ l−1]LHS = −
∑

bL≥0

〈τbL
λg〉gl


−(|bL|+ 1)Ψ0

bL
(tL) +

∑

j=1

Ψ1
bj

(tj)Ψ0
bL\{j}(tL\{j})




(81)

−
∑

bL≥0

〈τbL
λg〉g

l∑

i=1

(t2i − ti)
∂

∂ti
Ψ0

bi
(ti)Ψ0

bL\{i}(tL\{i})−
∑

bL≥0

〈τbL
Λ∨g (1)a1(λ)〉glΨ0

bL
(tL)

[τ l−1]T1

(82)

= −
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})[

(tj − 1)ti
(
Ψ1

a+1(ti) + (ti − |bL\{i,j}| − a− 3)Ψ0
a+1(ti)

)

ti − tj

− (ti − 1)tj
(
Ψ1

a+1(tj) + (tj − |bL\{i,j}| − a− 3)Ψ0
a+1(tj)

)

ti − tj
]

−
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉g
∑

r 6=i,j

Ψ1
br

(tr)Ψ0
bL\{i,j}(tL\{i,j})

(tj − 1)tiΨ0
a+1(ti)− (ti − 1)tjΨ0

a+1(tj)
ti − tj

−
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}Λ
∨
g (1)a1(λ)〉gΨ0

bL\{i,j}(tL\{i,j})
(tj − 1)tiΨ0

a+1(ti)− (ti − 1)tjΨ0
a+1(tj)

ti − tj

[τ l−1]T2 = 0(83)

[τ l−1]T3 = −1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

stable∑
g1+g2=g

|I|∪|J |=L\{i}

〈τa1τbIλg1〉g1〈τa2τbJ λg2〉g2Ψ
0
a1+1(ti)Ψ

0
a2+1(ti)Ψ

0
bL\{i}(tL\{i})

(84)

Recall formula (48), a1(λ) =
∑g

m=1 mλg−mλg − (−1)gΛ∨g (−1)λg−1 and Mumford’s relation
Λ∨g (1)Λ∨g (−1) = (−1)g. We can write

Λ∨g (1)a1(λ) =
3g−3∑

d=g−1

Pd(λ)(85)

where Pd(λ) is some combinatoric of λ-class with degree d. For example

Pg−1(λ) = λg−1, Pg(λ) = gλg, Pg+1(λ) = −λgλ1, · · · , P3g−3(λ) = (−1)g+1λgλg−1λg−2(86)

By the above calculation, substituting (85) to the identity (81) = (82) + (84), we have
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Corollary 5.3.

∑

bL≥0

〈τbL
λg〉gl


−(|bL|+ 1)Ψ0

bL
(tL) +

∑

j=1

Ψ1
bj

(tj)Ψ0
bL\{j}(tL\{j})




(87)

+
∑

bL≥0

〈τbL
λg〉g

l∑

i=1

(t2i − ti)
∂

∂ti
Ψ0

bi
(ti)Ψ0

bL\{i}(tL\{i}) +
∑

bL≥0

〈τbL

3g−3∑

d=g−1

Pd(λ)〉glΨ0
bL

(tL)

=
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})[

(tj − 1)ti
(
Ψ1

a+1(ti) + (ti − |bL\{i,j}| − a− 3)Ψ0
a+1(ti)

)

ti − tj

− (ti − 1)tj
(
Ψ1

a+1(tj) + (tj − |bL\{i,j}| − a− 3)Ψ0
a+1(tj)

)

ti − tj
]

+
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉g
∑

r 6=i,j

Ψ1
br

(tr)Ψ0
bL\{i,j}(tL\{i,j})

(tj − 1)tiΨ0
a+1(ti)− (ti − 1)tjΨ0

a+1(tj)
ti − tj

+
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}

3g−3∑

d=g−1

Pd(λ)〉gΨ0
bL\{i,j}(tL\{i,j})

(tj − 1)tiΨ0
a+1(ti)− (ti − 1)tjΨ0

a+1(tj)
ti − tj

+
1
2

l∑

i=1

∑

a1≥0
a2≥0

bL\{i}≥0

stable∑
g1+g2=g

|I|∪|J |=L\{i}

〈τa1τbIλg1〉g1〈τa2τbJ λg2〉g2Ψ
0
a1+1(ti)Ψ

0
a2+1(ti)Ψ

0
bL\{i}(tL\{i})

Since 〈τbL
λg〉g =

(
2g−3+l

bL

)
cg, thus all the Hodge integral of type

〈τbL

3g−3∑

d=g−1

Pd(λ)〉g(88)

can be calculated from formula (87) in corollary 4.3.

5.4. Explicit expression for Hodge integral 〈τbL
λgλ1〉g. Although corollary 4.3 says that

all the Hodge integral (88) can be computed, it is not easy to write down their explicit formula.
In this subsection, we will show how to obtain an explicit formula for 〈τbL

λgλ1〉g.
Both sides of (87) belong to Q[t1, .., tl]. We have known that 〈τbL

λg〉g =
(
2g−3+l

bL

)
cg, and

〈τbL
λg−1〉g can also be calculated easily from a recursion formula showed in [24]. Thus, we have

Theorem 5.4. If
∑l

i=1 bi = 2g − 4 + l, there exists a constant C(g, l, b1, .., bl) related to
g, l, b1, .., bl, such that

〈τbL
λgλ1〉g =

1
l

∑

1≤i<j≤l

〈τbi+bj−1τbL\{i,j}λgλ1〉g (bi + bj)!
bi!bj !

+ C(g, l, b1, ..bl)(89)

C(g, l, b1, .., bl) is a very complicated combinatoric constant which is given at Appendix B.

Proof. Taking all the terms with degree 2g + 2l − 4 in formula (87). we have

F2g+2l−4(LHS of (87)) = −l
∑

bL≥0

〈τbL
λgλ1〉gbL!tbL+1

L + G1(t1, .., tl)(90)



THE LAPALACE TRANSFORM OF THE CUT-AND-JOIN EQUATION OF MARIÑO-VAFA FORMULA 33

F2g+2l−4(RHS of (87)) = −
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λgλ1〉g(91)

· bL\{i,j}!(a + 1)!
a+1∑

m=0

t
bL\{i,j}+1

L\{i,j} ta+2−m
i tm+1

j + G2(t1, .., tl)

where Gi(t1, .., tl) =
∑
|dL|=2g+2l−4 Ci(g, l, d1, .., dl)t

dL
L ∈ Q[t1, ..tl], Ci(g, l, d1, .., dl) is a combina-

toric constant related to g, l, d1, .., dl. Thus, we have
∑

bL≥0

〈τbL
λgλ1〉gbL!tbL+1

L =
1
l

∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λgλ1〉g(92)

· bL\{i,j}!(a + 1)!
a+1∑

m=0

t
bL\{i,j}+1

L\{i,j} ta+2−m
i tm+1

j + G(t1, .., tl)

where G(t1, .., tl) =
∑
|dL|=2g+2l−4 Ĉ(g, l, b1, .., bl)t

dL
L = 1

l (G1(t1, ..tl)−G2(t1, .., tl))
After taking the coefficients of (92),

〈τbL
λgλ1〉g =

1
l

∑

1≤i<j≤l

〈τbi+bj−1τbL\{i,j}λgλ1〉g (bi + bj)!
bi!bj !

+
Ĉ(g, l, b1 + 1, .., bl + 1)

bL!
(93)

Let C(g, l, b1, .., bl) = Ĉ(g,l,b1+1,..,bl+1)
bL! , thus, the theorem is proved. ¤

We know that the initial value 〈τ2g−3λgλ1〉g = 1
12 [g(2g − 3)bg + b1bg−1] has been computed

by Y. Li [15]. Therefore, from the recursion formula (62), we can compute out all the Hodge
integral of type 〈τbL

λgλ1〉g.

6. Conclusion

The original cut-and-join equation of Mariño-Vafa formula is a complicated formula about the
partition which can be changed to a polynomial identity with the help of the Laplace transform in
this paper or the symmetrization method in [4]. This polynomial identity has some applications
because it is manageable. We derived some corollaries about the Hodge integral identities. In
fact, we have found an algorithm to calculate the Hodge integral appearing in Mariño-Vafa
formula.

Step1, expanding the τ at some special point, and collect the corresponding level of τ in
theorem 1.1.

Step2, taking certain degrees of tL, we will get the corresponding Hodge integral appearing
in Mariño-Vafa formula.

In this paper, we only calculate four cases using step1 and calculate out a new Hodge integral
using Step2 from the result of last case after doing step1. We don’t consider other cases here,
because the computation will be more complicated. We hope that this algorithm can be made
to a computer program.

We note that, the recursion formulas to calculate 〈τbL
λg−1〉g [24] and 〈τbL

λgλ1〉g in theorem
1.5 have the similar recursion structure. For a given g, Hodge integral with l-point will reduce
to 1-point after only l times recursions. Thus, it is a very effective recursion relation. In fact,
many Hodge integral recursions will have this type structure if they are calculated out by above
algorithm. Thus it is interesting to consider the following combinatoric problem.

Let Ql(bL) = Ql(b1, b2, .., bl) be a symmetric function on (b1, b2, .., bl) ∈ (Z+)l which is defined
by the following recursion relation.
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For given g, k,

Q1(b) =
{

constant, b = 3g − 2− k,(94)
0, others.

Ql(bL) =





∑

1≤i<j≤l

Ql−1(bi + bj − 1, bL\{i,j})Al(bL) + Bl(bL)
∑l

i=1 bi = 3g − 3 + l − k,(95)

0, others.

Where Al(bL) = Al(b1, .., bl) and Bl(bL) = Bl(b1, .., bl) are some fixed functions defined on
(b1, b2, .., bl) ∈ (Z+)l.

It is interesting to study the properties of Ql(bL) defined above. We hope that this combina-
toric structure of Hodge integral will be studied further in future.

7. Appendix

7.1. Appendix A. In this appendix, we will show how to derive our main result in theorem
3.4 from the symmetrized cut-and-join equation of the Mariño-Vafa formula [4].

when b ≥ 0, Let

Ψb(y; τ) = ((y2 − y)(
yτ + 1
τ + 1

)
d

dy
)b(

y − 1
τ + 1

) =
b∑

k=0

τk

(τ + 1)b+1
ψk

b (y)

Then the symmetrized partition function of Mariño-Vafa formula can be written as

Wg,n(y1, .., yn; τ) = −(τ(τ + 1))n−1
∑

bi≥0
i=1,..,n

〈
n∏

i=1

τbi
Γg(τ)〉g

n∏

i=1

Ψbi
(yi; τ)(96)

The main result of [4], i.e Theorem 3 in that paper, says

Theorem 7.1. The symmetrized generating series Wg,n(y1, .., yn; τ) is a polynomial in the yi

variables of total degree 6g − 6 + 3n and satisfies the symmetrized cut–and-join equation.

(
∂

∂τ
+

n∑

l=1

y2
l − yl

τ + 1
∂

∂yl
)Wg,n(y1, .., yn; τ) = T1 + T2 + T3

where

T1 = symy
1,1

y1(y2 − 1)
y1 − y2

(
y1τ + 1
τ + 1

)Dτ
y1

Wg,n−1(y1, y3, .., yn; τ)

T2 = −1
2

n∑

l=1

Dτ
yl

Dτ
yn+1

Wg−1,n+1(y1, .., yn, yn+1; τ)|yn+1=yl

T3 = −1
2

∑
g1+g2=g

n1+n2=n+1
2g1−2+n1>0
2g2−2+n2>0

symy
1,n1−1D

τ
y1

Wg1,n1(y1, .., yn1 ; τ)Dτ
y1

Wg2,n2(y1, yn1+1, .., yn; τ)

We need to explain the notations appear in above theorem. Where Dτ
y = (y2 − y)(yτ+1

τ+1 ) ∂
∂y . For

i, j ≥ 0, i + j ≤ n, let symx
i,j be the mapping, applied to a series in x1, .., xn, given by

symx
i,jf(x1, .., xn) =

∑

R,S,T
f(xR,xS ,xT )
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where the sum is over all ordered partitions (R,S, T ) of {1, 2, .., n}, R = {xr1 , .., xri}, S =
{xs1 , .., xsj}, T = {xt1 , .., xtn−i−j} and (xR,xS ,xT ) = (xr1 , .., xri , xs1 , .., xsj , xt1 , .., xtn−i−j ),
where r1 < · · · < ri, s1 < · · · < sj, and t1 < · · · < tn−i−j.

Then, by equation (96), we have

LHS = −(τ2 + τ)n−2
∑

bi≥0
i=1,..,n

(
(n− 1)(2τ + 1)〈

n∏

i=1

τbi
Γg(τ)〉g + (τ2 + τ)〈

n∏

i=1

τbi

d

dτ
Γg(τ)〉g

)
n∏

i=1

Ψbi
(yi; τ)

− (τ2 + τ)n−1
∑

bi≥0
i=1,2,..,n

〈
n∏

i=1

τbi
Γg(τ)〉g

n∑

l=1

(
∂

∂τ
Ψbl

(yl; τ) +
1

ylτ + 1
Ψbl+1(yl; τ))

n∏

k=1
k 6=l

Ψbk
(yk; τ)

T1 = −(τ2 + τ)n−2

τ + 1

∑

1≤i<j≤n

∑

a≥0
bk≥0
k 6=i,j

〈τa

n∏

k=1
k 6=i,j

τbk
Γg(τ)〉g

n∏

k=1
k 6=i,j

Ψbk
(yk; τ)

× (yj − 1)(y2
i τ + yi)Ψa+1(yi; τ)− (yi − 1)(y2

j τ + yj)Ψa+1(yj ; τ)
yi − yj

T2 =
1
2
(τ2 + τ)n

n∑

i=1

∑

a1≥0
a2≥0

bk≥0,k 6=i

〈τa1τa2

n∏

k=1
k 6=i

τbk
Γg−1(τ)〉g−1Ψa1+1(yi; τ)Ψa2+1(yi; τ)

n∏

k=1
k 6=i

Ψbk
(yk; τ)

T3 = −(τ2 + τ)n−1

2

n∑

i=1

∑

a1≥0
a2≥0

bk≥0,k 6=i

∑
g1+g2=g

I‘J={1,.,̂i,.n}
2g1−1+|I|>0
2g2−1+|J |>0

〈τa1

∏

k∈I
τbk

Γg1(τ)〉g1

× 〈τa2

∏

k∈J
τbk

Γg2(τ)〉g2Ψa1(yi; τ)Ψa2(yi; τ)
n∏

k=1
k 6=i

Ψbi
(yi; τ)

Then, by theorem 5.1, we arrive our main results in section 3, i.e. theorem 3.4.

7.2. Appendix B. In this appendix, we will calculate the constant C(g, l, b1, .., bl) which ap-
pears in theorem 1.5. The computation is verbose and boring.

Let us write the formula (77) of Corollary 5.3 as

L1 + L2 + L3 + L4 + L5 + L6 + L7

(97)

= R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8 + R9 + R10 + R11 + R12 + R13 + R14 + R15 + R16

where

L1 =
∑

bL≥0

〈τbL
λg〉gl(g − |bL| − 1)Ψ0

bL
(tL)

L2 =
∑

bL≥0

〈τbL
λg〉gl

l∑

j=1

Ψ1
bj

(tj)Ψ0
bL\{j}(tL\{j})
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L3 =
∑

bL≥0

〈τbL
λg〉g

l∑

j=1

t2j
∂

∂tj
Ψ0

bj
(tj)Ψ0

bL\{j}(tL\{j})

L4 = −
∑

bL≥0

〈τbL
λg〉g

l∑

j=1

tj
∂

∂tj
Ψ0

bj
(tj)Ψ0

bL\{j}(tL\{j})

L5 = −
∑

bL≥0

〈τbL
λg−1〉glΨ0

bL
(tL)

L6 = −
∑

bL≥0

〈τbL
λgλ1〉glΨ0

bL
(tL)

L7 =
∑

bL≥0

〈τbL

3g−3∑

d=g+2

Pd(λ)〉glΨ0
bL

(tL)

R1 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})

tjtiΨ1
a+1(ti)− titjΨ1

a+1(tj)
ti − tj

R2 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})

−tiΨ1
a+1(ti) + tjΨ1

a+1(tj)
ti − tj

R3 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})

tjt
2
i Ψ

0
a+1(ti)− tit

2
jΨ

0
a+1(tj)

ti − tj

R4 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})

−t2i Ψ
0
a+1(ti) + t2jΨ

0
a+1(tj)

ti − tj

R5 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})(|bL\{i,j}|+ a + 3)

−tjtiΨ0
a+1(ti) + titjΨ0

a+1(tj)
ti − tj

R6 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉gΨ0
bL\{i,j}(tL\{i,j})(|bL\{i,j}|+ a + 3)

tiΨ0
a+1(ti)− tjΨ0

a+1(tj)
ti − tj

R7 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉g
∑

r∈L\{i,j}
Ψ1

br
(tr)Ψ0

bL\{i,j,r}(tL\{i,j,r})
tjtiΨ0

a+1(ti)− titjΨ0
a+1(tj)

ti − tj

R8 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉g
∑

r∈L\{i,j}
Ψ1

br
(tr)Ψ0

bL\{i,j,r}(tL\{i,j,r})
−tiΨ0

a+1(ti) + tjΨ0
a+1(tj)

ti − tj
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R9 = −
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg−1〉gΨ0
bL\{i,j}(tL\{i,j})

tjtiΨ0
a+1(ti)− titjΨ0

a+1(tj)
ti − tj

R10 = −
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg−1〉gΨ0
bL\{i,j}(tL\{i,j})

−tiΨ0
a+1(ti) + tjΨ0

a+1(tj)
ti − tj

R11 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉ggΨ0
bL\{i,j}(tL\{i,j})

tjtiΨ0
a+1(ti)− titjΨ0

a+1(tj)
ti − tj

R12 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λg〉ggΨ0
bL\{i,j}(tL\{i,j})

−tiΨ0
a+1(ti) + tjΨ0

a+1(tj)
ti − tj

R13 = −
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λgλ1〉gΨ0
bL\{i,j}(tL\{i,j})

tjtiΨ0
a+1(ti)− titjΨ0

a+1(tj)
ti − tj

R14 = −
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}λgλ1〉gΨ0
bL\{i,j}(tL\{i,j})

−tiΨ0
a+1(ti) + tjΨ0

a+1(tj)
ti − tj

R15 =
∑

1≤i<j≤l

∑

a≥0
bL\{i,j}≥0

〈τaτbL\{i,j}

3g−3∑

d=g+2

Pd(λ)〉gΨ0
bL\{i,j}(tL\{i,j})

(tj − 1)tiΨ0
a+1(ti)− (ti − 1)tjΨ0

a+1(tj)
ti − tj

R16 =
1
2

l∑

j=1

∑

a1≥0
a2≥0

bL\{j}≥0

stable∑
g1+g2=g

I∪J=L\{j}

〈τa1τbIλg1〉g1〈τa2τbJ λg2〉g2Ψ
0
a1+1(tj)Ψ

0
a2+1(tj)Ψ

0
bL\{j}(tL\{j})

Then,

F2g+2l−4(L1) =
∑

|bL|=2g−3+l

〈τbL
λg〉gl(2− g − l)

l∑

j=1

f0(bj , bj)t
bj

j f0(bL\{j}, bL\{j} + 1)t
bL\{j}+1

L\{j}

(98)

F2g+2l−4(L2) =
∑

|bL|=2g−3+l

〈τbL
λg〉gl




l∑

j=1

f1(bj , bj + 1)tbj+1
j

∑

k∈L\{j}
f0(bk, bk)t

bk
k(99)

f0(bL\{j,k}, bL\{j,k} + 1)t
bL\{j,k}+1

L\{j,k} +
l∑

j=1

f1(bj , bj)t
bj

j f0(bL\{j}, bL\{j} + 1)t
bL\{j}+1

L\{j}

+
l∑

j=1

f1(bj , bj + 2)tbj+2
j

∑

k∈L\{j}
f0(bk, bk − 1)tbk−1

k f0(bL\{j,k}, bL\{j,k} + 1)t
bL\{j,k}+1

L\{j,k}
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+
l∑

j=1

f1(bj , bj + 2)tbj+2
j

∑

k1∈L\{j}
f0(bk1 , bk1)t

bk1
k1

∑

k2∈L\{j,k1}
f0(bk2 , bk2)t

bk2
k2

f0(bL\{j,k1,k2}, bL\{j,k1,k2} + 1)t
bL\{j,k1,k2}+1

L\{j,k1,k2}
)

F2g+2l−4(L3) =
∑

|bL|=2g−3+l

〈τbL
λg〉g




l∑

j=1

bjf
0(bj , bj)t

bj+1
j

∑

k∈L\{j}
f0(bk, bk)t

bk
k

(100)

f0(bL\{j,k}, bL\{j,k} + 1)t
bL\{j,k}+1

L\{j,k} +
l∑

j=1

(bj − 1)f0(bj , bj − 1)tbj

j f0(bL\{j}, bL\{j} + 1)t
bL\{j}+1

L\{j}

+
l∑

j=1

(bj + 1)f0(bj , bj + 1)tbj+2
j

∑

k∈L\{j}
f0(bk, bk − 1)tbk−1

k f0(bL\{j,k}, bL\{j,k} + 1)t
bL\{j,k}+1

L\{j,k}

+
l∑

j=1

(bj + 1)f0(bj , bj + 1)tbj+2
j

∑

k1∈L\{j}
f0(bk1 , bk1)t

bk1
k1

∑

k2∈L\{j,k1}
f0(bk2 , bk2)t

bk2
k2

f0(bL\{j,k1,k2}, bL\{j,k1,k2} + 1)t
bL\{j,k1,k2}+1

L\{j,k1,k2}
)

F2g+2l−4(L4) = −
∑

|bL|=2g−3+l

〈τbL
λg〉g




l∑

j=1

bjf
0(bj , bj)t

bj

j f0(bL\{j}, bL\{j} + 1)t
bL\{j}+1

L\{j}(101)

+
l∑

j=1

(bj + 1)f0(bj , bj + 1)tbj+1
j

∑

k∈L\{j}
f0(bk, bk)t

bk
k f0(bL\{j,k}, bL\{j,k} + 1)t

bL\{j,k}+1

L\{j,k}




F2g+2l−4(L5) = −
∑

|bL|=2g−2+l

〈τbL
λg−1〉gl




l∑

j=1

f0(bj , bj − 1)tbj−1
j f0(bL\{j}, bL\{j} + 1)t

bL\{j}+1

L\{j}

(102)

+
l∑

j=1

f0(bj , bj)t
bj

j

∑

k∈L\{j}
f0(bk, bk)t

bk
k f0(bL\{j,k}, bL\{j,k} + 1)t

bL\{j,k}+1

L\{j,k}




F2g+2l−4(L6) = −
∑

|bL|=2g−4+l

〈τbL
λgλ1〉glf0(bL, bL + 1)tbL+1

L(103)

F2g+2l−4(L7) = 0(104)

F2g+2l−4(R1) =
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉g
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(105)
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f1(a + 1, a + 1)
a∑

k≥0

tk+1
i ta+1−k

j +
∑

r∈L\{i,j}
f0(br, br)tbr

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f1(a + 1, a + 2)
a+1∑

k≥0

tk+1
i ta+2−k

j +
∑

r∈L\{i,j}
f0(br, br − 1)tbr−1

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f1(a + 1, a + 3)
a+2∑

k≥0

tk+1
i ta+3−k

j +
∑

r1∈L∈L\{i,j}
f0(br1 , br1)t

br1
r1

∑

r2∈L\{i,j,r1}
f0(br2 , br2)t

br2
r2

f0(bL\{i,j,r1,r2}, bL\{i,j,r1,r2} + 1)t
bL\{i,j,r1,r2}+1

L\{i,j,r1,r2} f1(a + 1, a + 3)
a+2∑

k≥0

tk+1
i ta+3−k

j




F2g+2l−4(R2) = −
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉g
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(106)

f1(a + 1, a + 2)
a+2∑

k≥0

tki t
a+2−k
j +

∑

r∈L\{i,j}
f0(br, br)tbr

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f1(a + 1, a + 3)
a+3∑

k≥0

tki t
a+3−k
j




F2g+2l−4(R3) =
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉g
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(107)

f0(a + 1, a)
a∑

k≥0

tk+1
i ta+1−k

j +
∑

r∈L\{i,j}
f0(br, br)tbr

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f0(a + 1, a + 1)
a+1∑

k≥0

tk+1
i ta+2−k

j +
∑

r∈L\{i,j}
f0(br, br − 1)tbr−1

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f0(a + 1, a + 2)
a+2∑

k≥0

tk+1
i ta+3−k

j +
∑

r1∈L∈L\{i,j}
f0(br1 , br1)t

br1
r1

∑

r2∈L\{i,j,r1}
f0(br2 , br2)t

br2
r2

f0(bL\{i,j,r1,r2}, bL\{i,j,r1,r2} + 1)t
bL\{i,j,r1,r2}+1

L\{i,j,r1,r2} f0(a + 1, a + 2)
a+2∑

k≥0

tk+1
i ta+3−k

j




F2g+2l−4(R4) = −
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉g
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(108)
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f0(a + 1, a + 1)
a+2∑

k≥0

tki t
a+2−k
j +

∑

r∈L\{i,j}
f0(br, br)tbr

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f0(a + 1, a + 2)
a+3∑

k≥0

tki t
a+3−k
j




F2g+2l−4(R5) = −
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉g
(
(2g + l − 1)f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(109)

f0(a + 1, a + 1)
a∑

k≥0

tk+1
i ta+1−k

j + (2g + l − 1)
∑

r∈L\{i,j}
f0(br, br)tbr

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f0(a + 1, a + 2)
a+1∑

k≥0

tk+1
i ta+2−k

j




F2g+2l−4(R6) =
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉g
(
(2g + l − 1)f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(110)

f0(a + 1, a + 2)
a+2∑

k≥0

tki t
a+2−k
j




F2g+2l−4(R7) =
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉g


 ∑

r∈L\{i,j}
f1(br, br + 2)tbr+2

r

(111)

f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r} f0(a + 1, a)
a−1∑

k≥0

tk+1
i ta−k

j +
∑

r∈L\{i,j}
f1(br, br + 2)tbr+2

r

∑

s∈L\{i,j,r}
f0(bs, bs − 1)tbs−1

s f0(bL\{i,j,r,s}, bL\{i,j,r,s} + 1)t
bL\{i,j,r,s}+1

L\{i,j,r,s} f0(a + 1, a + 2)
a+1∑

k≥0

tk+1
i ta+2−k

j

+
∑

r∈L\{i,j}
f1(br, br + 2)tbr+2

r

∑

s1∈L\{i,j,r}
f0(bs1 , bs1)t

bs1
s1

∑

s2∈L\{i,j,r1,s1}
f0(bs2 , bs2)t

bs2
s2

f0(bL\{i,j,r,s1,s2}, bL\{i,j,r,s1,s2} + 1)t
bL\{i,j,r,s1,s2}+1

L\{i,j,r,s1,s2} f0(a + 1, a + 2)
a+1∑

k≥0

tk+1
i ta+2−k

j +
∑

r∈L\{i,j}
f1(br, br)tbr

r

f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r} f0(a + 1, a + 2)
a+1∑

k≥0

tk+1
i ta+2−k

j +
∑

r1∈L\{i,j}
f1(br1 , br1 + 1)tbr1+1

r1

∑

r2∈L\{i,j,r1}
f0(br2 , br2)t

br2
r2 f0(bL\{i,j,r1,r2}, bL\{i,j,r1,r2} + 1)t

bL\{i,j,r1,r2}+1

L\{i,j,r1,r2} f0(a + 1, a + 2)
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a+1∑

k≥0

tk+1
i ta+2−k

j +
∑

r∈{i,j}
f1(br, br + 1)tbr+1

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r} f0(a + 1, a + 1)

a∑

k≥0

tk+1
i ta+1−k

j +
∑

r1∈L\{i,j}
f1(br1 , br1 + 2)tbr1+2

r1

∑

r2∈L\{i,j,r1}
f0(br2 , br2)t

br2
r2

f0(bL\{i,j,r1,r2}, bL\{i,j,r1,r2} + 1)t
bL\{i,j,r1,r2}+1

L\{i,j,r1,r2} f0(a + 1, a + 1)
a∑

k≥0

tk+1
i ta+1−k

j




F2g+2l−4(R8) = −
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉g


 ∑

r∈L\{i,j}
f1(br, br + 2)tbr+2

r

(112)

f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r} f0(a + 1, a + 1)
a+1∑

k≥0

tki t
a+1−k
j +

∑

r∈L\{i,j}
f1(br, br + 1)tbr+1

r

f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r} f0(a + 1, a + 2)
a+2∑

k≥0

tki t
a+2−k
j +

∑

r∈L\{i,j}
f1(br, br + 2)tbr+2

r

∑

s∈L\{i,j,r}
f0(bs, bs)tbs

s f0(bL\{i,j,r,s}, bL\{i,j,r,s} + 1)t
bL\{i,j,r,s}+1

L\{i,j,r,s} f0(a + 1, a + 2)
a+2∑

k≥0

tki t
a+2−k
j




F2g+2l−4(R9) = −
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−3

〈τaτbL\{i,j}λg−1〉g
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(113)

f0(a + 1, a)
a−1∑

k≥0

tk+1
i ta−k

j +
∑

r∈L\{i,j}
f0(br, br)tbr

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f0(a + 1, a + 1)
a∑

k≥0

tk+1
i ta+1−k

j +
∑

r∈L\{i,j}
f0(br, br − 1)tbr−1

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f0(a + 1, a + 2)
a+1∑

k≥0

tk+1
i ta+2−k

j +
∑

r1∈L∈L\{i,j}
f0(br1 , br1)t

br1
r1

∑

r2∈L\{i,j,r1}
f0(br2 , br2)t

br2
r2

f0(bL\{i,j,r1,r2}, bL\{i,j,r1,r2} + 1)t
bL\{i,j,r1,r2}+1

L\{i,j,r1,r2} f0(a + 1, a + 2)
a+1∑

k≥0

tk+1
i ta+2−k

j




F2g+2l−4(R10) =
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−3

〈τaτbL\{i,j}λg−1〉g
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(114)
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f0(a + 1, a + 1)
a+1∑

k≥0

tki t
a+1−k
j +

∑

r∈L\{i,j}
f0(br, br)tbr

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f0(a + 1, a + 2)
a+2∑

k≥0

tki t
a+2−k
j




F2g+2l−4(R11) =
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉gg
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(115)

f0(a + 1, a + 1)
a∑

k≥0

tk+1
i ta+1−k

j +
∑

r∈L\{i,j}
f0(br, br)tbr

r f0(bL\{i,j,r}, bL\{i,j,r} + 1)t
bL\{i,j,r}+1

L\{i,j,r}

f0(a + 1, a + 2)
a+1∑

k≥0

tki t
a+2−k
j




F2g+2l−4(R12) = −
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−4

〈τaτbL\{i,j}λg〉gg
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(116)

f0(a + 1, a + 2)
a+2∑

k≥0

tki t
a+2−k
j




F2g+2l−4(R13) = −
∑

1≤i<j≤l

∑

a+|bL\{i,j}|=2g+l−5

〈τaτbL\{i,j}λgλ1〉g
(
f0(bL\{i,j}, bL\{i,j} + 1)t

bL\{i,j}+1

L\{i,j}

(117)

f0(a + 1, a + 2)
a+1∑

k≥0

tk+1
i ta+2−k

j




F2g+2l−4(R14) = F2g+2l−4(R15) = 0(118)

F2g+2l−4(R16) =
1
2

l∑

j=1

stable∑
g1+g2=g

I∪J=L\{j}

∑

a1+|bI |=2g1−2+|I|
a2+|bJ |=2g2−2+|J |

〈τa1τbIλg1〉g1〈τa2τbJ λg2〉g2(119)

f0(a1 + 1, a1 + 2)f0(a2 + 1, a2 + 2)ta1+a2+4
j f0(bL\{j}, bL\{j} + 1)t

bL\{j}+1

L\{j}

[tbL+1
L ]F2g+2l−4(L1) =

l∑

j=1

〈τbj+1τbL\{j}λg〉gl(2− g − l)f0(bj + 1, bj + 1)f0(bL\{j}, bL\{j} + 1)

(120)
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[tbL+1
L ]F2g+2l−4(L2) =

l∑

j=1

∑

k∈L\{j}
〈τbj

τbk+1τbL\{j,k}λg〉glf1(bj , bj + 1)f0(bk + 1, bk + 1)

(121)

f0(bL\{j,k}, bL\{j,k} + 1) +
l∑

j=1

〈τbj+1τbL\{j}λg〉glf1(bj − 1, bj + 1)f0(bL\{j}, bL\{j} + 1)

+
l∑

j=1

∑

k∈L\{j}
〈τbj−1τbk+2τbL\{j,k}λg〉glf1(bj − 1, bj + 1)f0(bk + 2, bk + 1)f0(bL\{j,k}, bL\{j,k} + 1)

+
l∑

j=1

∑

k1∈L\{j}

∑

k2∈L\{j,k1}
〈τbj−1τbk1

+1τbk2
+1τbL\{j,k1,k2}

λg〉glf1(bj − 1, bj + 1)

f0(bk1 + 1, bk1 + 1)f0(bk2 + 1, bk2 + 1)f0(bL\{j,k1,k2}, bL\{j,k1,k2} + 1)

[tbL+1
L ]F2g+2l−4(L3) =

l∑

j=1

∑

k∈L\{j}
〈τbj

τbk+1τbL\{j,k}λg〉gbjf
0(bj , bj)f0(bk + 1, bk + 1)

(122)

f0(bL\{j,k}, bL\{j,k} + 1) +
l∑

j=1

〈τbj+1τbL\{j}λg〉gbjf
0(bj + 1, bj)f0(bL\{j}, bL\{j} + 1)

+
l∑

j=1

∑

k∈L\{j}
〈τbj−1τbk+2τbL\{j,k}λg〉gbjf

0(bj − 1, bj)f0(bk + 2, bk + 1)f0(bL\{j,k}, bL\{j,k} + 1)

+
l∑

j=1

∑

k1∈L\{j}

∑

k2∈L\{j,k1}
〈τbj−1τbk1

+1τbk2
+1τbL\{j,k1,k2}

λg〉gbjf
0(bj − 1, bj)

f0(bk1 + 1, bk1 + 1)f0(bk2 + 1, bk2 + 1)f0(bL\{j,k1,k2}, bL\{j,k1,k2} + 1)

[tbL+1
L ]F2g+2l−4(L4) = −

l∑

j=1

〈τbj+1τbL\{j}λg〉g(bj + 1)f0(bj + 1, bj + 1)f0(bL\{j}, bL\{j} + 1)

(123)

−
l∑

j=1

∑

k∈L\{j}
〈τbj

τbk+1τbL\{j,k}λg〉g(bj + 1)f0(bj , bj + 1)f0(bk + 1, bk + 1)f0(bL\{j,k}, bL\{j,k} + 1)

[tbL+1
L ]F2g+2l−4(L5) = −

l∑

j=1

〈τbj+2τbL\{j}λg−1〉glf0(bj + 2, bj + 1)f0(bL\{j}, bL\{j} + 1)

(124)

−
l∑

j=1

∑

k∈L\{j}
〈τbj+1τbk+1τbL\{j,k}λg−1〉glf0(bj + 1, bj + 1)f0(bk + 1, bk + 1)f0(bL\{j,k}, bL\{j,k} + 1)
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[tbL+1
L ]F2g+2l−4(L6) = −〈τbL

λgλ1〉glf0(bL, bL + 1)(125)

on the right hand side,

[tbL+1
L ]F2g+2l−4(R1) =

∑

1≤i<j≤l

〈τbi+bj
τbL\{i,j}λg〉gf0(bL\{i,j}, bL\{i,j} + 1)f1(bi + bj + 1, bi + bj + 1)

(126)

+
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−1τbr+1τbL\{i,j,r}λg〉gf1(bi + bj , bi + bj + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

f0(br + 1, br + 1) +
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−2τbr+2τbL\{i,j,r}λg〉gf1(bi + bj − 1, bi + bj + 1)f0(br + 2, br + 1)

f0(bL\{i,j,r}, bL\{i,j,r} + 1) +
∑

1≤i<j≤l

∑

r1∈L\{i,j}

∑

r2∈L\{i,j,r1}
〈τbi+bj−2τbr1+1τbr2+1τbL\{i,j,r1,r2}

λg〉g

f0(br1 + 1, br1 + 1)f0(br2 + 1, br2 + 1)f0(bL\{i,j,r1,r2}, bL\{i,j,r1,r2} + 1)f1(bi + bj − 1, bi + bj + 1)

[tbL+1
L ]F2g+2l−4(R2) = −

∑

1≤i<j≤l

〈τbi+bj
τbL\{i,j}λg〉gf0(bL\{i,j}, bL\{i,j} + 1)f1(bi + bj + 1, bi + bj + 2)

(127)

−
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−1τbr+1τbL\{i,j,r}λg〉gf0(br + 1, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

f1(bi + bj + 1, bi + bj + 3)

[tbL+1
L ]F2g+2l−4(R3) =

∑

1≤i<j≤l

〈τbi+bj
τbL\{i,j}λg〉gf0(bL\{i,j}, bL\{i,j} + 1)f0(bi + bj + 1, bi + bj)

(128)

+
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−1τbr+1τbL\{i,j,r}λg〉gf0(bi + bj , bi + bj)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

f0(br + 1, br + 1) +
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−2τbr+2τbL\{i,j,r}λg〉gf0(bi + bj − 1, bi + bj)f0(br + 2, br + 1)

f0(bL\{i,j,r}, bL\{i,j,r} + 1) +
∑

1≤i<j≤l

∑

r1∈L\{i,j}

∑

r2∈L\{i,j,r1}
〈τbi+bj−2τbr1+1τbr2+1τbL\{i,j,r1,r2}

λg〉g

f0(br1 + 1, br1 + 1)f0(br2 + 1, br2 + 1)f0(bL\{i,j,r1,r2}, bL\{i,j,r1,r2} + 1)f0(bi + bj − 1, bi + bj)

[tbL+1
L ](F2g+2l−4(R4) + F2g+2l−4(R5)) = −

∑

1≤i<j≤l

〈τbi+bj
τbL\{i,j}λg〉g(2g + l)

(129)

f0(bL\{i,j}, bL\{i,j} + 1)f0(bi + bj + 1, bi + bj + 1)−
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−1τbr+1τbL\{i,j,r}λg〉g

(2g + l)f0(br + 1, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)f0(bi + bj , bi + bj + 1)
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[tbL+1
L ]F2g+2l−4(R6) =

∑

1≤i<j≤l

〈τbi+bj
τbL\{i,j}λg〉g(2g + l − 1)f0(bL\{i,j}, bL\{i,j} + 1)(130)

f0(bi + bj + 1, bi + bj + 2)

[tbL+1
L ]F2g+2l−4(R7) =

∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj+1τbr−1τbL\{i,j,r}λg〉gf1(br − 1, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

(131)

f0(bi + bj + 2, bi + bj + 1) +
∑

1≤i<j≤l

∑

r∈L\{i,j}

∑

s∈L\{i,j,r}
〈τbi+bj−1τbr−1τbs+2τbL\{i,j,r,s}λg〉g

f1(br − 1, br + 1)f0(bs + 2, bs + 1)f0(bL\{i,j,r,s}, bL\{i,j,r,s} + 1)f0(bi + bj , bi + bj + 1)

+
∑

1≤i<j≤l

∑

r∈L\{i,j}

∑

s1∈L\{i,j,r}

∑

s2∈L\{i,j,r,s1}
〈τbi+bj−1τbr−1τbs1+1τbs2+1τbL\{i,j,r,s1,s2}

λg〉gf1(br − 1, br + 1)

f0(bs1 + 1, bs1 + 1)f0(bs2 + 1, bs2 + 1)f0(bL\{i,j,r,s1,s2}, bL\{i,j,r,s1,s2} + 1)f0(bi + bj , bi + bj + 1)

+
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−1τbr+1τbL\{i,j,r}λg〉gf1(br + 1, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

f0(bi + bj , bi + bj + 1) +
∑

1≤i<j≤l

∑

r∈L\{i,j}

∑

s∈L\{i,j,r}
〈τbi+bj−1τbrτbs+1τbL\{i,j,r,s}λg〉gf1(br, br + 1)

f0(bs + 1, bs + 1)f0(bL\{i,j,r,s}, bL\{i,j,r,s} + 1)f0(bi + bj , bi + bj + 1) +
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj

τbrτbL\{i,j,r}λg〉g

f1(br, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)f0(bi + bj + 1, bi + bj + 1)

+
∑

1≤i<j≤l

∑

r∈L\{i,j}

∑

s∈L\{i,j,r}
〈τbi+bj

τbr−1τbs+1τbL\{i,j,r,s}λg〉gf1(br − 1, br + 1)f0(bs + 1, bs + 1)

f0(bL\{i,j,r,s}, bL\{i,j,r,s} + 1)f0(bi + bj + 1, bi + bj + 1)

[tbL+1
L ]F2g+2l−4(R8) = −

∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj+1τbr−1τbL\{i,j,r}λg〉gf1(br − 1, br + 1)

(132)

f0(bL\{i,j,r}, bL\{i,j,r} + 1)f0(bi + bj + 2, bi + bj + 2)−
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj

τbrτbL\{i,j,r}λg〉g

f1(br, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)f0(bi + bj + 1, bi + bj + 2)

−
∑

1≤i<j≤l

∑

r∈L\{i,j}

∑

s∈L\{i,j,r}
〈τbi+bj

τbr−1τbs+1τbL\{i,j,r,s}λg〉gf1(br − 1, br + 1)f0(bs + 1, bs + 1)

f0(bL\{i,j,r,s}, bL\{i,j,r,s} + 1)f0(bi + bj + 1, bi + bj + 2)

[tbL+1
L ]F2g+2l−4(R9) = −

∑

1≤i<j≤l

〈τbi+bj+1τbL\{i,j}λg−1〉gf0(bL\{i,j}, bL\{i,j} + 1)f0(bi + bj + 2, bi + bj + 1)

(133)
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−
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj

τbr+1τbL\{i,j,r}λg−1〉gf0(br + 1, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

f0(bi + bj + 1, bi + bj + 1)−
∑

1≤i<j≤l

∑

r∈L\{i,j}

∑

s∈L\{i,j,r}
〈τbi+bj−1τbr+1τbs+1τbL\{i,j,r,s}λg−1〉g

f0(br + 1, br + 1)f0(bs + 1, bs + 1)f0(bL\{i,j,r,s}, bL\{i,j,r,s} + 1)f0(bi + bj , bi + bj + 1)

−
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−1τbr+2τbL\{i,j,r}λg−1〉gf0(br + 2, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

f0(bi + bj , bi + bj + 1)

[tbL+1
L ]F2g+2l−4(R10) =

∑

1≤i<j≤l

〈τbi+bj+1τbL\{i,j}λg−1〉gf0(bL\{i,j}, bL\{i,j} + 1)f0(bi + bj + 2, bi + bj + 2)

(134)

+
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj

τbr+1τbL\{i,j,r}λg−1〉gf0(br + 1, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

f0(bi + bj + 1, bi + bj + 2)

[tbL+1
L ]F2g+2l−4(R11) =

∑

1≤i<j≤l

〈τbi+bj
τbL\{i,j}λg〉ggf0(bL\{i,j}, bL\{i,j} + 1)f0(bi + bj + 1, bi + bj + 1)

(135)

+
∑

1≤i<j≤l

∑

r∈L\{i,j}
〈τbi+bj−1τbr+1τbL\{i,j,r}λg〉ggf0(br + 1, br + 1)f0(bL\{i,j,r}, bL\{i,j,r} + 1)

f0(bi + bj , bi + bj + 1)

[tbL+1
L ]F2g+2l−4(R12) = −

∑

1≤i<j≤l

〈τbi+bj
τbL\{i,j}λg〉ggf0(bL\{i,j}, bL\{i,j} + 1)f0(bi + bj + 1, bi + bj + 2)

(136)

[tbL+1
L ]F2g+2l−4(R13) = −

∑

1≤i<j≤l

〈τbi+bj−1τbL\{i,j}λgλ1〉gf0(bL\{i,j}, bL\{i,j} + 1)f0(bi + bj , bi + bj + 1)

(137)

[tbL+1
L ]F2g+2l−4(R16) =

1
2

l∑

j=1

∑

a1+a2=bj−3

stable∑
g1+g2=g

I∪J=L\{j}

〈τa1τbIλg1〉g1〈τa2τbJ λg2〉g2(138)

f0(a1 + 1, a1 + 2)f0(a2 + 1, a2 + 2)f0(bL\{j}, bL\{j} + 1)

Therefore, from the equation (97), we get the identity

(120) + (121) + (122) + (123) + (124) + (125) = (126) + (127)(139)

+ (128) + (129) + (130) + (131) + (132) + (133) + (134) + (135) + 136) + (137) + (138)

We note that, three types of the Hodge integrals appear in identity (139), 〈τbL
λg〉g, 〈τbL

λg−1〉g
and 〈τbL

λgλ1〉g.
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By now, we have known the closed formula for λg-integral [13] and a recursion formula for
λg−1-integral [24].

(140)
∫

Mg,l

ψd1
1 . . . ψdl

l λg =
(

2g − 3 + l

b1, .., bl

)
cg,

where
∑l

i=1 bi = 2g − 3 + l, b1, .., bl ≥ 0 and cg is a constant that depends only on g.

〈τb1 · · · τbl
λg−1〉g =

1
l

∑

1≤i<j≤l

〈τbi+bj−1

∏

k 6=i,j

τbk
λg−1〉g (bi + bj)!

bi!bj !
+ Cg,l(b1, .., bl)(141)

where Cg,n(b1, .., bl) is a constant related to b1, .., bl and g, l.
On the other hand, the constants f0(b, k) and f1(b, k) are available by their definition and the

recursions (52), (53). For example, f0(b, b+1) = b!, f1(b, b+2) = (b+1)!
∑b+1

k=2
1
k . Thus, solving

the equation (139), we will get a formula for the computation of Hodge integral 〈τbL
λgλ1〉g.

We observe that only the terms (125) and (137) contain the Hodge integral of type 〈τbL
λgλ1〉g.

Moving and combining the corresponding terms, we have

〈τbL
λgλ1〉g =

1
l

∑

1≤i<j≤l

〈τbi+bj−1τbL\{i,j}λgλ1〉g (bi + bj)!
bi!bj !

+ C(g, l, b1, .., bl)(142)

Where

C(g, l, b1, .., bl) = − 1

l
∏l

i=1 bi!
((126) + (127) + (128) + (129) + (130) + (131) + (132)(143)

+(133) + (134) + (135) + (136) + (138)− (120)− (121)− (122)− (123)− (124))

Formula (143) contains many terms, we hope to make a computer program to calculate
C(g, l, b1, .., bl).
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